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Abstract21

Background and Objective: The measurement of Carotid Intima Media Thick-22

ness (CIMT) in ultrasound images can be used to detect the presence of atheros-23

clerotic plaques. Usually, the CIMT estimation strategy is semi-automatic, since24

it requires: 1) a manual examination of the ultrasound image for the localiza-25

tion of a Region Of Interest (ROI), a fast and useful operation when only a26

small number of images need to be measured; and 2) an automatic delineation27

of the CIM region within the ROI. The existing efforts for automating the pro-28

cess have replicated the same two-step structure, resulting in two consecutive29

independent approaches. In this work, we propose a fully automatic single-step30

approach based on semantic segmentation that allows us to segment the plaque31

and to estimate the CIMT in a fast and useful manner for large data sets of32

images.33

Methods: Our single-step approach is based on Densely Connected Convolu-34
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tional Neural Networks (DenseNets) for semantic segmentation of the whole35

image. It has two remarkable characteristics: (1) it avoids ROI definition, and36

(2) it captures multi-scale contextual information in the complete image inter-37

pretation, due to the concatenation of feature maps carried out in DenseNets.38

Once the input image is segmented, a straightforward method for CIMT esti-39

mation and plaque detection is applied.40

Results: The proposed method has been validated with a large data set (REGI-41

COR) of more than 8,000 images, corresponding to two territories of the Carotid42

Artery: Common Carotid Artery (CCA) and Bulb. Among them, a subset of43

331 images has been used to evaluate the performance of semantic segmentation44

(≈ 90% for train, ≈ 10% for test). The experimental results demonstrated that45

our method outperforms other deep models and shallow approaches found in46

the literature. In particular, our CIMT estimation reaches a correlation coeffi-47

cient of 0.81, and a CIMT mean error of 0.02 mm and 0.06 mm in CCA and48

Bulb images, respectively. Furthermore, the accuracy for plaque detection is49

96.45% and 78.09% in CCA and Bulb, respectively. To test the generalization50

power, the method has also been tested with another data set (NEFRONA)51

that includes images acquired with different equipment.52

Conclusions: The validation carried out demonstrates that the proposed method

is accurate and objective for both plaque detection and CIMT measurement.

Moreover, the robustness and generalization capacity of the method have been

proven with two different data sets.

Keywords: Semantic Segmentation of Carotid Artery, Intima Media53

Thickness, Ultrasound Images, Atherosclerotic Plaque Detection, Fully54

Convolutional Neural Networks55

1. Introduction56

Cardiovascular diseases are the leading cause of death in developed coun-57

tries. Most of at-risk individuals of cardiovascular events suffer atherosclerosis,58

a chronic inflammatory process characterized morphologically by an asymmet-59
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ric focal thickening of the innermost layer of the artery. Thus, monitoring the60

detection of the atherosclerotic plaque as well as its characteristics or changes61

may have significant clinical relevance for the assessment of future cardiovascu-62

lar events. The Ultrasound (US) Carotid Artery (CA) images are used to detect63

the burden of atherosclerosis, since they provide the possibility to measure the64

Carotid Intima Media Thickness (CIMT) of the artery and identify the presence65

of atherosclerotic plaques. The CIM region is defined by the Lumen-Intima (LI)66

and Media-Adventitia (MA) interfaces (see Figure 1), and the CIMT is com-67

monly estimated in the far wall (interfaces at the bottom of the image) of the68

CA. To simplify, we use the term CIM region to refer to the region located at the69

far wall of the CA. The Mannheim Consensus [1] defines a sufficient criterion70

for plaque detection: plaques are structures inside the arterial lumen showing71

CIMT ≥ 1.5mm.72

Figure 1: Common Carotid Artery (CCA) (left) and Bulb (right) US longitudinal images. The
different parts of the CA are delimited with green lines. In both cases the CIMT is estimated
in the CIM region from the far wall. The CIMT in the CCA is measured approximately 1 cm
distal from the carotid Bulb.

