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Abstract: Background: Slowness of movement, known as bradykinesia, is the core clinical sign
of Parkinson’s and fundamental to its diagnosis. Clinicians commonly assess
bradykinesia by making a visual judgement of the patient tapping finger and thumb
together repetitively. However, inter-rater agreement of expert assessments has been
shown to be only moderate, at best. Aim: We propose a low-cost, contactless system
using smartphone videos to automatically determine the presence of bradykinesia.
Methods: We collected 70 videos of finger-tap assessments in a clinical setting (40
Parkinson’s hands, 30 control hands). Two clinical experts in Parkinson’s, blinded to
the diagnosis, evaluated the videos to give a grade of bradykinesia severity between 0
and 4 using the Unified Pakinson’s Disease Rating Scale (UPDRS). We developed a
computer vision approach that identifies regions related to hand motion and extracts
clinically-relevant features. Dimensionality reduction was undertaken using principal
component analysis before input to classification models (Naive Bayes, Logistic
Regression, Support Vector Machine) to predict no/slight bradykinesia (UPDRS = 0-1)
or mild/moderate/severe bradykinesia (UPDRS = 2-4), and presence or absence of
Parkinson’s diagnosis. Results: A Support Vector Machine with radial basis function
kernels predicted presence of mild/moderate/severe bradykinesia with an estimated
test accuracy of 0.8. A Naive Bayes model predicted the presence of Parkinson’s
disease with estimated test accuracy 0.70. Conclusion: The method described here
presents an approach for predicting bradykinesia from videos of fingertapping tests.
The method is robust to lighting conditions and camera positioning. On a set of pilot
data, accuracy of bradykinesia prediction is comparable to that recorded by blinded
human experts.
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We thank reviewer 3 for expanding upon their previous comment. 
 
We clarify again that due to limited dataset size, model hyperparameters were optimized using 10-fold 
cross validation, and that out-of-sample accuracy was estimated using LOO-CV to provide an unbiased 
estimate. 
 
We have calculated the permutation score for each classifier, as suggested. For bradykinesia 
classification, the large effect size in comparison to a random classifier means that the p-values are 
statistically significant. This supports the main aim of the paper, to show that there is useful information 
in the video signal to classify bradykinesia. Secondary analysis attempted to see to what extent these 
results would translate directly to Parkinson’s diagnosis. There is weak evidence of some informative 
patterns, but it is clear that a more comprehensive set of features is required for a good diagnosis – this 
is not surprising, given the multi-faceted nature of Parkinson’s. We have included a comment on this in 
our discussion. 
 
We do not believe that formal model comparison using a T-test, using 5x2 cv (or otherwise), is necessary 
in this case and have not included it in the manuscript. The reason we believe this is that such tests are 
only appropriate if there is an explicit hypothesis in which we wish to select a ‘best performing’ model. 
We make no such hypothesis in this manuscript, though an uncharitable reading may assert that such a 
hypothesis is made implicitly. We have edited the text to remove ambiguity in this regard. 
 
For completion, we provide the 5x2 CV values below, comparing the model with highest accuracy vs the 
others. In all cases, p values were greater than 0.05. We appreciate the reviewer’s assertion that p 
values over this value ought to be interpreted to be negative. However, we believe that it is more 
accurate say that there is insufficient evidence to reject the null hypothesis (not that the alternative 
hypothesis is false). Indeed, this will occur when there is modest effect size (difference in accuracy) and 
a small sample size, as we have in this case. 
 
Bradykinesia classification – paired t-test 

Classifiers p-value 

SVM vs SVM – L 0.77 

SVM vs LR 0.51 

SVM vs NB 1.0 

 
Parkinson’s classification – paired t-test 

Classifiers p-value 

SVM vs SVM - L 1.0 

SVM vs LR 0.18 

SVM vs NB 1.0 
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Highlights 
 We developed a smartphone video system to predict presence of bradykinesia 

 Hand-regions were extracted using convolutional neural network 

 Hand-regions were converted into an optical flow field 

 Candidate features were extracted from the flow field magnitude 

 Support Vector Machines predicted bradykinesia with an accuracy of 0.8. 
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Abstract—Background: Slowness of movement, known as
bradykinesia, is the core clinical sign of Parkinson’s and
fundamental to its diagnosis. Clinicians commonly assess
bradykinesia by making a visual judgement of the patient
tapping finger and thumb together repetitively. However,
inter-rater agreement of expert assessments has been shown
to be only moderate, at best.

Aim: We propose a low-cost, contactless system using
smartphone videos to automatically determine the presence
of bradykinesia.

Methods: We collected 70 videos of finger-tap assessments
in a clinical setting (40 Parkinson’s hands, 30 control hands).
Two clinical experts in Parkinson’s, blinded to the diagnosis,
evaluated the videos to give a grade of bradykinesia severity
between 0 and 4 using the Unified Pakinson’s Disease Rating
Scale (UPDRS). We developed a computer vision approach
that identifies regions related to hand motion and extracts
clinically-relevant features. Dimensionality reduction was
undertaken using principal component analysis before input
to classification models (Naı̈ve Bayes, Logistic Regression,
Support Vector Machine) to predict no/slight bradykinesia
(UPDRS=0-1) or mild/moderate/severe bradykinesia (UPDRS
= 2-4), and presence or absence of Parkinson’s diagnosis.

