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Abstract. Objective: Parkinson’s disease (PD) is currently incurable, however proper treatment can ease the symp-

toms and significantly improve the quality of life of patients. Since PD is a chronic disease, its efficient monitoring and

management is very important. The objective of this paper was to investigate the feasibility of using the features and

methodology of a spirography application, originally designed to detect early Parkinson’s disease (PD) motoric symp-

toms, for automatically assessing motor symptoms of advanced PD patients experiencing motor fluctuations. More

specifically, the aim was to objectively assess motor symptoms related to bradykinesias (slowness of movements occur-

ring as a result of under-medication) and dyskinesias (involuntary movements occurring as a result of over-medication).

Materials and methods: This work combined spirography data and clinical assessments from a longitudinal clinical

study in Sweden with the features and pre-processing methodology of a Slovenian spirography application. The study

involved 65 advanced PD patients and over 30,000 spiral-drawing measurements over the course of three years. Ma-

chine learning methods were used to learn to predict the “cause” (bradykinesia or dyskinesia) of upper limb motor

dysfunctions as assessed by a clinician who observed animated spirals in a web interface. The classification model

was also tested for comprehensibility. For this purpose a visualisation technique was used to present visual clues to

clinicians as to which parts of the spiral drawing (or its animation) are important for the given classification.

Results: Using the machine learning methods with feature descriptions and pre-processing from the Slovenian appli-

cation resulted in 86% classification accuracy and over 0.90 AUC. The clinicians also rated the computer’s visual

explanations of its classifications as at least meaningful if not necessarily helpful in over 90% of the cases.

Conclusions: The relatively high classication accuracy and AUC demonstrates the usefulness of this approach for

objective monitoring of PD patients. The positive evaluation of computer’s explanations suggests the potential use of

this methodology in a decision support setting.

Keywords: Parkinson’s disease; movement disorder; spirography; spirography features; objective monitoring; visual-

isation

1 Introduction and problem statement

Parkinson’s disease (PD) is a chronic neurological disorder associated with a number of motor and

non-motor symptoms. Major motor symptoms include bradykinesia (slowness of movements), tremor

1



Page 2 of 22

Acc
ep

te
d 

M
an

us
cr

ip
t

2

and rigidity. While currently incurable, proper treatment can significantly ease the symptoms. As the

disease progresses, however, patients start to experience motor fluctuations which adversely impact

the quality of their life. Therefore, the treatment approaches should be individualised in order to

alleviate unwanted symptoms which occur as a result of insufficient levels of medication (Off state)

and abrupt, involuntary movements (also known as dyskinesias) which occur as a result of excessive

levels of medication. To this end, careful and objective monitoring of the disease is of paramount

importance. As the patients usually see the neurologist only few times per year (sometimes also just

once per year), the neurologist often has only a very vague picture of their condition in-between

the visits and has problems with prescribing the optimal drug dosage. Currently, patients monitor

their long-term condition by keeping a simple diary. The entries in the diary, however, are subjective

opinions of the patients and are not something measurable. Clinical scales like the Unified Parkinson’s

Disease Rating Scale (UPDRS) are not suitable for long-term and remote follow-up of the symptoms

since they are relatively time-consuming [1], may need to be filled out at a clinical visit, require

considerable clinical experience [2] and some of their items have poor inter-clinician reliability [3].

The digitalised spirography is a quantitative method for detection and evaluation of different types

of tremors and other movement disorders. The spirographic system is usually composed of a computer

with a specialised software, a graphic tablet or a touch-screen measurement device (e.g. a smart-

phone), and a stylus [14,4]. The patient is required to draw a spiral (or sometimes several spirals).

The digitalised spirography enables us to store the exact timestamp of each point of the spiral in

a two-dimensional area and thus provides an objective measurement of upper limb motor function.

These systems allow extraction of detailed upper limb motor features from the spiral drawing tasks

by analysing spatial and temporal artefacts of the spirals.

Our long-term goal is to develop a system for objective monitoring of PD patients that would

also be able to automatically detect any significant changes in the patient’s condition and report these

changes to the neurologist. We envision the same methodology also used for automatic analysis of the

patient’s diary containing spirographic measurements, and as a decision support system for clinicians

(automated spirographic test). To this end, the spirals drawn have to be described mathematically by

various features (some described in Table 3 later in the paper) for the machine learning algorithms to

be able to analyse them automatically. These features are also needed for visual explanation of the

computer’s reasoning.

This study presents a step towards our long-term goal. There were two main objectives of this

study: (1) to investigate whether the methodology developed for the PARKINSONCHECK application

can be successfully used for the differentiation between states of bradykinesia (insufficient medica-
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tion) and dyskinesia (overmedication), and (2) to create a visual aid for the physicians to use with

spirography that also serves as an explanation of the computer’s reasoning.

