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Abstract

This paper explores cutting-edge deep learning methods for information extraction from medical 

imaging free text reports at a multi-institutional scale and compares them to the state-of-the-art 

domain-specific rule-based system - PEFinder and traditional machine learning methods - SVM 

and Adaboost. We proposed two distinct deep learning models - (i) CNN Word - Glove, and (ii) 

Domain phrase attention-based hierarchical recurrent neural network (DPA-HNN), for 

synthesizing information on pulmonary emboli (PE) from over 7,370 clin-ical thoracic computed 

tomography (CT) free-text radiology reports collected from four major healthcare centers. Our 

proposed DPA-HNN model encodes domain-dependent phrases into an attention mechanism and 

represents a radiology report through a hierarchical RNN structure composed of word-level, 

sentence-level and document-level representations. Experimental results suggest that the 

performance of the deep learning models that are trained on a single institutional dataset, are better 

than rule-based PEFinder on our multi-institutional test sets. The best F1 score for the presence of 

PE in an adult patient population was 0.99 (DPA-HNN) and for a pediatrics population was 0.99 

(HNN) which shows that the deep learning models being trained on adult data, demonstrated 

generalizability to pediatrics population with comparable accuracy. Our work suggests feasibility 

of broader usage of neural network models in automated classification of multi-institutional 

imaging text reports for a variety of applications including evaluation of imaging utilization, 
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imaging yield, clinical decision support tools, and as part of automated classification of large 

corpus for medical imaging deep learning work.
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Convolutional Neural Network (CNN); Recurrent Neural Network (RNN); pulmonary embolism; 
text report classification; radiology report analysis

1. Introduction

Diagnostic imaging accounts for 10 percent (100 billion dollars) of annual health care costs 

[1]. Due to market and patient care related pressures there is a constant demand for 

maintaining consistent clinical diagnostic excellence in the setting of rising imaging 

volumes, greater imaging complexity, and a demand by clinicians for rapid results. As a 

result the highest demands for new technology are around solutions that drastically improve 

workflow while maintaining or improving quality of care, building in effciencies for the 

clinician, health system, and ultimately for the patient. Consequently, technologies that can 

aid in automating the medical imaging workflow are in high demand and have inspired 

advances in machine learning methods which show promise in assisting radiologists to 

analyze complex imaging and text data [2, 3, 4, 5, 6]. Yet, despite the rapid exploration 

around new machine learning tools for use in medical imaging diagnostic tasks, a significant 

barrier remains for this technology to be applied at scale: the diagnostic information for the 

imaging studies are contained within unstructured clinician-created free text reports. So 

while it may be possible to acquire millions of medical images for machine learning 

applications, extracting the diagnostic information in those images as structured labels for 

machine learning model training requires a highly specialized understanding of diagnostic 

imaging report context, syntax, structure, and specific terminologies all unique to the 

radiology enterprise. One example of an important life-threatening medical condition is 

pulmonary embolism (PE) which is diagnosed with computed tomography imaging (CT) 

and relevant details stored in the medical record as free-text. CT exam for PE is an expensive 

test with risks of radiation exposure, contrast injection reactions, and incidental findings 

leading to further testing [7]. To identify imaging studies that are positive for PE, like many 

other radiology diagnoses, information extraction from the free-text radiology reports is 

needed in order to perform large scale analyses. If the hospital was able to leverage the 

computerized tools, it would be possible to rapidly and accurately account for the percentage 

of positive and negative studies, per provider/service/specialty, and use that data over time to 

identify opportunities for implementing or reeducating ordering providers about decision 

support tools for PE evaluation and reduce the number of negative examinations in a targeted 

approach [8].

Natural Language Processing (NLP) techniques can be a key to successfully analyzed the 

radiology reports to extract clinically important findings and recommendations [9, 10]. NLP 

has already shown potential to automate the task of classifying imaging reports in a way that 

could inform decisions regarding medical imaging utilization and appropriateness [11, 12, 

13]. Chapman et al. [14] developed an application called PEFinder based on an extension of 
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NegEx to detect lexical cues other than negation and defined how each cue modifies a 

preceding or succeeding concept. Yu et al. [15] used an NLP system called Narrative 

Information Linear Extraction (NILE) that combines linguistic and machine learning 

approaches to improve identification of pulmonary embolism location and also demonstrated 

promising results. Well-studied early programs that have also leveraged machine learning 

techniques include MedLEE (Medical Language Extraction and Encoding System), which 

relies on controlled vocabulary and grammatical rules in order to convert free-text into a 

structured database [16] [17]. Dang et al. [9] processed 1059 radiology reports with Lexicon 

Mediated Entropy Reduction (LEXIMER) to identify the reports that include clinically 

important findings and recommendations for subsequent action. More recently, Sohn et al. 

[18] used machine learning to identify patients with abdominal aortic aneurysms. Other 

work has used various machine learning techniques such as support vector machines to 

classify MRI free text reports [11].