Results: A Support Vector Machine with radial basis
function kernels predicted presence of mild/moderate/severe
bradykinesia with an estimated test accuracy of 0.8. A Naı̈ve
Bayes model predicted the presence of Parkinson’s disease
with estimated test accuracy 0.67.

Conclusion: The method described here presents an ap-
proach for predicting bradykinesia from videos of finger-
tapping tests. The method is robust to lighting conditions
and camera positioning. On a set of pilot data, accuracy of
bradykinesia prediction is comparable to that recorded by
blinded human experts.

Keywords-Classification; Parkinson’s; Bradykinesia;
Video; Computer Vision; Diagnosis; Support Vector
Machine

I. INTRODUCTION

Parkinson’s disease is a neurodegenerative disorder that
affects approximately 1 in 500 adults [1]. The diagnosis
is a clinical one, based on the clinician detecting the
presence of a slowness of movement termed bradykinesia,
together with at least one of rigidity, rest tremor or postural
instability (United Kingdom Parkinson’s Disease Society
Brain Bank Criteria) [2]–[4].

Clinician assessment of the presence and severity of
bradykinesia is visual, and almost always includes an

observation of finger tapping. In this test, a patient is asked
to repetitively tap their forefinger against their thumb as
wide and quickly as possible. The clinician will typically
observe ten finger taps whilst looking for impairment of
speed, amplitude or rhythm, often including a progressive
decrement seen over the duration of the test [4], [5].

However, this visual clinical judgment is inherently sub-
jective, and there is no objective measure of bradykinesia
in routine clinical use. Given both the imprecise definition
of the term, and the difficulty for human observers to
quantify small differences in movement, it is little surprise
that inter-rater agreement of assessment of bradykinesia is
moderate at best [4], [5]. Current evidence suggests that
human observers prioritize changes in movement ampli-
tude over changes in tapping frequency or rhythm [4].

Given the fundamental importance of bradykinesia to
diagnose and monitor Parkinson’s, and the relatively small
group of neurologists trained to assess it, an automatic and
objective method of determining the level of bradykinesia
has the potential to improve early diagnosis and to stan-
dardize follow-up assessment, including home monitoring.

Other approaches have previously been suggested for
objective bradykinesia assessment [6]–[9]. However, all
require either sensors that may not be readily available,
or patient interaction with a specific computer program
or smartphone app. To our knowledge, only one previous
report used standard video to measure finger tapping
bradykinesia, but featured only participants with advanced
stage Parkinson’s and required video recording of the
face [10]. Here we propose a solution that uses the ubiqui-
tous smartphone video camera to capture the relevant data
during standard clinical assessment of finger tapping.

Our primary aim is to provide proof-of-concept that the
assessment of bradykinesia can be automated using simple
camera input, negating the impact of inter-rater variability
and providing easily accessible clinical decision support.
We also investigate the potential to predict diagnosis of
Parkinson’s itself. We describe how the video signal is
processed and how pertinent features may be extracted to
predict both bradykinesia and the presence of a Parkin-
son’s diagnosis. Finally, we present initial results from a
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Table I
SUMMARY OF THE MOVEMENT DISORDER SOCIETY REVISION TO

UPDRS ITEM 3.4 (FINGER TAPPING) RATING SCALE [11].

Score Description
0 – Normal No problems.

1 – Slight Any of the following:
a) regular rhythm broken with 1–2 interruptions,
b) slight slowing,
c) amplitude decreases towards end.

2 – Mild Any of the following:
a) 3–5 interruptions,
b) mild slowing,
c) amplitude decreases midway.

3 – Moderate Any of the following:
a) 6+ interruptions or long freeze in movement,
b) moderate slowing,
c) amplitude decreases from start.

4 – Severe Cannot perform the task due to
slowing, interruptions, or decrements.

case-control pilot study.1

II. EXISTING WORK

The standard clinical method to assess bradykinesia is a
visual judgment of finger tapping made by an experienced
clinician. The two main validated clinical rating scales
for finger tapping are Item 3.4 of the Unified Parkinson’s
Disease Rating Scale (UPDRS) [11], and the Modified
Bradykinesia Rating Scale (MBRS) [4]. The UPDRS
amalgamates the judgment of finger tapping speed, am-
plitude, and rhythm into a single score, such that those
three elements can contribute to the score as ’and/or’
definitions (Table I). The score ranges from 0 (normal)
to 4 (severe). In contrast, the MBRS is comprised of three
separate scores for speed, amplitude, and rhythm.

A variety of devices have been studied as methods to
objectively measure bradykinesia during finger tapping.
These include: contact sensors (e.g. MIDI keyboards or
smartphone screens) [13], [14], [15], [16]; accelerometers
or gyroscopes attached to the index finger [4], [17], [18];
electromagnetic systems with magnetic generation and
detection coils placed on finger and thumb [7], [9], [19];
infrared cameras with passive or active markers on the
hand [20].

Example measures of finger tapping derived from such
devices include opening velocity (speed) [4], [20], ex-
cursion angle (amplitude) [4], [18], [21], and coefficient
of variation (rhythm) [4], [13], [17]. Most metrics used
show significantly different mean values in Parkinson’s
compared with control groups across several studies, albeit
with considerable overlap of the group scores.