The background (previous work of both groups) is as follows. The group in Slovenia previously

developed the PARKINSONCHECK application for early detection of signs of Parkinsonian or Essen-

tial tremor [11,12]. PARKINSONCHECK is a decision support system based on a spirographic test

performed on smartphones. The application involves extensive preprocessing and mathematical de-

scriptions of different features of the spirals drawn by the user. The group in Sweden performed a

clinical trial to (also) test the suitability of spirography for objective monitoring of the patients. These

were advanced PD patients, and one of the goals was to determine whether spirography can be used

to associate the dosage of the medication with the current condition of the patient.

In the present study we applied the PARKINSONCHECK methodology to automatically differenti-

ate between the states of bradykinesia and dyskinesia which is important for drug dosage adjustment,

using spirography data collected in a Swedish study [5,6,17]. Note that this application is different

from PARKINSONCHECK’s objective. The successful application validates the PARKINSONCHECK’s

preprocessing and features for spiral description on a more general level as well as confirms the use-

fulness of digitalised spirography for this particular task. In the second part of the study we used the

mathematical features with the visualisation methodology to create a decision support system for the

physicians.

The work presented here consists of two parts, and the organisation of the paper follows this.

In the first part, described in Section 2, we use machine learning to construct a decision model for

differentiating bradykinesia from dyskinesia using the descriptive features and methodology devel-

oped for PARKINSONCHECK application. The data used and the differences with the data for which

the features were originally constructed are also described in this section. The second part (Section

3) tests the comprehensibility and clinical usefulness of the decision model built in the first part. It

describes an experiment using a visualisation technique to explain the “reasoning” of the decision

model to the clinicians and their acceptance of the model. The results of both experiments (parts) are

presented in their respective sections, while the joint discussion, conclusions, and further work are

given in Sections 4 and 5.

2 Learning a classification model

2.1 Subjects

In this study, a retrospective analysis was conducted on spirography data of 65 patients with advanced

idiopathic PD from eight different clinics in Sweden, recruited from January 2006 until August 2010
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[6]. The patients were either treated with levodopa/carbidopa gel intestinal infusion or were candidates

for receiving this treatment. There were 43 males and 22 females with median (± inter-quartile range)

age of 65 ± 11 years and total UPDRS of 49 ± 20.5. UPDRS is a widely used scale for clinical

assessment of Parkinson’s disease and consists of four parts: I: mentation, behaviour and mood, II:

activities of daily living, III: motor examination, and IV: complications of therapy. All questions

have five response options 0–normal, 1–slight, 2–mild, 3–moderate, and 4–severe. The sum over the

answers to the questions gives the UPDRS rating of a patient. [16]

2.2 Spirography data collection

During the course of the clinical study, the patients used a touch screen telemetry device in their home

environments [5]. On each test occasion, they were asked to trace a pre-drawn Archimedean spiral

using the dominant hand. The pre-drawn spiral was shown on the screen of the device and the patients

were instructed to use an ergonomic pen stylus to trace it from the center and out, as accurately and

fast as possible, supporting neither hand nor arm. The patients were instructed to place the device

on a table and to be seated in a chair. The patients were asked to repeat the drawing three times per

test occasion. The raw data consisted of x-y coordinates and time-stamps of the pen tip, digitized at a

sample rate of 10 Hz. In total, the database consisted of 10,272 test occasions having approximately

30,816 (3 × 10,272) spirals. Some example spiral drawings are shown in Figure 1.

2.3 Clinical assessment of motor impairments

A clinician (D.N.) used a web interface that animated the spiral drawings, allowing him to observe

different kinematic features during the drawing process and to rate task performance of the patients

[7,17]. The interface retrieved spiral data from the database tables and then animated the drawing in

real-time; that is with the same speed as the patients initially drew the spirals. A number of motor

features were assessed by the clinician including ‘impairment’ on a scale from 1 (normal) to 10

(extremely severe), ‘speed’, ‘irregularity’, and ‘hesitation’ on a scale from 0 (normal) to 4 (extremely

severe). The motor features were considered specific for the type of upper limb motor movements

found in patients with motor fluctuations. Finally, ‘cause’ of the said dysfunctions was assessed as

either tremor, bradykinesia, or dyskinesia. In case the clinician could not decide which category of

‘cause’ to select, he had the option to skip the rating.
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Fig. 1: Three example spiral drawings and ratings as given by the clinician. The values are for cause
(0=none, 2=bradykinesia, 3=dyskinesia), impairment (on a scale from 1=normal to 10=extremely
severe), speed, irregularity, and hesitation (on a scale from 0=normal to 4=extremely severe), respec-
tively.

2.4 Selection of cases for machine learning

Three test occasions per patient were randomly selected from the database. However, there was in-

complete data available for 5 patients and these were excluded from the dataset, leaving 180 cases

(three cases per each of 60 patients with complete data) to be assessed by the physician.

Out of 180 cases, there were 38 cases rated as bradykinesia, 119 as dyskinesia, 1 as tremor, and 22

were skipped by the rater. Only cases that were rated as bradykinesia and dyskinesia were included

in the subsequent analysis, giving a final dataset of 157 cases to be used in this study.