Recent advances in computing power and machine learning techniques have prompted the 

rise of a new generation of machine learning technique called convolutional neural networks 

(CNNs) that have successfully been applied to image recognition tasks, including facial 

recognition, object detection, and image classification [6, 19]. CNNs and other similar deep 

learning architectures have significant implications for diagnostic imaging [5, 20, 4, 21, 22], 

but rather than being limited to image recognition tasks, it is possible that CNNs can also be 

applied to text data. Character-based and very deep CNN models are generally applied for 

text classification tasks with very large datasets [23, 24], where complex neural network 

architectures play a major role to capture all generic features of the data while disregarding 

domain-dependent word-level features. Instead, we used a shallow CNN model proposed by 

Kim [25] as it has been shown to obtain state-of-the-art results on multiple benchmark 

datasets using pre-trained word vectors. The adaptation of this CNN model combined with 

GloVe word embeddings [26] served as a strong baseline for our experiments.

Another class of neural networks architectures, recurrent neural networks (RNNs), has 

recently gained a lot of attention from researchers for modeling sequences and have been 

shown to perform well in solving various NLP tasks because of their ability to deal with 

variable-length input and output [27]. RNNs have also been used to address tasks in the 

medical domain [28]. To the best of our knowledge, there is no existing work that applies 

RNN-based models to classify free text medical imaging reports based on PE categorical 

measures and analyze the comparative performance against the CNN model.

In this study, we present a comparative analysis of distinct deep learning techniques (CNN 

and RNN) in classifying a database of free text chest (contrast enhanced) CT reports based 

on the presence of pulmonary embolism. We train the models on a small sub-set of Stanford 

training set (2512 reports) and present the performance on four distinct institutional datasets. 

Our results show that deep learning models can be transferable to completely different 

institutional dataset only being trained on a single institutional data. The main contributions 

of this paper can be summarized as follows:

1. Methodological contributions
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(a) We proposed a novel domain phrase attention-based hierarchical 

recurrent neural network model (DPA-HNN) to classify the radiology 

reports. The model encodes radiology reports through an intuitive 

hierarchical structure composed of word-level, sentence-level and 

document-level representations. Compared to a simple word-level 

attention mechanism, domain phrase attention suits the radiology 

domain better as the radiologists traditionally follow a domain-specific 

note writing style and some domain phrases occur frequently in reports.

(b) We also proposed the use of a well-known state-of-the-art convo-

lutional neural network model [25] for classifying radiology reports 

corpus based on the presence of PE factors. We integrated the CNN 

model with pre-trained Glove vectors: (CNN Word - Glove) [26] for 

learning the semantics of the whole radiology reports from a relatively 

small annotated training set.

2. Comparative analysis

(a) We analyzed the comparative performance of the two proposed deep 

learning architectures (CNN Word - Glove and DPA-HNN) in the 

context of free-text radiology reports labeling according to the presence 

of PE factors.

(b) We compared the performance of the proposed deep learning models 

with a state-of-the-art representative of well feature engineered NLP 

approaches - PEFinder [14], as well as with traditional machine 

learning models - Support Vector Machine (SVM) and Adaboost 
with bag-of-words features which represent the class of traditional 

methods with limited feature engineering.

(c) We also compared the performance of our proposed DPA-HNN model 

with two related variations of hierarchical RNN models [29, 30] : (1) 

HNN: Hierarchical Neural Network, and (2) A-HNN: Attention-based 

Hierarchical Neural Network.

In the following sections, we present a detailed description of the dataset, materials and 

method, followed by the experimental setup, results and discussion. Finally, we discuss 

some limitations in Section 6 and conclude the paper in Section 7.

2. Dataset

Corpora

- We obtained 227,809 radiology reports from Duke University Medical Center, 117,816 

reports from Stanford University Medical Center, and 12,091 reports from Colorado 

Childrens Hospital for contrast-enhanced CT examinations of the chest performed between 

January 1, 1998 and January 1, 2016.1

1All examination reports were de-identified in a fully HIPAA-compliant manner, and acquisition and processing of data was approved 
by the Institutional Review Board (IRB) of the institution where the reports were obtained.
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The Impression sections were extracted from the original reports by searching for the 

“impression” keyword, signifying the beginning of the impression section, and using simple 

heuristics to determine the end of the section. We structured our heuristics to extract more 

details on the impressions rather than filtering out the noise, which inevitably resulted in 

some parses being more verbose than necessary.

Training Set and Test Set

- The model training was performed using the Stanford University radiology report corpus of 

117,816 reports of adult patients; from these, 4,512 reports were randomly selected and 

annotated by three experienced radiologists who read the whole report and assigned binary 

class labels. Two binary labels were assigned to individual reports - these were defined 

according to two categorical measures of PE: (1) PE present/absent; (ii) PE acute/chronic. 

The annotators assigned binary labels based on the following assumption; If a PE was 

definitely present in the report it was annotated as positive, or else annotated as negative. 

Chronicity was labeled as either acute or chronic based on the text description. In the setting 

of acute on chronic, or “mixed” chronicity, the report was to be labeled as acute to reduce 

the false negative rate. 4512 annotated reports were randomly divided into training (2512 

reports), validation (1000 reports), and testing (1000 reports) sets.

External Test Set

- External test data sets were created from the Duke and Colorado reports: 1000 reports from 

the Duke medical center corpus and 1000 reports from the Colorado Children’s corpus were 

randomly selected and annotated by two experienced radiologists following the same 

annotation protocol as adopted during the Stanford dataset annotation (above).