Multiple reports show that tapping measures correlate
with clinical rating scales. For example, good correlation
has been shown for gyroscope angular velocity with
UPDRS (Spearman correlation coefficient: −0.78) [18],
variation in duration of keyboard taps with UPDRS
(Pearson:−0.61) [13], and gyroscope excursion angle with
the amplitude component of MBRS (Pearson: −0.81) [4].

1This work is an extended version of the conference paper presented
at IEEE CBMS 2019. [12]

Several studies of finger tapping measurement show AU-
ROC for patient/control discimination in the range of 0.7–
0.9. For example, 0.88 for dwelling time with smartphone
tapping [14], 0.75 for inter-peak interval using accelerom-
eter [7], 0.81 for opening velocity and 0.87 for amplitude
decrement using infrared [20]. In a ’clinician v.s. ma-
chine’ trial, a gyroscope system showed better intraclass
correlation and minimal detectable change compared with
clinician (MBRS) ratings during adjustment of deep brain
stimulation treatment strength [22].

There is variation across studies in terms of
which specific aspect of tapping measurement
(speed/amplitude/rhythm) shows the largest group
differences or is most strongly correlated with clinical
categories. There is no clear pattern of results or methods
to explain this variation, except that finger tap frequency
alone is often not predictive [17], [23], [24] and protocols
in which patients are temporarily ‘off’ medication likely
make it easier to find differences [4], [21], but are less
relevant to clinical practice.

Multiple tests using non-camera sensors in smartphones
can be combined [25]–[27], and previous reports suggest
that application of machine learning techniques to such
data can discriminate patients from controls (96% sensi-
tivity with random forests [25]) while the combined data
correlates strongly with clinical ratings [26]. However, all
such approaches require patients to independently interact
with the app, usually for a prolonged period of time, more
than once per day (e.g. minimum of twice per day in
reference [26]). In our view, the vast majority of patients
lack sufficient motivation for this, which could possibly
explain why no such apps have entered routine clinical
practice. In contrast, camera-based computer vision can
simply observe existing clinical examination, and augment
or assist clinical judgement, without a requirement for
patient motivation to regularly use an app.

To our knowledge, only one previous study used com-
puter vision with simple video to detect bradykinesia
on finger tapping, by tracking finger motion [10]. A
feature of tapping rhythm, ’cross-correlation between the
normalized peaks’, showed a strong Guttman correlation
of −0.8 with UPDRS, and a support vector machine with
multiple tapping features distinguished between patients
and controls with an accuracy of 95%. However, only
13 participants were recorded and all were described as
having “advanced” Parkinson’s: a disease stage at which
diagnosis is rarely an issue. Furthermore, they required
video of the patient’s face (to approximate hand length)
which could be considered intrusive in practice.

III. METHOD

A. Data Collection (Video Recording and Clinician Rat-
ing)

The study was approved by the UK Health Research
Authority (IRAS no. 224848). Patients with Parkinson’s
disease, previously diagnosed by a consultant neurologist
at Leeds Teaching Hospitals NHS Trust, were invited to
attend a research clinic appointment. All patients were in



Figure 1. Illustration of the data processing in which raw video is converted to an anonymous 1D time series. Raw video is first segmented using a
convolutional neural network. The segmentation is refined using the grabcut method. Frame-by-frame movement of the hand is extracted using optical
flow. The optical flow field is then reduced so that the magnitude of movement between two frames is summarized by a single value.

the on motor state, by which we mean that: (i) patients
reported that they felt on - a widely accepted and under-
stood term that patients use to describe an overall sense
that they feel their medications are working and they have
reduced symptoms of Parkinsons [2], (ii) the neurologist
reported the patient looked on - a clinically accepted term
for recognising a response to medications, and (iii) no
medication had been withheld prior to recording.

Control participants were invited from the companions
of participants, or from hospital staff. Control participants
did not have any neurological diagnosis or take any medi-
cation that could cause Parkinsonism, tremor, bradykinesia
or other movement impairment.

Each hand was filmed tapping forefinger and thumb
‘as quick and as big as possible’ for 15 seconds. This
convenience sample comprised 40 patient hands and 30
controls hands (20 patient participants and 15 control
participants).

The recordings were made using an integrated smart-
phone camera (iPhone SE), set to 60 frames per second,
1920x1080 pixels, and placed on a tripod, with only
ambient lighting. Participants were asked to rest their
elbow on a chair arm during the finger tapping and only
the hand/forearm was filmed (no identifiable patient details
were filmed). The distance from camera to hand was not
tightly defined; in practice the camera was positioned
at approximately 1m from the participant. The lateral
(thumb) surface of the hand faced the camera. There were
no specific instructions for the position of digits 3 to 5.

The degree of bradykinesia in each video was indepen-
dently rated by two consultant neurologists with a special
interest in Parkinson’s, according to the section 3.4 of the
UPDRS scale (UPDRS-FT) (Table I) [11]. The raters were
blinded to patient/control group.

For both groups, the correlation between UPDRS-FT
scores from the right and left hand for an individual partic-
ipant was very low (Patients k=0.17, 95%CI:-0.18 to 0.47,
Controls k=0.18, 95%CI:-0.07 to 0.41). Consequently, we
treated videos from each hand as independent samples.

B. Data Analysis

1) Data Processing: A schematic of the data process-
ing framework is presented in Figure 1.