1.1. Related Work73

Basic techniques for CIM region delineation and plaque segmentation pre-74

sented in the literature include, among others, Hough transform, edge detection75

[2, 3], active contours [4], snakes [5, 6], and other solutions such as integrated76
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approaches that combine several basic Machine Learning (ML) methods [7, 8].77

Interest readers can refer to the review studies [9, 10] for more references.78

Following [10], the methods can be broadly classified into two categories. The79

first category includes techniques that are fully automatic, whereas the second80

one includes those that require user interaction, i.e. semi-automatic. Semi-81

automatic approaches [3, 6] require user interaction for manual initialization in82

order to select a Region of Interest (ROI), and/or to correct wrong results during83

examination. In general, the manual ROI selection together with these type84

of interactions result in better performance. The best semi-automatic methods85

found in the literature for clinical practice are the ones that offer visual feedback86

during image acquisition instead of analyzing stored images [3].87

In contrast, fully automatic methods [4, 2, 7, 8, 11, 12] run without any88

initial setting, or user interaction. The main advantage of these techniques is89

that they are able to process large amounts of data. Furthermore, they allow90

the reproducibility of results, and save time and resources.91

Preliminary efforts using ML and Deep Learning (DL) in fully automatic92

CIMT evaluation have been presented [11, 8, 12, 7]. In [11], a standard multi-93

layer perceptron with an auto-encoder is proposed for CA image interpretation,94

but it does not outperform the snake-based method in [4]. In [8], Zhang et al.95

proposes a two-step segmentation method of the CIM region based on patch-96

based classification and Stacked Sequential Learning. More recently, in [12],97

patch-based Convolutional Neural Networks (CNNs) are used in the different98

steps for CIMT estimation. This work uses US video instead of unique frame99

(as used in many works and in our paper, see Section 3.1), and thus adds an100

extra first step for selecting three end-diastolic ultrasound frames. The most101

recent work in the literature to automatically segment plaque is presented in [7],102

an approach that uses several ML methods and combines them in an iterative103

algorithm.104

Table 1 summarizes the most relevant methods presented in the literature re-105

garding the CIMT error and compares several characteristics that are explained106

in the next subsection.107
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1.2. Contributions108

To the best of our knowledge, all the aforementioned DL segmentation tech-109

niques are two-step approaches that define separate methods to, first, localize110

the ROI (made manually in case of semi-automatic methods); and second, de-111

lineate the CIM region within the ROI.112

In our paper, we propose a novel single-step (see column named “Method113

SA/FA” Table 1) DL approach for automatic CA image interpretation. This114

approach is based on Semantic Segmentation (SS) using Densely Connected115

Convolutional Networks (DenseNets) [13], which were designed to facilitate the116

training of very deep networks due to a reduction in the number of parameters117

used and the reuse of feature maps. Our proposal represents the first attempt118

in the literature to accurately localize and interpret the different anatomical119

components of the CA (lumen, far wall, near wall, bulb, CIM region and CIM-120

bulb region, see Figure 1), which can be helpful in the proper estimation of the121

CIMT. Using the segmented region, we define a straightforward approach for122

CIMT estimation and plaque detection.123

Moreover, the majority of the proposed techniques in the literature restrict124

their application to five particular conditions of the CA images and data sets,125

which are summarized in the columns 7-11 in Table 1 and are explained below.126

1) Most of the presented works and reference values from the guidelines focus127

only on Common Carotid Artery (CCA) images. The image quality of other128

territories, such as Bulb, is worse than CCA (poorer contrast and more affected129

by noise). Also, successful imaging depends on the subjects anatomy. These130

facts make the segmentation of the CIM region in Bulb difficult. None of the131

revised methods deal with Bulb images (see column named “Artery Territory”132

in Table 1). However, we demonstrate that the method proposed in our paper133

is easily extensible to this different CA territory, after being successfully trained134

for both CCA and Bulb.135

2) In the non-plaque images (i.e. images in which the plaque does not ap-136

pear), the CIM region is observed as a straight thin shape, whereas the presence137

of plaque leads to a focal thickening of the CIM region, resulting in an irreg-138

6



ular shape (see Figure 2). The shape variability of the CIM region makes the139

definition of a robust segmentation method more difficult. As a consequence,140

most of the previous works only measure the CIMT within plaque free regions141

and discard images with the presence of plaque (see column named “Presence142

of Plaque” in Table 1). Unlike most previous works, we broaden the target143

and build a more general method able to accurately estimate the CIMT, even144

in the presence of plaque. This feature makes our method useful for data sets145

of population studies, such as the one considered in this paper. Moreover, the146

presence of plaque in the data set allows us to evaluate the plaque detection of147

our method.148

Figure 2: US images from CCA without plaque (left) and with atherosclerotic plaque (right).

