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Belgium

Abstract

In order to gain insight into oligogenic disorders, understanding those involving

bi-locus variant combinations appears to be key. In prior work, we showed

that features at multiple biological scales can already be used to discriminate

among two types, i.e. disorders involving true digenic and modifier combinations.

The current study expands this machine learning work towards dual molecular

diagnosis cases, providing a classifier able to e↵ectively distinguish between these

three types. To reach this goal and gain an in-depth understanding of the decision

process, game theory and tree decomposition techniques are applied to random

forest predictors to investigate the relevance of feature combinations in the

prediction. A machine learning model with high discrimination capabilities was

developed, e↵ectively di↵erentiating the three classes in a biologically meaningful

manner. Combining prediction interpretation and statistical analysis, we propose
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a biologically meaningful characterization of each class relying on specific feature

strengths. Figuring out how biological characteristics shift samples towards one

of three classes provides clinically relevant insight into the underlying biological

processes as well as the disease itself.

Keywords: oligogenic disease, classification, game theory, random forest,

feature interpretation

1. INTRODUCTION

With the advent of a↵ordable sequencing technology, a considerable amount

of genetic data became available. The scientific community has since employed

those data to uncover many aspects of human genetics, one of these being the

genetic component of diseases. Most of these e↵orts so far have been directed at

researching single locus (or gene) mutations causing a disease (i.e. monogenic

disease). While great advances have been achieved through this approach,

many disorders remain unexplained. It is now evident that the cause of some

disorders can only be elucidated by expanding the explanatory model to include

combinations of variants in di↵erent loci. Therefore, e↵orts are undertaken to

develop machine learning approaches that can unravel oligogenic inheritance 2

patterns in diseases. Even though the term locus refers to a specific region in a

chromosome that does not necessarily correspond to a gene, we will use both

terms as synonyms, as is often done in the literature.

When the phenotype of a patient is better explained by mutations in two

loci/genes rather than by one, it is said to be explained by a digenic model

[1]. As the term digenic ambiguously refers to either diallelic heterozygous

combinations [2] or all potential variant combinations between pairs of variants

between two genes [1, 3], we will use bi-locus to explicitly refer to the latter.

Several rare disorders are now known to be caused or modulated in a bi-locus

manner; among them Usher syndrome [4, 5] that causes deaf-blindness, familial

2Inheritance involving multiple loci
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long qt syndrome [6, 7, 8] which eventually provokes fainting or sudden death

or familial hemophagocytic lymphohistiocytosis [9] known to induce trouble in

immune system monitoring. Furthermore, bi-locus diseases represent the very

first step towards understanding oligogenic and ultimately complex 3 inheritance.

Complex disorders can arise from several genes and some a↵ect millions of

people around the world, such as the well-known Alzheimer’s disease [10, 11]

and multiple sclerosis [12].

Bi-locus diseases frequently consist of a pool of candidate gene pairs, among

which variant combinations are responsible for the disease phenotype [13]. It

is important to note that in some cases the candidate pool is broad, such as

in Bardet-Biedl syndrome for which 43 gene pairs, spread across 12 di↵erent

loci, have currently been highlighted [3]. Studying bi-locus diseases in human

medicine thus turns out to be tricky; not only are they rare, but finding two

patients su↵ering from the same disorder with a similar genotype (i.e. exactly

the same variant combination) is very uncommon. dida [3] — digenic diseases

database, a manually curated database containing classifications and references

of bi-locus pathologies found in literature, was developed in order to facilitate

the study of such disorders. Within that resource, three types of pairwise or

bi-locus combinations associated with diseases have been observed, which we

refer to as Bi-locus E↵ects (be); True Digenic, Modifier and Dual molecular

diagnosis instances (see Figure Fig. 1 for their definitions).

3Inheritance involving multiple loci plus environment factors
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Gene 1 Gene 2

Figure 1: The three types of bi-locus e↵ects. Combination a, true digenic combinations

where the simultaneous presence of a pathogenic allele in each gene is necessary for the individual

to express the morbid phenotype Combination b, monogenic plus modifier combinations

where a variant on the major gene induces a disease phenotype while a mutation in the modifier

gene modifies it, either by rendering it more severe or producing an early onset. Combination

c, dual molecular diagnosis combinations where both loci are responsible for either distinct or

overlapping phenotypes.

