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Abstract

Running a cost-effective human blood transfusion supply chain challenges decision makers
in blood services world-wide. In this paper, we develop a Markov decision process with
the objective of minimising the overall costs of internal and external collections, storing,
producing and disposing of blood bags, whilst explicitly considering the probability that a
donated blog bag will perish before demanded. The model finds an optimal policy to collect
additional bags based on the number of bags in stock rather than using information about
the age of the oldest item. Using data from the literature, we validate our model and carry
out a case study based on data from a large blood supplier in South America. The study
helped achieve an overall increase of 4.5% in blood donations in one year.

Keywords: OR in health services; Perishable inventory; Blood; Stochastic modeling,
Blood management.

1. Introduction

Blood transfusion is a fundamental part of contemporary medicine (e.g., World Health
Organization, 2010). It is estimated that 85 million blood transfusions are carried out
annually across the globe, which translates to approximately 3 blood transfusions per second
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(Carson et al., 2012). In order to carry out such a large service volume, reliable supply chains
must be designed (e.g., Hamdan and Diabat, 2019; Nagurney and Dutta, 2019b; Attari et al.,
2019a).

This paper addresses two particular issues connected to the management of blood bank
inventories. The first issue is the need to secure self sufficiency, which is important because
donation is voluntary in most countries and is often insufficient (Rock et al., 2000; Azizoglu
et al., 2018). One way to compensate for the lack of blood is by deploying transshipment
strategies (Wang and Ma, 2015), which incur logistics costs. Another strategy is to stimulate
donation (Özener et al., 2019), which may include sending external collection vehicles or
houses (Gunpinar and Centeno, 2016). The latter strategy, which is believed to encourage
voluntary spirit and decrease variability (Yew-Kwang et al., 2016), is studied in this paper
as way to complement insufficient donation at the main blood bank facilities.

The second issue that we investigate is the inventory management of blood supplies. The
decision maker is faced with the complex trade-off of maintaining supply while also avoiding
large expiration rates due to limited shelf life. Let us assume, for the sake of argument,
that the decision is to keep a very large inventory in the blood distribution centres. This
gives rise to heavy collection, disposal and inventory costs, not least because of the limited
shelf life of donated blood packs (Clay et al., 2018). Very low inventories, however, tend to
produce increased probabilities of stock-outs, that should be avoided due to the sensitive
nature of the supply.

The aim of our paper is to model this tradeoff, to provide a full supply of blood to the
hospitals, while keeping losses to a minimum (Stanger et al., 2012b). And the flexibility
available to the decision maker is the choice of the number of external collection teams at
every decision period. We develop a Markov decision process (MDP) with the objective
of minimising the overall costs of internal and external collections, storing, producing and
disposing of blood bags. The model finds an optimal policy to collect additional bags based
on the number of bags in stock rather than using information about the age of the oldest
item.

The main contributions of the paper are as follows. Firstly, it bridges a gap in the liter-
ature by proposing a novel MDP model that explicitly considers perishability for arbitrary
shelf lives. Indeed, inventory models that explicitly consider perishability are comparatively
rare and, to the best of our knowledge, computationally tractable models are limited to shelf
lives of at most three days, see for example (Osorio et al., 2015) and (Puranam et al., 2017).
Another contribution of the model is that it produces an optimal policy in infinite horizon,
thus extending the results in the literature that are generally limited to single-period models
or myopic multi-period models with fixed time-horizons (Attari et al., 2019a). Finally, the
proposed model is simple and easy to use, while also powerful enough to provide an optimal
long-term policy whilst imposing no constraint on its structure.

This research is motivated by the case-study of HEMORIO, the main hemotherapy in-
stitute in the city of Rio de Janeiro, Brazil. To compensate for insufficient donations, the
organisation complements its inventory with two types of mobile collections: an itinerant
facility built within a bus, and mobile blood collection stations that can be assembled in
external locations. Both types of collection are generally implemented in remote regions of
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the city, away from the city centre. HEMORIO is currently undertaking economic viability
studies considering the expansion of these kinds of external collections.

The remainder of this paper is structured as follows. Section 2 describes the studied prob-
lem. Section 3 provides an overview of related works on blood logistics. Section 4 presents
the discrete-time stochastic model and discusses its particularities. Section 4 validates the
model by applying it to a case study in the literature. The case study in HEMORIO is
discussed in the numerical results of section 6, followed by concluding remarks in Section 7.

2. Problem Statement

This work studies the inventory management of blood supplies by centralised blood banks
that may face insufficient donation in the main facilities. We assume that the blood banks
have access to external collection infrastructures, which they may send to remote locations
in order to complement their inventory and prevent shortages.

We assume that the organisation has access to at most M ≥ 1 external collection teams
and that these collection teams can be deployed simultaneously at each decision period. We
assume that each external collection brings back a random number of additional blood bags,
which is described by a Poisson variable whose parameter is inferred from historical data.
In addition, each external collection introduces logistics costs to the organisation.

The organisation incurs a number of costs that are directly related to collecting donations.
One such cost is the inventory holding cost, which involves keeping the items refrigerated
and in good condition. The infrastructure available in the inventory facility effectively sets
up an upper bound in the number of blood supplies that can be kept in storage at any given
time. In addition, each blood bag has a fixed shelf life of L days, after which the blood
expires and is no longer suitable for use. In that case, the institution incurs a disposal cost
and the blood bag has to be discarded.

In order to collect a blood bag, the blood bank incurs a fixed production cost. We assume
that this cost is the same for internal and external collections. However, each external
collection implies an additional cost per collected blood bag, which includes transportation,
setup and staff costs. Finally, a shortage (depletion) cost is also assigned for low inventory
states in order to avoid blood shortage. This cost decreases as the inventory increases, for
the risk of shortages is inversely proportional to the number of blood bags in inventory.

The decision maker is then faced with a choice on the number of external collection
units to deploy at each decision period. This choice depends on the current inventory and
is guided by the inventory, shortage, disposal and external collection costs explained above.
The rationale is to find the right balance between shortage risk and expiration/disposal risk,
while accounting for the overall cost incurred by the system. The detailed model presented
in section 4 makes use of a Markov decision process formulation to devise a long-term
collection strategy that prescribes the number of external collection teams to be deployed
for each possible inventory level.
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3. Related Work

Recent literature reviews on blood supply chains can be found in (Pirabán et al., 2019),
(Mansur et al., 2018), (Osorio et al., 2015) and (Beliën and Forcé, 2012). And a substan-
tial number of articles study inventory management of blood components and perishable
commodities. In general, the literature can be divided into process-based and quantitative
models.

3.1. Process-based Models

Prastacos (1984) proposed management strategies that reach 100% of availability while
also maintaining low levels of stock. Bedi et al. (2016) implemented a careful study of
wastage in the blood supply chain of a hospital and proposed simple management rules that
significantly improved resource utilisation. They found that reducing the blood preparation
time from 72 to 48 hours, while also promoting a division of the storage into old and new
blood bags, led to considerable waste prevention in their case study.

In another line of research, Clay et al. (2018) reported a whipping effect between demand
and supply due to panic orders, while Stanger et al. (2012b) identified key procedures to
improve processes, such as maintaining a target stock level and an order pattern. Another
consensual issue (e.g., Stanger et al., 2012b,a) is the preference for small orders to the
detriment of larger ones, with a view to inducing economies of scale.

3.2. Quantitative Models

Recently, quantitative models have been used to study aspects of the blood supply chain
in disaster relief situations which make use of multi-objective programming (Samani et al.,
2018), robust optimisation (Jabbarzadeh et al., 2014) and Markov chains (Hosseinifard et al.,
2019). Other supply chain approaches include mathematical optimisation models for finding
appropriate delivery routes for blood supplies (Ezugwu et al., 2019; Kazemi et al., 2017).
In contrast, Nagurney and Dutta (2019a,b) focus on the competition among blood service
organisations, whereas Rajendran and Ravindran (2019) investigate parametric ordering
policies without considering perishability. Finally, Hamdan and Diabat (2019) employ a
two-stage stochastic programming approach to produce location and scheduling decisions.