Initially, the video frames were segmented to pixels cor-
responding to a participant’s hand. Traditional skin color
methods were unsuitable, given the uncontrolled lighting
conditions used. Instead, the hand regions of interest
were first detected using a convolutional neural network,
originally proposed by Bambach et al. [29]. The detector is
based on a MobileNet-V2 mode architecture and the single
shot multi-box approach using the TensorFlow Object
Detection API [30], [31]. This architecture uses depth-
wise separable convolutions to reduce computer overhead
for mobile devices. We trained our model using manual
annotation of 500 randomly selected frames from our
dataset.

The output of the model was refined using a secondary
pixel-level segmentation to remove erroneous background
pixels. We used the grabcut method [32], which iteratively
updates two Gaussian Mixture Models representing the
background and foreground. We set two mixture com-
ponents to model the foreground colours and 3 mixture
components for the background colours.

The segmented frames were then converted into an
optical flow field [33]. In such a field, each position
corresponds to the vector pixel movement of a point object
between two sequential frames. The magnitude of the
vector thus represents the instantaneous speed of a point
(in pixels/frame). We sum the magnitude at each point in
the region of interest to obtain a metric of overall hand
movement.

Optical flow magnitude is affected by camera distance
and hand size (as well as actual movement), so to convert
optical flow magnitude into true hand velocity, we scale
the magnitude by the number of pixels in the hand region
of interest, such that our metric Mt is:

Mt =

∑H
j

∑W
i bij

√
u2ij + v2ij∑H

j

∑W
i bij

, (1)

where H and W are the height and width of the optical
flow field, u and v are the horizontal and vertical compo-
nents of the flow, and b is the pixel mask obtained from the
image segmentation. By evaluating Mt over a sequence of
video frames we produce a 1D signal over time. Examples
of the signal are shown in Figure 2.



0 2 4 6 8 10 12 14 16
Time (s)

a 

0 2 4 6 8 10 12 14 16
Time (s)

b 

0 2 4 6 8 10 12 14 16
Time (s)

c 

0 2 4 6 8 10 12 14 16
Time (s)

d 

0 2 4 6 8 10 12 14 16
Time (s)

e 

0 2 4 6 8 10 12 14 16
Time (s)

f 

Figure 2. Examples of the optical flow magnitude time series, plots c) – f) are discussed in section IV-D. a) – no bradykinesia (UPDRS-FT = 0).
b) – severe bradykinesia (UPDRS-FT = 4). c) – UPDRS-FT = 0-1 misclassified as UPDRS-FT = 2-4, close to decision boundary. d) – UPDRS-FT
= 2-4 misclassified as UPDRS-FT = 0-1, close to decision boundary. e) – UPDRS-FT = 0-1 misclassified as UPDRS-FT = 2-4, far from decision
boundary. f) – UPDRS-FT = 2-4 misclassified as UPDRS-FT = 0-1, far from decision boundary.

2) Feature Extraction: Candidate features were derived
from the 1D signal via clinical knowledge and visual
inspection. In particular, we derived a set of features
that described the frequency, amplitude, and tap-to-tap

variability, to reflect the UPDRS assessment criteria as
follows.

Frequency: Tapping frequency was estimated as the
frequency corresponding to the maximal amplitude peak in



the fast Fourier transform (FFT) spectrum. This assumes
that the finger tapping motion corresponds to the greatest
movement (and thus energy) between frames and that
other movements, such as finger tremor, have smaller
magnitude.
Amplitude: Energy spectral density was calculated as
the squared integral of the FFT spectrum, a measure
that would be expected to increase with the amplitude
of tapping. In addition, we assumed that bradykinesia
movement is distinctive in some frequency bands. There-
fore the energy spectral density is separated into six
non-overlapping equal frequency bands ranging from 0Hz
to 18.36Hz with bandwidth interval 3.06Hz. The upper
frequency threshold was selected heuristically to avoid
having multiple uninformative zero-energy frequency bins.
The threshold represents the frequency up to which, on
average, 99% of the signal energy is contained.
Variability: Two variability features were derived using the
peaks of the optical flow waveform. Peaks were calculated
via the MATLAB function findpeaks with zero minimum
peak prominence. Peaks were then classified as maxima or
minima by fitting a 1D Gaussian mixture model with two
clusters to the peak amplitude values. We then defined:
Jitter: We hypothesize that there are differences between
the hand closing and hand opening motions. From visual
inspection, we observed differences in higher frequency
movement between the signal maxima and minima –
troughs in the signal appeared more jittery than the peaks.
To quantify the jitter we include the ratio of number of
maxima to number of minima over the entire time series
as a predictor.
Peak-to-peak variability: was calculated as the standard
deviation of the time between maxima peaks. This feature
models variation in tapping frequency across the time
series and may be considered analogous to the standard
deviation of RR intervals (SDRR) for ECG signals [34].

C. Classification

We performed binary classification using Naı̈ve Bayes
(NB), logistic regression (LR), and both linear and RBF-
based Support Vector Machines (SVM-L and SVM-R, re-
spectively) [35] to predict two outcomes: (1) a UPDRS-FT
score > 1, and (2) clinical diagnosis of Parkinson’s disease
(previous clinical diagnosis by a consultant neurologist).
Where there was disagreement in rater UPDRS-FT scores,
the higher score was selected for training of the models.