Identifying these classes entails associating relevant biological features at dif-

ferent biological scales to the disease type [3]. Indeed, true digenic combinations

can be handled analogously to recessive diseases (which require a homozygous

variant), in the sense that the conjunction of mutations in two genes is needed

for the individual to present the phenotype. For modifier ones, the major locus

determines whether the individual is ill, while the minor one is a modifier of

symptom severity or age of onset; therefore, their contributions to a given disease

are asymmetric. Finally, dual molecular diagnosis combinations, initially present

in negligible quantities in dida, are essentially responsible for the conjunction of

two independent monogenic disorders that occur simultaneously within a single

patient [2]. Although the mechanisms are di↵erent for each category, it is often

nontrivial to know to which class a newly discovered combination belongs, espe-

cially when there is no information available about the parents. Disentangling

the spectrum of bi-locus combinations based on a set of descriptive multi-scale
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features would thus be immensely useful, which is exactly the ambition of the

current work. The question thus is which multi-scale features characterize the

di↵erent BEs and how their interplay can be used to identify each e↵ect type.

The remainder of the paper is organized as follows; the following provides

information on the prior work the current study builds on. Employed data sets

and methods in the paper are then presented, followed by the results generated

by this work. We end with a discussion on these results, aiming first of all to

provide biological insights into the three di↵erent bi-locus disease types. The

work is part of a more extensive pipeline that includes the prediction of the

pathogenicity of novel variant combinations.

BACKGROUND

A binary machine learning model using random forests [see 14] was previously

conceived by Gazzo et al. in order to di↵erentiate between true digenic and

modifier cases. This predictor achieved respectable results, yet as in this first

version of dida [3] no or very few dual molecular diagnosis were present, patterns

defining dual molecular diagnosis cases could not be extracted [3].

In that work, feature selection was performed to determine the most suitable

way to characterize each bi-locus combination available in dida. Doing so is

nontrivial, as each sample can be represented using numerous features which

share complex interactions. Gazzo et al.’s intuition was to use three di↵erent

biological levels (variant, gene and gene pair level) to describe a gene pair4,

achieving a relatively good predictive quality [3]. Moreover, inside a bi-locus

combination, genes are sorted according to their Gene Damage Index (GDI)

[15], which provides quantification of the mutational damage experienced by a

gene in the general human population. A gene with a lower GDI is typically

better conserved, and thus more probable to be involved in a disease if damaged.

Such a gene is invariably put first in the bi-locus combination. This approach

4Recall that a bi-locus combination consists of two genes, and therefore can involve two to

four variants
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significantly improved the predictive quality of the model, which is also confirmed

in this work.

Due to the scarcity of dual molecular diagnosis combinations in the original

version of dida, they were grouped together with the modifier cases under the

composite denomination [16]. As a consequence, the earlier predictor solved only

the binary classification problem, i.e. separating true digenic from composite

instances. However, recent clinical work by Posey et al. provides a significant

expansion of dual molecular diagnosis cases, summarizing data on more than one

hundred patients that are highly relevant for the current study [2]. 75 of their dual

molecular diagnosis combinations provided exploitable data, making the dual

molecular diagnosis class equivalent in size to the true digenic andmodifier classes.

Concurrently, a new dida version was released online (dida.ibsquare.be),

introducing additional true digenic and modifier combinations. This novel data

set triggered the current initiative to produce a predictive model with the capacity

to di↵erentiate all three classes in a biologically meaningful manner.

Although predictive quality is in itself important, uncovering the decision

process of the classifier is as critical, given that it provides biologically meaningful

insights to non-experts in Artificial Intelligence (AI) and Machine Learning (ML)

like clinicians or geneticists. Palczewska et al.’s [17] algorithm for random forest

decomposition is applied here to our predictive model to unravel the di↵erences

between the three BEs. Additionally, the explanatory quality of the di↵erent

features used to construct the model are quantified using Shapley Index [18], a

method to assess vote importance developed within the context of cooperative

game theory. This method considers the prediction process as a payo↵-game,

whose reward is some measure of the prediction quality [19]. Each feature

can be isolated as an agent in order to compute its individual contribution,

which is expressed by the Shapley value. Expanding this idea, feature pairs

are investigated to understand which characteristics are synergistic (i.e. their

conjunction aids prediction), which are antagonistic (i.e. their conjunction

hinders prediction) and which are neutral, as was demonstrated by Kaufman et

al. [20]. Together these two methods will make the model explanatory, ensuring

6
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that clinicians and geneticist can use their expertise to assess the BE prediction

made by the model.

