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Abstract

Melanoma is an aggressive neoplasm responsible for the majority of deaths from skin cancer. Specifically, spit-
zoid melanocytic tumors are one of the most challenging melanocytic lesions due to their ambiguous morphological
features. The gold standard for its diagnosis and prognosis is the analysis of skin biopsies. In this process, der-
matopathologists visualize skin histology slides under a microscope, in a highly time-consuming and subjective task.
In the last years, computer-aided diagnosis (CAD) systems have emerged as a promising tool that could support
pathologists in daily clinical practice. Nevertheless, no automatic CAD systems have yet been proposed for the analy-
sis of spitzoid lesions. Regarding common melanoma, no system allows both the selection of the tumor region and the
prediction of the benign or malignant form in the diagnosis. Motivated by this, we propose a novel end-to-end weakly
supervised deep learning model, based on inductive transfer learning with an improved convolutional neural network
(CNN) to refine the embedding features of the latent space. The framework is composed of a source model in charge
of finding the tumor patch-level patterns, and a target model focuses on the specific diagnosis of a biopsy. The latter
retrains the backbone of the source model through a multiple instance learning workflow to obtain the biopsy-level
scoring. To evaluate the performance of the proposed methods, we performed extensive experiments on a private skin
database with spitzoid lesions. Test results achieved an accuracy of 0.9231 and 0.80 for the source and the target
models, respectively. In addition, the heat map findings are directly in line with the clinicians’ medical decision and
even highlight, in some cases, patterns of interest that were overlooked by the pathologist.

Keywords: Spitzoid lesions, Attention convolutional neural network, Inductive transfer learning, Multiple instance
learning, Histopathological whole-slide images

1. Introduction1

According to the World Health Organization, nearly2

one in three diagnosed cancers is a skin cancer [1]. The3

most dangerous skin cancer is melanoma which is re-4

sponsible for 80 percent of skin cancer-related deaths5

[2]. Melanoma is an aggressive melanocytic neoplasm6

with numerous resistance mechanisms against therapeu-7

tic agents. In most melanocytic tumors, a precise patho-8

logical distinction between benign (nevus) and malig-9

nant (melanoma) is possible. However, there are still10

uncommon melanocytic lesions that represent a diag-11

nostic challenge for pathologists. Among these, one of12

the most challenging lesions to diagnose is the so-called13

‘spitzoid melanocytic tumors’ (SMTs), composed of14

spindled and/or epithelioid melanocytes with a large nu-15

cleus [3].16

The final diagnosis of SMTs is confirmed by skin17

biopsies. The skin tumor is excised, laminated, stained18

with Hematoxylin and Eosin (H&E) and finally stored19

in crystal slides. Then, dermatopathologists analyze the20

sample under the microscope [3]. During the analysis21

of spitzoid lesions, different histopathological charac-22

teristics can be observed depending on the malignancy23

degree, see Figure 1. The regions with benign spit-24

zoid lesions generally have a confluence of melanocytes25

in well-defined and organized nests. Figure 1 (a)-(b)26

shows sub-regions of a benign spitzoid melanocytic le-27

sion. These regions show cellular and architectural mat-28

uration (both melanocytes and nests decrease in size to-29Email address: madeam2@upvnet.upv.es () 
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wards the base of the lesion) throughout the dermis. In30

this case, this type of benign lesion is known as com-31

pound Spitz nevus. If the lesion only occurs in the epi-32

dermis and does not show extension into the dermis it33

would be called junctional nevus. In the case of spit-34

zoid malignant lesions, cellular disorder is a frequent35

pattern, the melanocytic nests are ill-defined and are36

usually devoid of maturation, see Figure 1 (c). Addi-37

tional features associated with malignancy of spitzoid38

melanocytic lesions include marked nuclear pleomor-39

phism, pagetoid spread (individual cells or small aggre-40

gates of melanocytic cells grow and invade the upper41

epidermis from below) and a poor circumscription of le-42

sions at their peripheries [4]. Figure 1 (d) shows an ex-43

ample of the pagetoid pattern. In addition to the cellular44

disorder, there are other local-level features associated45

with malignancy. Among these patterns, typical (bipo-46

lar and symmetrical) and atypical (aberrant mitotic fig-47

ures, usually asymmetrical and/or multipolar) mitoses48

stand out. Note that benign melanocytic lesions can also49

have occasional typical mitoses, particularly in the most50

superficial areas. Therefore, if we find a typical mitosis51

in a spitzoid lesion, we should take into account addi-52

tional factors such as the number of mitoses and their lo-53

cation within the lesion (deep typical mitoses are more54

suspicious of malignancy than the superficial ones) to55

determine if the neoplasm is malignant. Typical mitoses56

are only a sign of cellular proliferation and their mere57

presence cannot establish that a neoplasm is malignant.58

However, if numerous typical mitoses (� 6/mm2) are59

found without evidence of a traumatic event, the prob-60

ability of malignancy is high. Similarly, the presence61

of atypical mitoses in a spitzoid tumor favors malig-62

nancy. An example of typical and atypical mitoses on63

a malignant lesion are shown in Figure 1 (e)-(f), re-64

spectively. Table 1 summarizes the main features dis-65

tinguishing normal tissue, tissue with benign and ma-66

lignant spitzoid lesion. The manual diagnosis process is67

highly time-consuming and commonly leads to discor-68

dance between histopathologists due to the ambiguity of69

these neoplasms [5]. This is why these lesions represent70

a formidable diagnostic challenge.71

The computer-aided diagnosis systems (CADs) aim72

to support pathologists in the daily analysis of skin biop-73

sies, reducing both the workload and the inconsistency74

generated. With the emergence of digital pathology, the75

digitization of histological crystals into whole-slide im-76

ages (WSIs) has been standardized [6], leading the way77

to the application of computer vision methods. The de-78

velopment of CADs based on WSI analysis presents im-79

portant hardware limitations because of their large size.80

For this reason, the typical approach generally involves81

Table 1: Main histological features of normal melanocytes and spit-
zoid lesions.