There is an ample variety of modelling choices for blood inventory problems. Among
them, one can refer to linear regression models (e.g., Schreiber et al., 2005; Godin et al.,
2007), Markov models (e.g., Pegels and Jelmert, 1970; Brodheim et al., 1975; Abubakar
et al., 2014), discrete event simulation (e.g., Katsaliaki and Brailsford, 2016; Rytilä and
Spens, 2006) and mathematical programming (e.g., Hemmelmayr et al., 2009; Dillon et al.,
2017).

Among the main articles to be highlighted, Keilson and Seidmann (1990) compared FIFO
and LIFO disciplines for perishables and addressed the trade-off between managerial and
demand interests. Dehghani and Abbasi (2018) developed a heuristic solution using partial
differential equations for transshipment between hospitals and blood banks and verified a
benefit to the supply chain management and a reduced cost of mean age of blood transfusion.

January 3, 2020



Finally, Hosseinifard and Abbasi (2018) showed that the centralisation of stock at the end
of the supply chain led to a reduction of up to 40% in the inventory costs of hospitals.

A common quantitative approach is to model blood inventory as a queue, possibly with
controlled input and/or output rates. Typically, it is the level of control over these rates
that defines inventory policies. While this modelling may not work for all applications due
to some assumptions on supply and demand processes (Dillon et al., 2017; Abbasi et al.,
2017), queuing models are general enough to accommodate different distributions. Moreover,
common assumptions for the simplest models, such as Poisson input and output processes,
are appropriate for many healthcare applications (Angelo et al., 2017; Goldwasser et al.,
2016; Pearson et al., 2012). Additionally, viewing the system as a queue promotes analytic
tractability and introduces flexibility in the design of sub-optimal policies.

Depending on the application, studies propose varying the input rate, the output rate, or
both. Policies promoting a variation of the output rate were advocated in a series of works
(e.g., Jo and Stidham, 1983; George and Harrison, 2001; Chan et al., 2011). George and
Harrison (2001) studied analytical properties of the optimal policy of a controlled M/M/1
queue with fixed arrival rate and variable service rate. An M/G/1-based model was employed
by Jo and Stidham (1983) to find optimal service rates for a model with a number of sub-
stages whose duration was modelled by an Erlang distribution. A different focus was pursued
by Chan et al. (2011), who searched for operational parameters that promote an adequate
use of speedup, a myopic control used by medical teams to promote acceleration of service
in ICU units.

In another context, Crabill (1974) utilised a semi-Markov based queuing model with
control of both input and output rates to search for optimal machine maintenance policies.
Both rates were also allowed to vary in the model proposed by Nahmias et al. (2004) for
perishable items, whereas Perry and Posner (1990) propose one or two switch-over levels by
varying demand and/or production rates.

There are many ways to vary the input rate. A dynamic pricing policy, for example,
may stimulate or discourage demand (e.g., Low, 1974; Weber, 2015; Paschalidis and Tsit-
siklis, 2000; Yoon and Lewis, 2004). Advertising can also promote effective demand control,
which comes at a cost and is applied to boost the demand for a prescribed period (e.g.,
Weber, 2015). Regardless of the mechanism employed, varying demand rates gives rise to
optimisation problems whereby optimal demand-switch levels should depend on the current
inventory of the system. We argue that such problems are appealing for blood inventory
management, especially when voluntary donations are not sufficient to consistently meet the
demand.

The perishable nature of the supply is instrumental in quantitative models. One can
deal with it implicitly, such as in airline overbooking studies (e.g., Subramanian et al., 1999)
and contractual and logistical selective orders (Chao, 2013); or explicitly, by means of age-
based inventory control (Graves, 1982; Perry and Posner, 1990). Using the latter approach,
Wang and Ma (2015) projected an age-based transshipment model studying stock features
by simulation. The rationale is to manage the system with incomplete knowledge of the age
of the items in storage. Graves (1982) modelled the system by keeping count solely of the
oldest item in stock, which can be seen as summarising the system’s behaviour. Kaspi and
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Perry (1983), on the other hand, proposed and explored the equivalence between shelf-life
expiration and stock-outs and busy and idle periods of a corresponding queuing model with
impatient customers, the Inventory Systems of Perishable Commodities (ISPC). That led
to switch-over policies with one or two policy-change points. This model is relevant to the
studied problem because it was applied, among several case studies, to optimise blood banks
in the Netherlands (Gunpinar and Centeno, 2015) and Canada (Kopach et al., 2008). These
works employed the idea of finding switch-over points that define an optimal policy that
promotes cost minimisation.

Despite their great relevance, the models above generally present significant analytical
complexity. In addition, the model in (Perry and Posner, 1990) can only deal with one
or two switch-over levels, which limits the generalisation to more complex scenarios with a
large number of input or output rates to choose from, each with its own characteristics in
terms of costs incurred. In contrast, blood inventory optimisation models typically consider
two dichotomous situations: normal and emergency (e.g., Kopach et al., 2008; Hosseinifard
et al., 2019). Closed-form solutions are usually obtained with a view to maintaining the blood
supply at an operationally satisfactory level. However, the multiplicity of endogenous factors
makes that approach limited. Indeed, an analytical treatment of the expressions derived from
models with two or more switch-overs is close to impracticable. More recently, stochastic
optimisation models have also been applied that consider fixed shelf lives (Puranam et al.,
2017; Chen et al., 2019), but the former work only considers shelf lives of at most two days,
whereas the latter gives rise to a complex model that becomes rapidly intractable for all
but very small shelf lives and hence seeks approximate solutions using heuristic procedures.
Furthermore, both models generate myopic open-loop controls for fixed time horizons. These
are reactive models that should be re-evaluated at each realisation of a random variable.

Therefore, a novel contribution of this paper with respect to analytic models is a simple
yet general blood inventory model that remains tractable for multiple switch-over points.
Another contribution is that, in contrast to stochastic optimisation models, it produces a
long-term stationary optimal policy. In addition, the proposed model explicitly considers
perishability and remains computationally tractable regardless of the shelf life. Such a
powerful result is made possible because perishability is addressed by differentiating between
useful and potentially expired blood bags, instead of keeping track of the expiration dates of
all items in stock, which would render the model intractable (e.g., Chen et al., 2019). The
approach, which was inspired by the analogy between impatient clients on a M/M/1 queue
and the blood bag expiration in (Kaspi and Perry, 1983), discounts the probability that an
incoming blood bag will expire before being distributed, as detailed in section 4. Finally,
an important by-product of the model is that it is easier to use and implement because it
proposes policy changes based on the number of bags in stock rather than the age of the
oldest item. It is worth pointing out that the latter can be much more difficult to measure
in practice.
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4. Mathematical Formulation

Generally, blood collection centres separate their blood donations into their constituent
components: platelets (PLT), plasma (FFP) and red blood cells (RBC) (Williamson and
Cardigan, 2005). The latter often pose more problems in terms of management due to
their significantly larger demand (Murphy and McSweeney, 2009). Therefore, most of the
literature focuses on red blood cells. This paper follows that trend and studies optimal
inventory policies for RBCs, hereby referred to as blood bags.

In this paper, we model blood inventory as a Markov decision process - MDP. MDPs are
designed for sequential decision making under uncertainty (Puterman, 2014), hence their
frequent use in medical applications (e.g., Andersen et al., 2019; Arruda et al., 2019; Steimle
and Denton, 2017; Bennett and Hauser, 2013; Alagoz et al., 2010) and in blood inventory
problems (e.g., Attari et al., 2019b; Hosseinifard et al., 2019). The use of an MDP ensures
more flexibility as it allows an optimal decision for each available state, while also ensuring
optimality in the long run.

In this article, demand and supply are modelled as Poisson processes. Such a modelling
is adequate because both demand and supply can be seen as rare, independent events, in
a very large population, which characterise Poisson processes, see also (e.g., Baron et al.,
2010; Kim et al., 2015; Abbasi and Hosseinifard, 2014). For a better understanding of the
parameters and equations, the adopted notations are explained in Table 1.