Given the relatively small number of samples in the
dataset we begin by reducing the feature space into two
dimensions using principal component analysis.Indeed,
preliminary work fitting models with all 10 features led
to significant overfitting. We then explore the effect of
analyzing up to 5 principal components, to look for any
additional gain in accuracy.

The NB model was chosen as a simple baseline classi-
fier providing a sensible lower bound for performance.

LR provides a linear separation of the data points and
this simplicity may lead to lower generalization error.
We incorporated ridge (L2) regularization with strength

determined via a grid search of 100 log-spaced values
in the interval [1e-4, 1e+4] to minimize 10-fold cross-
validation accuracy loss.

The SVM-L model optimizes a different cost function
than the LR model and therefore gives a different linear
separation of the classes. Meanwhile, the SVM-R model
has the ability to model nonlinear decision boundaries. The
slack and (for SVM-R) kernel scaling hyper-parameters
were again estimated using a grid search to minimize
10-fold cross-validation accuracy loss. The grid search
consisted of 100 log-spaced values in the intervals [1e+0,
1e+3] and [1e+0, 1e+5], respectively.

We report the training accuracy and AUC score for
each model with two principal components, and for 3–
5 components. We used permutation tests (α = 0.05) on
the varient obtaining highest accuracy to assess whether
classifiers had meaningful predictive ability [36].

Due to the relatively small size of our pilot data we
estimate the out-of-sample test accuracy, sensitivity, and
specificity of each model by reporting the mean value of
leave-one-out cross-validation (LOO-CV). Hyperparame-
ters were preset according to outputs of the 10-fold cross-
validation procedure described above.

We also investigate the contribution of each feature to
the principal component analysis, to investigate the most
discriminative features of the timeseries and compare with
other research on this topic.

Finally, a visual inspection of the raw videos underlying
the timeseries that were misclassified by the model with
highest LOOCV accuracy was performed by two neurol-
ogy clinicians (SW, JA). Analyses were performed using
MATLAB 2017b and the scikit-learn and TensorFlow
packages for Python 3 [37], [38].

IV. RESULTS

A total of 70 videos were collected from 35 participants
(left and right hands), Characteristics of the participants
are presented in Table II. 40 videos corresponded to the
hands of participants with an established clinical diagnosis
of Parkinson’s. UPDRS-FT scores from 0–4 were assigned
by two expert clinicians and then categorized into our
binary outcome: UPDRS-FT ≤ 1 (no/slight bradykinesia)
and UPDRS-FT > 1 (mild/moderate/severe bradykinesia).
Their assessment matched in 73% of cases (κ = 0.46).
In Figure 2 we show an example of UPDRS-FT = 0 and
UPDRS-FT = 4 for comparison.

A. Two principal components

The performance of each model for the prediction of
UPDRS-FT category is shown in Table III. The SVM-R
model achieved the highest scores in all of our metrics.
The other three models perform quite similarly, reflecting
the fact that their decision boundaries are close to one
another (see Figure 3). The test accuracy (estimated using
LOO-CV) drops to 0.8 for the SVM-R model, with the
other models similarly dropping a few points of accuracy.

In Figure 3 we show each time series plotted in feature-
space after dimensionality reduction, marked according to



Table II
STUDY PARTICIPANT CHARACTERISTICS SPLIT BY PARKINSON’S

PATIENTS AND CONTROL HANDS. THE MODIFIED HOEHN AND YAHR
(H&Y) IS A BRIEF OVERALL CLINICAL RATING TO DESCRIBE THE

STAGE OF SYMPTOM PROGRESSION IN PARKINSONS (HIGHER
NUMBER REPRESENTS MORE ADVANCED DISEASE). UPDRS-FT
REFERS TO THE UNIFIED PARKINSON’S DISEASE RATING SCALE
ITEM 3.4 (FINGER TAPPING). WHERE RATERS DISAGREED THE

HIGHEST OF THE TWO UPDRS-FT SCORES WAS USED.

Patients Controls
Age (Std. Dev.) yrs 67 (10.1) 66 (12.2)

Male/Female 26 / 14 12 / 18
Median years since diagnosis 4 -

Median H&Y [IQR] 2 [1, 2.5] -
H&Y = 1 9 -

H&Y = 1.5 0 -
H&Y = 2 5 -

H&Y = 2.5 1 -
H&Y = 3 4 -
H&Y = 4 1 -
H&Y = 5 0 -

Median UPDRS-FT [IQR] 2 [1, 3] 1 [0, 1]
UPDRS-FT = 0 2 8
UPDRS-FT = 1 11 13
UPDRS-FT = 2 17 7
UPDRS-FT = 3 7 2
UPDRS-FT = 4 3 0

Table III
RESULTS FOR EACH MODEL WHEN PREDICTING WHETHER

UPDRS-FT > 1 USING TWO PRINCIPAL COMPONENTS. Accuracy
AND AUC ARE ESTIMATED FROM THE TRAINING 10-FOLD CROSS
VALIDATION AND MAY BE CONSIDERED AS UPPER-BOUNDS. THE
TEST ACCURACY, SENSITIVITY AND SPECIFICITY ARE ESTIMATED

USING LOO-CV.

