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Liver Segmentation in Abdominal CT Images
via Auto-Context Neural Network

and Self-Supervised Contour Attention
Minyoung Chung, Jingyu Lee, Jeongjin Lee∗, and Yeong-Gil Shin

Abstract—Accurate image segmentation of the liver is a
challenging problem owing to its large shape variability and
unclear boundaries. Although the applications of fully convo-
lutional neural networks (CNNs) have shown groundbreaking
results, limited studies have focused on the performance of
generalization. In this study, we introduce a CNN for liver
segmentation on abdominal computed tomography (CT) images
that shows high generalization performance and accuracy. To
improve the generalization performance, we initially propose an
auto-context algorithm in a single CNN. The proposed auto-
context neural network exploits an effective high-level residual
estimation to obtain the shape prior. Identical dual paths are
effectively trained to represent mutual complementary features
for an accurate posterior analysis of a liver. Further, we extend
our network by employing a self-supervised contour scheme. We
trained sparse contour features by penalizing the ground-truth
contour to focus more contour attentions on the failures. The
experimental results show that the proposed network results in
better accuracy when compared to the state-of-the-art networks
by reducing 10.31% of the Hausdorff distance. We used 180
abdominal CT images for training and validation. Two-fold
cross-validation is presented for a comparison with the state-of-
the-art neural networks. Novel multiple N-fold cross-validations
are conducted to verify the performance of generalization. The
proposed network showed the best generalization performance
among the networks. Additionally, we present a series of ablation
experiments that comprehensively support the importance of the
underlying concepts.

Index Terms—Auto-context neural network, contour attention
network, high-level residual shape prior estimation, liver segmen-
tation.

I. INTRODUCTION

MEDICAL image segmentation is an essential prereq-
uisite for clinical applications of a computer-aided

diagnosis system, such as volume measurement, treatment
planning, and further virtual or augmented surgeries [1], [2].
Among the organs, the liver is a highly in demand as liver
diseases are among the primary increasing causes of death
worldwide [3]. For accurate surgical planning, such as liver
transplantation and resection, volumetric information of the
liver is critically required. However, manual or semi-automatic
image segmentation of the liver is an impractical task owing
to its large shape variability and unclear boundaries. Unlike

Asterisk indicates corresponding author.
M. Chung, J. Lee, and Y.-G. Shin are with the Department of Com-

puter Science and Engineering, Seoul National University, Korea (e-mail:
chungmy@snu.ac.kr).

*J. Lee is with the Department of Computer Science and Engineering,
Soong-sil University, Korea (e-mail: profjjlee@naver.com).

other organs, ambiguous boundaries with the heart, stomach,
pancreas, and the occurrence of fat result in difficulty in
the image segmentation of the liver. Furthermore, manual
segmentation is error-prone, which implies that there exists
a severe inter- and intra-observer variability in the results.

A vast body of literature on automatic liver segmentation
has been previously presented. Many classical methods, be-
fore the era of deep learning, employed image- or shape-
based approaches [4]–[8]. Among them, an active contour
model (ACM) was a popular approach, which regards the
segmentation task as a contour delineation [4], [5]. The ACM
approach attempts to design an objective energy functional
that drives the contour to propagate toward the target object
by numerical optimization techniques [9]–[11]. However, the
stopping criteria of ACM primarily rely on the local in-
tensity distribution, which easily breaks down owing to the
large variance in foreground intensity distribution and unclear
boundaries of the liver. Conversely, shape-based methods,
such as an active/statistical shape model, were developed to
overcome such difficulties [6], [7], [12]–[14]. Shape-based
methods are regarded as more successful approaches than
simple intensity-based methods owing to the embedded shape
priors. However, the shape-based methods also suffer from
limited prior information (i.e., lack of liver database) as it is
difficult to embed all inter-patient organ shapes. Moreover, fine
registration is still challenging owing to irregular boundaries.

With the advent of deep learning, convolutional neural
networks (CNNs) have been showing promising results over
the conventional methods for the medical image segmentation
task [15]–[25]. However, the performance of generalization
was not addressed, which is the most important feature in
the actual deployment of CNNs for medical image segmen-
tation tasks. Many studies were conducted to obtain a high
generalization performance of neural networks, such as weight
decay, drop out [26], transfer learning [27], data augmentation
[28], domain adaptation [29], [30], and regularization of loss
functions [31]. However, these global, systematic techniques
demonstrate limitations in adapting to other fields that have
severe data deficiency and intrinsic class imbalance (e.g., rare
cases of anomalies and phases in medical images). Thus, a
domain-specific generalization technique is highly required,
especially in the field of medical image analysis. Additionally,
it is worth knowing that the image segmentation problem
can be resolved by delineating the accurate boundaries of an
object in the image, such as in ACM approaches [4], [5],
[9]–[11]. However, research focusing on the implantation of

ar
X

iv
:2

00
2.