Consider a Markov decision process with state space S = {0, 1, 2, . . .} whose controlled
dynamics are described by process {Xk}, k ≥ 0. Each state i ∈ S represents a possible
number of useful blood bags available in stock. Here, the word useful confers a particularity
to the model that will be explained later. At each state i ∈ S, an action is selected from
the set of feasible actions for that state, denoted by Ai. The set of admissible actions is
defined as A = ∪i∈SAi. For the present study, each action a ∈ Ai prescribes a given number
of mobile collection teams and itinerant buses that should be sent to complement the blood
donation of the main facility. We assume that each external collection yields a random
number of donated bags, which is given by a Poisson random variable whose parameter is
inferred from data obtained in previous collections.

Suppose that Xk = i at some period k ≥ 0. The decision maker must choose an action
a ∈ Ai to be applied. A one-step transition results from this action, and the system jumps
to Xk+1 = j ∈ S with probability paij ≥ 0. To properly define the system, we must have
∑

j∈S

paij = 1, ∀i ∈ S and a ∈ Ai. Upon entering a state i ∈ S and applying action a ∈ Ai,

the system incurs a one-step cost c(i, a), where c : S × A → R+ is a convex positive cost
function. Figure 1 depicts the transitions for a system with 3 control actions.

Assume that each time process {Xk}, k ≥ 0 visits state i ∈ S, the same action a ∈ Ai is
selected. We can define a stationary control policy π : S → A that prescribes a single action
to be applied at each state in S; we also let Π be the set of all feasible stationary control
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Table 1: Nomenclature.

Parameter Meaning
S Set of MDP state space, useful blood bags available in stock
Ai Set of possible actions for each state i

Xk Markov process
paij Probability of going from state i to state j by action a

Π Set of all feasible stationary control policies
π Each stationary control policy
ηπ Long-term average cost associated with policy π

η∗ Optimal stationary average cost
L Shelf-life of a blood bag
µ Average demand rate
λa Average arrival rate depending on the action a

FT (t, i) Probability that a ist item will be consumed at a time t

c(i, a) Cost of stay in state i and take action a
cf (i) Lack cost
cs Storage cost
cc Collection cost
cp Production cost
ec External costs
cd Disposal costs
c1 Input constant of lack cost
d1 Decay constant of lack cost
c2 Unit constant of disposal cost

Figure 1: Transition graph for an MDP with 3 control actions. Yellow corresponds to having no external
collection, red to sending one collection team and blue to sending two teams.

policies. For each policy π ∈ Π, there exists an associated long-term average cost

ηπ = lim
N→∞

Eπ

(

1

N

N
∑

k=0

c(Xk, π(Xk))

)

. (1)
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We seek an optimal stationary policy π∗ that minimises the long-term average cost, i.e.
a policy that satisfies:

η∗ = ηπ
∗

≤ ηπ, ∀π ∈ Π. (2)

It is well-known that, under mild conditions, there exists an optimal stationary policy
π∗ which solves (2), for example see (Puterman, 2014).

4.1. Iterative Solution Procedure

To solve (2), one can apply the classical relative value iteration algorithm (Puterman,
2014). Let V : S → R be a real-valued function and let V be the space of real-valued
functions in S. The relative value iteration algorithm starts with an arbitrary initial solution
V0 ∈ V and iteratively updates it up to convergence. The procedure is detailed in Algorithm
1, where ‖x‖s is the span semi-norm, defined as the difference between the maximum and
the minimum values in vector x. Algorithm 1 has guaranteed convergence to the optimal
long-term average cost η∗ and always finds an optimal stationary policy π∗ which solves (2)
(e.g., Puterman, 2014).

Algorithm 1: Relative value iteration

Input: An arbitrary initial solution V0 ∈ V , a pivot state i∗ ∈ S, and an arbitrary
tolerance tol

Output: Optimal solution V ∗, optimal long-term average cost η∗, and optimal
stationary policy π∗

1 k ← 1;
2 Vk ←∞;
3 while ‖Vk − Vk−1‖s≥ tol do
4 for each i ∈ S do
5

TVk(i) := min
a∈Ai

{

c(i, a) +
∑

j∈S

paijVk(j)

}

(3)

6 for each i ∈ S do
7

Vk+1(i) := TVk(i)− TVk(i
∗) (4)

8 k ← k + 1;

9 V ∗ ← Vk;
10 η∗ ← TV ∗(i∗);
11 π∗(i)← argmin

a∈Ai

[TV ∗(i)] , ∀i ∈ S;

12 return V ∗, η∗, π∗.
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4.2. Details of the blood inventory formulation

Assume that the blood demand follows a Poisson process with constant rate µ > 0. The
blood arrival process, which is a function of the donations, is a Poisson process with varying
rate, depending on the control actions taken at each step. At period k ≥ 0, with Xk = i

denoting the number of useful blood packs in storage, the blood arrival rate λa is a function
of the control action a ∈ Ai selected. As such, it depends on the number of itinerant buses
and external collection teams prescribed by a.

To account for perishability, for each blood bag collected the model decides, upon arrival,
whether this bag will actually be added to the inventory. Only bags that are expected to
be used before their shelf life expires are added to the stock, hence the state of the system
accounts for the number of useful bags, i.e. those that are not expected to reach their
expiration date.

Inspired by the model in (Kaspi and Perry, 1983), the probability of expiration of a newly
arrived bag works as a discount on the arrival rate. The magnitude of the discount depends,
of course, on the current number of items in stock not expected to expire, i.e. the current
state of the system. A newly arrived blood bag will expire if the demand for blood during
its shelf-life does not surpass the current stock, as the current stock is obviously comprised
of older items. Following Kopach et al. (2008), we set the shelf-life of blood bags to L = 42
days. Assume that, at a given period k ≥ 0, Xk = i. Since the demand is a Poisson process
with rate µ, the time to consume the i items in stock follows an Erlang distribution with
parameters i and µ. Hence, letting T denote the time the system needs to deplete the current
stock of i items, the expressions for its probability density and cumulative distribution are,
respectively (e.g., Shiryayev, 1984):

fT (t, i) =
µiti−1e−µt

(i− 1)!
,

and

FT (t, i) = P (T < t) = 1−
i−1
∑

n=0

e−µx (µx)
n

n!
. (5)

The probability that a newly arrived item will be consumed is FT (L, i), where L is the
shelf life and i is the current state of the inventory system.

Now we are ready to quantify the transition probabilities for the proposed model. Sup-
pose Xk = i, then upon the next event (arrival or departure of a blood bag from storage),
the system jumps to Xk+1 = j according to the following probabilities:

paij =



































λaFT (L, i)

λaFT (L, i) + µ
, if j = i + 1;

µ

λaFT (L, i) + µ
, if j = i - 1;

0, otherwise.

(6)
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The first expression in Eq. (6) accounts for the probability that the next event is an
arrival. The factor FT (L, i) is the perishability discount. The second expression conveys
the probability that the next event is a demand, in which case the non-expiring inventory
is decremented by one unit.

Finally, a crucial feature of the formulation is the cost function. Recall that, at a given
state i ∈ S and under control action a ∈ Ai, the system incurs an instantaneous cost c(i, a).
Generically, one can think of a general cost function that encompasses production, inventory,
deficit and disposal costs. In addition, we also need to identify the difference in costs between
internal and external collection. Typically, there are many inherent characteristics of each
application which cannot be easily generalised. However, some aspects are common and
should be considered in all studies.

Deficit costs should be related to the probability of shortage at any state of the system,
and therefore, should decrease as stocks increase. In this paper we propose an exponentially
decreasing function for the deficit costs. As the cost is associated to positive stock levels, it
is not actually a deficit cost, but a cost to account for the risk of future shortages when the
stock is low. This cost is given by:

cf (i) = c1e
−i

d1 , (7)

where c1 and d1 are positive scalars.
Inventory costs tend to be increasing functions of the stock level. The shape of the

function, however, is expected to change from blood centre to blood centre. In this study,
we propose a generic piecewise linear function that considers economies of scale as the
inventory increases. A similar approach was proposed by Besanko and Braeutigam (2005).
The inventory cost is of the following form:

cs(i) = s1i11{i≤S1} + s2i11{S1<i≤S2} + s3i11{S2<i≤S3},

where 11A denotes the indicator function of statement A, which equals one whenever A holds
true and is nil otherwise. Additionally, s1, s2, s3 and S1, S2, S3 are modelling parameters.
This function splits the inventory cost into three linear sub-functions. That is a modelling
choice that can be seamlessly altered depending on the case study.