Inter-rater reliability among the three raters for annotation of Stanford, Duke and Colorado 

datasets was calculated using Fleiss’ kappa [31] - a generalization of Cohen’s Kappa for 

more than two raters. The raters were highly consistent for two categories, “PE positive” and 

“PE Acute”, with kappa scores of 0.959 and 0.969 respectively. The kappa metric reflects 

the initial ratings, following which a single radiologist resolved all conflicting cases 

manually for preparing the ground truth labels.

External Validation Set (UPMC dataset)

We obtained 858 reports from University of Pittsburgh medical center (UPMC) that were 

originally used to develop PEFinder classifiers. The reports were all de-identified in a fully 

HIPAA-compliant manner. Three medical students independently annotated the reports with 

five distinct states and binary annotations for each document were obtained from the user 

annotations as follows: “probably positive” and “definitely positive” were collapsed to 

positive; and “probably negative”, “indeterminate”, and “definitely negative” were 

considered negative. After collapsing annotations to binary values, the authors generated 

labels for each report by a majority vote of the annotators. We refer the reader to the original 

paper [14] for a detailed description of the UPMC dataset.
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3. Materials and Methods

3.1. CNN Word - Glove Architecture

CNNs have been applied to natural language modeling by convolving a filter across a fixed 

length word representation as input into the model, and final classification is obtained 

through a series of matrix multiplications and non-linear function mappings [25]. Such a 

model can automatically learn the semantics of local structure of text, such as phrases, while 

avoiding having to keep memory over the entire sequence of words for a given sequence. 

However these models have empirically been shown to require larger training sets. To the 

down-stream performance of a CNN, the effcient vectorized representation of words and/or 

phrases are important factors. Neural network based word embedding approach [32] can 

learn a vector which enables a model to perform well on the task of relating a word to its 

context in a given window. For example, Glove [26] combines components of skip-gram and 

continuous bag of words model by incorporating local window based information with 

document level statistics in their word vectors.

The CNN Word - Glove model used for this task was initially proposed by Kim et. al. [25]. 

The CNN model with only one layer of convolution was trained on top of GloVe vectors 

obtained from an unsupervised neural network model trained on 42 billion words from text 

extracted from crawling web pages. Since the GloVe vector is created on very generic 

documents, it is expected that some specific clinical terms never occur in the vocabulary. All 

words that do not match the Glove corpus are converted to an unknown token, which is 

initialized to a random vector. The input embeddings are then padded with zeros at the end 

to ensure that all training examples have the same size. For this study, we choose a input 

length of 300 words, which is the 99.5 percentile for all impressions in our dataset. The 

examples containing longer sequences are truncated at the tail end. Such truncation of the 

report length has a minor effect on the model performance as radiologists usually document 

the key findings earlier in the impression section (within the first 2 or 3 sentences).

Figure 1 shows the high level schema of the CNN model. First, we generated the vector 

representations of all the words that belong to the Impression section of the Stanford corpus 

using the pre-trained GloVe model. The 115,816 Stanford report (excluding 2000 validation 

and test reports) impressions each contained 124 words and symbols on average with 31,470 

unique tokens across all impressions. A preprocessing step was included to treat all 

punctuation as separate word tokens. The vector representation of the words are processed 

through a convolutional layer with 200 filters, a window size of 10 words, and a rectified 

linear unit as the non-linearity. This layer is followed by a max pooling layer which takes the 

max across all values of a given filter. Dropout, a regularization method to prevent 

overfitting of the data, is then used on the output. The result is fed into a fully connected 

output layer followed by a sigmoid layer to convert the raw scores to probabilities. The two 

prediction tasks are trained on two different CNN models −1) {PEPositive, PENegative} and 2)

{PEAcute, PEChronic}.
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3.2. Domain Phrase Attention-based Hierarchical Recurrent Neural Network (DPA-HNN) 
Model

The semantics of a radiology report can be modeled through a hierarchical structure 

composed of word-level, sentence-level and document-level representations. Recent work on 

document-level sentiment classification showed promising performance by taking similar 

hierarchical structures into consideration [29, 30].

In contrast to the existing work [30] that encodes global user preference and product 

characteristics via a word-level user-product attention mechanism for a product-oriented 

sentiment classification task, we propose a novel Domain Phrase Attention-based 

Hierarchical Neural Network (DPA-HNN) model (Figure 2) by encoding clinical domain-

dependent phrases into a sentence-level attention mechanism and representing a radiology 

report through a hierarchical structure composed of word-level, sentence-level and 

document-level representations. Compared to a general word-level attention mechanism, our 

domain phrase attention applied at the sentence-level plays a more important role in 

classifying radiology reports as radiologists traditionally follow a domain-specific note 

writing style. Moreover, some domain phrases occur frequently in radiology documents, 

justifying the need to propose our DPA-HNN model with a domain phrase attention 

mechanism.