2. MATERIALS AND METHODS

Data sets

Two data sets have mainly been used. Whereas the 75 modifier and 90 true

digenic combinations stem from the updated version of dida[16], the 75 dual

molecular diagnosis ones have been retrieved from Posey et al.’s work [2]. The

final data set therefore consists of 240 combinations. To avoid the introduction of

a batch e↵ect, the only information gathered was chromosome, position, reference

allele and alternative allele (CPRA) for each variant inside the combinations,

as well as the gene names. These values are su�cient in order to subsequently

build the data set.

A three-class classification method using RF

The highly limited size of the data set constrained the number of suitable

machine learning methods one can explore. We decided to work with random

forests, given their desirable performance on small data sets.

Random forest is a relatively recent machine learning ensemble method [21]

that relies on the aggregation of multiple decision trees. In essence, it functions

by combining decisions provided by an ensemble of such trees, which are one of

the most explicit (and hence interpretable) models in machine learning [22]. A

decision tree consists of successive data set splits with respect to conditions on

features. Each leaf contains a label (or continuous value in the case of regression

trees) which gets assigned to each query sample that ends up at that leaf after

traversing the tree following a path imposed by its features.

As shown by Gazzo et al., bi-locus combinations involving the same genes

tend to share the same bi-locus e↵ect, (although some counter examples exist)

[16]. To avoid the introduction of a bias that would result in overoptimistic

performance measures, stratified cross-validation (also known as leave one group
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out) was performed. We split the data set in subgroups defined by a specific

gene pair. Then, we iteratively trained the model on the data set minus one

gene pair subgroup, and tested it on the samples taken out. This methodology

allowed us to evaluate each sample exactly once and assess the performance of

our predictive method.

RandomForestClassifier from the Python3 library sklearn was used to

carry out the predictions. Each forest consists of 100 trees with a depth going

up to 10, using bootstrapping, and using the Gini splitting criterion as feature

importance measure. Each stratified-cross-validation was performed 100 times

(unless specified otherwise) over the 240 gene pairs, depending on the precision

relevant to the experiment.

Selected features

As was demonstrated in [16], a feature set relevant for the task at hand

considers three genetic levels: (1) the variant level, where each allele (out of

the four total alleles of the combination) is annotated separately; (2) the gene

level, which includes insight into the importance of the gene in the cell; (3)

the combination level, expressing information about the relationships that exist

between the genes or their protein products. Specifically, we use here the

following features, visualized also in Fig. 2, to define each of the 240 bi-locus

combinations:

• Variant-level features, which include a measure of pathogenicity for each

allele that was predicted by CADD [23], which empirically showed the best

results, and is moreover well accepted by the bioinformatics community

and supports many types of mutations.

• Gene-level features, consisting of two values for each gene; (1) a boolean

value indicating whether it is considered essential in mice [as determined in

24]; (2) the probability for the gene to be recessive, and thus not dominated

by a pathogenic allele [25].
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• Combination-level features, which is a higher-level boolean value indi-

cating whether gene products are involved in the same pathway according

to Kegg [26] or Reactome [27] databases.

Di↵erent zygosity states are implicitly captured in the feature vector repre-

sentation; for instance, when CADD values are only provided for the first allele

of gene A and the first allele of gene B (and thus both second alleles are assigned

�1), the combination is heterozygous.

BI-LOCUS PATHOGENIC COMBINATION

GENE A GENE B

PATHWAY

PATHOGENICITY ALLELE 1 (CADD1)

PATHOGENICITY ALLELE 2 (CADD2)

PATHOGENICITY ALLELE 3 (CADD3)

PATHOGENICITY ALLELE 4 (CADD4)

MOUSE
ESSENTIALITY

A

RECESSIVENESS
A

MOUSE
ESSENTIALITY

B

RECESSIVENESS
B

GDI A ≤ GDI B

Figure 2: Diagram representing the architecture of a bi-locus combination, with

the three levels. Features, namely CADD1, CADD2, CADD3, CADD4, Essentiality A,

Essentiality B, Recessiveness A, Recessiveness B and Pathway are emphasized in blue. GDI

allows for ordering the two genes inside the combination.

Unknown values for a feature were imputed by using the mean of the cor-

responding column. No significant di↵erence was observed between using the

mean or the median. Wild-type variants are assigned a pathogenicity score of

�1, corresponding to the minimal CADD raw score value.
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Feature analysis using game theory

Given the limited number of features, it is possible to evaluate all possible

feature combinations with a moderate computational cost. Such an evaluation

allows one to assess the importance of a feature in the decision process, both

individually and in combination with the other features. To achieve this goal

some principles from cooperative game theory can be used, as mentioned in

Section 1: we define a payo↵-game using the features (represented by F) as a set

of agents and the prediction quality in terms of sensitivity and specificity as the

rewards [19]. As there are three classes to predict and there are two measurements

for predictive quality, i.e. sensitivity and specificity, each evaluation implies

six di↵erent games and thus six di↵erent rewards. To make the process more

understandable, these six measurements are combined into one unique value.