Production costs, i.e. collection costs, depend on the action. The fixed cost related
to the operation of the blood centre is left out of the optimisation process, since it does
not alter the ranking of the policies. As for the variable collection costs, we assume that
collecting blood in the main facility is as costly as collecting outside. However, there is also
a fixed cost per external collection team, namely the transport and fixed personnel costs.
The collection cost is:

cc(a) = cp(a) + ec(a),

where cp(a) is the expected cost of all donations under action a and ec(a) is the expected
additional cost of the external collections prescribed by a. The latter also depends on the
mix of itinerant buses and mobile collection stations deployed.
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Disposal costs are directly associated with the probability that a blood bag expires before
consumption. In our model, this is described by (1− FT (L, i)). In the equation below, c2 is
a unitary cost of discarding:

cd(i) = c2(1− FT (L, i)).

The total cost of visiting state i ∈ S and applying action a ∈ Ai is then given by:

c(i, a) = cf (i) + cs(i) + cd(i) + cc(a). (8)

Remark 1. An appealing trait of the proposed MDP model is that it works with any type
of cost function. Hence, the formulation in (8) can be seamlessly altered depending on
the application. The terms in (8) are included here as a suggestion based on a real-world
application.

Remark 2. Low (1974) demonstrated that, for a queue with various rates, there exists an
optimal stationary monotonous policy. In his work, the optimal price to advertise was a non-
decreasing function of the number of customers in the system. In our model, we expect an
analogous behaviour because the fundamental idea is that the more RBC’s in stock, the less
the need for complementing via external collection. In addition, since donation complements
are discrete events (number of external collections), we expect the arrival process to be a non-
increasing step function in which the variable ∆λ represents increases in demand. Figure 2
illustrates the basic form of the arrival rates, which, in fact is obtained, as will be seen in
the numerical results.

Figure 2: Evolution of λ and its decreases ∆λ. The more RBC’s in stock, the less the need for complementing
via external collection. The figure does not consider the discount for perishability.

The next section features an example from the literature, with a view to validating the
proposed model.
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5. Model validation

To validate our approach, we make use of the results in (Kopach et al., 2008). For the
sake of simplicity, the model is applied only to blood type O+, but the algorithm could be
separately applied to all blood types, see Remark 3. As for the parameters, we start with
the input and output processes. We split the blood arrival rate in two parts: a constant part
related to the donation in the main centre, and a variable part that depends on whether the
single available external collection team is deployed. We assume that the team is responsible
for an increase of ∆λ in the arrival rate. Table 2 presents the input and output rates, as
well as the shelf life L. All rates are given in blood packs per day.

Table 2: Input/output parameters for the validating example - adapted from (Kopach et al., 2008).

Constant input Increase via Demand Shelf life
rate (λ) external team (∆λ) rate (µ) (days) (L)
154.7 42.3 123.7 42

The cost function is based on the structure in (8), and is defined as:

c(i, a) = 43, 958e−
1

800
i + 0.56i+

134.49λa

λa + µ
, (9)

where Ai = {0, 1}, with a = 1 if the external team is deployed and a = 0 otherwise. Then,
the parameters in Algorithm 1 are those in Table 2, λ1 = λ+∆λ and λ0 = λ. To solve the
problem, it suffices to run Algorithm 1 with c(i, a) obtained from Eq. (9), F (L, i) obtained
from Eq. (5) and the transition probabilities derived from Eq. (6).

Remark 3. We decided to illustrate our model only with type O+ blood because it is the
crucial type for a safe blood inventory. If 100% of blood inventory is of type O+, then we can
transfuse everyone with this type of blood without any further safety concerns. In contrast,
if we had a large inventory of A, B and AB blood types, but few units of blood type O, then
there would be a great risk of blood shortage.

In Rio de Janeiro, 45% of the population are O+ and 5% O negative (Luiz Amorim,
personal communication). In the emergency rooms (ER), physicians do not have time to
have the blood group results before transfusion – and they have to transfuse blood type O.
This is not a problem, because A, B, and AB patients can be transfused with blood type O –
but patients with blood type O can only receive blood type O.

Ideally, in ER as well as in other medical situations, the use of O negative blood would
be the best option. However, only 5% of the Brazilian population is O negative; that is
why this type of blood is reserved for females with childbearing potential, in order to avoid
alloimmunization - development of anti-D antibody after receiving an O+ blood - bringing
the risk of Hemolytic Disease of Fœtus and Neonates. A recent paper (Yazer et al., 2019)
estimated that it is a very minor risk (0.3%), which in their opinion, warrants the transfusion
of O+ blood even for the female population.
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It is worth pointing out that most of the data, such as arrival and demand rate, increase
by switch-over constant and production cost came directly from (Kopach et al., 2008). Other
parameters - which are specific to our formulation - were properly adapted. Deficit cost pa-
rameters came from the penalty for operating at a lower demand level and costs of switching
between donation profiles were assumed to be zero as in the reference.

The reference aims to find a switch-over point x∗, at which to alternate between two
demand rates. The options concern two situations: normal and emergency, when the service
level needs to be accelerated. In the reference, the output decision for blood O+ is to switch
when the age of the oldest item is greater than 0.21 days, therefore operating 27% of time in
lower (normal) demand. Our output suggests changing policies when the number of RBC’s
in stock is 31. If we divide our switch-over point by the rate of increased demand, that is,

x∗

λ+∆λ
, we estimate an age of 0.16 days for the oldest item in stock, a result that is similar.

Figure 3 shows the cumulative probability curve for the Markov chain associated to the
optimal policy. One can see that the stock level stays between 24 and 40 items nearly 100%
of the time, demonstrating the efficiency of the control policy.

Figure 3: Behaviour of the accumulated probability of states of the stationary Markov chain around the
switch-over point for the example of Kopach et al. (2008).

To perform a direct comparison with the results in (Kopach et al., 2008), we evaluate the
control parameters introduced there and compare our results to their outcome, as shown in
Table 3.

Table 3: Output parameters - proposed model versus (Kopach et al., 2008).

Parameters (Kopach et al., 2008) Our Model

E(Inventory) 34.45 34.56
E(shortage) 0.013 0.018
Cost/day $23.835 $24.422
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Table 3 reveals that both models yield very similar results. The cost per day of $24.422 is
2.46% higher than the original results, probably because the expected value of RBC’s stocked
is also slightly larger. At this point, it is worth pointing out that the expected number of
items in inventory was derived in the original model analytically by a function fs(ω), which
describes the remaining shelf life of the oldest item, directly inspired by the results in (Perry
and Posner, 1990). Therefore, it is natural that different assumptions reflect slight changes
in the final results. In any case, it is important to remember that the methodology in this
article is easier to implement, as it looks at the number of stored bags rather than the age
of the oldest item. In addition, it is not constrained to a single switch-over level.

6. Numerical example

This section applies the proposed approach to our case study in HEMORIO. Section
6.1 features a brief analysis of the donations and external collections, starting in 2009. The
numerical results for some selected scenarios are presented in Section 6.2. The data presented
in this article comes from HEMORIO’s information system and is detailed in Appendix A.

6.1. HEMORIO’s Data

To complement the blood donations in the main facility, HEMORIO started to use itin-
erant buses about 15 years ago. Demountable collection structures were later incorporated
due to logistic reasons. As the initiatives gained importance, inventory management became
increasingly complex and assumed a more prominent role.

Figure 4 conveys the average number of blood bags collected per month due to both
internal collection (IC) in the main facility and external collection (EC), by means of itin-
erant buses and demountable structures. Whereas the internal collection presents signs of
stagnation and slight decline, the external collection is steadily increasing on a yearly basis.