For the purpose of this study we treated separate test occasions from the same patient as indepen-

dent cases. Our reasoning is that these were taken a considerable time apart (the clinical trial lasted

for over three years) and motor symtoms can progress quite fast in PD patients. [19] The rate of pro-

gression depends on many factors, such as the degree of motor impairment and age at commencement

of treatment (the higher the impairment and the bigger the age at treatment commencement the faster

the progression of the disease). [20] Strictly speaking, however, these samples are not completely

independent.

2.5 Features and pre-processing

The starting point of the data analysis phase was the raw data gathered with the Swedish telemetry

device. A spiral drawn by a patient was described as a sequence of triples, (t, x, y), where t denotes

the time (in ms) and x, y denote a Cartesian coordinate of a point of the spiral (as seen on the screen

of the device). We used raw data (t, x, y) to calculate an applicable subset of the features from the

PARKINSONCHECK application, also precisely matching all the pre-processing involved. The exact
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detailed calculation including the pre-processing such as smoothing and normalisation are given in

[10]. For each of the three spirals (repetitions), the constructed features included: root mean squared

error (RMSE) between the patient’s spiral and the optimal spiral, computed in polar coordinates,

absolute, radial and tangential speed of drawing, the percentage of the spiral length when the patient

is drawing towards the centre, and the parameters of oscillations; altogether over 80 features per spiral.

The meaning of the most important features is briefly described in the next section. These features

were aggregated over the three repetitions using operators such as min, max, average and range over

all three spirals.

Using these features, a learning example is composed of only aggregated features over all three

repetitions, and a ‘cause’ class as appraised by the clinician. The learning situation was thus identical

to the one the neurologist had when initially classifying the examples. Only cases rated as bradykine-

sia or dyskinesia were included for the learning problem, giving the majority class of roughly 76%.

Each case (learning example) represents a test occasion.

2.6 Differences with the dataset from PARKINSONCHECK

The two datasets, the PARKINSONCHECK and the Swedish one used in this study, were collected for a

different purpose. PARKINSONCHECK is an application for early detection of signs of Parkinsonian or

Essential tremor (ET, the most common differential diagnosis of PD) and for differentiation between

these two types of tremor, while the Swedish data were collected during a longitudinal study aimed

at monitoring the advanced PD patients.

As straightforward as spirography looks, the two datasets — that is Swedish and Slovenian

(PARKINSONCHECK) — were collected with different data collections schemes. The following are

the main discrepancies between the two schemes:

– A different equipment (smartphones or tablets vs specialized device) was used for drawing the

spirals using a very different sampling rate (> 50 Hz vs 10 Hz);

– The spirals were drawn with a stylus instead of with fingers alone (different biomechanics in-

volved);

– Different direction of drawing (counter-clockwise vs clockwise);

– Completely unsupervised data collection (patients were on their own) and without safeguards for

detecting the center of the screen and direction of drawing;

– In the Swedish study, patients were asked to repeat the spiral test (tracing the pre-drawn spiral tem-

plate on the screen) 3 times per test occasion using the dominant hand, while PARKINSONCHECK

data consists of four different drawings: with and without the template visible, using first the right

hand and then the left hand;
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– The Swedish patients were specifically instructed to complete the spiral drawing test in approxi-

mately 10 seconds per drawing, while no such instruction was given for PARKINSONCHECK data.

As the two datasets differ in so many aspects, it is interesting to investigate the extent of symptom

information resolution of the previously developed features and symptom scoring methodology of

PARKINSONCHECK applied on the Swedish dataset.

2.7 Machine learning methods

We tested four machine learning methods using Orange machine learning suite[15]: logistic regression

(LR), naı̈ve Bayes classification (NB), support vector machines (SVM), and random forests (RF). The

first two were selected because they are linear and we prefer linear models since their classification

models are simple to understand. The second two, that can extract also nonlinear patterns, were used

to determine whether linear models are sufficient for this problem or not.

The parameters of the methods were tuned with an internal cross-validation. We have not used

any feature subset selection techniques since they did not produce any considerable improvements

in our previous work with similar data. However, all continuous attributes were first automatically

discretized with the entropy-based discretization [13]. Attributes that could not be discretized, were

removed from the learning data, see Sadikov [10] for details. The probability estimates from SVM

outputs were estimated with an improved implementation of Platt’s method, as used in LIBSVM [18].

In the case of random forests, the predicted class probabilities were obtained by averaging probabili-

ties from each of the trees.

The methods were evaluated with a 10-times repeated tenfold cross-validation procedure with

stratified sampling, for the following reasons: (a) using cross-validation will result in less biased esti-

mates, (b) repeating cross-validation procedure on different splits will result in a smaller variance on

an accuracy estimate, and (c) stratified sampling decreases the differences between class distributions

in the learning and testing sets. To prevent overfitting, the discretization was first applied only on the

learning data and then the same thresholds were used on the testing data. To compare the qualities of

learned models, we used the following measures: classification accuracy (CA), area under the curve

(AUC), and Brier score, which is the quadratic loss of the probability estimates.