Histological
features

Normal
tissue

Benign spitzoid
lesion

Malignant spitzoid
lesion

Basal and periodically
distributed isolated
melanocytes

Yes No No

Melanocytic nests No Well defined Ill defined
Pagetoid patterns No Rare Yes/No
Typical mitoses No No/Few Common (usually numerous)
Atypical mitoses No No Yes/No
Necrosis No No Yes/No
Ulceration No Very rare Yes/No
Marked nuclear
pleomorphism No No Common

extracting small patches from larger WSIs, resulting in82

thousands of patches per image. The convolutional neu-83

ral networks (CNN)-based approaches have been exten-84

sively tested for the detection of breast cancer [7–9],85

prostate cancer [9–11] or lung cancer [12, 13]. How-86

ever, regarding skin cancer diagnosis, specifically for87

melanoma detection, most research was based on the88

analysis of dermoscopic images [14–22] and few stud-89

ies have focused on the analysis of WSIs [23–26]. Hek-90

ler et al. [23] used transfer learning on a pre-trained91

ResNet50 CNN to differentiate between two classes, be-92

nign and melanoma tissues. The main limitation of this93

work is that they are not able to analyze entire WSIs94

but only a characteristic tumor sub-region. In De Logu95

et al. [24], a pre-trained Inception-ResNet-v2 network96

was then used to distinguish cutaneous melanoma ar-97

eas from healthy tissues. However, this work didn’t98

discriminate melanoma from nevi WSIs. In [25], the99

authors developed a deep learning system to automat-100

ically detect malignant melanoma in the eyelid from101

histopathological sections. The main limitation of this102

work is that the input of the algorithm is the tumor re-103

gion and not the entire WSI image.104

To the best of the authors’ knowledge, no previous105

studies have focused on the SMTs distinction based on106

data-driven approaches. There is only one method based107

on hand-crafted feature extraction for SMTs identifica-108

tion [26]. In [26], the authors used a machine learn-109

ing algorithm to assist in the diagnosis of SMT. In this110

study, a random forest classifier was used on numerical111

morphological characteristics extracted by the pathol-112

ogists from histological images [26]. Therefore, the113

method does not extract features directly from the his-114

tological images. As SMTs are uncommon skin lesions,115

the available data is generally scarce. This is why this116

study used data from 54 patients.117

Inspired by the main limitations of the studies fo-118

cused on melanoma detection and more specifically on119

SMTs diagnosis, in this work, we put forward a novel120

semi-supervised inductive transfer learning strategy to121
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Figure 1: Representative patches extracted from WSIs presenting different spitzoid melanocytic lesions; (a)-(b): Benign spitzoid nevus containing
well-defined melanocytic nests in an organized fashion; (c): Malignant lesion representative of the cellular disorder with ill-defined large tumor
nest; (d): Malignant lesion with pagetoid spread, very common in this type of lesions; (e): Typical mitosis; (f): Atypical mitosis.