Figure 4: Evolution of HEMORIO’s internal (IC) and external (IE) collections. In 2017, the external
collection accounted for more than 100,000 bags.
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The evolution of the share of the external collection in the total number of collected bags
is depicted in figure 5, starting in January 2009. The steady increase over the years suggests
that the external collection tends to play an increasingly important role in the upcoming
years.

Figure 5: Evolution of the percentage of blood bags coming from the external collection.

In summary, the number of blood bags collected per month, either internally or exter-
nally, varies from 6,000 to 9,000 in the studied period. As figures 4 and 5 suggest, external
collection is becoming more representative as time elapses. Not many years ago, it repre-
sented less than 10% of the total incoming blood, whereas in 2017 it reached around 22.7%.
To convey a better picture of the reality, it is worth mentioning that the monthly average
of blood bags collected in 2017 was around 8,602.9.

Another important analysis can be made regarding the type of external collection em-
ployed, either by demountable structure (type 1) or by bus (type 2). A thorough look at
the data suggests that type 2 collections are more or less stable, whereas type 1 collections
presented significant growth, especially in 2017, see figure 6 (b).

From 2009 to 2017, 1512 external collections took place, 1306 (86.4%) of type 1 and
206 (13.6%) of type 2. Each type 1 collection gathered 61.30 bags in average. The number
of collections remained stable until 2015; thereafter there were two consecutive expressive
growths, of 35.2% in 2016 and 92.3% in 2017. Figures 6 (a) and (b) summarise these results.

The performance in costs and the operability of type 1 collections are superior to those
of type 2. However, for now, instead of comparing both methodologies, a weighted average
is used to simulate the institution’s current policy. This results in the following difference
in the input rate:

∆λ = 61.30× 86.4% + 46.43× 13.6% = 59.3 .

In the next subsection, we will show the results of the described model applied to the case
study and convey what would happen if HEMORIO decided to use only complementation
by type 1 collection, which proved to be more efficient.
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(a) Number of collections per year per type of
collection. Type 1 (demountable structure) is
predominant throughout the entire period.

(b) Number of bags collected per trip per type
of collection. Type 1 is most effective in all
years.

Figure 6: Number of collections per year per type of collection.

6.2. Numerical results

The model introduced in Section 4 was used in order to find an optimal policy for
HEMORIO. The parameters we use in Table 4 were obtained from raw data and considering
the characteristics of the organisation. Over the 9 years of data, an average of 206.1 bags
were donated per day at the main facility. Input rate increased via external collections, each
of which yield an average of 59.3 bags per day. The shelf life is 42 days and the average
daily demand is 320 bags per day. The parameters, which serve as input to Algorithm 1,
are summarised in table 4.

Table 4: Input/output parameters for HEMORIO case study.

Constant input Increase via Demand Shelf life
rate (λ) external team (∆λ) rate (µ) (days) (L)
206.1 59.3 320.0 42

The cost function is based on the structure in (8), and is defined as:

(10)c(i, a) = 400, 000 e − 1

2000
i + 73.2 i 11{i≤3333} + 75.8 i 11{3333<i≤6666}

+ 73.2 i 11{6666<i≤10000} + 66.01 + 5.84 k 11{a=k} .

Daily input and output rates came from HEMORIO’s data analysis. Cost function pa-
rameters were set empirically to simulate the behaviour illustrated in figure 7. The large
costs for low inventory levels are due to the large expenses related to the deficit component,
which fades as the inventory grows. As the inventory increases, the production-inventory
component becomes dominant and the overall costs begin to increase. Observe that the in-
crease is not exactly linear because of the economies of scale, simulated by a piecewise linear
function, as detailed in section 4.2. The minimum cost is around inventory level s∗ = 2, 100
- where the green and red curves intersect - and represents a guarantee of approximately 7
days of blood self-sufficiency (320× 7 = 2, 240), on average, for the institution. Production
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and external collection costs were derived from bottom-up estimation (Snyder, 2013), con-
sidering factors such as human resources, materials and maintenance, which are undisclosed.
The value of R$66.01 (R$ stands for Brazilian Reais) for internal collection represents the
expected operating cost of collecting one bag, while R$5.84k represents the additional cost
of deploying k external collection teams.

Figure 7: Evolution of costs through the states. Blue curve represents total costs, sum of production-
inventory costs (green) and deficit costs (red).

In our example, there are 4 available control actions Ai = {0, 1, 2, 3}, namely to send
0, 1, 2, or 3 external collection teams. To solve the problem, it suffices to run Algorithm
1 with c(i, a) obtained from Eq. (10), F (L, i) obtained from Eq. (5) and the transition
probabilities derived from Eq. (6), with λa = 206.1 + 59.3a. Recall that the parameters
needed for these evaluations appear in table 4.

Figures 8 (a) and (b) show that the optimal policy prescribes three external collection
teams up to state 2,141; when the stock level is between 2,142 and 2,170, two collection teams
are assigned and a single team should be sent whenever the stock level is in the interval
[2, 171, 2, 220]. Finally, no external collection is needed when the stock level surpasses
2,220 blood packs. The optimal long-term average cost is R$264,476.73 and corresponds to
keeping, on average, 2,197 blood bags in stock. Naturally, the policy can be adapted by the
health institute, since the schedule of the external collection teams may need to be set up in
advance. Nonetheless, it provides a useful guidance in the design of adequate sub-optimal
policies, see section 6.4.

Concerning the optimal Markov chain long-term probabilities, we notice that the cumu-
lative probability tends to 100% very quickly. States that are distant from the policy change
points have probability almost nil, as illustrated in figures 9 (a) and (b). This suggests
that the approach is very powerful in terms of regulating stock levels, keeping the long-term
variation very small. Naturally, the policy change points depend upon the ratio between ex-
ternal collection costs and other costs, so that different data could generate a rather distinct
configuration of policy change points.
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(a) Evolution of λ and its three decreases. (b) Evolution of λ and its three decreases
(Zoom).

Figure 8: Evolution of λ.

(a) Steady state cumulative distributions. (b) Steady state cumulative distribution
around policy change points.

Figure 9: Steady state cumulative distributions.

6.3. Sensitivity analysis

Two important analyses are carried out in order to propose alternative solutions for the
case study. Firstly, we investigate the effect on the optimal policy of a different adjustment
of parameters in the cost function, setting up the lowest cost for 3 days of demand (instead
of 7). Secondly, we evaluate the effect of permitting different combinations of type 1 and
type 2 collections.

To establish a favourable setup for 3 days of demand (3× 320 = 960), deficit parameters
should provide a dampened response. As a consequence, the optimal solution will keep lower
inventory levels, given that the inventory and production costs will have a larger relative
weight. Proposing an empirical change in the decay constant from 2000 to 2000 × 3

7
, we

obtain a new cost curve, illustrated in figure 10, and defined in Eq. (11):

(11)c(i, a) = 400, 000 e − 1

857.14
i + 73.2 i 11{i≤3333} + 75.8 i 11{3333<i≤6666}

+ 73.2 i 11{6666<i≤10000} + 66.01 + 5.84 k 11{a=k}.

January 3, 2020



Figure 10: Evolution of costs through the states configured for a 3-day demand scenario. Blue curve
represents total costs, sum of production-inventory costs (green) and deficit costs (red).

The optimal average cost for this new setup is R$82,885.78 (Brazilian Reais), which
corresponds to keeping an average stock of 884 bags. It is somehow astonishing that the
overall cost reduces about 67%. However, this comes from a structural management change
of the organisation that could have long-term consequences. In fact, one can notice that the
model is quite sensitive to the adjustment of the deficit cost parameters.

In the second analysis, the ∆λ parameter - the number of useful bags per external
collection - shown in table 4 and originally displayed as 59.3, will be varied. Considering
external collection only by means of demountable structures (type 1), the collection rate via
external teams increases from 59.3 to 61.3, as shown in section 6.1. In the short term, the
effect is not as significant, although it will reduce the long-term cost by 3.26%. On the other
hand, if HEMORIO was to use, hypothetically, two buses to make the collections, with an
average ∆λ of 46.4, the long-term cost would increase by 27.80%. If we use types 1 and 2
in the same proportion, with ∆λ of 53.8, costs would also increase, but by around 10.22%.
These results are summarised in Table 5.