3) In terms of the number of images processed, the size of the considered data149

sets in the previous CIMT estimation studies is quite small (see column named150

“N” in Table 1). Although these sample sizes guarantee an adequate level of151

study power, a large-scale study —such as the one presented in our paper— is152

required to carefully assess the effect of variability on segmentation performance,153

and also to evaluate the systems before their application in the real praxis. In154

particular, we show an extensive evaluation of the CIMT measurement and155

plaque detection in a large data set (REGICOR), which contains 8,484 images.156

4) The different devices and settings used for image acquisition provide data157

sets with different image characteristics. These differences imply difficulties158

for the robust segmentation of CA components and CIMT estimation. For159

7



this reason, most of the methods in the literature use data sets provided by a160

single device (see column named “Different Acquisition Devices” in Table 1).161

In contrast, we validate the robustness and generalization power of our method162

by applying it to the NEFRONA data set, which contains images provided by163

different equipment (see Section 3.1).164

5) Regarding the validation procedure, we extensively evaluate our propos-165

als. We compare the obtained CIMT estimation with other state-of-the-art166

approaches to demonstrate the outperformance of the proposed method (see167

column “Mean CIMT Error (mm)” in Table 1). Moreover, we compare the CIM168

segmentation results with other approaches and we measure the Inter-Observer169

Variability (IOV) of the manual segmentation showing the degree of difficulty170

of the problem at hand, especially in the case of Bulb images (see Section 3).171

Lastly we evaluate plaque detection in the large data set, REGICOR, for which172

we obtain very promising.173

This paper is structured as follows: the current section introduces the prob-174

lem, exposes the related work and details the contributions of the paper. In175

Section 2, we present the proposed CIM region segmentation method, the CIMT176

estimation approach and the plaque detection method. The used data sets and177

the results obtained are presented in Section 3. Finally, Section 4 closes the178

paper with conclusions and future challenges.179

2. Methodology180

This work proposes a method for automatic CA image interpretation that in-181

tegrates semantic segmentation with other image analysis techniques for CIMT182

estimation. Figure 3 depicts the workflow of our approach, subsequently ex-183

plained in depth.184

2.1. Semantic Segmentation185

In our research, CA segmentation is about solving the problem of separating186

the different anatomical components of the CA (i.e. lumen, far wall, near wall,187

8



CIMT

Figure 3: Workflow of the proposed method for semantic carotid artery segmentation and
CIMT estimation. The SS model is composed of a down-sampling path with Transition Down
(TD) blocks, and an up-sampling path with Transition Up (TU) blocks, both including dense
blocks that create the feature maps. A Convolution (Conv) is applied at the input of the
network as well as at the end, to generate the final segmentation. The small circles represent
concatenations, and the dotted arrows are the skip connections.

bulb, CIM region, and CIM-bulb region, see Section 1), thus obtaining a mask188

with six or four different labels, depending on whether CCA or Bulb images are189

being analyzed, respectively. For this purpose, we propose the use of semantic190

segmentation (SS) algorithms that work in a supervised learning framework,191

instead of using image features such as shapes or pixel-based features.192

Fully Convolutional Networks (FCN) [14], commonly used in SS problems,193

are a particular case of Convolutional Neural Networks (CNN) that do not194

use fully-connected layers. They take an image of any size as input data and195

transform it to obtain a segmented image, with the same spatial resolution,196

by means of an inference, learning process. Figure 4 shows an example of two197

CA images (inputs to the SS model) and their corresponding segmented images198

(expected outputs of the SS model).199

Any CNN model can be extended to be used as FCNs and so applied to a200

SS problem. From the state-of-the-art architectures, we have selected Densely201

Connected Convolutional Networks (DenseNets) [13], an extension of the well-202

known Residual Networks (ResNets) [15]. DenseNets has been designed to ease203

the training of very deep networks, and present some characteristics that make204

them very appropriate for SS: parameter efficiency, implicit deep supervision,205

and feature reuse.206

9



(a) CCA

(b) Bulb

Figure 4: Example of the input (left) and expected output (right) of the SS model for images
of both territories: (a) CCA and (b) Bulb. The legend at right details the segmentation labels.