conduct both the local automatic detection of tumor re-122

gions and the global prediction of an entire biopsy. In123

summary, the main contributions of this work are:124

• Spitzoid histological images are used for the first125

time to develop an automatic feature extractor.126

• A new attention-based backbone is proposed to ex-127

tract more accurate features.128

• A novel framework based on inductive transfer129

learning to solve at the same time ROI selection130

and malignancy detection is developed.131

• Multiple instance learning-based solutions are for-132

mulated in a novel framework for spitzoid lesion133

detection using biopsy-level labels.134

• A wide clinical interpretability of the results135

achieved with the proposed methods is provided.136

The rest of the paper is structured as follows. Section137

2 details the related work regarding inductive transfer138

learning and multiple instance learning strategies, then139

the underlying methodologies of the present work, fi-140

nally highlighting the improvement introduced in med-141

ical research. In Section 3, we present the data used in142

this work, CLARIFYv1, a private database comprised143

of skin WSIs from patients with spitzoid tumors. In Sec-144

tion 4, we describe the proposed methodology, mainly145

composed of two stages: i) development of a source146

model in charge of performing a patch-level classifica-147

tion to select tumor regions and ii) a target model based148

on a multiple instance learning approach to predict the149

malignancy degree at the biopsy level. Sections 5, 6 and150

7 provide information on the performance outcomes re-151

lated to the different classification tasks. Finally, in Sec-152

tion 8 we present our conclusions along with the future153

work.154
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2. Related work155

A. Inductive transfer learning156

Given a source domain DS with a corresponding157

source task TS , and a target domain DT with a cor-158

responding task TT , transfer learning (TL) is the pro-159

cess of improving the target predictive function fT (·) by160

using the related information from DS and TS , where161

DS , DT or TS , TT [27]. In the context of this162

work, we refer to inductive transfer learning (ITL) as the163

ability of the learning mechanism to enhance the per-164

formance on the target task (with a reduced number of165

labels) after having learned a different but related con-166

cept or skill on a previous task in the same domain [28].167

The intuition behind this idea is that learning a new task168

from related tasks should be easier, faster and with bet-169

ter solutions or using less amount of labeled data than170

learning the target task in isolation. When the source171

and the target domain labels are available, the inductive172

transfer learning approach is known as multi-task learn-173

ing.174

Interest in this technique has grown in recent years in175

applications related to medical issues due to the promis-176

ing results obtained. In this context, Caruana et al.177

suggested using multi-task learning in artificial neu-178

ral networks and proposed an inductive transfer learn-179

ing approach for pneumonia risk prediction [29]. Sil-180

ver et al. introduced a task rehearsal method (TRM)181

as an approach to life-long learning that used the rep-182

resentation of previously learned tasks as a source of183

inductive bias. This inductive bias enabled TRM to184

generate more accurate hypotheses for new tasks that185

have small sets of training examples [30]. Zhang et186

al. used a technique based on inductive transfer learn-187

ing to solve two-step classification problems: classifica-188

tion of malignant-nodule and non-nodule, and to clas-189

sify the Serious-Malignant and the Mild-Malignant in190

malignant-nodule [31]. Tokuoka et al. provided an in-191

ductive transfer learning approach to adopt the annota-192

tion label of the source domain datasets to tasks of the193

target domain using Cycle-GAN based on unsupervised194

domain adaptation (UDA) [32]. Zhou et al. used an195

inductive transfer learning method to improve the per-196

formance of ocular multi-disease identification. In this197

case, the source and the target domain data were fundus198

images, but the source and target domain tasks were dia-199

betic retinopathy lesion segmentation and multi-disease200

classification, respectively [33]. De Bois et al. used201

an inductive transfer learning approach to build a better202

glucose predictive model using a CNN-based architec-203

ture. A first model was trained on source patients that204

may come from different datasets and then, the model205

was fine-tuned to the target patients. Adding a gradi-206

ent reversal layer, the patient classifier module made the207

feature extractor learn a feature representation that was208

general across the source patients [34].209

In that context, we adopt an inductive transfer strat-210

egy to accurately classify instances from WSIs. The211

source model is trained to predict tumor regions by a212

patch-based CNN using inaccurate annotations with a213

large number of labels. After that, the backbone of the214

source model is retrained to classify nevus and malig-215

nant biopsies using a target model where the number of216

labels is reduced as this model is retrained at the biopsy217

level.218

B. Multiple instance learning219

Multiple instance learning (MIL), a particular form of220

weakly supervised learning, aims at training a model us-221

ing a set of weakly labeled data [35]. In MIL tasks, the222

training dataset is composed of bags, where each bag223

contains a set of instances. A positive label is assigned224

to a bag if it contains at least one positive instance. The225

goal of MIL is to teach a model to predict the bag la-226

bel. MIL approach has been successfully applied to227

computational histopathology for tasks such as tumor228

detection based on WSIs, reducing the time required229

to perform precise annotations [36–39]. In this vein,230

[36, 37] assigned the global label (cancerous against231

non-cancerous) to all patches of a slide. Campanella232

et al. [36] proposed a MIL-based deep learning system233

to accomplish the identification of three different can-234

cers: prostate cancer, basal cell carcinoma and breast235

cancer metastases. In this case, they used an instance-236

level paradigm obtaining a tile-level feature representa-237

tion through a CNN. These representations were then238

used in a recurrent neural network to integrate the infor-239

mation across the whole slide and report the final clas-240

sification result to obtain a final slide-level diagnosis.241

Das et al. [37] used an embedded-space paradigm based242

on multiple instance learning to predict breast cancer.243

Specifically, they used a deep CNN architecture based244

on the pre-trained VGG19 network to extract the fea-245

tures of each bag. Then, the bag level representation246

is achieved by the aggregation of the features through247

the batch global max pooling (BGMP) layer at the fea-248

ture embedding dimension. Silva et al. [39] used a249

novel weakly supervised deep learning model, based250

on self-learning CNNs, that leveraged only the global251

Gleason score of gigapixel whole slide images during252

training to accurately perform both, grading of patch-253

level patterns and biopsy-level scoring. Other works254

like [38] treated the tumor areas manually annotated255
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by pathologists as a bag. In this case, the authors pro-256

posed a MIL method based on a deep graph convolu-257

tional network and feature selection for the prediction258

of lymph node metastasis using histopathological im-259

ages of colorectal cancer. To the best of the authors’260

knowledge, no previous works have taken advantage of261

the promising MIL-based approaches for the diagnosis262

of melanocytic tumors yet. Our starting premise is that263

since there is at least one identifying patch of malig-264

nancy in a melanoma lesion, the MIL-based approach265

could assist in diagnosing a spitzoid lesion based on its266

whole context lessening the ambiguity between malig-267

nant and benign lesions. Additionally, in contrast to the268

works cited above, as in this study each bag contains269

the tumor region pseudo-labeled by the source model,270

the number of noisy labels is reduced, which will facil-271

itate model training-loop since the number of available272

samples is particularly limited.273

3. Materials274

To evaluate the proposed learning methodology,275

we resort to a private database, CLARIFYv1, with276

histopathological skin images from different body areas277

that contain spitzoid melanocytic lesions. The database278

is composed of 53 biopsies from 51 different patients279

who signed the pertinent informed consent. The num-280

ber of patients used in this study is relatively limited281

because these lesions are uncommon among the pop-282

ulation. The tissue samples were sliced, stained and283

digitized using the Ventana iScan Coreo scanner at 40x284

magnification obtaining WSIs. The slides were ana-285

lyzed by an expert dermatopathologist at the University286

Clinic Hospital of Valencia (CM). Specifically, 21 of the287

51 patients under study were diagnosed as malignant288

melanocytic lesions (melanoma) and the rest as benign289

melanocytic lesions (nevus).290

The global tumor regions, areas with spitzoid le-291

sions, were annotated by the pathologists (AM, AM-292

Z and CM) using an in-house software based on the293

OpenSeadragon libraries [40]. With these annotations,294

WSIs were divided into regions of interest or ROI (tu-295

mor region) and non-interest regions (the rest of the296

WSI). Note that the tumor region denotes the part of the297

biopsy where the spitzoid lesion is found. After defin-298

ing the tumor regions, the pathologist classified them as299

benign or malignant. Figure 2 shows the annotation of300

benign and malignant regions. To streamline the annota-301

tion task, these annotations were performed in a coarse302

way, so in some sub-regions there are tumor discontinu-303

ities not considered. This fact is shown in Figure 2 (b)304

and (d), where these patches have not patterned related305

to the tumor lesion.306

In order to process the large WSIs, these were down-307

sampled to 10x resolution, divided into patches of size308

512x512x3 with a 50% overlap among them. Aim-309

ing at pre-processing the biopsies and reduce the noisy310

patches, a mask indicating the presence of tissue in the311

patches was obtained by applying the Otsu threshold312

method over the magenta channel. Subsequently, the313

patches with less than 20% of tissue were excluded from314

the database. A summary of the database description315

is presented in Table 2. Note that, due to the irregu-316

lar morphology of these lesions, the tumor shape is very317

different among patients, with the number of patches per318

patient varying considerably.319

Table 2: CLARIFYv1 database description. Amount of whole slide
images with their respective biopsy label (first row), number of
patches of each tumor region (second row) and number of non-interest
region (third row).