Table 5: Sensitivity analysis for variation between collection types.

Policy Cost Variation
Original R$264,476.73 -

Only type 1 R$255,854.79 -3.26%
Only type 2 R$338,001.26 +27.8%

50% each type R$291,506.25 +10.22%

It is important to highlight that there are gains from the managerial point of view, such
as reducing the complexity of the management variables. However, there may be a negative
effect on the demand of potential customers who have preference for buses or restrictions on
type 1 collection. Therefore, the selection of the types of external collection to be executed
is a complex strategic decision to be made by the top management of the organisation.
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6.4. Practical implementation

After analysing the results of this study, HEMORIO decided to change its strategy
regarding donor recruitment and collection. The decision was to have at least two mobile
collections six days a week - from Monday to Saturday. Specific campaigns to solve shortages
were focused on recruiting donors for the fixed site.

Using this new strategy, HEMORIO increased by 4.5% the number of blood donations
in 2018, compared to 2017. The proportion of donations coming from mobile collections
increased from 22.1% to 31% in the same time span.

6.5. Experimental Replication

One of the strengths of the proposed method is the simplicity of the solution procedure.
Hence, it can be easily reproduced for distinct case studies.

Algorithm 1 is a classical dynamic programming algorithm (Puterman, 2014). To imple-
ment it, one first needs to set up all the parameters for the case study under consideration.
Firstly, it is necessary to enumerate all possible states of the system, i.e. all possible inven-
tory levels in the set S = {0, 1, . . . , N}, where N is the maximal inventory of blood bags
allowed. The action set is A = {0, 1, . . . , M}, where M is the maximum number of daily
external collections. Then, the parameters in table 4 must be evaluated, namely the dona-
tion rate in the main facility λ, the extra rate per external collection team ∆λ, the demand
rate µ and the shelf life L. For each a ∈ A, we have λa = λ + a ·∆λ; and we are now able
to evaluate the transition probabilities paij for all i, j ∈ S and a ∈ A by means of Eq. (6).
Then, the deficit and inventory costs must be assigned for each inventory level i ∈ S. For
the former, an exponentially decreasing function in the form of Eq. (7) could be employed,
whereas the latter can be directly evaluated for the institution under consideration. Finally,
estimates of cp(a), the expected cost per donation under action a; and ec(a), the expected
additional cost per donation of implementing a external collections, complete the necessary
costs. Hence, we are able to set up the cost function in Eq. (8) for all state-action pairs
i ∈ S, a ∈ A.

After all the parameters are established, one can easily implement Algorithm 1 using any
standard programming language, such as R, Matlab, C++, Python, etc. The output of the
algorithm gives, for each possible inventory level i ∈ S, the number of external collection
teams that should be sent - π∗(i), as well as the long-term average cost η∗. The code in
Python that we used to implement our case study is made available for the interested reader
in Appendix B.

7. Concluding remarks

This article proposes a Markov decision process to support the decision on sending exter-
nal collection teams to supplement the donation of blood centres. The model demonstrates
that Markov decision processes are adequate because they provide a powerful, yet flexi-
ble tool to model the underlying characteristics of the problem. The proposed approach
considers perishability and nonlinear cost functions.
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The model contributes to the literature by enabling the decision maker to find optimal
policies with any number of policy change points without increasing the complexity of the
model or the solution procedure. In addition, the model considers perishability, remains
computationally tractable for arbitrarily large shelf lives and returns a long-term optimal
policy that fully appreciates the stochastic variations of the system in the long-run.

In a first step, we validated the model using data from the literature. In a second step,
we applied the model to an important regional blood bank in Rio de Janeiro, HEMORIO.
The case study compiled data from HEMORIO’s operation since 2009 and a sensitivity
analysis was carried out to highlight important aspects from a managerial standpoint. The
proposed approach provided invaluable insight for HEMORIO’s tactical and strategic plan-
ning of external collection activities. As a result of the study, HEMORIO decided to deploy
two external collections per business day and that resulted in a 4.5% increment in blood
donations from 2017 to 2018. In addition, the percentage of mobile collections increased
from 22.1% to 31% in the same period.

Future works could explore extensions to the proposed model including generalisations
in the cost function. In addition, the model could be generalised to accommodate general
distributions of demand and donation of blood products, giving rise to optimisation models
based on GI/GI queues. Finally, we believe that further experimentation would be an
interesting way forward. Future works could, for example, map the cost structure of a set
of institutions and compare the resulting optimal policies from a managerial standpoint.
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Appendix A. Hemorio’s data

In this appendix, we present in more detail the data that allowed the parameter setting
for HEMORIO’s case study. The data was obtained directly from the institution in the
context of the research project. The public information is listed below, however some of the
data is very sensitive and remain undisclosed. The data in Table A.6 comprises a monthly
series of donations that covers 108 consecutive months from 2009 to 2017. Unfortunately,
the costs are not public and therefore cannot be exposed. However, they resulted in the
cost function in Eq. (10), which suffices for the implementation of Algorithm 1. Hence, the
experimental results in sections 6.2 and 6.3 can be easily reproduced.

Table A.6 features the consolidated series of monthly donations for both internal and
external collections. It comprises the following data:

• Attendance (Attend.): number of people who volunteered for donation. It is worth
pointing out that volunteers that clearly do not qualify for donation may be promptly
disqualified. In that case, they are not referred to the screening phase;

• Medical screening: volunteers that were referred to the screening phase. Some
volunteers may be disqualified in the screening phase;

• Collection: total number of donated blood bags.

• External/Total: proportion of bags collected externally.

Figures 4 and 5 in section 6 were elaborated making use of the data series presented in
table A.6.
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Table A.6: Donation Data