As a result of all of these reasons, we have considered the so-called Tiramisu207

[16], an extension of DenseNets such as FCNs, to solve the CA segmentation208

problem. The Tiramisu architecture (see Figure 3, left) is composed of a down-209

sampling path with transition down (TD) blocks to extract coarse semantic210

features, and an up-sampling path with transition up (TU) blocks to recover the211

input image resolution at the output level. Both paths are connected by means212

of skip connections that allow the recovery of fine-grained information, and213

they are defined by a sequence of dense blocks that contain a set of concatenated214

layers, as proposed in DenseNets. The three types of blocks used in the Tiramisu215

model are defined as follows:216

• Dense blocks are composed of concatenated layers that include Batch Nor-217

malization [17], Rectified Linear Unit [18], 3×3 convolution, and Dropout218

[19] (probability 0.2).219

• TD blocks are composed of Batch Normalization, Rectified Linear Unit,220

10



1×1 convolution, Dropout (probability 0.2) and 2×2 max-pooling (stride221

2).222

• TU blocks are composed of 3 × 3 transposed convolution (stride 2).223

Our implementation of the semantic segmentation model is in Keras1, with224

Theano as backend, and is publicly available for download2.225

226

2.2. CIMT estimation and Plaque Detection227

The output of the semantic segmentation process is a mask divided in differ-228

ent regions (see Figure 4: six for CCA images, and four for Bulb images). The229

information provided by the different regions identified in the mask are used to230

estimate the CIMT, following the next procedure (partially illustrated in Figure231

5):232

1. The biggest connected component, corresponding to the CIM label, is233

identified (Figure 5(a)). In the case that the two biggest connected com-234

ponents have a similar size, we select the largest one that is more similar235

to the rectangular shape of the CIM region.236

2. The borders of the CIM region are smoothed with basic morphological237

operations. In particular, these operations are opening, to remove small238

objects; and closing, to avoid small holes. Rectangles are used as struc-239

turing elements for these operations, with dimensions 4×8 for closing and240

2 × 25 for opening.241

3. According to the experience of technicians, image quality is not good at242

the ends of the image (approximately 0.3 cm in each side). For this reason,243

we define a margin of 0.3 cm in the right part of the CCA images (see244

Figure 5(b)), and two margins of 0.3 cm in the right and left parts of the245

Bulb images (see Figure 5(d)). Moreover, the mean values from CIMT in246

1https://keras.io/
2https://github.com/beareme/keras semantic segmentation
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(a) Mask from a CCA image (b) CIMT estimation in CCA

(c) Mask from a Bulb image (d) CIMT estimation in Bulb

Figure 5: Representative example of the CIMT estimation procedure for CCA (top) and Bulb
images (bottom). At left, masks obtained from the semantic segmentation model (yellow pixels
correspond to CIM region label); and the biggest, largest connected component selected as
CIM region (red rectangle). At right, the CIM region obtained from the semantic segmentation
result (in green). (b) Left margin used to discard pixels with CIMT value greater than 1.5
mm, CIMT estimation area (1 cm after the bulb), and plaque region (in red). (d) Right and
left margins are used to discard pixels with the CIMT value lower than 0.4 mm, and the CIMT
estimation area.

CCA are, in general, between 0.4 mm and 1.5 mm [20]. Based on this, we247

discard the pixels of the CIM region that are within the lateral margins,248

and have a CIMT value outside the range [0.4, 1.5] mm.249

4. Once the CIM region is obtained, we divide the CIM region in vertical lines250

(each line corresponds to one pixel). For each vertical line, the absolute251

distance between the two borders is considered. Finally, we compute the252

CIMT measurement as the mean from all these values.253

For CCA images the CIMT is estimated 1 cm distal from the Bulb, justified254

from a clinical standpoint [1] (see Figure 5(b)).255
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5. Afterwards, each image is classified as containing plaque or non-plaque,256

using the CIMT measurement and following the Mannheim Consensus257

(see Section 1).258

3. Experiments259

3.1. Data Set260

In this work, we consider two different data sets: REGICOR and NE-261

FRONA. REGICOR3 consists of a sample of 2,379 subjects from Girona’s Heart262

Registry [20]. The images were collected from 2007 to 2010, and the subjects263

represent general population aged between 35 and 84. Two trained sonographers264

performed the CA US scans with an Acuson XP128 US system equipped with265

L75-10 MHz transducer and a computer program extended frequency (Siemens-266

Acuson). US longitudinal images were obtained in B-mode with resolution 23.5267

pixels/mm. The original images were saved in DICOM format and then con-268

verted to PNG. The set of images collected for each patient were obtained from269

left and right CA in two different territories (CCA and Bulb), resulting in a270

total of 8,484 images (4,751 CCA images, and 3,733 Bulb images). The CIMT271

reference values, given by the Amsterdam Medical Center4 (AMC), were used272

as the Ground-Truth (GT) for the CIMT estimation. Note that all the images273

were analyzed by an AMC expert using the semi-automatic validated software274

e-track [21]. Regarding the GT for plaque detection, it was obtained using the275

provided CIMT reference values and applying the Mannheim consensus. Fur-276

thermore, the images containing plaque were finally supervised by an expert.277

Besides the GT for CIMT estimation and plaque detection, a segmentation278

GT was defined for a subset of the REGICOR images. In order to obtain it, an279

expert (Expert1) manually delineated and labeled the different regions of the280

original images, using six labels for CCA and four for Bulb (written in red in281