Details follow.

First of all, every feature coalition (i.e. set of features to consider) S ⇢ F

is assessed by carrying out 50 stratified-cross-validations using the developed

predictor, leading to the knowledge of the prediction capabilities for all coalitions

S. As there are 9 features that can either be considered or discarded, there

are 29 � 1 possible coalitions S, as the game cannot be played with the empty

coalition. In the following, results will be addressed as sencoalition
class and specoalitionclass

to designate the sensitivity and specificity respectively, obtained by a given

coalition for a given class. Class names will be abbreviated TD for true digenic,

MM for modifier and DMD for dual molecular diagnosis . The empty coalition is

considered to have no inferential power, yielding

sen;
class = 0 and spe;class = 0.

Then, Shapley [18] was used to analyze feature importance by investigating

the contribution of each given feature fi 2 F to the overall prediction quality.

First, it is necessary to define a mapping

v : S ⇢ F �! R,

that associates each coalition to a reward, based on the six metrics considered

10



(sensitivity and specificity for each BE). In our case, the coalition S is the feature

subset, and the reward v(S) is the geometric mean of the 3 sensitivities and the

3 specificities, defined as

v(S) =

✓ Y

c2{TD,MM,DMD}

senS
c ⇥ speSc

◆1/6

(1)

Shapley value �F provides a relative value indicating how much an agent

contributes to a coalitional reward. Adapting it to the feature selection process

gives the formula for a given feature fi 2 F

�F (fi) =
X

S⇢F\fi

|S|!(|F|� |S|� 1)!

|F|!
(v(S [ fi)� v(S)) (2)

The SHAP package [28] was used to compute individual feature contributions.

The package was chosen for its e�ciency through heuristics, thus avoiding

exhaustive result computations over 2F .

Interaction analysis using game theory

Along with the individual feature contributions, it is also interesting to

examine the interaction between features. To that end, a technique similar to

Kaufman et al.’s [20] was applied, aiming to identify how features act together,

i.e. to examine whether they act synergistically, antagonistically or whether

they exert no influence on each other. The principle is analogous to the Shapley

value, with an extended expression. Here, the underlying intuition is to reward

a feature pair if they both contribute equally and produce good results, and to

penalize a feature pair if it behaves asymmetrically (i.e. one agent consistently

contributing more than the other), or if the pair tends not to improve coalitions

it takes part in (dummy pair).

For two distinct features fi and fj , their joint contribution �i,j represents

how good the coalitions they both belong to, perform. It is defined using (Eq.

1) as follows:

�i,j =
X

S⇢F\{fi,fj}

|S|!(|F|� |S|� 2)!

(|F|� 1)!
(v(S [ {fi, fj})� v(S)) (3)

11



On the other hand, marginal contributions �ii,j where fi acts without fj and

�ji,j where fj acts without fi are defined using (2) as

�ii,j = �F\fj (fi)

�ji,j = �F\fi(fj),
(4)

and aim to catch the asymmetry between the two features of interest.

Joint (Eq. 3) and marginal (Eq. 4) contributions are combined to assess the

interaction Ii,j between fi and fj . Note that we use a positive part rectifier on

contributions to discard the ones that are counter-productive, as we found they

introduce noise to results, making them less apparent.

Ii,j = (�i,j)+ � (�ii,j)+ � (�ji,j)+ (5)

As the SHAP package does not support interaction analysis with scikit-learn

forests yet, algorithms to compute these values were implemented in Python3.

Corresponding source code can be found in this project’s GitHub repository 5.

Classifier interpretation

Palczewska et al. discussed an algorithmic method specific to random forests

aiming to get, for a given prediction, quantitative information for each feature

about its contribution to the decision process [17]. As their approach is used in

the current work to analyze the feature relevance, we will briefly describe the

algorithm.

The algorithm, which can be generalized to k classes, is run on each trained

tree Tl = (V,E) within the forest independently. Results are eventually averaged

to get an insight of the full forest decision process.

Let

val : V ! [0, 1]k

be a mapping associating each tree node to the proportions of samples belonging

to each class situated on the leaves below. The branch gradient gv,w is then

5https://github.com/oligogenic/DIDA_SSL
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defined for each descending branch (v, w) 2 E as

gv,w = val(w)� val(v). (6)

A general bias b, proper to the trained tree, is defined as b = val(r), where r is

the root of Tl.