Although RNN is theoretically a powerful model to encode sequential information, in 

practice it often suffers from the vanishing/exploding gradient problems while learning long-

range dependencies [33]. LSTM [34] and GRU [35] networks are known to be successful 

remedies to these problems. We chose LSTMs for our experiments because there had not 

been shown any distinguishable difference between the performance of a LSTM unit and a 

GRU unit in the literature [36, 37]. We use LSTM as our hidden layer activation unit to 

model the semantic representations of sentences and documents. Typically, each cell in a 

LSTM is computed as follows:

X =
ht − 1

xt
(1)

f t = σ W f ·X + b f (2)

it = σ W i·X + bi (3)

ot = σ Wo·X + bo (4)
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ct = f t ⊙ ct − 1 + it ⊙ tanh Wc·X + bc (5)

ht − ot ⊙ tanh ct (6)

where W i, W f , Wo ∈ ℝd × 2d are the weight matrices and bi, b f , bo ∈ ℝd are the biases of 

LSTM to be learned during training, parameterization, and transformations of the input, 

forget and output gates, respectively. σ is the sigmoid function and ⊙ stands for element-

wise multiplication. xt is the input of a LSTM cell unit and ht represents the hidden state at 

time t.

Assume that a document has L number of sentences, where each sentence si contains Ti 

words. wit with t ∈ [1, T ] represents the words in the ith sentence. For word-level 

computations, xt represents the word embedding vectors wt. The first hidden layer vectors hit 

with t ∈ [1, T ] are used to represent a sentence. For sentence-level computations, xt 

represents the sentence embedding vectors si. The hidden layer vectors hi with i ∈ [1, L] are 

used to represent a document in this case.

We regard the last hidden layer as the representation of a document and place a softmax 

layer on top of it to predict the class labels e.g. {PEPositive, PENegative} or {PEAcute, 
PEChronic} for the radiology report. In other words, the output layer (softmax) of DPA-HNN 

considers two possible labels. As such, we build two separate models to classify PE positive/

negative and PE acute/chronic. Considering h∗ as the final representation of a radiology 

report, the softmax layer can be formulated as:

y = so f tmax Wsh
∗ + bs , (7)

where Ws and bs are the parameters of the softmax layer. We use the negative log likelihood 

of the correct labels as our training loss function:

L = −
d

logyd j, (8)

where j is the label of a document d.

Domain Phrase Attention Mechanism: In the settings of hierarchical neural networks 

without attention, the hidden states are fed to an average pooling layer to obtain the sentence 

representation and the final document representation. For example, the final feature 

representation of a radiology report can be computed as:
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h∗ =
i ∈ 1, L

i
hi (9)

We propose a domain phrase attention mechanism to capture the most important part of a 

document by considering domain phrases at the sentence level. It is reasonable to reward 

sentences that are clues to correctly classify a document as indicated in [29]. Hence, we pay 

extra attention to domain phrases if they are present in a sentence. We encode each domain 

phrase as continuous and real-valued vectors p ∈ ℝd, which are randomly initialized. This 

yields:

ui = tanh Wshi + Wdpp + bs (10)

αi =
exp ui

Tus

iexp ui
Tus

(11)

h* =
i ∈ 1, L

i
αihi (12)

where Ws and Wdp are projection parameters and bs is the bias parameter to be learned 

during training.

Our domain phrase (DP) generation algorithm works as follows. First, we extract clinical 

concepts from the radiology reports based on SNOMED-CT ontology [38] using a hybrid 

clinical NLP engine [39]. Then, our algorithm uses the extracted clinical concepts to form 

the DPs based on two heuristics: (1) we combine the consecutive clinical concepts occurred 

in the same sentence as one domain phrase. For example, in the sentence, “three small low 
attenuation lesions within the liver, which are too small to characterize”, “low attenuation” 

and “lesions” are tagged as two separate clinical concepts by the clinical NLP engine. Since 

they are consecutive words in the sentence, we regard them as the domain phrase “low 

attenuation lesions”. In other words, the clinical concepts should be consecutively present in 

a sentence in order to be the part of a domain phrase, and (2) we obtain shallow parsing 

annotation for the text. If one token is tagged as “B-NP”, then together with its following 

tokens tagged as “I-NP”, “B-PP”, and “B-NP”, the entire chunk will be considered as one 

phrase. If any token in this phrase is annotated as a clinical concept by the clinical NLP 

engine, we regard the phrase as a domain phrase. For example, the shallow parsing 

annotation for “The right lower lobe pulmonary artery” is “The[B-NP] right[I-NP] lower[I-

NP] lobe[I-NP] pulmonary[I-NP] artery[I-NP]”. Here, the token “The” is tagged as “B-NP”, 

and its following tokens are tagged as “I-NP” while “right lower lobe pulmonary artery” is 
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tagged as a clinical concept. Therefore, the whole chunk “The right lower lobe pulmonary 

artery” is considered as one domain phrase. The list of Domain Phrases (DPs) is generated 

from the Stanford training set. The total number of DPs in the list is 343. The average 

number of words in DPs is ≈ 4. We display the frequency distribution of word counts in DPs 

with few examples in Figure 3.

4. Experiments and Evaluation

4.1. Models for Comparison

For legitimate comparison, we experimented with the following seven models.

1. PEFinder: a state-of-the-art rule-based method for PE radiology text report 

classification [14].

2. Support Vector Machine with radial basis kernel function (SVM): a popular 

machine learning method for binary classification; we used sparse bag-of-words 

as feature vector.