3https://www.regicor.org/en index.html
4https://www.abc.uva.nl/research/institutes/institute-articles/academic-medical-center-

amc.html
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Figure 1). Since this manual task is difficult and very time-consuming, only282

a representative subset of REGICOR images was labeled, including 159 CCA283

images (51 with plaque and 108 without plaque), and 172 Bulb images (68 with284

plaque and 104 without). The training set contains 141 images for the CCA and285

155 images for the Bulb, whilst the rest of them were used for testing. The test286

images were used for the comparison of the segmentation approaches presented287

in Section 3.3. Additionally, the test images were manually segmented by a288

second expert (Expert2) to measure the IOV.289

The second data set, NEFRONA5, from Atherotrombotic Diseases Unit De-290

tection Hospital Arnau de Vilanova, consists of a collection of B-Mode US of291

the CA obtained by a Vivid BT09 device (from General Electric), with a 6-13292

MHz band. For each subject of the study CCA images were captured. This293

data set is formed by 27 images with the corresponding CIM regions and their294

CIMT values (NEFRONA GT), provided by the General Electric device.295

Note that data from both data sets, REGICOR and NEFRONA, can be296

requested to the corresponding contacts.297

3.2. Validation Setup298

This section includes the different experiments carried out to validate our299

approach results, which are summarized in Table 2 and following described in300

depth.301

Experiment 1: Segmentation. In order to validate the proposed segmentation302

method, we compared six different approaches applied to a subset of the REGI-303

COR dataset: four DenseNets models based on Tiramisu, the U-Net method304

[22], and a two-step approach based on the shallow method Random Forest305

(RF). Regarding the Tiramisu model, we have considered two different configu-306

rations varying the depth of the network: Tiramisu56 (a total of 56 layers, 4 per307

dense block) and Tiramisu103 (a total of 103 layers, from 4 to 12 per block).308

In order to show if the SS of several anatomical components helps in the CIM309

5http://www.nefrona.es/
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Experiment 1: Segmentation
Purpose: comparison of different segmentation approaches
Data set: subset of REGICOR. GT: manually segmented images
# images: 159 (CCA), 172 (Bulb). Train/test split: ≈ 90% − 10%
Performance measures: accuracy, specificity, sensitivity, precision, Dice coefficient
Experiment 2: CIMT estimation
Purpose: comparison of different methods for CIMT estimation
Data set: REGICOR. GT: CIMT values
# images: 8,484 (all of them used for validation)
Error measurement: correlation coefficient and Bland-Altman analysis
Experiment 3: Plaque detection
Purpose: comparison of different methods for plaque detection
Data set: REGICOR. GT: plaque detection (yes/no)
# images: 8,484 (all of them used for validation)
Performance measures: accuracy, specificity, sensitivity
Experiment 4: Generalization power
Purpose: assessment of the generalization power of the proposed method
Data set: NEFRONA. GT: CIMT values
# images: 27 (all of them used for validation)
Error measurement: correlation coefficient and Bland-Altman analysis

Table 2: Summary of the different experiments carried out for validation purposes.

region segmentation, we also compared the results provided by the two Tiramisu310

models (Tiramisu56 and Tiramisu103), but using only two labels (CIM region311

and background). We called this second approach Binary Segmentation (BS),312

whilst the one with all the labels is referred as Semantic Segmentation (SS).313

Notice that both approaches, BS and SS, were compared by considering two la-314

bels in the evaluation measure. In order to demonstrate the adequacy of using315

DenseNets, the U-Net was also considered in the experimentation. In this sense,316

it is worthy to point out that the main difference between U-Net and Tiramisu317

is that U-Net uses standard convolutions instead of the dense blocks proposed in318

the DenseNet architecture. Finally, in order to compare the NNs with classical319

methods, we have also considered a two-step approach based on RF. Particularly,320

we refer as RF2 to the two-step approach in which a ROI is first automatically321

extracted (pre-processing) and then a patch-based RF (multi-class) is used for322

pixel-wise classification. In this case, a post-processing specifically designed for323

this method [8] can be applied, which is referred as RF2-PP.324

All the NN models were trained using a GeForce Titan X (Pascal) 12GB325

GPU from NVIDIA. The models’ weights were initialized using the HeUniform326
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initialization [23], and the RMSprop algorithm [24] was used as optimizer. The327

training process was carried out in two steps, as in [16]: 1) pre-training with328

random cropping for data augmentation (crop dimension: 224× 224 px), learn-329

ing rate 1e − 3, and batch size 3; 2) fine-tuning with full size images (image330

dimension: 470 × 445 px), learning rate 1e − 4 and batch size 1. The outputs331

were monitored using the pixel-wise accuracy and the dice coefficient, with a332

patience of 100 during pre-training and 50 during fine-tuning.333

A complete set of measures was used to evaluate the performance of the334

different segmentation models. All of them are defined as follows, considering335