2.8 Results

Table 1 summarizes the results for various machine learning algorithms for differentiating between

the state of bradykinesia and the state of dyskinesia. There is no significant difference between the

algorithms, they differentiate between the two states almost equally well. In the continuation, we will
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therefore focus on logistic regression (LR) as its model is relatively easy to understand as compared to

the other algorithms. Comprehensibility, while not being an unconditional requirement, is a welcome

feature, especially so with new methodology still being validated. The confusion matrix for logistic

regression model is given in Table 2.

Table 1: The results with standard deviations (classification accuracy, Brier score, area under the
curve) for logistic regression (LR), random forests (RF), support vector machines (SVM), and naı̈ve
Bayes classifier (NB).

Majority LR RF SVM NB
CA 0.758±0.000 0.846±0.013 0.864±0.009 0.841±0.012 0.853±0.009
Brier 0.367±0.000 0.221±0.014 0.195±0.004 0.232±0.017 0.314±0.009
AUC 0.500±0.000 0.914±0.010 0.925±0.008 0.896±0.015 0.848±0.011

Table 2: The confusion matrix for logistic regression model. The results are averaged over all repeti-
tions of 10-fold cross-validation.

Bradykinesia (predicted) Dyskinesia (predicted)
Bradykinesia (clinician) 23.2 14.8
Dyskinesia (clinician) 9.4 109.6

Table 3 contains ten most important features for the logistic regression model. The three most

important features (avgP.min) all describe variability in speed (radial, tangential, and absolute) of

drawing over the whole range of the spiral. The minimum over all three spiral drawings is taken. The

features plrErrComCnt (avg and max) describe the level of curvature or smoothness of the spirals.

The percentage of time the patient draws towards the centre is also quite important (percNeg feature)

as well as the general misfit of the drawing as compared to the ideal spiral in polar coordinates

(plrErrFit). The number of times the spiral crosses itself (rot.avgP) is also important — it is a good

measure of severe fluctuations during drawing.

3 Clinical appraisal of the model

We envision the application of the methodology presented in this paper in two distinct ways: (a) as

the built-in expert system of a monitoring device used independently by the patient with PD, or (b) as

a decision support system of a digital spirography application in the hands of a clinician.
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Table 3: The coefficients of the logistic regression with pre-discretization of attributes. Only ten most
influential attributes (as measured by beta value range) are given.

Attribute Importance General description
radSp.avgP.min 1.13 radial speed variability
tangSp.avgP.min 1.02 tangential speed variability
absSp.avgP.min 0.78 absolute speed variability
plrErrComCnt.avg 0.70 level of curvature/smoothness of the spiral
radSp.percNeg005.min 0.69 percentage of time the patient drew towards the centre
plrErrComCnt.max 0.67 level of curvature/smoothness of the spiral
plrErrFit.avg 0.65 general misfit from the ideal spiral (template)
tangSp.avgP.rng 0.65 tangential speed variability
tangSp.avgP.max 0.63 tangential speed variability
rot.avgP.min 0.62 number of times the spiral crosses itself

The self-monitoring application represents a telemedical setting where the patient regularly mea-

sures him- or herself with a device for digital spirography; this could also be an app on a smartphone

similar to PARKINSONCHECK [11]. These measurements should be done alongside the current prac-

tice of keeping a diary of medication intake and noting the general well-being. The latter is quite

subjective and in this respect the spirographic measurements provide an additional objective compo-

nent for the appraisal of the patient’s condition over time.

In this type of application the built-in expert system would automatically analyse the condition

of the patient over time to detect whether he or she is potentially under- or over-medicated, both

conditions being of interest. The objective dosage monitoring is a very serious issue in managing

of Parkinson’s disease as the disease slowly progresses over a long period of time and the patient

typically sees the neurologist only once or twice per year in most countries. The expert system would

alarm the patient and/or clinician when it would detect a serious anomaly over time. In this setting,

(classification) accuracy is probably the most important metric for the appraisal of the system, and

comprehensibility is of secondary importance. Having said that, it is still a good idea to visualise the

way computer “thinks”, though. We continue this thought later in this subsection.

The second application of our methodology is envisioned as a decision support system for physi-

cians in a clinical setting. Often times spirography is performed simply on a piece of paper as part of

a clinical examination; digital spirography with the calculation and presentation of various features is

still relatively new.