05
89

5v
1 

 [
cs

.C
V

] 
 1

4 
Fe

b 
20

20



ii

Fig. 1: Overall architecture of the proposed neural network.

a contour scheme to modern end-to-end CNN frameworks
is significantly limited. Oppose to a previous study [19],
it is difficult to simply supervise a CNN to delineate the
full ground-truth contour in a multi-task framework because
many ambiguous boundaries exist on the liver border. In this
study, we propose a novel CNN architecture to address the
aforementioned issues regarding generalization performance
and contour scheme implantation.

The base architecture of our network is an auto-context
algorithm [32]. We employed the auto-context algorithm [32]
to a single neural network by using a liver-prior branch (Fig.
1). The liver-prior branch is deeply supervised to generate the
probability of a liver foreground. The prior is then fused with
deep contexts for the final auto-context layers. In addition to
the auto-context structure, we added another branch, which
is also deeply supervised to delineate the contour of a liver.
Instead of training the explicit ground-truth contour, we trained
sparse contours by a self-supervising method that acts as an
implicit contour attention. The self-supervision is obtained
by the final prediction of the network, which penalizes the
ground-truth contour image based on confidence. The primary
underlying principle of the proposed architecture is that the
accurate segmentation of a liver can be achieved by a ro-
bust shape prior and an accurate contour delineation. This
work is an extension of our previous work on a contour
embedded network (CENet) [33], which employed the self-
supervised contour embedding. The proposed network in this
study automated the previous self-supervision of the contour
by removing categorical classification loss that was formed by
a heuristic threshold value [33]. We referred to our proposed
network as automated auto-context CENet (AutoCENet). The
network also reduced a large number of parameters based on
the compact formulation of the auto-context algorithm.

The remainder of this paper is organized as follows. In
Section II, several CNN models, auto-context algorithms, and
contour embedding mechanisms are reviewed. The proposed
method is described in Section III. The experimental results,
discussion, and conclusion are presented in Sections IV, V,
and VI, respectively.

II. RELATED WORKS

A. CNNs for Medical Image Segmentation

Since a fully convolutional network (FCN) was introduced,
several CNN architectures have been developed for medical
image segmentation tasks. To extract 3D anatomical con-
texts, a 3D U-net [16] was presented by replacing all the

2D convolutional operators in the original U-net with their
3D counterparts. The U-net architecture employs contracting
and expanding paths together with skip connections, which
combines both low- and high-level features [15]. In [17], a
full 3D CNN-based U-net-like architecture was presented to
segment volumetric medical images using dice coefficient that
tackles the class imbalance problem. The dice loss presented
in [17] intrinsically overcame the class imbalance problem by
avoiding a strong bias toward background learning. A deep
contour-aware network was developed to depict clear con-
tours by designing a multi-task framework [19]. A voxelwise
residual network (VoxResNet) [18] performed brain tissue
segmentation by employing voxelwise residual connections.
Additionally, the authors employed an auto-context algorithm
to further refine the voxelwise prediction results [18]. A
deep supervision mechanism [34] was employed to supervise
multiple intermediate layers, which enhanced the discrim-
inability of the low-level features [22]. The authors argued that
when more discriminable low-level features are extracted, a
more discriminative final classification can be obtained, which
results in the improvement of the generalization performance
[22]. A densely connected convolutional architecture [35] was
employed by designing a similar architecture as a V-net for the
task of multiorgan segmentation [24]. The singularity of the
network was the introduction of a trainable grid that learns the
shape prior [24]. More recently, the attention mechanism was
successfully employed in the 3D U-net architecture to boost
the performance of the network in [25]. The authors hierarchi-
cally applied the attention gate module to disambiguate task-
irrelevant feature contexts in the intermediate layers (AGU-
net) [25].

B. Auto-Context Algorithm

The auto-context mechanism fuses implicit shape infor-
mation and low-level appearance features to perform image
segmentation [32]. The posterior distribution of the given
segmentation problem is learned with marginal distribution
(i.e., classified probability map), which is further combined to
learn the final classifiers. The posterior marginal distribution
is learned through image patches by calculating the following
distribution [32]:

p(yi|x) =

∫
p(yi,y−i|x)dy−i, (1)

where x, y present a given image and ground-truth label
vector, respectively, and y−i is a marginal set, {y − yi}. We
have omitted patch representation for simplicity. Traditional
feature extractors (e.g., Haar [36], histogram of oriented gra-
dients [37]) and classifiers (e.g., probabilistic boosting tree
[38]) were used for patch-wise prediction for the calculation
(1). The algorithm iteratively solves the posterior probability
with the previous marginal distribution:

p(t)(yi|x, p̃(t−1)) −→ p(yi|x), (2)

where p̃(t−1) is a posterior marginal for each pixel i learned
according to (1). It was proven by the authors that the
algorithm asymptotically converges to p(yi|x) with a discrete,
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iterative process. In contrast to the original paper [32], we
used the term “context” in this paper as a feature used in the
second classifier (i.e., not shape information).