CIM region (positive) and Background (negative), and using the terms true336

positive (TP), true negative (TN) false positive (FP), and false negative (FN).337

• The pixel-wise accuracy, i.e. the percentage of pixels correctly classified.

Acc =
TP + TN

TP + TN + FP + FN

• Specificity, i.e. the proportion of negatives correctly classified.

Spec =
TN

TN + FP

• Sensitivity, i.e. the proportion of positives correctly classified.

Sens =
TP

TP + FN

• Precision, i.e. the proportion of true positives against all the positives.

Prec =
TP

TP + FP

• Dice coefficient, i.e. the similarity over classes.

DC =
2TP

2TP + FP + FN
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Experiment 2: CIMT estimation. With the aim of evaluating our method in338

terms of CIMT estimation over the REGICOR dataset, we have considered the339

correlation coefficient (cc) between the GT and the predicted CIMT values as340

well as the Bland-Altman analysis. For a deep comparison, we have considered341

not only the methods used in the Experiment 1 (Tiramisu56, Tiramisu103 and342

RF2-PP), but also other approaches found in the literature (see Section 1.1).343

Experiment 3: Plaque detection. The target is to evaluate our method in terms344

of plaque detection over the REGICOR dataset, including a comparison with345

the two-step approaches (RF2 and RF2-PP). For this purpose, we have used346

the following metrics, previously defined, considering the presence of plaque347

as positive and the absence of plaque as negative: Accuracy (Acc), Specificity348

(Spec), and sensitivity (Sens).349

Experiment 4: Generalization power. To validate the generalization power of350

our method, we trained it with the subset of REGICOR used in the Experiment 1351

and evaluate its performance in terms of CIMT estimation over the NEFRONA352

dataset. Images from the two data sets were acquired by different devices,353

thus, they have different resolutions and image intensity distributions. Hence,354

we process the data to equate the intensity distribution of all the images and355

adapt the resolution. In first place, we modify the image gray levels to saturate356

the bottom 1% and the top 1% of all the image pixels in the two data sets.357

Next, we transform NEFRONA images so that they have the same resolution358

than REGICOR images; more precisely, from a resolution of 10.4 pixels/mm359

(NEFRONA) to 23.5 pixels/mm (REGICOR). In order to do that, we apply360

a bilinear interpolation, in which the output pixel value is a weighted average361

of pixels in the nearest 2-by-2 neighborhood. The CIM region of NEFRONA362

GT was delineated only in a small part of the image and following a different363

criterion than in REGICOR. For this reason, the validation of the segmentation364

can only be qualitative. Regarding the validation of the CIMT estimation, we365

consider the correlation coefficient (cc) between CIMT value from NEFRONA366

data set GT and the estimated CIMT, and also show the Bland-Altman analysis.367
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3.3. Results368

In this section we report the results obtained in the four experiments previ-369

ously described, summarized in Table 2.370

Experiment 1: Segmentation. Figure 6 depicts the comparison between the dif-371

ferent segmentation approaches in CCA (left) and Bulb (right) test images. It372

can be seen that the different Tiramisu architectures clearly improve the RF2 re-373

sults (mainly note improvement in DC). Moreover, making the Tiramisu model374

deeper by increasing the number of parameters (from 56 to 103) does not im-375

prove the results, probably due to the size of the training set. Although the BS376

is equivalent to SS in CCA images, the semantic information is crucial for the377

CIMT estimation step in these images (see Section 2). Note that the improve-378

ment using SS is more evident in Bulb images. Regarding U-Net, its results379

are slightly worse than Tiramisu103 BS and are not included in the graphic.380

Finally, the IOV results (considering Expert1 as GT, versus Expert2) are low381

compared with the automatic methods results, specially in Sensitivity and DC,382

in both CCA and Bulb images. These results and the high standard deviations383

show the difficulty of reproducing the CA results in clinical trials. It is worth384

noting that all the measures have been computed using the Expert1’s labels as385

GT, but the values are equivalent for the labels of Expert2.386

Figure 7 shows qualitative examples of the CIM segmentation results regard-387

ing three methods: a shallow method (RF) and two methods based on CNN388

(U-Net method and Tiramisu56 method). As can be seen, U-Net does not give389

an accurate result of the different areas of the image and RF oversegments the390