Method Accuracy AUC Test Acc Test Sens Test Spec
NB 0.74 0.74 0.70 0.67 0.70
LR 0.73 0.73 0.69 0.72 0.65

SVM-L 0.71 0.71 0.71 0.72 0.71
SVM-R 0.84 0.84 0.80 0.86 0.74

0.6 0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4
UPDRS = (0,1)
UPDRS = (2,3,4)

Figure 3. Decision boundaries for prediction of UPDRS-FT > 1 using
two principal components. The unbroken line is for NB, dashed for SVM-
R, dash-dotted for SVM-L, and dotted for LR.

Table IV
RESULTS FOR EACH MODEL WHEN PREDICTING PARKINSON’S

DIAGNOSIS USING TWO PRINCIPAL COMPONENTS. Accuracy AND AUC
ARE ESTIMATED FROM THE TRAINING 10-FOLD CROSS VALIDATION

MAY BE CONSIDERED AS UPPER-BOUNDS. THE TEST ACCURACY,
SENSITIVITY AND SPECIFICITY ARE ESTIMATED USING LOO-CV.

Method Accuracy AUC Test Acc Test Sens Test Spec
NB 0.69 0.70 0.64 0.58 0.73
LR 0.61 0.59 0.61 0.78 0.40

SVML-L 0.63 0.60 0.60 0.78 0.40
SVM-R 0.69 0.68 0.63 0.68 0.57

0.6 0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4
Control
Patient

Figure 4. Decision boundaries for prediction of Parkinson’s diagnosis
using two principal components. The unbroken line is for NB, dashed
for SVM-R, dash-dotted for SVM-L, and dotted for LR.

category. We also show the decision boundaries of each
method: an unbroken line for NB, dashed for SVM-R,
dash-dotted for SVM-L, and dotted for LR.

Our second task was the prediction of Parkinson’s
disease diagnosis itself based upon these features. The
performance of each model for this task is shown in
Table IV. Both the NB and SVM-R methods had very
similar performance in terms of accuracy and AUC —
with NB having better specificity but SVM-R having better
sensitivity. Neither LR or SVM-L were competitive for
this task unless high sensitivity is desired.

A plot of the time series in feature-space, colored by
category, and the decision boundary of each method is
displayed in Figure 4.

B. Additional principal components

In addition, we experimented with adding additional
principal components into the models, training them using
the same cross-validation procedure as above.

Tables V and VI show the resulting accuracy and AUC
scores when additional principal components are added,
with the test accuracy estimated using LOO-CV.

The NB model shows improvement in both accuracy
and AUC as more components are included. This did not
translate into improved test accuracy, probably indicating



Table V
RESULTING ACCURACY WHEN PREDICTING UPDRS-FT > 1 USING
2–5 PRINCIPAL COMPONENTS. THE BEST PERFORMING NUMBER OF

PRINCIPAL COMPONENTS WAS USED TO ESTIMATE THE TEST
ACCURACY WITH LOO-CVAND THE PERMUTATION TEST P-VALUE

Method PCA-2 PCA-3 PCA-4 PCA-5 Test Acc. P
NB 0.74 0.76 0.79 0.81 0.73 0.02
LR 0.73 0.74 0.76 0.74 0.73 0.01

SVM-L 0.71 0.79 0.76 0.79 0.71 0.01
SVM-R 0.84 0.84 0.83 0.81 0.8 0.01

Table VI
RESULTING AUC WHEN PREDICTING UPDRS-FT > 1 USING 2–5

PRINCIPAL COMPONENTS.

Method PCA-2 PCA-3 PCA-4 PCA-5
NB 0.74 0.76 0.79 0.81
LR 0.73 0.74 0.76 0.74

SVM-L 0.71 0.79 0.76 0.79
SVM-R 0.84 0.84 0.83 0.81

model overfitting. The LR and SVM-L models showed
minor improvements which again fail to translate into im-
proved test accuracy. The non-monotonic gains in accuracy
may be due to the effect of the bias-variance trade-off in
this dataset. Overall the SVM-R model with two principal
components performs had the highest metrics; additional
components degrade its accuracy due to the bias-variance
trade-off.

The resulting accuracy and AUC when predicting a
Parkinson’s diagnosis with additional principal compo-
nents is shown in Tables VII and VIII.

All models except for LR benefited from additional
components in terms of in-sample performance but none
of these gains translate into improvements in estimated test
accuracy. Non-monotonicity in performance as the number
of components grows implies there may be some effect
from the bias-variance trade-off.

C. Feature contribution to PCA

Table IX lists the percentage contribution of all of
derived features to the first 5 principal components, along
with the variance explained by each components.

Table VII
RESULTING ACCURACY WHEN PREDICTING PARKINSON’S DIAGNOSIS

USING 2–5 PRINCIPAL COMPONENTS. THE BEST PERFORMING
NUMBER OF PRINCIPAL COMPONENTS WAS USED TO ESTIMATE THE

TEST ACCURACY WITH LOO-CVAND THE PERMUTATION TEST
P-VALUE.

Method PCA-2 PCA-3 PCA-4 PCA-5 Test Acc. P
NB 0.69 0.63 0.67 0.74 0.67 0.46
LR 0.61 0.57 0.6 0.57 0.57 0.57

SVM-L 0.63 0.66 0.67 0.7 0.63 0.97
SVM-R 0.69 0.8 0.8 0.76 0.66 0.49

Table VIII
RESULTING AUC WHEN PREDICTING PARKINSON’S DIAGNOSIS

USING 2–5 PRINCIPAL COMPONENTS.