C. Self-Supervised Contour Embedding

The contour features were successfully embedded in the
network in [33]. The authors deeply supervised the contour
extraction layer by a dynamic modification of the ground-truth
contour for each iteration, as presented below:

Γ̃c = Γc ⊗ (ỹp), (3)

where ⊗ is an element-wise multiplication operator, Γc is the
ground-truth contour image, and ỹp is a binary image with
respect to the threshold value p:

ỹp(x) =

{
1, if ỹ(x) < p,

0, otherwise,
(4)

where ỹ is the output probability prediction of the proposed
network for a given iteration. That is, the ground-truth contours
were automatically erased if the network successfully delin-
eated the corresponding labels at the output. A manually self-
supervised contour embedding mechanism was established
by explicit attention to the misclassified contour region. The
training of the contour feature was performed by a cross-
entropy classification loss for each voxel.

III. METHODOLOGY

The proposed network architecture is composed of three
primary branches: liver-prior, context, and contour, i.e., the
blue, gray, and orange dotted boxes in Fig. 2, respectively.
The liver-prior network is deeply supervised to estimate the
ground-truth liver in a lower resolution. The trained posterior
(i.e., the output of the liver-prior network) is used as a
prior in the remaining auto-context network. Deep features
that are trained by the context network are concatenated to
the prior for the final auto-context fusion. In addition, the
contour attention branch is also deeply self-supervised with
a penalized ground-truth contour regarding the output of the
network. There are two different non-linear modules in our
network: skip-attention block (Fig. 3a) and V-transition layer
(Fig. 3b). Each module is comprised of depth-wise separable
convolutions, batch normalization [39], rectified linear unit
(ReLU) nonlinear activation function [40], skip connection,
and channel-wise attention. Details of the architecture are
described in the following subsections.

A. Common Feature Extraction

The skip-attention block (Fig. 3a) is first used to extract
common features (i.e., shared features in the following layers).
Subsequently, the features are fed to the liver-prior, context,
and contour sub-networks (Fig. 2). The skip-attention block
is composed of non-linear transformation series: separable
convolutions, batch normalization, and ReLU non-linear ac-
tivation function (Fig. 3a). These transformations are skip
connected for feature reuse. We introduced depth-wise sep-
arable convolutions [41] in the skip-attention block rather

than bottleneck [42] or compression [35] layers for more
efficient use of parameters. The attention mechanism is applied
to the final output to employ channel-wise attention, similar
to [43]. Unlike [43], for simplicity, we directly applied a
trainable channel-wise attention vector that is multiplied for
each channel.

B. Liver-Prior Inference and Auto-Context Algorithm

The base architecture of the proposed network is the auto-
context algorithm. Instead of stacking deep neural layers,
our proposed network uses multiple shallow stacks of layers
(Fig. 2). The liver-prior and context layers are composed of
V-transition layers, which are small V-net-like modules that
include down and up transitions together with skip connections
(Fig. 3b). The channel-wise attention is applied to the features
in the lower resolution. The two identical shape transitions are
used in the liver-prior block to subtract each output prediction
at a higher level (blue dotted box in Fig. 2). The output is
deeply supervised with the ground-truth label image. The dual-
passing architecture effectively learns mutually complemen-
tary features for the accurate inference of the liver posterior.
The objective function for deep supervision of liver-prior can
be defined as follows

Lp = D
(
(V 0
p (S(x))− V 1

p (S(x))),ydl

)
, (5)

where x, S,ydl denotes input image, skip-attention block,
and the ground-truth liver label at down-scaled resolution,
respectively. D denotes the soft dice loss [17] and V ip indicates
the ith V-transition in the liver-prior sub-network. Finally, the
output feature map is concatenated to the context features
(i.e., output of the context sub-network; Vc(S(x))) and is
passed through an auto-context sub-network (Va) for the final
refinement:

Lf = D
(
Va

([
Vc(S(x)), Rp(S(x)), VC(S(x))

])
,yl

)
, (6)

where Rp denotes the residual output of the liver-prior sub-
network, VC indicates the contour V-transition described in the
subsequent subsection, and yl denotes the ground-truth liver
label.