CIM region.391

Experiment 2: CIMT estimation. Figure 8(a) shows the correlation between392

the CIMT values (GT and predicted) in CCA images for the best method, i.e.393

“Tiramisu56 SS+CIMT estimation”, which reaches a high cc of 0.81 (cc=0.77394

when applying only Tiramisu56 SS). The result is very similar to Tiramisu103395

(cc=0.80), in contrast to RF2-PP (cc=0.72). Regarding Bulb images (see Figure396

8(c)), “Tiramisu56 SS+CIMT estimation” achieves a lower cc of 0.43 (cc=0.34397
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(a) Accuracy and Specificity measurements
for CCA images

(b) Sensitivity, Precision and Dice Coefficient
measurements for CCA images

(c) Accuracy and Specificity measurements
for Bulb images

(d) Sensitivity, Precision and Dice Coefficient
measurements for Bulb images

Figure 6: Box-plot of metrics results for the different segmentation methods and IOV. Note
that the overlap measurements are split up for visualization purposes, using different scales
in the abscissa axis.

when applying only Tiramisu56 SS), probably due to the worse quality of the398

images in Bulb, which makes the task more difficult in this territory. However,399

our proposal still outperforms RF2-PP, which only reaches a cc of 0.41.400

In Figure 8(b), the Bland-Altman plot depicts the difference, in CCA im-401

ages, between the CIMT of the corresponding two values (estimated and GT)402

against the average of both values. This plot shows a high degree of agreement403

between the two measures, especially in the cases where the CIMT is small404

(<0.5mm), which correspond to healthy population (i.e. without plaque) [20].405

Furthermore, this plot shows that the predicted CIMT is, on average, slightly406

underestimated (mean -0.02). The confidence intervals for the “mean of the407

differences line” (shown in red in Figure 8) shows that this bias is statistically408

significant. Therefore, in order to achieve the interchangeability of the tech-409

niques this bias cannot be avoided.410
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(a) Tiramisu56 (b) U-Net (c) RF

Figure 7: Qualitative results of the semantic segmentation procedure using three different
methods.

The results are similar for Bland-Altman analysis in Bulb images (see Figure411

8(d)) and, in this case, the average slightly overestimates the CIMT measure412

(the mean of the differences is 0.06 and this bias is also statistically significant).413

Column named “Mean CIMT Error (mm)” in Table 1 compares the mean CIMT414

error for our method and several methods in the literature. It should be high-415

lighted that our CIMT error is low compared with other fully automatic methods416

reviewed in the Table. In particular, only the two-step methods [4, 11] reach a417

CIMT error lower than our method, but in a much smaller data set and only418

in one territory (CCA). In fact, the size of our data set is much larger than the419

ones considered in all the rest of papers (our data set: 2,379 subj. vs revised420

data sets: [36-365] subj.). Note that, as can be seen in this column of the Table,421

the CIMT error is not always presented as the mean of the CIMT error, in some422

cases it is presented with point-to-point relative error, average point-to-point423

distance, or evaluating the mean error for each interface separately.424

Figure 9 shows qualitative examples of the CIM segmentation results and425

plaque detection for four CCA and four Bulb images. The first and third426

columns show examples of CIM region segmentation, outlined in green, in non-427

plaque images; whereas the second and the fourth columns show examples of428

images with plaque, outlined in red.429

Finally, it is important to note that the processing time to estimate the430

CIMT and detect a plaque is only 0.79 seconds, as can be also seen in Table 1431
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(a) (b)

(c) (d)

Figure 8: Correlation between CIMT values (left), and Bland-Altman analysis (right). Both
plots show the relation between GT and the estimated values in CCA images, (a) and (b);
and in Bulb images, (c) and (d). Red solid lines show the confidence intervals (CI) for the
“mean of the differences” line.
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(column “Proc. Time per Frame”).432

(a) CCA images (b) Bulb images

Figure 9: Qualitative results of the CIM segmentation for eight different images. Green lines
are the CIM region boundaries and red lines the detected plaque boundaries. Images are
cropped for visualization purpose.