3. Adaptive Boosting (Adaboost): a machine learning algorithm that uses selective 

boosting on top of the bag-of-words feature vector.

4. CNN Word-Glove: CNN model built on top of GloVe vectors (Section 3.1).

5. Hierarchical Recurrent Neural Network (HNN): RNN baseline model without 

any attention mechanism (Section 3.2).

6. Attention-based Hierarchical Neural Network (A-HNN): RNN-based model 

with the general word-level attention mechanism using random initialization 

(Section 3.2).

7. Domain Phrase Attention-based Hierarchical Neural Network (DPA-HNN): 
our proposed model with Domain Phrase (DP) attention mechanism (Section 

3.2).

4.2. Model Training

The CNN model has been trained on the vector embedding of 2512 reports from the 

Stanford corpus. We used dropout rate (p) of 0.5, l2 constraint (s) of 3, and mini-batch size 

of 50. The network weight update has been done through stochastic gradient descent (SGD) 

over shuffled mini-batches with the Adadelta update rule. Weights for the model were 

initialized randomly using the Xavier initialization method to roughly keep the scale of the 

gradients the same across all layers.

For RNN-based models, we used the same pre-trained word embeddings as used by CNN 

model to represent the words. Each RNN was built with 300 hidden units (i.e. LSTMs as 

discussed in Section 3.2). Similar to the CNN models, our RNN-based models were also 

trained with the SGD algorithm with update direction computed using a batch size of 32 via 

the Adadelta update rule. We trained these models for 200 epochs and 400 iterations of 

validation. The vector size for each granularity i.e. word, sentence, and document were 300 

dimensions.
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Using the Stanford validation set (1000 reports), we optimized the hyperpa-rameters such as 

dropout rate, number of epochs, and batch size by selecting a best trade-off between the 

validation accuracy and the computational memory requirement.

4.3. Classification Performance

We evaluate the performance of our models on all the data sets (Stanford, UPMC, Colorado 

Childrens and Duke) using the following metrics: Precision, Recall, F1 value, and Area 

Under the Curve (AUC). In order to convert the predicted probability values of neural 

models to binary class labels, we determine an optimal cutoff threshold of the probability of 

the positive class by maxi-mizing: Precision(ti)+Recall(ti) for all the thresholds (ti) between 

0 to 1.The classification results from all methods are displayed in Table 2.

For Stanford test set, DPA-HNN has the best scores on all evaluation metrics for both PE 

Positive/Negative and PE Acute/Chronic classifications. Compared with HNN and A-HNN, 

DPA-HNN encodes domain phrase attention and improves the performance. All the 

improvements of DPA-HNN model over HNN model and A-HNN model were found to be 

statistically significant (p < 0.05). From the results we can see that, overall, neural network-

based methods have better performance than the classic PEFinder, SVM and Adaboost 

methods in term of F1 and AUC scores on Stanford test set.

On UPMC dataset, DPA-HNN has the best precision scores for both tasks, while CNN has 

the best AUC scores. On Duke test set, DPA-HNN has the best AUC scores for both tasks, 

while CNN has the best precision and F1 scores. On Colorado Childrens test set, HNN has 

the best scores on all evaluation metrics for PE Positive/Negative classification, while not 

performing well on PE Acute/Chronic classification.

Overall, DPA-HNN model shows performance improvement on Stanford test set, and 

partially on UPMC dataset and Duke test set. However, the performance on Colorado 

Childrens test set is not the best, which is reasonable because DPA-HNN and other neural 

network-based methods are trained on Stanford dataset which are mostly adult patients 

compared to the specific pediatrics population of Colorado Childrens. Further analyses 

revealed that the external datasets (UPMC dataset, Duke test set, Colorado Childrens test 

set) have varying distributions of average number of sentences and domain phrases in a 

document. The distributions and statistics are displayed in Figure 4 and Table 1. DPs play an 

important role in our proposed DPA-HNN model. For example, the Colorado data has an 

average number of 1.2 DPs in a document, which is much lower than the average number of 

3.5 in Stanford test data, while the percentage of documents without DPs for Colorado data 

is much lower than the Stanford test data - that could be the reason why the DPA-HNN 

model trained on Stanford dataset does not work equally well on Colorado data. However, 

the average number of sentences in a document for this dataset is 6.2, which is very close to 

Stanford data of 6.4. Since the HNN model does not rely on DPs, it performed well on the 

Colorado test set, but the DPA-HNN model suffered due to lack of DPs in this test set.

From the results, we can also observe that in general the evaluation scores of the PE Acute/

Chronic classification task are lower than the PE Positive/Negative classification task 

denoting the complexity of the former compared to the later task.
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4.4. Qualitative Analysis

To better understand what information a deep learning model in a natural language task is 

using to make its decisions, methods have been developed to visualize the impact of input 

words on the output decision [40]. For the CNN model, we used one such method called 

sensitivity analysis, which takes the partial derivative of the loss function with respect to 

each input variable. Since our input variables represent word vectors in this case, in order to 

get a importance score for a particular word we take the L1 norm of the vector of partial 

derivatives.