The V-transition architecture is visualized in Fig. 3b. The
down-transition process down-samples the feature map by a
factor of two for each dimension through 23 convolutions
with stride = 2. Conversely, an up-transition process restores
the dimensions through a de-convolution (i.e., transposed
convolution). We designed a skip connection and channel-wise
attention in the lower dimension. By contracting and expand-
ing paths, the V-transition layer can extract more multiscaled
features (i.e., higher receptive field). A 13 convolution is ap-
plied to the final concatenated features for further propagation.
The number of output channels is as illustrated in Fig. 2.

C. Understanding the Network

Let vectors x = {xi ∈ R, i ∈ R3} and y = {yi ∈
{0, 1}, i ∈ R3} represent the input image and ground-truth
label, respectively. The objective of the given segmentation
problem is to determine the optimal solution for modeling
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Fig. 2: Proposed 3D network architecture. Stacked V-transitions form a base module with multiple skip connections. The red
(i.e., circled arrow) and blue (i.e., squared) arrows indicate up- and down-transition layers, respectively. The red and blue dotted
boxes represent the contour and liver-prior transitions, respectively. The two transitions are deeply supervised by the penalized
contour and ground-truth liver foreground. The penalized contour loss is formulated by employing the final output, output of
the contour network, and the ground-truth contour labels (double lines with red arrows). All the images are displayed in 2D
for simplicity. This image is best viewed in color.

a conditional probability distribution, p(y|x), by determining
the maximum a posterior, as presented below:

θ∗ = arg max
θ

p(y|x; θ) = arg max
θ

p(x|y; θ)p(y), (7)

where θ is a parameter set for classifiers. However, it is
significantly difficult to model the likelihood (i.e., p(x|y; θ))
and prior (i.e., p(y)); moreover, solving the decomposed
posterior with a generative approach easily yields inaccurate
results, primarily owing to the difficulty in likelihood and
prior estimations. Our proposed network iteratively solves the
posterior directly using the auto-context method [32]. In auto-
context, the previous classification map is used as a shape
feature (i.e., the term “context” is used in the original paper)
for additional classification. Setting t as a discrete time value,
the auto-context is formulated as

p(t)
(
y|x, p(t−1)(y|x; θ(t−1)); θt

)
−→ p(y|x; θ∗). (8)

Unlike the previous approaches [32], [44], we combined the
shape-feature extraction procedure with a single-passing neural
network. The output of our proposed network for time t can
be formulated as

p(t)
(
y|x, p̃(t)(y|x; θt); θt

)
, (9)

where p̃ is a probability map of shape-residual sub-network
(i.e., the blue dotted box in Fig. 2). Applying deep supervision
(i.e., auxiliary classifiers), we could obtain a single-passing
neural network embedded with a previous posterior. Thus,
we avoided using separated classifiers and storing previous
classification maps.

D. Self-Supervising Contour Attention

From the base architecture of the aforementioned auto-
context framework, we extended our network with an explicit
focus on contour features. The primary differences from the
original work [33] are the automatization of the training
procedure and removal of the categorical classification loss.
Unlike defining the threshold and manipulating it manually
during the iteration, we employed a penalized contour soft loss
with respect to the output predictions of the network. We first
calculated the contour weighting map that has larger values
for the misclassified contour as follows:

Γ̂c = Γc ⊗ ỹ−1
l , (10)

where Γc, ⊗, and ỹ−1
l indicate the ground-truth contour image,

element-wise multiplication operator, and the final inverse
liver prediction, respectively. The ground-truth contour image
contains a value of 1 for the contour and 0 elsewhere. For
the inverse prediction, we applied ỹli = 1− ỹli for every ith

voxel, where ỹl is the final output prediction of a foreground
liver after softmax operation. Finally, we applied a penalized
contour loss as follows:

LC = −
∑
i∈Ω

(
w0(1− Γc,i)log(1− ỹc,i) + w1Γc,iΓ̂c,ilog(ỹc,i)

)
,

(11)
where ỹc is the output prediction of the contour after softmax
operation, wc denotes class-specific weights for class c, and
Ω indicates the dimensions of the image (i.e., Ω ∈ R3). Con-
sequently, the contour loss includes sparse contour attention
based on the final output (10), which is employed to penalize
the confident output of the network at each iteration. The
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(a) Skip-attention layer (common feature extraction module). The intermediate
features are skip-connected by concatenation. A trainable channel-wise atten-
tion vector is employed for the final output features. The number of output
features is 96.