A sample x 2 X traversing the tree Tl following a path {v0, ..., vn}, can be

seen as unfolding all the gvi,vi+1 (see Eq. 6) along that path.

Tl(x) = val(vn) = b+
n�1X

i=0

gvi,vi+1 . (7)

Where, when considering the full traversal, one gets

n�1X

i=0

gvi,vi+1 = val(vn)� val(v0) = val(vn)� b.

As val(vn) is exactly the predicted vector given the input x, this approach

basically decomposes the decision process in gradients gv,w plus a bias inherent

to the data set. Each gradient can be linked to the feature fi 2 F responsible

for the splitting of v. Therefore, a prediction Tl(x) where x drops down the path

{v0, ..., vn} can be dissected as a sum of feature contributions

Tl(x) = b+

|F|X

i=1

contribl(fi, x), (8)

where contribl(fi, x) =
Pn�1

j=0 (fi splits vj)gvj ,vj+1 is the feature contribution of

fi for the tree Tl in the x prediction. It is easy to verify this definition of Tl(x)

to be equal to val(vn) using Eq. 7, as exactly one feature splits one node, and

each node is split by one feature.

Finally, the global contribution of the feature fi to the forest decision process

can be obtained by averaging contribl(fi) over all trees Tl. This algorithm was

implemented in Python and can be found in the GitHub5 associated with the

current study.
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3. RESULTS & DISCUSSION

A three-class classification model to disentangle bi-locus types

Classic cross-validation methods cannot be properly used on small data

sets as they deprive the predictor of large slices of information it already lacks.

Furthermore, making the same gene pair appear both in the training and the

testing set introduces a bias, as shown by [16], which must be avoided to gauge

predictor’s performance on new combinations. Therefore, a stratified-cross-

validation based on gene pairs has been performed to evaluate models in an

unbiased manner, described in detail in Section 2.
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Figure 3: Prediction quality in terms of sensitivity and specificity for the three bi-

locus e↵ect classes. Comparison of the randomized 3-class predictor, the 2-class predictor

of the previous study [16] that does not support dual molecular diagnosis, and the 3-classes

predictor developed in our work. Sensitivity and specificity are used as performance metrics.

Di↵erences in results in terms of true digenic and modifier classification compared to prior

work are explained by the addition of the third dual molecular diagnosis class, increasing the

number of possible confusions therefore decreasing results in absolute. Note also that some

modifier combinations are suspected to actually be dual molecular diagnosis.

To evaluate prediction quality, predictor performances are compared to

those produced by a randomized model picking one class among the three with

probability 1/3, simulated 5000 times. As displayed in Fig. 3, dual molecular

diagnosis cases appear to be the easiest to identify, both in terms of sensitivity

and specificity. This high accuracy makes sense from a biological perspective:

indeed, these results reveal that the 3-class predictive model is able to separate

instances more closely linked to monogenic diseases from those requiring bi-

15



locus genotypes. 80% of sensitivity and specificity for dual molecular diagnosis

combinations reveals that the used features are clear markers for discriminating

e↵ectively between two monogenic and a bi-locus genetic model. The rest of

the bi-locus e↵ects (true digenic and modifier) also lead to good prediction

levels, performing significantly better than a random classifier. Di↵erences in

performance with prior work are due to the addition of the third class (dual

molecular diagnosis), increasing the number of potential class mismatches and,

therefore, decreasing results overall. These results show that Gazzo et al.’s [16]

features space remains robust, even with the addition of a third bi-locus e↵ect.

However, prediction quality seems to have reached its limit in this framework,

suggesting an increase in samples, or the exploration of other features may be

worthwhile to di↵erentiate consistently between the true digenic and modifier

classes.

Characterization of bi-locus types based on variant strengths

Random forest decisions can be comprehensively dissected by a systematic

approach, as discussed in Section 2. The prediction is decomposed as a sum over

all features of individual contributions that can be either positive (the feature

increases the class probability) or negative (the feature decreases the class

probability). This technique reveals that the dual molecular diagnosis class is

mainly recognized via the CADD1 and CADD3 features (Fig. 4, bottom panel),

corresponding to the respective pathogenicities of one mutated allele in gene

A, and one mutated allele in gene B — dual molecular diagnosis combinations

are mostly di-allelic. This observation was further confirmed, as a predictor

running only on these two features is able to achieve very good dual molecular

diagnosis classification accuracy, with a sensitivity of 0.74±0.01 and a specificity

of 0.73± 0.01. However, it is interesting to note that this limited feature space

is not su�cient to identify all bi-locus e↵ects. Indeed, when considering only di-

allelic pathogenicity, both modifier and true digenic classes present a specificity

and sensitivity under 0.52, which can be explained by their strong similarity in

terms of their pathogenic mutation profile.