Method PCA-2 PCA-3 PCA-4 PCA-5
NB 0.69 0.64 0.69 0.74
LR 0.59 0.5 0.57 0.57

SVM-L 0.6 0.65 0.67 0.68
SVM-R 0.68 0.81 0.79 0.75

Table IX
CONTRIBUTION OF EACH FEATURE TO THE FIRST 5 PRINCIPAL

COMPONENTS IN PERCENTAGES. THE COLUMN NAMES SV-N DENOTE
CONTRIBUTIONS TO THE NTH SINGULAR VECTOR. ESD IS

SHORT-HAND FOR ENERGY SPECTRAL DENSITY.

Feature SV-1 SV-2 SV-3 SV-4 SV-5
Max Peak (Hz) 9.5 14.8 1.3 12.1 9.7

Total ESD 3 16.5 4.5 18.7 19.6
ESD (0–3.06 Hz) 8.3 10.7 23.2 6 4

ESD (3.06–6.12 Hz) 8.3 4 27.8 1.8 8.9
ESD (6.12–9.18 Hz) 12.7 10.8 11.3 8.6 4.6

ESD (9.18–12.24 Hz) 13.2 8 7 10.3 2.9
ESD (12.24–15.3 Hz) 11.8 10.5 4.7 4.1 12.2
ESD (15.3–18.36 Hz) 12 11.6 9.8 9.6 5.9

Maxima-Minima Ratio 6.4 13 8.6 20.9 20.2
Peak-to-Peak Std. Dev. 14.9 0.1 1.8 8 12.1

Variance Explained 37.5 24.1 15.3 7.6 5.5
Cumulative Variance 37.5 61.6 76.9 84.5 90

Our first component explaining 37.5% of the overall
variance is comprised primarily of the peak-to-peak stan-
dard deviation—measuring variability in rhythm through-
out the timeseries—and the Energy Spectral Density
(ESD) in higher frequency bands, which measure jittery
movement.

The second component included strong influence from
the frequency of the maximal peak (measuring rhythm),
the total power in the signal (corresponding to average
amplitude across the time series), and the maxima-minima
ratio (corresponding to jitter in hand motions).

D. Misclassified UPDRS-FT categories

We investigated the misclassified examples when pre-
dicting UPDRS-FT category using our the SVM-R with
two principal components model, to glean insight into
where our models may be improved.

This model misclassified 11 examples. 7 were mis-
classified as mild/moderate/severe bradykinesia (UPDRS-
FT > 1) (5 controls, 2 patients). Meanwhile, 4 were
misclassified as no/slight bradykinesia (UPDRS-FT 0-1) (1
control, 3 patients). The misclassified examples were close
to the decision boundary in 4 cases; for these cases there
was expert rater disagreement. All misclassified videos
had a UPDRS-FT grade of either 1 or 2, i.e. no large
misclassifications occurred.

The time series of two of the examples closest to the
decision boundary (one patient and control) are shown in
Figure 2. The two misclassified cases furthest from the
decision boundary (one patient and control) are also shown
in Figure 2.

Re-examination of the original videos and optical flow
timeseries by two neurologists (SW, JA) identified several
potential contributors to this misclassification. First, sev-
eral videos showed overall hand movement while fingers
were held closed between taps, usually a swinging wrist
movement preparing for the next tap (and in one case
tremor). This created additional small peaks and a more ir-
regular timeseries in videos that showed otherwise regular,
smooth finger tapping. Conversely, moving all the fingers
en masse tended to create large smooth peaks of optical
flow, that reduced the optical flow effect of underlying



irregularities in the tapping itself.
Second, a large difference between the speed of finger

opening (slower) and closing (quicker) created two dis-
tinct optical flow peak sizes/shapes, and a less uniform
timeseries, even though the actual tapping was not clearly
bradykinetic by UPDRS-FT. Third, our timeseries have a
15s duration, similar to several other objective measures,
e.g. [41], but the UPDRS-FT asks raters to judge only
the first 10 finger taps. When tapping rate is fast, only a
small initial section of the time series is judged by raters,
while later tapping changes contribute to the optical flow
timeseries.

Finally, it is known that raters prioritise amplitude and
rhythm when judging finger tapping, but pay less attention
to speed [4]. With this is mind, we noted that slow but
large amplitude movements tended to be classified as
UPDRS-FT 0-1 by raters, but UPDRS-FT > 1 by SVM-R,
whereas fast but smaller amplitude movements tended to
be classified as UPDRS-FT > 1 by raters, but UPDRS-FT
0-1 by SVM-R.

V. DISCUSSION

In a pilot sample of 70 finger-tapping test videos,
we showed reasonable predictive performance for
mild/moderate/severe bradykinesia (UPDRS-FT > 1). The
estimated test accuracy of 0.8 (using SVM-R) is promising
in light of the level of agreement between expert clin-
ical raters (κ = 0.46). We also note that disagreement
between the automated method and clinical experts may
be caused when either (i) the clinician is correct and the
automated test is wrong, or (ii) the clinician is incorrect
and the automated test is right. Given that prior literature
casts doubt on the ability of human experts to accurately
evaluate subtle traits [4], [39], (ii) is highly feasible; such
that the reported accuracy may underestimate how well
we truly classify bradykinesia. Further improvements in
accuracy and generalisability may be achieved by using
classification algorithms that account for uncertain labels,
such as probabilistic SVM [40]. However, in our case with
only two raters, such approaches may still be fragile, as an
individual rater will have a large affect on the probabilistic
labels.