Period INTERNAL COLLECTION EXTERNAL COLLECTION
Attend. Medical

screening
Collection Attend. Collection External/Total

jan/09 8537 8512 6838 50 40 1%
feb/09 7655 7620 6191 116 95 2%
mar/09 9366 9330 7524 1203 968 11%
apr/09 8440 8418 6809 751 588 8%
may/09 9314 9269 7202 970 702 9%
jun/09 8555 8519 6564 592 478 7%
jul/09 8693 8662 6784 705 550 7%
aug/09 9570 9503 7360 1067 799 10%
sep/09 8796 8758 6675 894 719 10%
oct/09 8867 8835 6680 1093 919 12%
nov/09 8440 8391 6248 462 330 5%
dec/09 8336 8273 6424 374 295 4%
jan/10 8855 8811 6740 0 0 0%
feb/10 7696 7636 5745 363 280 5%
mar/10 10108 10045 7870 867 665 8%
apr/10 9088 8989 7069 742 622 8%
may/10 8742 8673 6697 1083 800 11%
jun/10 8118 8059 6368 466 363 5%
jul/10 8542 8478 6604 572 458 6%
aug/10 8805 8747 6514 1153 857 12%
sep/10 8297 8249 6231 1292 976 14%
oct/10 8718 8680 6805 877 715 10%
nov/10 8437 8379 6526 746 580 8%
dec/10 8693 8649 6709 360 291 4%
jan/11 15399 14393 11139 591 439 4%
feb/11 8478 8413 6281 840 631 9%
mar/11 8817 8756 6461 1321 898 12%
apr/11 10312 9970 7279 900 691 9%
may/11 8356 8316 6057 757 543 8%
jun/11 8973 8926 6488 854 644 9%
jul/11 8814 8758 6499 758 542 8%
aug/11 10557 10435 7604 1597 1062 12%
sep/11 7599 7570 5628 932 709 11%
oct/11 7537 7514 5729 377 267 4%
nov/11 10896 10742 8130 648 486 6%
dec/11 8578 8515 6425 303 214 3%
jan/12 9212 9084 6722 551 422 6%
feb/12 8487 8401 6285 563 363 5%
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mar/12 9446 9382 7004 1422 979 12%
apr/12 7555 7512 5624 943 604 10%
may/12 9729 9635 6992 919 615 8%
jun/12 8111 8072 5903 792 574 9%
jul/12 8444 8395 6229 902 657 10%
aug/12 9049 8992 6808 1601 1187 15%
sep/12 6891 6865 5219 731 537 9%
oct/12 9922 9867 7446 1350 990 12%
nov/12 8857 8781 6660 1287 955 13%
dec/12 7400 7366 5523 659 430 7%
jan/13 9413 9364 7126 438 320 4%
feb/13 7439 7374 5574 753 559 9%
mar/13 7779 7734 5837 929 674 10%
apr/13 8842 8745 6395 1320 959 13%
may/13 8810 8717 6433 807 562 8%
jun/13 7973 7917 5899 908 674 10%
jul/13 7821 7758 5726 937 708 11%
aug/13 8959 8920 6395 1415 1076 14%
sep/13 7677 7649 5536 1395 1070 16%
oct/13 7976 7940 5711 1246 928 14%
nov/13 7879 7813 5738 1031 805 12%
dec/13 7072 7030 5185 524 384 7%
jan/14 7648 7614 5568 255 160 3%
feb/14 8642 8573 6202 970 705 10%
mar/14 8349 8299 6217 1504 1116 15%
apr/14 6892 6855 5073 932 686 12%
may/14 8654 8511 6137 1704 1203 16%
jun/14 6416 6378 4608 766 562 11%
jul/14 7155 7121 5085 396 307 6%
aug/14 7977 7920 5663 1589 1148 17%
sep/14 7912 7842 5699 1374 989 15%
oct/14 7866 7813 5653 1185 867 13%
nov/14 7431 7305 5496 1259 955 15%
dec/14 6991 6928 5120 298 212 4%
jan/15 7146 7111 5315 486 331 6%
feb/15 7530 7480 5605 500 374 6%
mar/15 8335 8296 6174 1091 813 12%
apr/15 6664 6621 4931 1041 850 15%
may/15 6546 6507 4777 673 476 9%
jun/15 8154 8074 6028 1048 821 12%
jul/15 7846 7801 5640 862 618 10%
aug/15 8573 8524 6206 1586 1155 16%
sep/15 6841 6741 4895 926 698 12%
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oct/15 7670 7608 5693 1372 1075 16%
nov/15 8986 8857 6447 2104 1571 20%
dec/15 6706 6654 4865 453 326 6%
jan/16 6895 6870 5085 790 601 11%
feb/16 6817 6773 4977 675 487 9%
mar/16 7505 7449 5510 1513 1101 17%
apr/16 5908 5872 4321 938 736 15%
may/16 6240 6201 4581 1184 881 16%
jun/16 8397 8320 6239 1647 1283 17%
jul/16 7816 7710 5813 2106 1619 22%
aug/16 6646 6585 4957 1844 1379 22%
sep/16 7925 7761 5558 2206 1582 22%
oct/16 6320 6126 4553 873 645 12%
nov/16 7688 7569 5783 1773 1398 19%
dec/16 6135 6032 4671 691 541 10%
jan/17 8016 7842 5891 1120 867 13%
feb/17 7217 7053 5259 1448 1099 17%
mar/17 12114 11727 8896 2562 1928 18%
apr/17 8479 8389 6249 2076 1650 21%
may/17 8975 8862 6500 2392 1842 22%
jun/17 9106 8995 6754 2711 2093 24%
jul/17 9629 9535 7214 3334 2558 26%
aug/17 8942 8866 6731 3470 2741 29%
sep/17 8737 8644 6448 3235 2489 28%
oct/17 8417 8374 6449 2396 1899 23%
nov/17 10170 9947 7720 3853 3039 28%
dec/17 7126 7092 5677 1571 1242 18%

Table A.7 consolidates the donations via internal and external collections per year. The
data is summarised in figure 6(a). Table A.8 summarises mean number of donated bags
per type of collection, which was represented in figure 6(b). It is worth recalling that Type
1 collections are made by demountable structures whereas Type 2 collections make use of
an itinerant bus.
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Table A.7: Number of external collections by type

Year Type 1 Type 2 Total %T1 %T2
2009 90 25 115 78% 22%
2010 92 26 118 78% 22%
2011 104 29 133 78% 22%
2012 118 30 148 80% 20%
2013 122 18 140 87% 13%
2014 114 26 140 81% 19%
2015 145 0 145 100% 0%
2016 172 24 196 88% 12%
2017 349 28 377 93% 7%
Total 1306 206 1512 86% 14%

Table A.8: Number of bags per collection and type

YEAR Type 1 Type 2 Total
2009 58,71 46,04 55,96
2010 58,74 45 55,71
2011 56,36 42,83 53,41
2012 59,54 42,53 56,09
2013 61,66 50,39 60,21
2014 64,65 54,77 62,81
2015 62,86 0 62,86
2016 65,66 43,42 62,93
2017 63,51 48,29 62,38
Mean 61,3 46,43 60,02

Appendix B. Implementation of the case study in Python

#DATA ENTRY MODEL BY USER

import math

import numpy as np

import time

import matplotlib.pyplot as plt

from numpy import linalg as LA

get_ipython().magic(’matplotlib inline’)

t_inicial = time.time()

# parameter definition

lamb = 182 #stock increase rate associated with donation offer

mi = 258 #inventory consumption rate associated with hospital demand

c = 70 #expected capacity of each external collection

estados = 1000 #number of states

bus = 140 #fixed cost of external collection

prod = 50 #cost of production of a blood bag

cf = 1000 #default cost parameter

df = 80 #concerning the exponential decay of the cost of missing a blood bag

ce1 = 0.7 #parameter of growth rate of blood bags inventory cost
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ce2 = 0.1 #relative to the economies of scale in inventory costs

ce3 = 0.7 #relative to the loss of economies of scale in inventory costs

n0 = 0

n_bus = 2

#parameters chosen by the user

lamb = input("input lambda: ")

mi = input("input mi: ")

c = input("input delta_lambda: ")

estados = input("input s: ")

bus = input("input cc: ")

prod = input("input cp: ")

cf = input("input c1: ")

df = input("input d1: ")

ce1 = input("input s1: ")

ce2 = input("input s2: ")

ce3 = input("input s3: ")

lamb = int(lamb)

mi = int(mi)

c = int(c)

estados = int(estados)

bus = int(bus)

prod = int(prod)

cf = int(cf)

df = int(df)

ce1 = float(ce1)

ce2 = float(ce2)

ce3 = float(ce3)

# Initialization of the cost vector

C = [0]* (estados) #Co,C1,C2,...,Cn-1,Cn -> Costs vector

Cf = [0]* (estados) #Lack cost vector

Ce = [0]* (estados) #Inventory cost vector

for i in range(estados):

C[i] += cf*math.exp(-(i/df)) + ce1*i

# Cf[i] += cf*math.exp(-(i/df))

#for i in range (0,round(estados/4)):

# Ce[i] += ce1*i

#for i in range (round(estados/4),round(3*estados/4)):

# Ce[i] += (Ce[round(estados/4)-1] + ce2*(i-round(estados/4)+1))

#for i in range (round(3*estados/4),estados):

# Ce[i] += (Ce[round(3*estados/4)-1]+ ce3*(i-round(3*estados/4)+1))

#

#for i in range(estados):

# C[i] += Cf[i] + Ce[i]

v_old = [0] * len(C)

v_new = [0] * len(C)

v_new_menos_old = [0] * len(C)

mem_acoes = [’0bus’] * len(C)

gap = 100

it = 0

lista_estados = []

for i in range(1,estados-1):
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lista_estados.append(i)

v_p_sup = [0]*(n_bus+1)

v_p_inf = [0]*(n_bus+1)

v_custo_acoes = [0]*(n_bus+1)

for i in range(n_bus+1):

v_p_sup[i] = round((lamb+i*c)/(lamb+i*c+mi),3)

v_p_inf[i] = round(mi/(lamb+i*c+mi),3)

v_custo_acoes[i] = v_p_sup[i]*(C[i+1]+v_old[i+1]+prod) + v_p_inf[0]*(C[i-1]+v_old[i-1])

p_sup_0bus = round(lamb/(lamb+mi),3) #sup refers to the probability of going from an n state to an n + 1

p_inf_0bus = round(mi/(lamb+mi),3) #inf refers to the probability of going from an n + 1 state to an n

p_sup_1bus = round((lamb+c)/(lamb+c+mi),3)

p_inf_1bus = round(mi/(lamb+c+mi),3)

p_sup_2bus = round((lamb+2*c)/(lamb+2*c+mi),3)

p_inf_2bus = round(mi/(lamb+2*c+mi),3)