16



Figure 4: Bar charts presenting feature contributions for each class with respect

to each class. Using a tree interpretation procedure [17] discussed in Section 2, decision

process can be dissected. It reveals CADD1 and CADD3 to be determinant in recognizing

the dual molecular diagnosis class, repelling true digenic and modifier samples while pulling

towards dual molecular diagnosis ones. We can nonetheless note an asymmetry in terms of

probability decrease for the dual molecular diagnosis class between true digenic and modifier

for CADD1 and CADD3, this may be due to the ability of the latter combinations to trigger

symptoms when only the major gene is mutated.
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Expanding these observations to a statistical analysis shows that dual molec-

ular diagnosis combinations present higher pathogenicity with respect to the

di-allelic genetic profile, consisting of CADD1 and CADD3, with unfortunately a

high standard deviation (Table 1). Nonetheless, a Student’s t-test suggests the

di↵erence between dual molecular diagnosis di-allelic profiles and other BEs to be

significant, especially for CADD1 as shown in Table 2. Therefore, we conclude

that dual molecular diagnosis combinations have a significantly more pathogenic

di-allelic profile than other bi-locus e↵ect combinations, characterizing genetic

profiles with stronger pathogenic capabilities.

Bi-locus e↵ect CADD1 (mean, std) CADD3 (mean, std)

True digenic 3.34 ± 2.13 3.79 ± 2.96

Modifier 3.36 ± 1.66 3.42 ± 1.65

Dual molecular diagnosis 6.22 ± 2.73 5.50 ± 3.72

Table 1: Di-allelic profile of each bi-locus e↵ect. We can see dual molecular diagnosis

to be highly pathogenic compared to other bi-locus e↵ects.

aaaaaaa
Class1

Class2 True digenic Modifier Dual diagnosis

True digenic 1 0.94 2.97⇥ 10�12

Modifier 0.34 1 1.86⇥ 10�12

Dual diagnosis 1.26⇥ 10�3 2.01⇥ 10�5 1

Table 2: As pathogenicity di↵erences were denoted between dual molecular diagnosis combina-

tions and other BEs, p-values were computed to determine the likelihood for this singularity

to be due to chance. Top triangular: p-value with respect to CADD1 feature. Bottom

triangular: p-value with respect to CADD3 feature. The CADD1 di↵erence between dual

molecular diagnosis combinations and the rest is the most significant feature di↵erence.
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On the other hand, Fig. 4 shows an asymmetry between true digenic and

modifier in terms of dual molecular diagnosis class probability contribution.

While in true digenic combinations, CADD1 and CADD3 values equally repel

samples from the dual molecular diagnosis class, in modifier there is a clear

asymmetry between these two features, with CADD3 being less polarized towards

the true digenic class, and contributing more to the dual molecular diagnosis

class than the CADD1 feature. As dual molecular diagnosis combinations are

known to have strong pathogenic variants able to trigger a disease phenotype.

This feature contribution asymmetry may be correlated with the strength of

the major variant in the case of modifier combinations. We should note that

considering CADD values simply depicts how damaging the mutation is for

the protein, without taking into account its negative impact at the scale of the

whole organism. Therefore, strong variations in proteins that do not play an

important role may be less deleterious than small variations on essential ones.

Using higher-level features such as gene essentiality and recessiveness, the model

seems to be able to catch the deleteriousness of the major gene. We discuss

these interpretations further in Section 4.

a

b

c

Gene A Gene B

Figure 5: Schematic representations of the three bi-locus e↵ects in terms of dele-

terious capabilities. Combination a, true digenic with two weak (i.e. low pathogenicity)

variants. Combination b, monogenic plus modifier with one mild variant and one weak

variant. Combination c, dual molecular diagnosis with two strong variants.
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These observations bring a first characterization of bi-locus diseases in terms

of variant pathogenicity (Fig. 5). Statistical analyses as well as phenotypic

insights show that dual molecular diagnosis tend to contain stronger variants.

On the other hand, the random forest interpretation suggests that in true digenic

cases, both variants are equally important, while there is a clear imbalance in

the importance of the variants involved in modifier cases, as CADD3 orients

the predictor towards the dual molecular diagnosis class. Even if no statis-

tical argument can be made to support this last observation, the coherence

between tree interpretation and phenotypic observations suggests that the full

feature framework (i.e. including features from the three di↵erent levels) better

represents how deleterious the variant combination will be for the organism

in comparison to using exclusively information at the variant level, thus more

e↵ectively distinguishing the major locus from the modifier one.