(b) V-transition layer. A structured non-linearity module (i.e., SC-BN-ReLU)
composed of a series of separable convolutions (SCs), batch normalizations
(BNs), and rectified linear units (ReLUs). A multiscaled feature analysis
is applied by down-transition through 23 convolutions with stride = 2 and
up-transition through 23 transposed convolutions with stride = 2. A skip-
connection and channel-wise attention vector are employed in the lower
resolution similar to the skip-attention block. The final output is obtained
by a 13 convolution applied to the concatenated features.

(c) Depth-wise separable convolutions. The input channels are separated by
groups and are convolved separately. The final output is a concatenation of
all groups. The number of groups is four in the proposed network.

Fig. 3: Proposed non-linear layers employed in the proposed
network: (a) skip-attention, (b) V-transition layers, and (c)
depth-wise separable convolutions.

difference between the proposed loss function and the focal
loss [45] is that the proposed self-supervision is intended
to penalize the confident output regarding the final liver
prediction rather than the confidence of the contour itself.

E. Learning the Network
The task of the given learning system is to maximize

the posterior, p(y|x). To effectively model the probability
distribution, we attempted to train our network model to map
the segmentation function φ(x) : x −→ {0, 1} by minimizing
the following loss function:

L = Lf + αLp + βLC + γ‖W‖22, (12)

where Lf , Lp, and LC indicate objective functions defined at
the final output (6), shape prior (5), and contour (11) layers,
respectively. W is a whole set of network parameters. α, β,
and γ are weighting parameters. The output of the network is
obtained by applying softmax to the final output feature maps.

“Xavier” initialization [46] is used for initializing all the
weights of the proposed network. While training the network,

we fixed the loss parameters as α = β = 1 and γ = 0.1 in (12).
We used the rectified Adam optimizer [47] with a batch size of
4 and learning rate of 0.001. We decayed the learning rate by
multiplying 0.5 for every 10 epochs. We trained the network
for 100 epochs using an Intel i9-7900X desktop system with
3.30 GHz processors, 128 GB of memory, and Nvidia Titan
RTX (24 GB) GPU machine. We implemented the network
using the PyTorch framework. It took 2h to complete all the
training procedures.

F. Data Preparation and Augmentation

We acquired 180 subjects in total: 90 subjects from a
publicly available dataset1 in [24], 20 subjects from MICCAI-
SLiver07 dataset [8], 20 subjects from 3Dircadb2, 20 subjects
from CHAOS challenge3, and additional 30 annotated subjects
with the help of clinical experts in the field. In the dataset, the
slice thickness ranged from 0.5−5.0mm and pixel sizes ranged
from 0.6− 1.0mm.

The whole dataset was separated into three sets: training,
validation, and testing. We first randomly shuffled the dataset
and separated 80 images for testing. The remaining 100
images were used for training based on a two-fold cross-
validation (i.e., 50 training images and 50 validation images).
We resampled all abdominal CT images into 256× 256× 64.
We pre-processed the image using fixed windowing values:
level=10 and width=700 (i.e., we clipped the intensity values
under −340 and over 360). After re-scaling, we normalized
the input images into the range [0-1] for each voxel. On-the-
fly random affine deformations were subsequently applied to
the dataset for each iteration with an 80% probability.

IV. EXPERIMENTS

In our experiments, we evaluated the performance in terms
of accuracy and generalization of our proposed network by
comparing these results with those of the other state-of-the-art
FCN-based models. We used 3D U-net [16], V-net [17], deeply
supervised network (DSN) [22], VoxResNet [18], DenseVNet
[24], AGU-net [25], CENet [33], and our proposed network,
AutoCENet for the performance evaluation.

A. Evaluation Metrics

The segmentation results were evaluated using the F1 score,
precision, sensitivity, Hausdorff distance (HD), and average
symmetric surface distance (ASSD). The F1 score is defined
as follows:

F1 = 2× Precision× Sensitivity
Precision+ Sensitivity

. (13)

Precision and sensitivity are defined by P = TP
TP+FP and

S = TP
TP+FN , where TP, FN, and FP are the numbers of true

positive, false negative, and false positive voxels, respectively.
The F1 score is equivalent to the dice coefficient [17]. The
surface distance metrics were evaluated on a surface basis:

1https://doi.org/10.5281/zenodo.1169361
2https://www.ircad.fr/research/3dircadb
3https://doi.org/10.5281/zenodo.3367758
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TABLE I
Accuracy evaluation of the proposed network and the state-of-the-arts

Methods DSC Precision Sensitivity HD [mm] 95% HD [mm] ASSD [mm]

3D U-net [16] 0.95± 0.01 0.94± 0.02 0.96± 0.02 45.20± 31.93 7.77± 12.71 1.33± 0.91