#-------------------------------------------------------------------------------------------------------------

#algorithm

#while gap > 0.1:

for i in range(10000):

it += 1

for j in range(len(v_old)):

v_old[j] = v_new[j]

v_new[0] = min(p_sup_0bus*(C[1]+v_old[0]) + p_inf_0bus*(C[0]+v_old[0]),\

p_sup_1bus*(C[1]+bus+v_old[0]) + p_inf_1bus*(C[0]+bus+v_old[0]), \

p_sup_2bus*(C[1]+2*bus+v_old[0]) + p_inf_2bus*(C[0]+2*bus+v_old[0]))

if v_new[0] == p_sup_0bus*(C[1]+v_old[0]) + p_inf_0bus*(C[0]+v_old[0]):

mem_acoes[0] = ’0bus’

elif v_new[0] == p_sup_1bus*(C[1]+bus+v_old[0]) + p_inf_1bus*(C[0]+bus+v_old[0]):

mem_acoes[0] = ’1bus’

else:

mem_acoes[0] = ’2bus’

for i in lista_estados:

v_new[i] = min(p_sup_0bus*(C[i+1]+v_old[i+1]) + p_inf_0bus*(C[i-1]+v_old[i-1]), \

p_sup_1bus*(C[i+1]+bus+v_old[i+1]) + p_inf_1bus*(C[i-1]+bus+v_old[i-1]), \

p_sup_2bus*(C[i+1]+2*bus+v_old[i+1]) + p_inf_2bus*(C[i-1]+2*bus+v_old[i-1]))

if v_new[i] == p_sup_0bus*(C[i+1]+v_old[i+1]) + p_inf_0bus*(C[i-1]+v_old[i-1]):

mem_acoes[5] = ’0bus’

elif v_new[i] == p_sup_1bus*(C[i+1]+bus+v_old[i+1]) + p_inf_1bus*(C[i-1]+bus+v_old[i-1]):

mem_acoes[i] = ’1bus’

else:

mem_acoes[i] = ’2bus’

v_new[estados-1] = min(p_sup_0bus*(C[estados-1]+v_old[estados-1]) + p_inf_0bus*(C[estados-2]+v_old[estados-estados-2]), \

p_sup_1bus*(C[estados-1]+bus+v_old[estados-1]) + p_inf_1bus*(C[estados-2]+bus+v_old[estados-2]), \

p_sup_2bus*(C[estados-1]+2*bus+v_old[estados-1]) + p_inf_2bus*(C[estados-2]+2*bus+v_old[estados-2]))

if v_new[estados-1] == p_sup_0bus*(C[estados-1]+v_old[estados-1]) + p_inf_0bus*(C[estados-2]+v_old[estados-2]):

mem_acoes[estados-1] = ’0bus’

elif v_new[estados-1] == p_sup_1bus*(C[estados-1]+bus+v_old[estados-1]) + p_inf_1bus*(C[estados-2]+bus+v_old[estados-2]):

mem_acoes[estados-1] = ’1bus’

else:

mem_acoes[estados-1] = ’2bus’

for i in range(len(v_old)):

v_new_menos_old[i] = v_new[i] - v_old[i]
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gap = max(v_new_menos_old) - min(v_new_menos_old)

t_final = time.time()

#Creating the probability matrix

P = np.zeros((estados,estados))

for i in range(1,estados-1):

for j in [i-1]:

if mem_acoes[i] == ’0bus’:

P[i][j] = v_p_inf[0]

else:

P[i][j] = v_p_inf[1]

for j in [i+1]:

if mem_acoes[i] == ’0bus’:

P[i][j] = v_p_sup[0]

else:

P[i][j] = v_p_sup[1]

for i in [0]:

for j in [i]:

if mem_acoes[i] == ’0bus’:

P[i][j] = v_p_inf[0]

else:

P[i][j] = v_p_inf[1]

for j in [i+1]:

if mem_acoes[i] == ’0bus’:

P[i][j] = v_p_sup[0]

else:

P[i][j] = v_p_sup[1]

for i in [estados-1]:

for j in [i-1]:

if mem_acoes[i] == ’0bus’:

P[i][j] = v_p_inf[0]

else:

P[i][j] = v_p_inf[1]

for j in [i]:

if mem_acoes[i] == ’0bus’:

P[i][j] = v_p_sup[0]

else:

P[i][j] = v_p_sup[1]

#system resolution P (Transposed). x = x

P_acum= LA.matrix_power(P, estados*100)

P_acum = np.add.accumulate(P_acum[0])

P_acum = P_acum.tolist()

#Calculating blood bags in stock K

fp = [0] * estados

for i in range(len(P_acum) -1):

fp[i] += P_acum[i+1] - P_acum[i]

fp_n = [0] * estados #fp normalization predicting numerical errors

for i in range(estados):

fp_n[i] += fp[i]/sum(fp)

Ex = [0] * estados

for i in range(estados):

Ex[i] += list(range(estados))[i]*fp_n[i]

V_Ex = sum(Ex) #Expected number of blood bags is the expected value of the prob function.
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#-------------------------------------------------------------------------------------------------------

#output

#print("Actions: ", mem_acoes)

print(’’)

print("Optimal policy: Send 2 bus from state 0 to state ",mem_acoes.count(’2bus’)-1-n0)

print("send 1 bus from state",mem_acoes.count(’2bus’)-n0, "to state", mem_acoes.count(’2bus’)+mem_acoes.count(’1bus’)-1-n0)

#print("Expected value of Inventory E(n): ", V_Ex)

#print("Iterations: ", it)

#print("Execution Time ", round(t_final - t_inicial,1), " segundos")

#-----------------------------------------------------------------

# Figures

#graph of the cumulative probability of states across states

#plt.plot(range(1-n0,estados+1-n0),P_acum)

#plt.title("Accumulated probability across states")

#plt.ylabel("Prob.")

#plt.xlabel("State")

#plt.grid(True)

#cumulative probability inverse logarithm graph

#ln_P_acum = []

#for Pn in P_acum:

# ln_P_acum.append(math.log(Pn**-1))

#plt.plot(range(1-n0,estados+1-n0),ln_P_acum)

#plt.title("Accumulated probability across states")

#plt.ylabel("Prob.")

#plt.xlabel("State")

#plt.grid(True)

#graph of C cost evolution

#plt.plot(range(1-n0,len(C)+1-n0),C)

#plt.title("graph of C cost evolution")

#plt.ylabel("Cost")

#plt.xlabel("State")

#plt.grid(True)

#graph of Cf cost evolution

#plt.plot(range(1-n0,len(Cf)+1-n0),Cf)

#plt.title("graph of Cf cost evolution")

#plt.ylabel("Lack cost")

#plt.xlabel("State")

#plt.grid(True)

#graph of Ce cost evolution

#plt.plot(range(1-n0,len(Ce)+1-n0),Ce)

#plt.title("graph of Ce cost evolution")

#plt.ylabel("inventory cost")

#plt.xlabel("State")

#plt.grid(True)

#graph of lambda arrival rate

v_lambda = [lamb]*estados

for i in range(mem_acoes.count(’2bus’)-1-n0):

v_lambda[i] += c

for i in range(mem_acoes.count(’2bus’)- n0 +mem_acoes.count(’1bus’)-1):

v_lambda[i] += c
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plt.plot(range(1-n0,len(v_lambda)+1-n0),v_lambda)

plt.title("Policy")

plt.ylabel("Lambda")

plt.xlabel("States")

plt.grid(True)

plt.show()
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