Benign Malignant
# WSI 30 21
# Tumor patches 3652 4726
# Non tumor patches 5842 8139

4. Methodology320

The methodological core of the proposed approach is321

a semi-supervised CNN classifier able to detect the tu-322

mor region in a WSI and classify it into either benign or323

malignant spitzoid lesions. The proposed workflow is324

composed of a source and a target model, (θs) and (θt)325

respectively. The first model (θs) allows to automati-326

cally obtain the patches with significant features of spit-327

zoid neoplasms, Figure 3. Tumor patches selected by328

the first model are then transferred to a second model329

(θt), Figure 4. This second model discerns malignant330

and benign biopsies using a MIL paradigm.331

4.1. Source model: ROI selection332

The objective of this stage is to build a 2D-CNN ar-333

chitecture able to extract discriminatory features from334

WSI patches to distinguish tumor regions.335

A. Backbone336

(1) Feature extractor. The patch-level feature ex-337

tractor G f : x → F is a CNN which maps an im-338

age x into an F feature volume. Since the deep learn-339

ing models trained from scratch report worse perfor-340

mance in comparison to fine-tuned models when the341
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Figure 2: Annotation of a benign and a malignant spitzoid lesion. Patches (a) and (c) show characteristic patterns of the tumor region, benign
and malignant respectively. Although patches (b) and (d) are inside the interest region annotated by the pathologists, these patches correspond to
reactive stroma and do not contain tumor cells.

Figure 3: Overview of the proposed source model to conduct the tumor region detection. Blue and orange frames correspond to the base encoder
network consisting of feature extraction and refinement. Note that VGG16 has been used as the feature extractor. After that, a projection head
(green frame) maps the embedded representations in a lower-dimensional space to maximize the agreement in the classification stage (cyan frame).

amount of available data is limited, we fine-tuned sev-342

eral well-known architectures: VGG16 [41], ResNet50343

[42], InceptionV3 [43] and MobileNetV2 [44]. All344

architectures were pre-trained with around 14 million345

natural images corresponding to the ImageNet dataset.346

For the feature extraction stage, the base model is ex-347

tracted from those pre-trained models and partially re-348

trained. Since the patterns of the ImageNet dataset are349

very different from the histological ones (the value of350

the Frechet Inception Distance metric is around 68), it351

is optimal to keep the low-level features only (contours,352

combination of basic colors, general shapes, etc.). To353

this end, the weights of the first convolutional blocks354

from the pre-trained model are frozen, while the rest are355

re-trained to adapt the model to the specific application.356

The layer from which the freezing strategy is applied357

is empirically optimized for each architecture and it is358

specified in the experimental part of the paper, Section359

5. Therefore, given a histological image x ∈ RM×N×d,360

where M × N × d = 224 × 224 × 3, a feature-embedded361

map F ∈ RH×W×C is provided by the feature extractor.362

It is denoted as F = G f (x;σs) where σs is the set of363

trainable parameters of this source model.364

(2) Feature refinement (SeaNet). Medical images al-365

ways contain some irrelevant information that can dis-366

rupt the decision-making. For this reason, to solve am-367

biguous classification problems, it is essential to refine368

the features extracted by the CNN model. To this end,369
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Figure 4: Pipeline showing the embedded-level approach for spitzoid melanocytic lesion classification. The weights of the pre-trained feature
extractor and feature refinement of the source model (σs and δs) are used to initialize this approach. After that, we use the output of the projection
head and tile-level attention to weight the patches in the prediction of a whole biopsy. Using an aggregated bag-level feature vector we classify the
entire biopsy.

an attention module GA(F; δs) was proposed to mimic370

the clinical behavior by focusing on the key features for371

the prediction, GA : F → A. In this case, the input of372

the attention module corresponds to the output feature373

map generated by the feature extractor, F ∈ RH×W×C .374

The proposed attention module works as a kind of au-375

toencoder composed of 1 × 1 convolutions in which the376

filters are decreased and increased, respectively. There-377

fore, the feature maps obtained at the output of each of378

these convolution layers will have the same spatial di-379

mension as the previous feature map, with the difference380

that the number of channels will have been changed to381

accomplish a combination of the features. In order to382

explore the dependencies existing among the different383

feature channels as well as the contextual information,384

the blocks called ‘Squeeze-and-Excitation’ (SE) [45]385

were implemented between the different convolutional386

reduction layers of the attention module, see Figure 5.387

The input to the SE block, G ∈ RH×W×R, is embedded388

into a s ∈ R1×1×R vector by a global average pooling389

(GAP) layer, which provides a global distribution of re-390

sponses by channels. Note that the number of filters R,391

corresponds to the number of channels at the output of392

the convolutional layers of the attention module. In the393

following step, s is transformed into ŝ = φ(W2(∂(W1s)))394

where φ is the sigmoid activation function, W1 ∈ R R
r ×R

395

and W2 ∈ RR× R
r are the weights of two completely fully-396

connected layers (FC) and ∂ is the Relu activation func-397

tion. The parameter r is the reduction ratio for dimen-398

sionality reduction, in this case r = 4, indicating the399

bottleneck. After the sigmoid activation, the activations400

of ŝ are ranged to [0,1] and it is used to recalibrate the401

input G = [g1, g2, ..., gc] where gi ∈ RHxW . The output402

feature map of this block is Gse = [ŝ1g1, ŝ2g2, ..., ŝcgc].403

Figure 5: Architecture of the Squeeze-and-Excitation blocks used to
exploit the dependencies between feature channels.

The last reduction layer of the attention module has404

the sigmoid as activation function to recalibrate the in-405

puts and force the network to learn useful properties406

from the input representations. After increasing the407

number of filters to the same number as the input layer408

to this module, the output of the attention module is409

pondered with the output of the feature extractor obtain-410

ing a refined feature map A ∈ RH×W×C .411

B. Projection head module412

In this paper, we instantiate a projection head network,413

Gh : A → Z, that maps the representations A to an414

embedding vector Z where the classification stage is415

addressed in a lower-dimensional space. In this case,416

different configurations already applied in the literature417
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were tested in Section 5. In contrast to other widely used418