V-net [17] 0.95± 0.02 0.94± 0.02 0.95± 0.03 26.52± 19.05 5.38± 3.94 1.20± 0.65

DSN [22] 0.92± 0.02 0.88± 0.04 0.97 ±±± 0.01 28.63± 23.85 7.40± 9.33 1.77± 1.05

VoxResNet [18] 0.95± 0.01 0.95 ±±± 0.02 0.95± 0.02 18.67± 11.15 4.99± 5.89 1.11± 0.49

DenseVNet [24] 0.83± 0.05 0.75± 0.09 0.94± 0.03 37.19± 14.52 16.54± 8.47 3.98± 1.69

AGU-net [25] 0.95± 0.01 0.94± 0.03 0.96± 0.01 31.57± 22.22 8.56± 13.52 1.34± 1.07

CENet [33] 0.95± 0.01 0.95± 0.02 0.96± 0.01 16.68± 8.87 3.55± 1.36 0.94± 0.38

AutoCENet 0.96 ±±± 0.01 0.95 ±±± 0.02 0.97 ±±± 0.01 14.96 ±±± 4.25 2.92 ±±± 1.12 0.82 ±±± 0.32

(a) DSC.

(b) HD in mm.

(c) 95% HD in mm.

(d) ASSD in mm.

(e) Sensitivity.

(f) Precision.

Fig. 4: Box plots of the evaluation metrics for state-of-the-art
networks.

HD, 95% HD [33], and ASSD [8]. We applied 95% of voxels
for HD to exclude the 5% of outlying voxels. The 95% HD is
a better-generalized evaluation of distance because there exist
ground-truth variations on a portal vein region. Two-fold cross-
validation was used to obtain the quantitative results listed in
Table I.

B. Comparison

Table I shows the quantitative results of liver segmentation.
The results show that our proposed AutoCENet along with

CENet [33] outperformed other state-of-the-art networks;,
moreover, our network showed better accuracy while us-
ing much fewer parameters than CENet. Table I lists that
AutoCENet reduced ASSD by 12.77% when compared to
CENet. The lowest precision and sensitivity were presented
by DenseVNet [24]. DenseVNet failed to segment the liver
accurately because of two significant reasons: 1) the resolution
of the network was too low and 2) shape prior was not
robust. The excessively coarse dimensions of the network
suffer from inaccurate segmentation in the original image
resolution. Furthermore, 123 resolution of shape prior is too
small; moreover, the training images must be accurately and
manually cropped for the robustness of the shape prior. There
is no specific metric presented in the original paper [24] to crop
the testing images automatically. The DSN [22] showed high
ASSD because the network was inferred from low resolution.
The up-sampling process from 40 × 40 × 18 demonstrated
limitations in accurately delineating objects in the original
resolution. The results indicate that multiple deep supervisions
in DSN enforced the lower-level intermediate features to be
discriminative, which resulted in degradation of the overall
performance. The AGU-net also presented many false positives
as opposed to the architectural design principle proposed in
the original paper [25]. The spatial attention-gated units in
AGU-net [25] failed to suppress irrelevant background regions
as suggested. Conversely, VoxResNet [18] showed the second
minimum distance errors. The results of VoxResNet indicates
that the auto-context algorithm successfully suppressed false
positive responses. The box plots of the results listed in Table
I are illustrated in Fig. 4.

C. Ablation Study

We extended our experiments to verify the architectural
components of the proposed network. We first validated the
auto-context framework that does not exploit contour features
(i.e., without contour loss, Lc in (12); AutoCENet). From the
base auto-context framework, four additional ablations were
studied: without channel-wise attention (AutoNet-att), without
the auto-context part (i.e., AutoNet-A), without high-level
residual inference (i.e., AutoNet-R), and without both auto-
context and high-level residual inference (i.e., AutoNet-AR).
In the case of AutoNet-A, we removed the deep supervision for
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(a) Ground-
truth.

(b) 3D U-net. (c) V-net. (d) DSN. (e) VoxResNet. (f) DenseVNet. (g) AGU-net. (h) CENet. (i) AutoCENet.

Fig. 5: Visualizations of the test results for state-of-the-art networks. The surface color is visualized based on the distance to
the ground-truth surface.