The heat maps (in Figure 5) represent result of sensitivity analysis of input for a positive 

example (left) and a negative example (right) where the CNN model predicted correctly 

from the Stanford test set. The result on the left shows the text of a report that is positive for 

all two prediction classes. We can see that there is little importance (light colored) placed on 

the long document with the exception of the relevant phrase (dark colored), which contains 

information on the PE status. Similarly on the right is an example of a report that is negative 

for PE and all other prediction classes. We can see in this case that the model places the 

most emphasis (dark color) on the first sentence which clearly states that there is no 

evidence of PE. From these qualitative results we note that the network is able to parse 

through large sequences of text to focus on phrases that are relevant to classification simply 

from the document level annotation.

In Figure 6, we present two examples of misclassified reports using the CNN model. In the 

first case (left) the model predicted PE negative, but the ground truth was PE positive. In the 

second case (right) the model predicted a PE positive, but the ground truth was PE negative. 

It is apparent in the example on the left that the CNN model was unable to infer that PE was 

present with the statement that there was decreased volume of clot. In the example on the 

right, the word “no” seemed to be separated by an abnormally long string of words prior to 

“pulmonary embolism” leading to a classification error. Such errors are reasonable as CNNs 

are only able to capture local information from the data to perform well in classification 

tasks [25].

However, our RNN based models A-HNN and DPA-HNN were able to predict the classes 

correctly for the same reports where CNN failed to classify (shown in Figure 6). This is 

shown via the hierarchical attention-based visualization results (Figure 7) where the weight 

value for each word in the sentence is obtained from the weights learned from word-level 

attention for the first LSTM layer. The weight value for each sentence in the report is 

obtained from the weights learned from sentence-level attention for the second LSTM layer. 

With the weights for both word-level and sentence-level attention, we can see that different 

sentences play different roles in a report and different words play different roles in each 

sentence toward the final classification of a radiology report. In the negative example (right) 

of Figure 7, the sentence 3: “there is no filling defect in the central pulmonary artery to 
indicate a pulmonary embolism” has the highest weight. The word “embolism” has the 

highest weight in this sentence, and the word “no” has the second highest weight in this 

sentence. In the positive example (left), the sentence 1: “impression 1 interval decrease in 
the volume of clot within the pulmonary arterial system” has the highest weight. The word 

“clot” has the highest weight in this sentence. The success of RNNs in classifying these 
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reports correctly is understandable. Because, unlike CNNs, RNNs are able to capture global 

context from the data by considering long-term dependency among words [33].

We further contextualize the results as confusion matrix for DPA-HNN on the Stanford test 

set in Figure 8. The confusion matrix is normalized class-wise to meaningfully represent the 

performance of the model. The X-axis represents gold-standard results, and the Y-axis 

represents predicted results from our DPA-HNN model. We can see that the false positive 

(top right part) and the false negative (down left part) rates are very low for both PE Positive/

Negative classification and PE Acute/Chronic classification. In fact, for both classifications, 

only two cases are misclassified (sample shown in Figure 9). These errors were evaluated 

and found to be related to conflicting and skeptical language in the impression. For example, 

in Figure 9 (left), the impression clearly states “no definite pulmonary embolus”, however, 

shortly thereafter the report went on to suggest “artifact vs possible pulmonary embolus in 

the right upper lobe” and recommended an additional imaging test. In the other example in 

Figure 9 (right), the model focused on the word “subacute” to predict the report as chronic.

5. Discussion

The increasing availability of computational methods to process vast amounts of 

unstructured information makes it possible to derive insights from large repositories of 

narrative medical data [41, 42]. However, the current state-of-the-art method to classify 

Radiology reports based on the presence or absence of a di-agnosis of PE, called PEFinder, 

is a purely rule-based system and may not be easily scaled to classify/annotate multi-

institutional free-text reports with varying narrative styles. This restricts automated 

interpretation of large volumes of free text reports for creating solutions to support clinical 

processes such as image interpretation and auto-reporting in radiology. We report on the 

performance of machine learning models leveraging several neural network architectures to 

determine the PE status from unstructured CT reports. We compared the neural network 

models with the best available published feature-engineered model. To the best of our 

knowledge, our work is the first to compare several neural network techniques to evaluate 

classification performance on free text medical imaging reports on both intra-and inter-

institutional data, and compare to the current NLP rule-based gold standard, PEFinder.

Our neural network models performed equivalently or better than PEFinder and existing 

machine learning models. Models such as MedLEE, cTAKES, NILE, and others require 

named entity recognition libraries, term definitions, parsed phrases, matching, etc., and a 

great deal of effort is required to create these resources - representing, in certain cases, 

decades of prior work. By contrast, our CNN and RNN based neural network models were 

mainly developed without hand-curating any semantic input. Instead, our neural network-

based models were simply trained on a small sample of document-level classified reports 

and rapidly achieved the performance levels of the best available NLP tools in the field. This 

suggests that neural networks may be extremely powerful for classification/ annotation of 

large volumes of free text reports and can achieve optimal performance without any of the 

previously relied upon grammatical feature definitions, concept codes, or pre-defined terms 