approaches such as the flattening of the activation vol-419

ume resulting from the final convolutional block and the420

class prediction through consecutive fully-connected421

layers, the global max pooling (GMP) and the global422

average pooling (GAP) layers reduce the number of pa-423

rameters decreasing the complexity of the model. At the424

end of the convolutional network, a softmax-activated425

dense layer is applied to address the tumor region iden-426

tification.427

4.2. Target model: WSI prediction428

The target model aims to classify spitzoid lesions un-429

der an embedded-space paradigm using the biopsy-level430

labels for learning. To that end, our main goal is to find431

a compact embedding for the instances of a bag/WSI432

and combine these instance embeddings to a single em-433

bedding that represents the entire bag, see Figure 4.434

Specifically, we denote each individual bag as Xt
n =435 {

xt
n,1, ..., x

t
n,i, x

t
n,In

}
, where xt

n,i is the i-th predicted tumor436

instance by the source model and In denotes the total437

number of predicted tumor region patches in a slide.438

Note that In can vary across bags. Hence, the objec-439

tive of the target model becomes to obtain the label of440

a slide (Ŷ t
n) from the tumor instances predicted by the441

source model (xt
n,i), which can be defined as follows:442

Ŷ t
n = f (

{
xt

n,1, ..., x
t
n,i, ..., x

t
n,In

}
, ωt) (1)

where ωt denotes the target model weights.443

In order to find an embedding representation of each444

bag, we use the pre-trained backbone and the projec-445

tion head module of the source model. In this manner,446

following an inductive learning strategy, the backbone447

already has prior knowledge concerning basic features448

of the histological database. After embedding each bag,449

hn = Gh(GA(G f (Xt
n))), we obtain a C-dimensional fea-450

ture vector for each instance. The bag label predictor451

Gy : {hi}i∈In
→ Ŷ t

n aggregates the C-dimensional feature452

vectors {hi}i∈In
into a feature vector Zn ∈ R1×C represen-453

tative of the bag. In the literature, there exist different454

aggregation functions such as batch global max pool-455

ing (BGMP) or batch global average pooling (BGAP).456

However, such functions are not flexible since they do457

not have trainable parameters. For this reason, in this458

work we use a trainable aggregation function [46]. In459

this case, Gy(·;ωt) is characterized by a set of trainable460

parameters V ∈ RL×C and w ∈ RL×1. The embedded461

feature vector per bag is obtained as Zn =
∑

i∈In
ai · hi,462

where ai is defined as:463

ai =
exp(wT tanh(Vhi))∑

j∈In
exp(wT tanh(Vh j))

(2)

The attention-based aggregation function is differen-464

tial and can be trained in a end-to-end manner using gra-465

dient descent. Additionally, the attention module not466

only provides a more flexible way to incorporate infor-467

mation from instances, but also enables us to localize468

informative tiles. The superiority of this aggregation469

function for spitzoid prediction will be shown in Sec-470

tion 5. Finally, the Zn vector attaches to the dense layer471

with a sigmoid function-activated neuron to obtain the472

prediction at the biopsy level.473

5. Ablation Experiments474

In this section, we present the results of the differ-475

ent experiments carried out to show the performance476

of the proposed approach for the different classification477

tasks: patch-level classification (source model) and WSI478

prediction (target model). Note that a comparison with479

the current state-of-the-art methods was not possible as480

there are no algorithms focused on histological images481

of spitzoid tumors. Additionally, no public databases of482

histological images with melanocytic neoplasms have483

been found to apply our algorithms.484

5.1. Database partitioning485

Making use of the spitzoid database (CLARIFYv1),486

we carried out a patient-level data partitioning proce-487

dure to separate training and testing sets, aiming at488

avoiding overestimating the performance of the system489

and ensuring its ability to generalize. Specifically, 30%490

of patients were used to test the models, whereas the491

remainder of the database was employed to train the492

algorithm. To train the proposed models and optimize493

the hyperparameters involved in this process, the train-494

ing set was divided following a 4-fold cross-validation495

strategy. We used four validation cohorts to optimize496

both the source and the target models. To encourage497

the source model to select the most relevant tiles, we498

used an instance dropout over the non-tumor region,499

since these represent the majority class. Specifically,500

instances were randomly dropped during the training,501

while all instances were used during the model evalua-502

tion.503

5.2. Source model selection504

A. Backbone optimization505

According to the literature for histopathological im-506

age analysis, we compared as feature extractors the507

well-known ResNet50 and VGG architectures since508

they have reported the best performance [23, 25]. Ad-509

ditionally, we applied the proposed feature refinement510
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SeaNet, Squeeze and Excitation Attention Network, on511