TABLE II
Performance of AutoCENet and its ablations

Methods DSC HD [mm] ASSD [mm]

AutoCENet 0.96 ±±± 0.01 14.96 ±±± 4.25 0.82 ±±± 0.32

AutoNet 0.95± 0.01 20.18± 8.79 1.04± 0.42

AutoNet-att 0.95± 0.01 25.73± 17.06 1.10± 0.53

AutoNet-A 0.95± 0.01 33.25± 22.80 1.34± 0.71

AutoNet-R 0.95± 0.01 37.99± 25.09 1.23± 0.57

AutoNet-AR 0.94± 0.01 38.88± 28.81 1.32± 0.61

AutoCENet+FC 0.95± 0.01 27.56± 20.34 1.20± 0.56

AutoCENet+MC 0.95± 0.01 24.20± 15.26 1.14± 0.56

the liver-prior network (Fig. 2). For AutoNet-R, the high-level
residual connection was modified to a sequential connection of
V-transitions with the number of intermediate features equal
to 48. AutoNet-AR employed both the modifications corre-
sponding to AutoNet-A and AutoNet-R. The results (Table II)
showed that the accuracy of all the ablations was lower than
the original AutoCENet. In AutoNet ablations, a significant
increase pertaining to distance metrics were observed when
the auto-context algorithm or residual shape prior were not
employed. The results indicate that the auto-context frame-
work and residual shape prior estimation jointly performed
an important role in the final accuracy. The results of the
liver-prior network with and without the residual inferences
showed that the high-level residual connection boosted the
performance of the liver-prior network. Sample visualizations
of the liver priors are presented in the following subsection.

To verify the proposed self-supervised contour attention
loss, we additionally experimented with two different contour
losses: full-contour supervision of the ground-truth contour
(AutoCENet+FC) and manual self-supervision, which was
previously proposed in [33]. The former full supervision
was conducted without the penalization term presented in
(11). The latter self-supervision was conducted by employing
modified contour supervision, as presented in (4) [33]. All the
contour variants showed lower accuracy when compared to

(a) Input image. (b) Ground-truth activation.

(c) ỹ0
dl in AutoNet. (d) ỹ1

dl in AutoNet.

(e) ỹ0
dl − ỹ1

dl in AutoNet. (f) ỹdl in AutoNet-R.

Fig. 6: Liver prior estimations of AutoNet and AutoNet-R.

the original network. The performance of the AutoCENet+FC
was more inferior than that of the AutoNet (Table II) in terms
of distance measures, indicating that enforcing the network
to learn the full ground-truth contour image degrades the
performance. Sample visualizations for the fully supervised
and self-supervised contour feature maps are illustrated in the
following subsection.
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Fig. 7: Visualizations of contour feature map and the final outputs after full training of AutoNet: full-contour supervision (left;
AutoCENet+FC) and self-supervision (right; AutoCENet). The self-supervised contour feature map is sparser than that of the
full supervision and is implicitly utilized as a strong contour attention. The ground-truth surface is used for visualizing the
distribution of the contour feature. The softmax value is normalized into the range [0-1].

D. Liver-Prior and Contour Feature Analysis

Figure 6 shows the liver shape priors that were estimated
with and without the proposed residual connection. The pre-
dicted probabilities clearly show the effectiveness of the high-
level residual connection in shape prior estimation. The pos-
terior of the liver from AutoNet-R (Fig. 6f) shows significant
false positive responses when compared to the version with a
residual connection (Fig. 6e). The two high-level predictions,
i.e., Figs. 6c and 6d, were used as mutual complements to
derive accurate liver prediction. The results indicate that the
high-level residual inference shows an effective method to
estimate accurate prior of a liver region without implementing
a more complex and deep architecture of neural layers.

The contour feature map of a fully supervised network (i.e.,
using ground-truth contour supervision; AutoCENet+FC) was
activated within overall contour regions (left box in Fig. 7).
The figure illustrates that even with fully supervised training,
the network failed to extract full-contour features accurately.
Conversely, in the self-supervised network, the contour feature
map was activated in the sparse regions (right box in Fig.
7). The sparse contour feature map acted as an implicit
attention such that the network can concentrate more on the
accurate delineation of boundary regions. By employing the
self-supervised contour learning, the network demonstrated an
improvement in the final segmentation. Figure 7 illustrates
the final output prediction of AutoNet and the following
two networks: AutoCENet and AutoCENet+FC. The self-
supervised contour responses did not correspond to the initial,
weak contours from AutoNet (i.e., the initial sparse contour
supervision starts from the weak parts of AutoNet results).
A strong indication is that the self-supervised contour feature
guides the network to better delineate object contours rather
than learning the misclassified counterparts, as illustrated in
Fig. 7. That is, the response of the contour feature successively

changes pertaining to the current output prediction, which acts
as implicit attention for the network. Note that the contour
features are not complementary features that are to be merged
for the final output prediction.