Our methodology could take this one step further and offer a clinician not just calculated results

of features of spirographic test, but a computer’s opinion on the patient’s condition. This would serve

for decision support purposes or as an additional opinion and would completely automate the digital
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spirographic test. Such a decision support system could thus be used either instead of a spirographic

test performed on paper or, perhaps more importantly, to analyse patient’s drawings over a longer pe-

riod of time (either drawn at home or in a hospital setting). Currently, it is quite difficult for clinicians

to assess the patient’s condition over a longer period of time (e.g. to prescribe the correct dosage of

the medication) on their (yearly) visit as they rely only on the patient’s (subjective) diary. This diary

consists of a large volume of entries and it is hard for clinicians to go over that in a limited amount

of time. An automated solution (in this case over the spiral drawings, but also potentially including

patient’s subjective appraisal and medication intakes) would go a long way to help with this problem.

To this end, not only (classification) accuracy is important as a metric of success, but also the

comprehensibility of the computer’s reasoning and explanation. It is known that well explained sug-

gestions are more easily accepted by the experts.

Our approach to the explanation is to highlight the specific interesting parts of the spiral. This gives

an immediate visual clue to the clinician. Such an approach is perhaps quite novel in the sense that we

do not highlight the machine learning features in their feature space, but back on the original spiral

drawing for static features and on spiral animation for temporal features. This approach is described

in more detail in the next subsection.

Visualisation can be very useful for some other purposes as well. As stated in [12]: “The pur-

pose of such visualisation is threefold: (a) it provides the physician with immediate visual clues to be

aware of when assessing the spiral, (b) it can serve as a ‘visual debugging aid’ for the developers of a

DSS, and (c) it can trigger generation of new domain knowledge”. Visual debugging and new knowl-

edge generation is perhaps even more fitting or relevant in this case as the features and preprocessing

methodology was not designed with this specific task (separating bradykinesia from dyskinesia) in

mind. Thus, while the first experiment is concerned with model building and its accuracy, the sec-

ond experiment is geared towards the analysis of the model’s comprehensibility and usefulness in a

decision support setting.

3.1 Visualisation of the model’s decision making

It is often hard, even for a trained eye, to derive all of the important information from a given time

series — in our case from a spiral. However, this is not hard for a computer using different algorithms

to detect anomalies. Yet people frequently do not trust in the computer’s results (although correct) as

they do not see the logic behind its decision. Therefore it is important to try to explain the computer’s

decision. Usually this is done with the written explanation of the decision model, which cannot be

always done in a comprehensible way. We tried to make a step further in our explanations to somewhat

overcome this problem. We wanted to explain the decisions on the original data — in our case to
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highlight the parts of the actual spiral that was drawn, and not the feature space (which is often

incomprehensible to humans). With this idea in mind, we developed an algorithm which finds the

parts of the spirals, which have contributed the most to the computer’s decision.

Let us first define some of the basic terms which will be used hereinafter.

A time series T is a sequence of values t1, t2, ...tn measured in subsequent time points.

An attribute A is a function of a time series T: A = f(T ).

Let us say we have a time series T of the length n. An interval I of the length s ≤ n is a subse-

quence of consecutive points of the time series T.

Suppose a W is a set of all of the possible intervals I.

The goal is to find Wa = {I1, I2, ...Ik}, where Wa ⊂ W , so that Wa is a subset, where | I1∪I2∪...∪Ik |

is the smallest, and that with adding new intervals Ij in a subset Wa benefit does not rise significantly.

Benefit is defined as a ratio between the sum of interval contributions and their cost.

If T’ is a modified time series T, where the values of the points on the interval I were replaced

with expected (neutral) values of the attribute A, then a contribution of an interval is defined as

| f(T )− f(T ′) |.

Interval contributions are normalised to an interval [0, 1].

Contribution of an interval is a good indicator of which of the intervals are the most important for a

given classification. We could actually highlight n intervals with the highest contributions. If we have

intervals of length one, in the worst case scenario the intervals of the highest values of contribution are

not adjacent and we would therefore highlight individual points which are scattered around the whole

time series. For the majority of the attributes, this is not really useful as we would not understand the

computer’s reasoning behind the classification any better than without the visualisation. This is the

reason why we would like to find adjacent intervals instead of highlighting scattered points. This kind

of visualisation can be more beneficial from the cognitive point of view and can give experts more

information. We achieved this by introducing interval cost.

Cost of the intervals is calculated using the formula:
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cost =
∑

I(ω∗ | I | +(1− ω) ∗ log2(1+ | I |))

The cost function is made up of two parts in both of which the length of an interval (| I |) is one

of the main arguments. With this we achieved that our method prefers longer intervals to shorter ones.

A short example of what we achieve with this cost function is shown in a Table 4. The example is

also illustrated in Picture 2.

Fig. 2: Illustration of positions of intervals I1, I2, and I3 of the length 2 with the adjacent intervals I1
and I3.

We are showing three intervals I1, I2, and I3 of the length 2 with the adjacent intervals I1 and

I3. From the results we can see that if we would not prefer longer intervals (e.g. joining the adjacent

intervals), we would highlight intervals I1 and I2. In the case of joining intervals I1 and I3 their cost

is lower than the cost of using I1 and I2 (which are not adjacent and cannot be joined). The benefit

of the joined intervals I1 and I3 is higher than the benefit of interval I1 or interval I2 and more than

two times higher than the benefit of interval I3 alone. This results in highlighting the joined interval

I1 and I3.