each of these feature extractors in order to evaluate the512

enhancement introduced. To address an objective com-513

parison of the proposed backbones, we kept the projec-514

tion head module constant using a GAP layer. In Ta-515

ble 3, we contrast the validation results achieved by516

the different backbones trained in a binary-class sce-517

nario. The comparison was handled by means of differ-518

ent figures of merit, such as sensitivity (SN), specificity519

(SPC), positive predictive value (PPV), false positive520

rate (FPR) negative predictive value (NPV), F1-score521

(F1S), accuracy (ACC) and area under the ROC Curve522

(AUC). Note that the figures of merit listed above re-523

port the results for the average of the validation cohorts524

in the cross-validation process. Additionally, class ac-525

tivation maps (CAMs) were computed to highlight the526

regions of interest at patch-level in which the proposed527

source model paid attention to predict the samples, see528

Figure 6 and Figure 7. The backbone reporting the best529

performance during the validation stage was selected as530

the base encoder network to address the head projection531

optimization.532

Training details. All the contrasting approaches533

were implemented using Tensorflow 2.3.1 with Python534

3.6. Experiments were conducted on the NVIDIA DGX535

A100 system. NVIDIA DGX A100 is the universal sys-536

tem for all artificial intelligence (AI) workloads, offer-537

ing unprecedented compute density, performance, and538

flexibility in a 5 petaFLOPS AI system. After intense539

experiments, the optimal hyperparameters combination540

was achieved by training the models for 120 epochs us-541

ing a learning rate of 0.001 with a batch size of 64.542

A stochastic gradient descent (SGD) optimizer was ap-543

plied to minimize the binary cross-entropy (BCE) loss544

function at each epoch. The base model of the fine-545

tuned feature extractor was also optimized, selected to546

freeze the first convolutional block for VGG16 and set-547

ting all layers as trainable for ResNet50.548

B. Head projection optimization549

In this section, we report the validation performance us-550

ing different projection head modules. Specifically, we551

compare a small multi-layer perceptron (MLP) with one552

hidden layer of 128 neurons non-linearly activated by553

the ReLU function, a global max-pooling (GMP) layer554

and a global average-pooling (GAP) layer, see Table555

4. It is important to note that the comparison was con-556

ducted using the proposed SeaNet (with VGG16) back-557

bone for all the scenarios.558

Training details. The same hardware and software559

systems as for the backbone section were used to opti-560

mize the head projection. Additionally, we use the same561

learning rate, batch size, loss function and number of562

epochs as in the previous section. In this case, we only563

changed the head projection.564

5.3. Target model selection565

A. WSI label predictor optimization566

As mentioned throughout the manuscript, the backbone567

and the projection head module of the target model568

were optimized during the ROI selection, via the source569

model. After obtaining an embedded feature vector of570

each tile in a bag, it is necessary to implement an aggre-571

gation function. In this section, we compare the results,572

when three different aggregation functions were used:573

batch global max pooling (BGMP), batch global aver-574

age pooling (BGAP) and batch global attention sum-575

mary (BGAS), Table 5.576

Training details. In order to generate bags and577

train the algorithms, a maximum of 300 image patches578

were randomly extracted from the source model predic-579

tion. In this case, the optimal results were obtained re-580

training the whole models during 100 epochs using a581

learning rate of 0.001 and a batch size of 1, in other582

words, one slide per batch. To minimize the BCE loss583

function at every epoch, the SGD optimizer was used.584

6. Prediction Results585

In this section, we show the quantitative and qualita-586

tive results achieved by the proposed strategies during587

the prediction of the test set. For both methods devel-588

oped in this work, ROI selection and WSI classification,589

predictions were performed using the architectures with590

the best performance during the validation stage.591

Quantitative results. Table 6 shows the results592

reached in the test prediction for the proposed source593

and target models.594

Qualitative results. To qualitatively show the perfor-595

mance of the ROI selection model, we obtained proba-596

bility heatmaps of representative samples indicating the597

presence of tumor region in the WSIs, Figure 8.598

In the probability maps, for each pixel, the predicted599

probabilities for the ROI are estimated by bilinearly600

interpolating the predicted probabilities of the closest601

patches in terms of euclidean distance to the center of602

the patches. In addition, using these heatmaps, we vi-603

sualize the distribution of attention weights, which were604

calculated for cases correctly classified into benign and605

malignant neoplasms, see Figure 9.606
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Table 3: Classification results reached during the validation stage with the proposed fine-tuned architectures. SeaNet: Squeeze-and-Excitation
network.

VGG16 SeaNet (with VGG16) RESNET50 SeaNet (with RESNET50)
SN 0.8057 ± 0.1247 0.8310 ± 0.1061 0.8200 ± 0.1223 0.7494 ± 0.1736

SPC 0.9070 ± 0.0343 0.9298 ± 0.0185 0.8850 ± 0.0243 0.9290 ± 0.0422
PPV 0.8448 ± 0.0856 0.8814 ± 0.0495 0.8061 ± 0.1005 0.8800 ± 0.0316
FPR 0.0930 ± 0.0343 0.0702 ± 0.0185 0.1150 ± 0.0243 0.0828 ± 0.0235
NPV 0.8894 ± 0.0649 0.9100 ± 0.0232 0.8830 ± 0.0761 0.8693 ± 0.0516
F1S 0.8183 ± 0.0865 0.8654 ± 0.0805 0.8022 ± 0.1126 0.8100 ± 0.0927
ACC 0.8752 ± 0.0357 0.9031 ± 0.0262 0.8611 ± 0.0558 0.8770 ± 0.0329
AUC 0.8600 ± 0.0584 0.8810 ± 0.0566 0.8400 ± 0.0813 0.8500 ± 0.0737

Figure 6: Class activation maps (CAMs) for images correctly classified as tumor region or ROI (first row) and non-tumor regions (second row).
First column: original images; Second column: CAMs obtained using the VGG16 model. Third column: CAMs using Squeeze and excitation
network (SeaNet) with VGG16 as the backbone. SeaNet model focuses on the most distinctive features and, in this case, pays attention to the
pagetoid spread to define a patch as tumorous and to the healthy stromal region for the non-tumoral region.

7. Discussion607

In this section, we make reference to the main con-608

tributions detailed throughout the paper and review the609

results obtained.610

In contrast to the state-of-the-art studies for histo-611

logical images classification, in which the input of the612

prediction model is the tumor region annotated by the613

pathologist, in this paper, we propose a framework able614

to first automatically select neoplastic regions of inter-615

est and then predict the malignancy or benignity of spit-616

zoid neoplasms. Note that no previous studies seem to617

have proposed any automated method for the detection618

of these challenging neoplasms. Due to the absence619

of public spitzoid databases, the developed algorithms620

could not be validated with external databases, which621

can lead to biased results, according to the database622

used.623

7.1. Source model: ROI selection624

A. About the ablation experiment625

Backbone selection. As a first stage, we carried out626

an optimization of the feature extractor for the selection627

of the tumor regions. Considering the limited amount628

of available samples, we decided to use the fine-tuning629

technique on the VGG16 and RESNET architectures.630

Particularly, from Table 3 we can observe that the use631

of sequential approaches (VGG16) provided slightly632

better results than architectures with residual blocks633
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Figure 7: Original images (first column) and Class Activation Maps (CAMs) obtained with the VGG16 model (second column) and the Squeeze
and excitation network (SeaNet) with VGG16 (third column). (b) and (e): Patches misclassified by the VGG16 model predicted as no ROI and
ROI, respectively; (c) and (f): Patches well classified, ROI and No ROI respectively.