Fig. 7 shows how dual molecular diagnosis combinations are indeed shifted

towards the north-east of the plot in the space of all instances used in this study,

containing more damaging variants than those present in the two other bi-locus

classes.

Second-order analysis shows pathway feature’s high synergy

Two features are said to be synergistic for a prediction if they share a

complementary relationship, meaning that each characteristic carries information

whose relevance is highly improved when combined with the other. To investigate

these interactions, a game theoretical approach, more extensively discussed in

Section 2, was adopted. Using this quantification, each feature is tested both

individually and against all the others, generating a 2D array whose diagonal

represents the individual contributions (Shapley values), and the intersection of

a row and a column outside of the diagonal shows the synergy value between the

corresponding features. These relative values indicate how two features perform

together with regard to the global prediction quality, and can be observed in

Fig. 6.
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Figure 6: Bi-dimensional figure presenting both features individual contributions

to the decision process (diagonal), and pairwise contributions. Prediction quality p

is assessed using the geometric mean of sensitivity and specificity with respect to each class.

The figure shows on one hand the individual importance of CADD1, CADD3, and EssB, and

reveals on the other hand the high synergy of pathway with all features. Values have been

linearly interpolated between 0 and 1 for clarity purposes, and are therefore relative.

This plot reveals that the pathway feature, although presenting average

relevance on its own, turns out to be critical when coupled with other features.

Indeed, by considering the pathway feature in characterizing the di-allelic profile,

true digenic and modifier classifications improve by 12% and 25% respectively,

whereas dual molecular diagnosis classification accuracy increases by a modest

2%. Although this feature analysis approach is limited to cases with few features

due to the computational cost in O(n2) with n the amount of features, it

turns out to be very powerful as it allows an analysis including second-order

feature contributions (i.e. taking into account feature interactions, and not

only individual contributions). Furthermore, this cost can be mitigated using
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dimension reduction techniques, while the original features can be traced back

from the new basis. This is especially relevant, as it reveals that true digenic and

modifier combinations are more easily di↵erentiated when pathway information

is present, and when this information is combined with other features. This

notion of common pathway needs to be considered carefully, as genes implicated

in bi-locus inheritance must somehow take part in a common biological process,

either at the level of transcription regulation, or in (indirect) protein-protein

interaction for instance. This is attested by the fact that di↵erent combinations

of the two genes may vary the phenotype.

Figure 7: Combinations spreading in the space with respect to the pathogenicity of

their first and third allele, showing relative high di-allelic pathogenicity of dual molecular

diagnosis combinations.

A statistical analysis shows that on average, modifier combinations tend

to be more pathway-related (57%) than true digenic ones (29%), but with

very high standard deviations (close to 50%). Therefore, solely this feature
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is not informative enough for di↵erentiating between these two classes. dual

molecular diagnosis combinations rarely appear to be pathway-related (a mean

of 11%), thus appearing as a less significant signature than the information at

the variant level. This observation reinforces the notion of loci independence

in dual molecular diagnosis combinations, as two di↵erent monogenic disorders

co-occur in the same individual. However this insight should be treated with

caution as when a bi-locus combination has a pathway value of 0, this does not

necessarily indicate that there is no common pathway between the two genes,

but may mean that a common pathway is not known yet.

This pathway importance can also be distinguished in Fig. 4. The pathway

feature is active in true digenic and dual molecular diagnosis classification,

capturing the fact that genes inside dual molecular diagnosis combinations are

rarely biologically linked together.

4. CONCLUSIONS

By analyzing the prediction process at di↵erent levels, dual molecular diag-

nosis combinations have been shown to display a strong biological signature,

allowing the machine learning model to recognize them e↵ectively. Since modifier

and true digenic combinations share a similar bi-locus profile, it is more di�cult

to accurately discriminate between them. Notwithstanding this limitation, the

predictor is able to identify these two classes well, based on both sensitivity and

specificity metrics, indicating that the feature space contains some relevant pieces

of information. Given the limited size of the data set, adding more features

may lead to overfitting. Therefore, entirely reconsidering which features to

use, redefining the bi-locus profiles from scratch or adding new samples might

lead to prediction improvement between those two bi-locus classes. Neverthe-

less, discarding variant-level features may decrease the dual molecular diagnosis

recognition quality.