[14, 15, 43].
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More recently, the surge in medical imaging classification and computer vision in radiology 

has led to a demand for high-fidelity labeled medical images; neural network models, such 

as the ones demonstrated here, can serve to provide highly structured labels for medical 

images useful for deep learning techniques. One of the most exciting opportunities that deep 

learning classification of imaging text offers is the ability to aid in training and modeling in 

computer vision projects for which a large corpus of annotated imaging data is needed (and 

the free-text narrative report style is poorly suited) [44, 45]. Medical images are usually 

saved with accompanying radiology reports, and leveraging the natural language information 

for image analysis has great potential. For example, imaging studies from a clinical Picture 

Archiving and Communication Systems (PACS) can be automatically annotated by using 

our models to analyze the corresponding radiology reports. We can unleash the full capacity 

of deep learning for analyzing large volumes of medical images by automating the data 

collection and annotation process. Moreover, a sustainable system can be developed which 

allows the annotated image data to be continuously updated, shared, and integrated within a 

learning health care system.

Application of the neural network methodologies described in this work to other imaging 

free-text report annotation tasks would be both rapid and scalable using domain adaptation 

and transfer learning algorithms as shown in the literature [46, 47, 48]. To examine the 

generalization of our neural network models we also used imaging reports from other 

institutions as test sets. Our neural network models (trained on Stanford data) were tested on 

four different test sets. The rules of PEFinder were developed using reports from the UPMC 

test set, and so this provided an optimal test case. There is no significant difference in 

performance between our neural network models and PEFinder on the UPMC dataset. Our 

models were able to generalize to new reports not included in the training data and on 

reports from independent institutions, our models performed better than a rule-based NLP 

system and traditional machine learning models. The mild performance degradations noticed 

for the models applied on other institutional datasets except Stanford is still clinically 

acceptable with the lowest AUC of 0.93 for DPA-HNN. However, to achieve additional 

performance improvements, institutions can tune our trained models further based on their 

local datasets. Moreover, the hospitals can leverage the scalable deep learning tools 

demonstrated in this work on large volumes of data to identify trends and provide metrics 

around which to build performance and quality improvement programs, including the use of 

clinical decision support systems for PE imaging assessment, something that is mandated by 

congressional legislation beginning next year [49]. Moreover, the neural networks used for 

NLP tasks have tremendous value in many applications such as generating systems for 

radiology case prioritization based on report analysis, patient cohort generation, eligibility 

screening for clinical trials, and in radiology clinical decision support to manage imaging 

utilization or use yield as a metric. For example, understanding the rate of negative studies 

could serve as an indirect marker of utilization appropriateness and guide clinical decision 

making [50, 51, 8, 52, 53, 54, 55].

Overall, our work contributes to advancements in automated radiology report classification 

for PE leveraging a minimal amount of labeled examples, and offers opportunity to generate 

large volumes of annotated reports that would drive the development of clinical decision 
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support systems towards improved imaging utilization, clinical research and automatic 

medical image interpretation for PE and other critical conditions.

6. Limitations

We acknowledge that our neural network classifiers are yet to achieve perfect scores. 

However, the accuracy measures are either superior or comparable to other published NLP 

studies. For instance, although there were 10 misclassifications out of the 1000 test cases by 

the CNN model, the classification errors are rather diffcult to explore in neural networks, as 

they are often a “black box”. However, the visualization we generated helped us understand 

the source of errors (Figure 6). The most common source of errors was the lack of a direct 

mention of the existence or absence of PE and limited documentation due to insuffcient 

image quality; instead, inference was needed based on context. As shown in Figure 7, our 

RNN based model correctly predicted the classes and located the most important sentences 

in the reports, but it is still hard to generalize how the model made the inference. We found 

only one example case for PE positive/negative classification, where CNN correctly 

predicted it positive, but RNN predicted it negative. However, it was not apparent how CNN 

was able to predict this case correctly based on the generated heat map. As such, many of 

these errors require subtle reasoning to reach the correct conclusion, which may be a 

limitation to the architecture of our models, in addition to training constraints posed by the 

size of our datasets.

7. Conclusion

We proposed a novel domain phrase attention-based hierarchical recurrent neural network 

model (DPA-HNN) that can accurately classify free text chest CT reports into pre-defined 

PE related criteria. We adopted a well-known state-of-the-art convolutional neural network 

model [25] for radiology domain and integrated the model with pre-trained Glove vectors. 

For both models, we demonstrated both intra-and cross-institutional fidelity when compared 

to other more laborious NLP methods. Our results suggest feasibility of CNNs and RNNs in 

automated classification of imaging text reports and support the application of these 

techniques at scale in classifying free text imaging reports for various use cases including 

radiology patient prioritization, cohort generation for clinical research, eligibility screening 

for clinical trials, and assessing imaging utilization. These approaches may also have impact 

on other important research areas such as large scale generation of labeled data for 

generating computer vision models for automatic medical image interpretation.
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Highlights

• Proposed two distinct deep learning models - (i) CNN Word - Glove, and (ii) 

Domain phrase attention-based hierarchical neural network (DPA-HNN), for 

synthesizing information on pulmonary emboli (PE) from clinical thoracic CT 

free-text radiology reports.

• Visualization methods have been developed to identify the impact of input 

words on the output decision for both deep learning models.