(RESNET). This fact is evidenced in several works in634

the literature for histopathological analysis where the635

sequential models used outperform residual ones [10].636

Additionally, the proposed SeaNet module, character-637

ized by the refinement of the features via convolutional638

attention blocks, reported a significant outperforming.639

Specifically, the SeaNet module via fine-tuning VGG16640

architecture achieved the best results. The use of the at-641

tention module provides more distinctive feature maps642

and allows a considerable reduction in the incidence of643

false positive and false negative samples, leading to im-644

prove global metrics. Aiming at qualitatively observing645

the enhancements introduced by the refinement mod-646

ule, the CAMs of the best models (SeaNet with VGG16647

and VGG16 alone) were obtained for correctly classi-648

fied images (see Figure 6) and for images misclassified649

by the VGG16 model (see Figure 7). In Figure 6, we650

can see that both for the prediction of patches belonging651

to the tumor region (a) and for non-tumor ones (b), the652

SeaNet activations are focused on smaller regions. For653

the ROI prediction, the SeaNet (with VGG16) model is654

mainly focused on the pagetoid pattern present within655

the epidermis, defining the region as tumor. However,656

the VGG16 model extends its activations to lympho-657

cytes found within the dermis. In this case, the lym-658

phocytes do not necessarily determine that the region is659

tumorous, since this small amount of lymphocytes can660

also be found in healthy regions. Therefore, the VGG16661

model without the attention module introduces certain662

noise in the prediction. Regarding the prediction of non-663

tumor regions, both models are focused on the epider-664

mis and stromal region of the dermis. Regarding the665

cases where VGG16 misclassifies tumor regions, Fig-666

ure 7 (b), the activations are focused on the epidermis667

region. In this case, the epidermis region has no pat-668

terns indicative of a melanocytic lesion, but for a correct669

classification, the activations would have to be focused670

on the melanocyte aggregate found in the upper region,671

as in the case of the SeaNet model, see Figure 7 (c).672

In this region, we find a large number of melanocytic673

cells with a high concentration of lymphocytes indicat-674

ing an inflammatory reaction to a tumor region. For the675

case of the non-tumor region shown in Figure 7 (d), the676

VGG16 model erroneously predicts it by focusing on677

the melanocytic cells found in the epidermis, see Figure678

7 (e). Normally, in healthy skin, the dermo-epidermal679

junction is composed of isolated melanocytic cells with680

a certain spacing between them. It is representative of681

a tumor when these cells ascend to the upper layers of682

the epidermis forming what is known as a pagetoid pat-683

tern or infiltrate the dermis forming nests. Furthermore,684

in this case, the epidermis has no patterns that would685

be representative of a melanocytic lesion. Unlike the686

VGG model, the SeaNet (with VGG16) model reports687

its activations in the epidermal region and based on it688

establishes the correct prediction, classifying this patch689
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Table 4: Classification results reached during the validation stage using different projection head modules. SeaNet: Squeeze-and-Excitation network
(with VGG16 as backbone), MLP: multi-layer perceptron, GMP: global max-pooling, GAP: global average-pooling.

SeaNet+MLP SeaNet+GMP SeaNet+GAP
SN 0.8716 ± 0.3000 0.8729 ± 0.0371 0.8310 ± 0.1061

SPC 0.9076 ± 0.0478 0.9143 ± 0.0131 0.9298 ± 0.0185
PPV 0.8460 ± 0.1018 0.8589 ± 0.0710 0.8814 ± 0.0495
FPR 0.0927 ± 0.0340 0.0857 ± 0.0131 0.0702 ± 0.0185
NPV 0.9100 ± 0.0348 0.9140 ± 0.0283 0.9100 ± 0.0232
F1S 0.8606 ± 0.0655 0.8708 ± 0.0541 0.8654 ± 0.0805
ACC 0.8940 ± 0.0320 0.9020 ± 0.0164 0.9031 ± 0.0262
AUC 0.8800 ± 0.0391 0.8935 ± 0.2490 0.8810 ± 0.0566

Table 5: Classification results reached during the validation stage using different aggregation functions. BGMP: batch global max-pooling; BGAP:
batch global average-pooling; BGAS: batch global attention summary.

BGMP BGAP BGAS
SN 0.5000 ± 0.3953 0.5833 ± 0.3062 0.7500 ± 0.2764

SPC 0.9000 ± 0.3953 0.8500 ± 0.1658 0.8500 ± 0.2764
PPV 0.6250 ± 0.4330 0.8375 ± 0.1709 0.8667 ± 0.1414
FPR 0.1000 ± 0.2909 0.1500 ± 0.3062 0.1500 ± 0.2764
NPV 0.7625 ± 0.1546 0.7848 ± 0.1388 0.8869 ± 0.1207
F1S 0.5018 ± 0.3873 0.6000 ± 0.1541 0.7472 ± 0.1473
ACC 0.7361 ± 0.0977 0.7361 ± 0.0417 0.8229 ± 0.0262
AUC 0.7000 ± 0.1744 0.7167 ± 0.0841 0.8000 ± 0.0963

Table 6: Classification results reached during the prediction stage.
SM: source model; TM: target model. The proposed source model
(SM) was composed of the SeaNet (with VGG16) + global max-
pooling (GMP). The proposed target model (TM) used the batch
global attention summary
(BGAS) layer as an aggregation function.

SM TM
SN 0.9285 0.6700

SPC 0.9202 0.8900
PPV 0.8622 0.8000
FPR 0.0798 0.1111
NPV 0.9599 0.8000
F1S 0.8942 0.7300
ACC 0.9231 0.8000
AUC 0.9244 0.7800