Since we did not want to punish shorter intervals unproportionately, we balanced the formula by

using a weight ω. We have to set the weight for every attribute, depending mostly on the meaning of

the attribute and of our preferences — whether we want longer or shorter intervals. This cannot be
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Table 4: An example of costs and benefits of the individual intervals of the same lengths and of the
combination of the intervals. Weight ω in the cost function is set to 0.5. Values for the benefit were
calculated using the formula benefit = contribution

cost
.

Interval Contribution Cost Benefit
I1 6.0 1.79 3.35
I2 5.5 1.79 3.07
I3 4.0 1.79 2.23
I1,2 11.5 3.59 3.21
I1,3 10.0 2.16 4.63
I2,3 9.5 3.59 2.65

made automatically since the decision of how long intervals we want to highlight is largely a cognitive

decision.

Searching for the most important parts of the time series is done only if the attribute value on the

whole time series is high (or low, depending on the model) enough for the attribute to appear in the

decision model. If the value is not high enough, we are not interested in highlighting its results on a

time series.

3.2 Objectives and experimental setup

The clinical appraisal experiment was conducted to assess the model learned as the result of the

machine learning experiment described earlier. As the accuracy of the model was already tested in the

first experiment, the objectives of this assessment were focused on evaluating the model’s suitability

for use as a decision support tool for a clinician. In this respect, we were interested in the appraisal of

comprehensibility of the model and its explanations, and general acceptance of the model’s “thinking”

as seen by clinicians.

The experiment was set up using our web-based spiral drawing viewer application shown in Fig-

ure 3. The task was to classify test instances as either bradykinetic or dyskinetic. Each test instance

consisted of three spiral drawing repetitions as this is how the patients were asked to perform the

individual measurements. The clinicians were also able to see the animation of all the presented spi-

ral drawings. The animations were in real-time, exactly how the patients drew them. In this way the

dynamic (speed) characteristics of the drawings could be analysed.

The test consisted of 32 instances, of which 16 were bradykinetic and 16 were dyskinetic. The

clinicians (D.N. and D.G.) were first presented with all 32 instances in random order (as to the class)

without the visual clues of the model. In the second part of the experiment all the instances were re-

peated in the same order as before but with the visual clues and textual explanations (red highlighted

parts of the drawings and text under the “anomalies detected” heading). The visual clues for dynamic
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Fig. 3: Web-based spiral drawing viewer displaying an instance with visual clues as used in the ap-
praisal of visualisation.

characteristics (blue highlights) were also shown when animating the drawings. The number of in-

stances was a compromise between the sample size and the duration of the experiment. Altogether

each participant had to assess 64 instances (2× 32) consisting of three spiral drawings each for a total

of 192 drawings.

The clinicians were told in advance that all the instances were either bradykinetic or dyskinetic,

but not the distribution of the instances between the two classes. In both parts of the experiment the

clinicians were asked to classify the instances also having the option “cannot decide”. In the second

part they were not shown their classification from the first part. In the second part of the experiment

the clinicians were additionally asked to evaluate the visual (and textual) clues given by the model

as to their helpfulness and meaningfulness for the task. The four options for the assessment of the

visualisation given were:

– helpful;

– not so helpful, but still meaningful;

– meaningless;
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– undecided.

Additionally, it was also possible to leave a comment for each instance.

The selection of instances was geared towards (more) clear cut cases. The logic behind this was

that in this experiment we predominantly wanted to evaluate the model’s explanations and validity,

and not test its predictive accuracy. Another reason for this selection was that the ground truth for

the instances was obtained on the basis of spiral drawings alone (no clinical confirmation as the

patients took the recordings in an unsupervised setting) and we wanted to use the instances that were

most likely correct. The ratio between dyskinetic and bradykinetic cases in the full dataset (see first

experiment) was about three to one. However, we decided on an equal distribution between the classes

for this experiment since the sample size was not that large and we wanted the bradykinetic class to

still be well represented.

We had at our disposal a set of instances assessed for ground truth by four independent clinicians

for this experiment [17]. For the reasons above we selected a random selection of 16 instances of each

class from this set with the additional stipulation that there had to be a majority of three evaluators to

one or better for each instance regarding its class. However, the large majority of the selected instances

were unanimously classified by the evaluators.

3.3 Results

The assessment was performed by two clinicians. One of them, D.N. was involved in this research

before and was also involved in the ground truth assessment a year ago. The other, D.G. was not

involved before, but is very familiar with spirography. However, he never used spirography to look

for dyskinesia before, and was thus completely new to this particular task. He did not receive any

specific prior training or instructions besides the description of the task and relied on his medical

knowledge in the area of movement disorders alone.

Table 5: The confusion matrix for D.N. without visual clues.