• Models are trained only on Stanford dataset (2512 reports) and are tested on 

four major healthcare centers dataset – Stanford (1000 reports), Duke (1000 

reports), Colorado Children (1000 reports), and University of Pittsburg 

medical center (858 reports).

• Comparative effectiveness of the deep learning models is judged against the 

current state-of-the-art –PEFinder as well as with traditional machine learning 

models – SVM and Adaboost with bag-of-words features.

• This work proposed interesting experimental insight on the proficiency of 

CNN and RNN to automatize the analysis of unstructured imaging reports.
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Figure 1: 
CNN Word - Glove Architecture, showing the training, validation and testing situation for 

Stanford dataset.
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Figure 2: 
Domain Phrase Attention-based Hierarchical Neural Network (DPA-HNN) architecture.
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Figure 3: 
The Frequency Distribution of Word Count in DPs and DP Examples.
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Figure 4: 
Distribution of Average Number of Sentences in a Document (left) and Distribution of 

Average Number of Domain Phrases in a Document (right).
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Figure 5: 
Results of sensitivity analysis of CNN model: cases with correct prediction -positive (left) 

and negative (right). The darker the color, the more weight there is.
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Figure 6: 
Results of sensitivity analysis of CNN model: cases with incorrect prediction - positive (left, 

CNN model predicted negative) and negative (right, CNN model predicted positive). The 

darker the color, the more weight there is.
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Figure 7: 
Sentence-level and word-level attention of the RNN model: cases where CNN failed to 

classify as shown in Figure 6. The blue color represents sentence-level importance and the 

green color stands for token-level importance; the darker the color, the more weight there is.
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Figure 8: 
Normalized confusion matrices for results from DPA-HNN model. Darker color represents a 

higher value.
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Figure 9: 
DPA-HNN misclassified cases - PE negative but predicted positive (left) and PE Acute but 

predicted Chronic (right). The blue color represents sentence-level importance and the 

green color stands for token-level importance; the darker the color, the more weight there is.
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Table 1:

Statistics of average number of sentences/DPs in a document across 4 datasets.

Dataset Stanford test set UPMC dataset Duke test set Colorado test set

Average number of sentences in document 6.4 6.7 8.0 6.2

Average number of DPs in document 3.5 1.2 1.8 1.2

Percentage of Documents without DPs 13.7% 39.6% 25.7% 35.9%
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Table 2:

Comparative performance measures. Boldface numbers represent column-wise superior performance 

achievement on a particular dataset.

PE Positive/Negative PE Acute/Chronic

P R F1 AUC P R F1 AUC

Stanford test set

PEFinder 0.87 0.90 0.89 N/A 0.91 0.91 0.91 N/A

SVM 0.96 0.96 0.95 0.85 0.93 0.97 0.95 0.93

Adaboost 0.98 0.98 0.98 0.95 0.97 0.97 0.97 0.92

CNN 0.92 0.97 0.95 0.99 0.91 0.91 0.91 0.99

HNN 0.94 0.96 0.95 0.98 0.92 0.97 0.94 0.95

A-HNN 0.99 0.96 0.97 0.98 0.97 0.96 0.97 0.99

DPA-HNN 0.99 0.99 0.99 0.99 0.99 0.97 0.98 0.99

UPMC dataset

PEFinder 0.87 0.96 0.91 N/A 0.91 0.95 0.93 N/A

SVM 0.71 0.70 0.58 0.83 0.49 0.70 0.57 0.86

Adaboost 0.83 0.84 0.83 0.90 0.84 0.83 0.82 0.91

CNN 0.76 0.95 0.85 0.97 0.82 0.92 0.87 0.97

HNN 0.82 0.74 0.77 0.90 0.88 0.73 0.75 0.88

A-HNN 0.82 0.74 0.77 0.90 0.88 0.72 0.75 0.88

DPA-HNN 0.87 0.87 0.87 0.95 0.91 0.90 0.90 0.94

Duke test set

PEFinder 0.84 0.99 0.90 N/A 0.86 0.99 0.92 N/A

SVM 0.95 0.98 0.96 0.94 0.96 0.98 0.97 0.95

Adaboost 0.97 0.96 0.97 0.85 0.97 0.97 0.97 0.77

CNN 0.98 0.97 0.97 0.90 0.98 0.98 0.98 0.91

HNN 0.93 0.79 0.85 0.92 0.95 0.74 0.81 0.91

A-HNN 0.90 0.83 0.86 0.91 0.89 0.79 0.83 0.88

DPA-HNN 0.94 0.81 0.86 0.94 0.90 0.95 0.92 0.99

Colorado Childrens test set

PEFinder 0.69 0.79 0.73 N/A 0.66 0.87 0.72 N/A

SVM 0.98 0.99 0.99 0.91 0.99 0.99 0.99 0.94

Adaboost 0.99 0.98 0.99 0.97 0.99 0.99 0.99 0.98

CNN 0.99 0.95 0.96 0.97 0.99 0.98 0.98 0.99

HNN 0.99 0.99 0.99 0.99 0.56 0.74 0.60 0.81

A-HNN 0.87 0.80 0.83 0.98 0.60 0.87 0.66 0.77

DPA-HNN 0.80 0.80 0.80 0.93 0.71 0.87 0.77 0.98
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