The method was less successful at predicting the pres-
ence of Parkinson’s diagnosis: NB obtained an estimated
test accuracy of 0.67 using 5 principal components. In
fact, for all classifiers, the p-values from the permutation
test indicate that similar accuracies may be obtained by
chance. While this does not invalidate the result, a much
larger training sample is required to determine whether the
classifiers are learning true structure in the data.

This poorer performance is to be expected. A degree
of bradykinesia is often detected in control hands when
clinical raters are blinded to diagnosis status, particularly
among older age groups [20]. While bradykinesia is a nec-
essary component of the Parkinson’s diagnostic criteria, it
is not sufficient in isolation [3]. In practice, finger tapping
bradykinesia is only one of a more comprehensive set of
clinical assessments used to diagnose Parkinson’s.

The clinician ratings were based on 10 finger taps, as
per UPDRS, whereas the optical flow time series was 15
seconds duration, similar to some existing studies [41].
Some misclassification may have resulted from this differ-
ence in assessment time period. Future work could isolate
individual tapping epochs [42]. Future work to separate
overall hand movement from finger-thumb tapping might
also improve classification.

Our novel approach to finger tap measurement cannot
be easily compared with previous literature for several
reasons. First, previous studies use clinically recognisable
features (e.g. tap distance) rather than overall optical flow,
but they require special equipment or patient interaction
with an app. Second, the results of previous studies vary
widely in terms of strength of correlation or accuracy of
discrimination, despite apparently similar methods [18],
[28], [43], [44]. Finally, in contrast to our work, many
previous studies involve measurements after patients have
been instructed to withhold medication, artificially creat-
ing more severe bradykinesia and thus larger differences
[4], [21]. With these caveats, our accuracy of 0.8 is broadly
comparable to previous work.

The single previous computer vision video study in-
volved a small sample of 13 Parkinsons patients, who
all had advanced disease [10]. We note that their most
predictive feature for UPDRS was a measure of tapping
rhythm. This corresponds to our results in which the
first principal component feature was primarily composed
of a rhythm measure (peak to peak variation). Other
studies also suggest rhythm measures may be particularly
important [4], [19].

The approach used here has potential to provide widely
available, low-cost bradykinesia detection; without the
requirement for new hardware or for patients to directly
interact with smartphone apps or computer programs. This
is a fundamental difference from previously published
methods [4], [8]. An automated method broadens access to
the measurement of bradykinesia (currently the preserve
of a small group of clinicians, principally neurologists).
For example, allowing family doctors and medical nurse
practitioners to screen for and monitor the phenomenon
has potential resource benefits. Furthermore, the use of
ubiquitous technology means that the approach may be
suitable in a home setting to monitor progression of
Parkinson’s. In addition, it might also be useful for mon-
itoring other conditions in which there are changes in
movement over time such as rheumatoid arthritis, in which
common signs include decreased range of motion and joint
stiffness [45], [46].

Whilst initial results appear promising, our estimate
of accuracy may be optimistic, as our small sample
size meant that there was insufficient data to test on
an independent subset of data. In addition, the small
sample size means that classification using LR, SVMs, and
NB produced conservative decision boundaries. A large
sample would allow us to determine whether there was
any true local structure in the feature space. A larger
sample would also allow us to improve the usefulness



of the system by estimating the UPDRS score directly,
rather than the binary categorization undertaken here. A
larger validation study is therefore necessary and has been
initiated by the study team.

In addition, the continuum of finger tapping perfor-
mance means that in reality there is a soft boundary
between UPDRS-FT grade 1 and grade 2, but the use of
a binary classifier (e.g. SVM) creates a harder boundary
between these classifications, contributing to errors. In
future work, we can investigate ’fuzzy’ or multi-class
neural networks to address this.

Furthermore, the approach taken here is likely sub-
optimal in two respects. First, spatial and angular informa-
tion is discarded at each frame. This has the advantage of
reducing the dimensionality of the signal so that real-time
processing, even on modest hardware, is practicable. Sec-
ond, the hand-selection of candidate features was entirely
subjective and may have missed important characteristics
in the time series. Additional data would allow more
sophisticated approaches to automatically learn pertinent
features (c.f. [47]).

Finally, it is possible that we may introduce bias by
analysing data on a per-hand, rather than per-patient basis.
We do not believe that this was an important factor for
the analysis presented here. In supplementary material, we
further describe the expert-rated UPDRS of left and right
hands of the control and patient population, showing no
evidence of systematic difference between hands. We also
performed a sensitivity analysis in which the ’partnering’
hand was omitted from Leave One Out Cross Validation
training, in which the results remained consistent.

VI. CONCLUSION AND FUTURE WORK

We have described and demonstrated an automated
method to classify the presence of bradykinesia via smart-
phone video signals. In our pilot study we have shown
good agreement with expert clinicians. Further improve-
ments may be possible via more sophisticated analyses,
but this requires further training data. A larger validation
study of this technology is currently under development.
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