Bradykinesia Dyskinesia Undecided
(predicted) (predicted)

Bradykinesia (true) 6 10 0
Dyskinesia (true) 0 16 0

The results of the classification task are presented as confusion matrices for each of the clinicians

separately (Tables 5–8). There is one matrix for each part of the test, without and with visual clues,
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Table 6: The confusion matrix for D.N. with visual clues.

Bradykinesia Dyskinesia Undecided
(predicted) (predicted)

Bradykinesia (true) 4 12 0
Dyskinesia (true) 0 16 0

as we were interested in the potential effect the visualisation has on the classification task. From the

matrices we can see that both clinicians only very rarely changed their opinion in the second part

of test: one changed his mind twice (both times for the worse) and the other once (positively from

mistaken to at least undecided). However, all in all, there was minimal change in the classification

decisions for both of them.

Table 7: The confusion matrix for D.G. without visual clues.

Bradykinesia Dyskinesia Undecided
(predicted) (predicted)

Bradykinesia (true) 16 0 0
Dyskinesia (true) 5 9 2

Table 8: The confusion matrix for D.G. with visual clues.

Bradykinesia Dyskinesia Undecided
(predicted) (predicted)

Bradykinesia (true) 16 0 0
Dyskinesia (true) 4 9 3

If taken together, the classification accuracy of both clinicians is approximately 75%. This sug-

gests, that even taking more clear cut examples, the problem is far from trivial and a decision support

system could be a very useful tool. Furthermore, it is interesting how the two clinicians differed in

their classifications. While one of them perfectly detected all dyskinetic cases and had problems with

the bradykinetic ones, it was just the opposite for the other. The latter can be explained by D.G.’s

statement that he never used spirography for detecting signs of dyskinesia before.

As a side note the classification accuracy of the model used for visualisation was 100%. This does

in no way suggest that the model is perfect. The results from Table 2 convey the real accuracy of the

model. However, it is a welcome circumstance as this makes the visual clues more reliable — after
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all visualisation depends not only on the features used in the model but also on which features were

important for the given classification.

Table 9: Opinion on the acceptability of visualisation.

Not so helpful,
Helpful but still meaningful Meaningless Undecided

Number of answers 29 32 0 3

The other question dealt with the issue whether the visualisation and thus computer’s decision

model (reasoning) makes sense to the clinicians. We consider this the main question of this experi-

ment, the accuracy with and without visualisation was tested mainly to see whether it has any signifi-

cant influence on the decision process (good or bad). The combined results are presented in Table 9.

The large majority of “not so helpful, but still meaningful” answers came from D.N., while the large

majority of “helpful” answers came from D.G. This probably makes sense as the former was involved

in this research from the onset, while it was new to the latter one. The combined results (no cases

where the visualisation seemed meaningless and just three undecided cases out of 64) suggest that the

model and its features are reasonable for this task.

4 Discussion

As we stated in the introduction the main objective of this research was to analyse whether the de-

scriptive features and methodology developed for PARKINSONCHECK application for early detection

of signs of Parkinsonian or Essential tremor can be applied more generally. In this paper we applied

it to the clinically important task of monitoring advanced PD patients for signs of bradykinesia and

dyskinesia which directly relate to the drug dosage adjustment problem. We have performed two ex-

periments: the first one is a classic application of machine learning methodology to obtain a model

to differentiate between the two conditions, and the second one is aimed at validating the model in

terms of its comprehensibility which relates also to the model’s acceptability in a clinical setting. We

discuss both experiments separately in the continuation.

4.1 Learning the classification model

The main observation of the first experiment is that all the algorithms are clearly better than the

majority classifier. This indicates that the features of the Slovenian PARKINSONCHECK application

contain relevant symptom information for objective assessment of PD motor symptoms when applied
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to data collected by a telemetry device used in a three years Swedish clinical study. Even though

the features were designed for early detection of PD and ET symptoms, the findings indicate that a

(sub)set of them can be used for recognising upper limb motor movements specific to Off episodes and

peak-dose dyskinesias, which are prominent in advanced patients experiencing motor fluctuations.

In order to cover cases from all the patients involved in the Swedish study and to make it possible

for the clinicians to rate the spirals, a sample of spirals from the whole database has been drawn by

randomly selecting 3 test occasions per patient [7].

The results in this experiment were obtained using only the aggregated features over all three spi-

ral drawings. While experimenting, we also fitted models using the non-aggregated features, and the

observed classification accuracies were up to 90% (with increases in other metrics as well). However,

we decided to present the results only for aggregated features as we currently do not have a good

explanation why any given spiral (first, second, or third attempt) would be more important than the

others. It does indicate, though, that there is more information that can be extracted from this data.

From the confusion matrix presented in Table 2, we can conclude that there were more misclassifi-

cations for bradykinesia class than dyskinesia. This can probably be because of the unbalanced data

design where majority of the spirals (76%) were rated as dyskinesia. This is something that we are

looking into while continuing this research. Moreover, it has to be noted that both possible misclas-

sifications carry equal weight as both conditions are unpleasant for the patient and both need to be

properly addressed.