as non-characteristic of a spitzoid lesion, see Figure 7690

(f).691

In any case, the inclusion of the proposed attention692

module outperforms the popular pre-trained architec-693

tures of the state of the art and reduces the number of694

noisy patches used as input to the target model.695

Projection head module selection. After optimiz-696

ing the backbone, we proceeded to select the projection697

head module that provided the best results. For this pur-698

pose, we tested three projection head modules: multi-699

layer perceptron (MLP), global average pooling (GAP)700

and global max pooling (GMP). Table 4 shows that the701

modules based on GAP and GMP provide very similar702

and significantly better results than those reported by703

the MLP. The outperforming of GMP and GAP com-704

pared to the fully-connected configuration could be ex-705

plained by the reduction in the number of weights to be706

optimized, making the model simpler and more capable707

of generalizing to new images. Comparing the results708

provided by GAP and GMP, we can conclude that they709

are very similar. The main difference between these710

techniques lies in the method of squeezing the spatial711

dimension. While GMP considers only the maximum712

value for the feature map, in the GAP layer the whole713

spatial region contributes to its output. This explains714

why the GMP layer enhances SN results and the GAP715

layer improves SPC results. With the GMP layer, it is716

more likely to correctly classify a patch belonging to the717

tumor region, even if it contains a minimal tumor re-718

gion. However, GAP takes into account the whole con-719

text so that regions with small tumor areas are likely to720
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Figure 8: Whole slide image-level prediction for the source model (ROI estimation). (a) Manual annotation by experts; (b) System prediction
completely in line with the annotation of (a); (c) Manual annotation by experts with expansion of areas with melanocytic nests characteristic of
the lesion; (d) System prediction with certain areas annotated by the pathologists predicted as non-tumor regions. The expansion of the areas
where there are no activations demonstrate that there are no melanocytic nests characteristic of the lesion; (e) Manual annotation by experts with
expansion of area where melanocytic cells with melanosomes are found; (d) System prediction with expansion in the regions not annotated by the
pathologist to demonstrate the presence of tumor cells.

be discarded. Although both show a very similar result,721

global metrics such as F1S and AUC exhibit a slight722

improvement with the GMP layer. Therefore, the GMP723

layer will be preferred as the optimal head projection724

module.725

B. About the prediction results726

Table 6 shows the results reached by the proposed ROI727

selection model. All the metrics reported here outper-728

form those obtained in the validation phase. Figure 8729

shows the probability maps for the lesion region of three730

test samples. The majority of the lesion regions pre-731

dicted by the algorithm are depicted in Figure 8 (b),732

in which the prediction is completely in line with the733

annotation performed by the pathologists, Figure 8 (a).734

Some activation maps, such as those shown in Figure 8735

(d), predict certain areas annotated by the pathologists736

as non-tumor regions. However, if we visualize the ex-737

pansion of the areas where there are no activations, we738

can see that there are no melanocytic nests characteristic739

of the lesion, and therefore, we may be facing a disconti-740

nuity of the lesion as explained in Section 3. In contrast,741

in the lower part of Figure 8 (d), there are activations of742

tumor regions that have not been annotated by expert743

pathologists, see Figure 8 (c). However, if these regions744

are enlarged, it can be concluded that tumor cells are745

present. At times, due to the large amount of material746

in a lesion, pathologists can overlook some tumor ar-747

eas. In the case of Figure 8 (e) and (f), there is also748

some discrepancy between the annotations performed749

by the pathologists and the activations predicted by the750

model. In these figures, we find melanocytic cells with751

13



Figure 9: Visualization of the attention weights of the bag aggregation function in heat maps. (a) Benign sample; (b) Malignant sample.

melanosomes that give them their characteristic brown752

color. It is difficult to differentiate these tumor cells753

from melanophages (cells with brown staining and all754

of the same size) that are not tumor cells. In this case, if755

we zoom the activations of the algorithm (Figure 8 (f))756

in those regions not annotated by the pathologist, we757

can see that there are also tumor cells. Therefore, the758

developed algorithm could help the decision-making in759

cases where there is ambiguity for the pathologists. In760

this context, the developed method enhances the detec-761

tion of tumor areas.762

7.2. Target model: WSI prediction763

A. About the ablation experiment764

WSI label predictor optimization. As discussed765

throughout the document, the backbone used by the tar-766

get model was optimized during the selection of the767

source model. Therefore, in this case, it was only nec-768

essary to optimize the aggregation function required to769

perform a prediction using a MIL approach. From Ta-770

ble 5, we can observe that the use of the feature aver-771

age of all patches containing a bag to obtain the embed-772

ded representation provides the best results (BGAP and773

BGAS aggregation functions). Additionally, the BGAS774

aggregation function improves the results provided by775

BGAP thanks to the introduction of optimized atten-776

tion weights by updating the bag-level predictor weights777

(ωt), achieving a validation accuracy of 0.8229. There-778

fore, we can conclude that the introduction of the atten-779

tion module allows focusing on more relevant patterns,780

thus improving the final classification.781

B. About the prediction results782

Table 6 shows the results reached by the proposed783

target model in the test set. The results are in line with784

those obtained in the validation phase. Although the785

results are promising, there are some biopsies that are786

misclassified by the algorithm. This is because these787

types of lesions occasionally do not have universally788

accepted guidelines that can guarantee their specific di-789

agnosis. Figure 9 shows the attention weights of the790

BGAS aggregation function for benign (Figure 9 (a))791

and malignant (Figure 9 (b)) samples. The attention792

weights were normalized between 0 to 1 in each bag.793

The red regions in the attention weight maps represent794

the highest contribution for classification in each bag.795

Therefore, the bag class label is predicted by only using796

instances for which the attention values are large. In the797

case of a benign sample (Figure 9 (a)), the regions con-798

tributing to the class establishment are distributed over a799

wide area of the lesion, these areas being aggregates of800

melanocytes. However, the large attention weights for801

a malignant lesion are focused on small region charac-802

teristics of malignancy (in this case pagetoid pattern) as803

shown in Figure 9 (b).804

8. Conclusion805

In this work, we propose an inductive transfer learn-806

ing framework able to perform both ROI selection and807

malignant prediction in spitzoid melanocytic lesions us-808

ing WSIs. Our proposed framework is composed of a809

source model in charge of selecting the patches with810

characteristic lesion patterns. The source model intro-811

duces an attention module able to refine the features of812

the latent space to maximize the classification agree-813

ment. Using the backbone of the source model as a814

patch-level feature extractor and under a multiple in-815

stance learning approach, the target model predicts the816

malignancy degree by taking as input the tumor patches817

predicted by the first model. This innovative approach818
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carried out in an end-to-end manner reported promis-819

ing results for both ROI selection and WSI classifica-820

tion, achieving a testing accuracy of 0.9231 and 0.8000821

for the source and the target models, despite the lim-822

ited number of samples. Thus, our framework bridges823

the gap with respect to the development of automatic824

diagnostic systems for spitzoid melanocytic lesions. In825

future research lines, efforts should focus on improv-826

ing the discrimination of malignancy and benignity with827

the acquisition of new samples and enhancements to the828

implemented attention module in the multiple instance829

learning approach.830
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