E. Multiple N-Fold Validation

Previous research has thoroughly investigated neural net-
works in an architectural perspective and verified their perfor-
mances within individual metrics. However, limited academic
research has been conducted to show the performance of
generalization. To evaluate the performance of generalization,
N-fold cross-validations were demonstrated for the presented
networks. Figure 8 illustrates the dice loss for the test images
(i.e., 80 images) by training the network using 10%, 30%,
50%, 70%, and 90% of training images out of the 100 images.
The N-fold experiments approximately proxy the real-life
deep learning problem and show an extremely generalized
regularization analysis.

The overall test errors increased in a smaller percentage of
training images. The proposed AutoCENet showed the best
performance of generalization. AutoCENet did not over-fit
the training images when compared to the other networks.
The VoxResNet [18] was the second-best out of other state-
of-the-art networks. The fair performance of VoxResNet was
obtained owing to its auto-context algorithm. The severe errors
in DenseVNet [24] were caused by weak representative shape
prior, as discussed in the aforementioned evaluations.

The ablation networks of AutoCENet showed compara-
ble performances to the other state-of-the-art networks (Fig.
8b. Among AutoNet variations, AutoNet-R was the worst-
performing network indicating that residual shape prior esti-
mation performs an important role in an auto-context algo-
rithm. In the cases of contour variants, full supervision of
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(a) AutoCENet and state-of-the-art networks.

(b) AutoCENet and its ablations.

Fig. 8: N-fold cross-validation study of (a) the state-of-the-
art networks and (b) the proposed network and its variants.
The networks were cross validated by using 10%, 30%, 50%,
70%, and 90% of the images for training out of a total of
100 images. The errors were calculated based on the 80 test
images with dice loss.

contour (i.e., AutoCENet+FC) showed the worst performance
(Fig. 8b).

V. DISCUSSION

In recent years, the employment of shape priors or neural
networks has been the most promising method for the accurate
segmentation of a liver. The proposed network avoided using
the shape priors because the performance can be highly
dependent on the trained shape variations. If the training set
is insufficient, the algorithm easily breaks down owing to
the quality of the trained prior. Our proposed auto-context
algorithm introduced a high-level residual shape prior esti-
mation process that robustly acquired the liver posterior. The
embedded liver probability map acted as a post-inference prior,
which can be further used for the final accurate classification
in an auto-context framework. Consequently, a single-passing
auto-context neural network was established without separate
classification series, as presented in [32], [44]. The primary
underlying principle of the basic auto-context architecture
is that the performance of generalization can be achieved
by a robust estimation of the overall shape of a liver. In
that perspective, high-level residual shape estimation in a
lower resolution can successfully achieve the desired task. The
architecture suggests that deepening or widening the neural

network is not the only way for complex tasks. Stacking layers
sequentially results in difficulty in using parameters effectively
and further degrades the regularization of the network. The
study of ablation for residual connection demonstrated that
the proposed method, which was designed as a task-dependent
curriculum, significantly outperformed a simple sequential
architecture.

The attention mechanism has demonstrated increasing ap-
plicability as a dominant method for modern neural networks.
However, the attention mechanism demonstrates a limitation
as it is a data-driven algorithm, which indicates that the per-
formance completely relies on the training data distribution. A
simple adaptation of the attention mechanism cannot improve
the baseline network without explicit guidance. The experi-
mental results showed that the self-attention mechanism pre-
sented in AGU-net [25] did not show significant improvement
when compared to the basic 3D U-net [16]. It is significantly
difficult to create a neural network that focuses more attention
on certain features that are useful for the final output. In this
study, a self-supervising contour delineation was applied to
the intermediate layer that is intended to implicitly guide the
network, rather than giving explicit attention, to focus more
attention on weak boundary regions that the network has failed
to accurately delineate. The self-supervising mechanism was
successfully embedded in the network and it improved the
final accuracy without any extra false positives.

VI. CONCLUSION

The accurate segmentation of a liver is still a challenging
task. Although deep learning demonstrates increasing appli-
cations, the lack of annotated medical image data results
in difficulty in successfully deploying CNNs in the clinics.
Therefore, improving generalization performance is one of
the most important tasks for utilizing CNN. In this study,
a CNN for liver segmentation was proposed to minimize
generalization errors based on the human-designed curricu-
lum (i.e., auto-context). The proposed method minimized the
error between training and test images more than any other
modern neural networks. In addition, the contour scheme was
successfully employed in the network by introducing a self-
supervising metric. Instead of exploiting the entire ground-
truth contour or self-attention, sparse contours were trained
explicitly so that the network can focus on its failures. Based
on the experimental results, it was identified that the proposed
method performed a significant role in improving accuracy.
The newly presented multiple N-fold cross-validation studies
also demonstrated the practical applicability of the networks
in actual clinics.
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