Experiment 3: Plaque detection. Table 3 includes the plaque detection results433

in CCA and Bulb images, showing a promising performance, mostly in CCA.434

The smaller number of plaques in the data set gives lower sensitivity values435

than specificity values. Regarding Bulb images, there is still large room for436

improvement, probably due to the poorer quality of these images, as commented437

before. Note that the RF2 method needs a sophisticated post-processing to438

achieve similar results to our NN method. Figure 9 shows qualitative examples439

of the plaque detection results.440

Territory Method # Plaques/ Acc Sens Spec
Images Total images

CCA
RF2 50/4, 722 50.05% 100.00% 49.00%

RF2-PP 50/4, 722 94.08% 86.00% 94.16%
Our proposal 50/4,751 96.45% 80.00% 96.63%

Bulb
RF2 240/3, 539 35.09% 98.33% 30.49%

RF2-PP 240/3, 539 78.50% 69.58% 79.15%
Our proposal 264/3,733 78.09% 78.32% 75.00%

Table 3: Results of plaque detection in REGICOR images for different methods, the number
of plaques in each territory and the following validation measures: Accuracy (Acc), Sensitivity
(Sens), and Specificity (Spec).
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Experiment 4: Generalization power. Figure 10 illustrates qualitative results of441

the segmentation method in some NEFRONA images. It shows the CIM region442

segmentation result (in green) together with the CIM region from NEFRONA443

GT (in yellow). We can observe that, generally, the CIM region is slightly over-444

segmented. According to this, Figure 11 (right) shows an overestimation of the445

CIMT in the Bland-Altman plot (mean 0.29, note that the bias is statistically446

significant). Despite this error, Figure 11 (left) shows that the obtained values447

have a good correspondence with the CIMT values of the NEFRONA database,448

with a cc of 0.58.449

Figure 10: Qualitative segmentation results for NEFRONA CCA images. In green, delimita-
tion of CIM region segmentation. In yellow, the CIM region from NEFRONA GT.

4. Conclusions and Future Work450

In this paper, we have presented, for the first time in the literature, a single-451

step approach, based on DenseNets, for semantic CA segmentation. The pro-452

posed method accurately localizes the CIM region in CCA. Given the segmenta-453

tion, we have validated the CIMT estimation and the detection of atherosclerotic454

plaque with a large data set of more than 8,000 images. We have compared the455

results obtained by the proposed method with those of other DL models and456
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Figure 11: Correlation between CIMT values (left), and Bland-Altman analysis (right). Both
plots show the relation between GT and the estimated values in CCA images from NEFRONA
data set. Red solid line shows the confidence intervals for the “mean of the differences” line.

shallow approaches, demonstrating more accurate results of the segmentation,457

more general CIMT measurement and good plaque detection results. This su-458

perior performance is attributed to the effective use of SS together with the459

CIMT estimation approach. Moreover, we have proven the generalization ca-460

pability of the method applying the model previously trained with one data set461

(REGICOR) in a new test data set (NEFRONA).462

The proposed study has some limitations that are summarized below, and463

that will be considered in our future work. These limitations mostly arise from464

the number of images used in some of the experiments,thus the increase in the465

size of some datasets constitutes the first point of improvement in our study. On466

the one hand, the segmentation GT only includes a representative subset of the467

REGICOR images (159 CCA, 172 Bulb). On the other hand, the generalization468

power test was carried out using a small dataset composed of only 27 images469

(NEFRONA). Additionally, the proposed method is not applied on image se-470

quences, which could improve reliability by measuring hundreds of images for471

each subject. Regarding CIMT estimation, we propose a pre-processing step472

that uses a smoothing algorithm based on mathematical morphology. Taking473

into account the unpredictable effect of this type of algorithms on segmenta-474

tion results, a more detailed study is required to evaluate the impact of our475
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proposed algorithm and to compare it with other pre-processing techniques. In476

this part of the methodology, it is also worth noting that the criteria of consid-477

ering CIMT values higher than 0.4 mm (see Section 2.2) could exclude real cases478

with a low CIMT. Finally, the division of the CIM region in vertical columns479

could overestimate the CIMT values in case of oblique forms of the CA; thus,480

this methodological issue could be carefully addressed as suggested by Bianchini481

et al. [25].482

Additionally, we want to further improve the segmentation results in terms of483

an adequate generalization to other data sets, by exploring new domain transfer484

techniques. We also plan to add information indicating the presence of plaque485

into the neural network in a way that it can learn the differences in shape486

between images of healthy subjects (thin CIM region shape) and images of487

subjects with atherosclerosis (irregular CIM region shape).488
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