In contrast to other technology-based symptom assessment strategies which are mainly based on

the use of wearable sensors [8], spirography has been used mainly for assessing the severity of the

symptoms. To our knowledge, only [9] have tackled the problem of assessing motor fluctuations using

spirography tasks. However, they have mainly focused on quantifying the severity of dyskinesias only,

by limiting data processing on frequency bands relevant to dyskinesias, and with no reference to Off

symptoms. In contrast, our approach is designed to capture movement patterns exhibited by patients

being in Off (bradykinesia) and dyskinesia motor states.

4.2 Evaluation of the model’s comprehensibility

The objective of the second experiment was to check the model obtained as the result of the first

experiment for comprehensibility. If the model is comprehensible and assessed by the clinicians as

meaningful, then it can more convincingly be used in a decision support setting.

We deem this second experiment as particularly important in this particular case as all the method-

ology (features, preprocessing, etc.) was not developed with this specific task in mind. Comprehensi-

bility was thus far from guaranteed.
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The results from this experiment are somewhat mixed. There seem to be no doubt that the clin-

icians find the visual clues (and consequently “reasoning” of the model) at least meaningful if not

downright helpful. On the other hand, we did not observe much influence of the visualisation on the

clinicians’ decision making. To a certain extent this result surprised us as we did a very similar exper-

iment (for a different task) and there one the main findings was that the visual clues very much affect

the decision making of the clinicians (this research is still ongoing and is not published yet).

There could be several reasons for finding no influence of visualisation in this experiment. We

specifically selected more clear cut cases to be particularly certain that the class (ground truth) is cor-

rect. This, however, might have resulted in clinicians being quite certain of their decision — although

their accuracy does not coincide with this. There might also be an issue that 32 instances are not

enough and that they were able to remember their classifications from the first part when presented

with the same instance again. Perhaps this is also the result of a possible bias of both clinicians: one

was aware of the uneven distribution of classes from the first experiment (about 76% of the cases

were dyskinetic) and this could somewhat influence him while the other was familiar with observing

bradykinesia in the drawings, but completely unfamiliar with using spirography for observing dysk-

inesia. As it stands, repeating the experiment with more clinicians and more perhaps more instances

makes sense.

We believe, though, that we can take away from this experiment that the model is sensible and

the features used are useful for this task in a telemedical setting and perhaps even as an automatic

analysis tool for a patient’s diary of spirographic measurements. On the other hand, it remains to be

seen whether the model/features can be useful in a decision support setting.

5 Conclusions and Future Work

The present study demonstrates that a lot of information about the PD patient’s condition can be ex-

tracted from his or her spirographic data. The main conclusion is that it is feasible to apply PARKIN-

SONCHECK’s features and pre-processing methodology to a substantially different set of spirographic

data and obtain a comprehensible model with good predictive accuracy. The features can thus be

thought of as quite general for the description of spiral drawings.

In the long term this result suggests that spirography could be used as a valid method for objective

monitoring of PD patients, especially combined with other tests that could detect those conditions

that were currently misclassified. The latter could be improved with new features as well, however,

we suspect that tests complementary to spirography will have an even more significant impact.
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The obvious future work is to look into the misclassified cases and try to either improve the

model or get an understanding of why the misclassifications occurred. It would be interesting for a

clinician to review the misclassified cases, perhaps changing his opinion or pointing the reasons for

the misclassification. This could lead to potential new features for describing the spirals. Or it could

hint at the lack of information in the spirals for this particular problem. On this topic, there were

a few comments from the clinicians in the second experiment describing some cases as difficult or

expressing surprise with the lack of some feature being highlighted. Interestingly in all those cases,

they made a classification error. However, these are exactly the cases that are most fruitful for further

analysis.

In the future, the plan is to collect more ratings on animated spirals from more clinicians, but also

to collect more spiral drawings in a controlled environment. This would allow us to investigate the

feasibility of time-space reconstruction of the spirals to clinicians and to investigate how the machine

learning approach would work when the ground truth is more reliable. The long-term plan is also to

include multiple objective motor function measurements with different sensors including wearable

sensors, eye tracking and upper limb touch screen tests (tapping and spirography) as well as video

recording the patients while performing the tests and executing standardised motor tasks. This would

allow us to investigate the relationship of the objective measures and blinded video ratings as well as

their relationship to plasma levodopa concentration.
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Feasibility of spirography features for objective assessment of motor function in Parkinson's disease 

 

Highlights 

• A method for self-monitoring the motor function in Parkinson’s disease is presented. 

• Slowness of movement (bradykinesia) is typically associated with under-medication. 

• Involuntary movements (dyskinesia) can be the result of over-medication. 

• A machine learning model that detects bradykinesia and dyskinesia is proposed. 

• The model’s visual explanatory power is evaluated. 

 

 