As the interpretation of results is key in bioinformatics, decision decom-

position methods are, in general, necessary. The game theoretical approach
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used in this work presents both advantages and disadvantages, as it scales quite

well in terms of data size by using batches to simulate the whole data set, but

does not scale in terms of feature quantity. Nonetheless, this approach may be

applied even in high dimensions, after the application of dimension reduction

techniques, such as PCA and t-SNE. Therefore, this approach remains relevant,

allowing an easier interpretation of the model. The combination of this approach

with the tree interpretation, and the assessment of the coherence between them,

reinforces the results’ validity and explains why the machine learning model is so

e↵ective in recognizing dual molecular diagnosis combinations; indeed, the tree

interpretation algorithm works at the decision-level, while the synergy analysis

does so at the result-level.

We propose a meaningful bi-locus spectrum characterization by combining

di↵erent conceptual layers of information, a statistical analysis and a random

forest interpretation (Fig. 5). This characterization associates the ability of

a variant to trigger a disease phenotype with a pathogenic strength that can

be assessed either at the variant-level with the use of predictors like CADD

[23], or in a more complex way by considering features at di↵erent levels. A

solid framework is defined with this characterization and can be extended in

future work to improve the classification task. For modifier combinations, it is

interesting to note that the gene with the higher GDI tends to be the major

gene. This may explain why patients with a variant at the major gene and an

unmodified minor gene only present a mild phenotype, as higher GDI indicates

less conservation, and thus higher tolerance to mutations.

The exploration of synergistic features revealed important and meaningful

information. The game theoretical approach highlights the importance of the

pathway feature in discriminating di↵erent bi-locus e↵ects. While dual molecular

diagnosis combinations were easily di↵erentiated on the variant level due to

the strong pathogenicity of the involved variants, true digenic and modifier

combinations showed the necessity of higher levels of information in order for

them to be classified correctly; pathway information was among those features,

indicating interactions between the genes at the protein level and therefore
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subsequent consequences of the mutations on these interactions. This shows

that bi-locus diseases work on a interactive level and thus features representing

this interaction were most significant when classifying true digenic and modifier

combinations. An explanation for this could be that true digenic combinations

need both variants to disrupt pathways in order for the phenotype to appear,

whereas modifier combinations already show a mild phenotype with only the

major gene a↵ected by the mutation, meaning that the second alteration in the

minor gene could a↵ect the same pathway and causes worse disease symptoms

or earlier age of onset. Possible true digenic combination mechanisms have

been proposed, such as the need for several proteins in a protein complex to

be mutated in order for that complex to be destabilized, or the presence of

numerous disruptions occurring at di↵erent steps of a pathway [29]. Additional

information about the level of interaction between the genes or the gene products

could fine-tune the classification of bi-locus diseases.

Both prediction and statistical analysis showed that dual molecular diagnosis

combinations are di↵erent from the other two bi-locus e↵ects. Their high di-allelic

pathogenicity clearly indicates their monogenic capabilities, allowing them to

trigger symptoms by themselves without requiring another locus. Furthermore,

their tendency not to belong to a common pathway reinforces the idea they

can also be present independently. As such, one may wonder how relevant it is

to consider them under the bi-locus denominator. Confounding things further,

the symptoms observed for dual molecular diagnosis combinations may be split

between distinct ones, where each disease a↵ects a distinct tissue of the organism

and overlapping ones, where diseases are located in the same organ or tissue and

share similar phenotypes, requiring a more careful interpretation of the predicted

results.

More specifically, the overlapping dual molecular diagnosis combinations

require cautious analysis. Since they a↵ect the same tissues of the organism, they

may interact in a common pathway. Therefore, a biologically relevant relationship

between the two genes could exist. We can even hypothesize that this relationship

reinforces the severity of the symptoms, by a snowball e↵ect. Therefore, if some
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overlapping combinations could implicate two completely unrelated genes, others

may include both the symmetry of true digenic combinations, and the modifier

e↵ect of modifier combinations.

The machine learning model that was conceived during this study can now

be used either as part of a pipeline for bioinformaticians or as an investigative

tool for physicians. Considering its ability to e↵ectively identify di↵erent types

of bi-locus combinations, its usage can be essential to attain the right diagnosis

in clinic when new bi-locus genotypes are identified. From a machine learning

perspective, a bi-locus combination severity predictor may have usage of such a

model, conditioning its decision on the input combination’s bi-locus e↵ect.

SUPPLEMENTARY MATERIALS

Data sets and scripts are available at the address https://github.com/

oligogenic/DIDA_SSL.
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