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ABSTRACT
In existing deep learning methods, almost all loss functions assume
that sample data values used to be predicted are the only correct
ones. This assumption does not hold for laboratory test data. Test
results are often within tolerable or imprecision ranges, with all
values in the ranges acceptable. By considering imprecision sam-
ples, we propose an imprecision range loss (IR loss) method and
incorporate it into Long Short Term Memory (LSTM) model for
disease progress prediction. In this method, each sample in impre-
cision range space has a certain probability to be the real value,
participating in the loss calculation. The loss is defined as the in-
tegral of the error of each point in the impression range space. A
sampling method for imprecision space is formulated. The continu-
ous imprecision space is discretized, and a sequence of imprecise
data sets are obtained, which is convenient for gradient descent
learning. A heuristic learning algorithm is developed to learn the
model parameters based on the imprecise data sets. Experimental
results on real data show that the prediction method based on IR
loss can provide more stable and consistent prediction result when
test samples are generated from imprecision range.

CCS CONCEPTS
• Computing methodologies → Neural networks; • Applied
computing → Health informatics.

KEYWORDS
Prediction, neural networks, imprecise data, health care

1 INTRODUCTION
In healthcare, it is highly desirable to evaluate the current situation
of a patient and predict his/her disease development. This evalu-
ation and prediction provide a basis for treatments including the
medication strategy, non-routine checkup, early active interven-
tions, etc. Deep neural networks (DNNs) have been increasingly
applied to the prediction, prevention, diagnosis and prognosis of dis-
eases, leading to a promising capability for better decision-making
[4][3]. Although DNNs have proven their merits in various tasks,
the performance in noise, disturbance and imprecise data remains a
challenge. Obtaining more stable and robust medical deep learning
models is at the forefront of machine learning in healthcare.

Clinical lab tests play an important role in healthcare. From
early detection of diseases to diagnosis to personalized treatment
programs, lab tests guide more than 70% of medical decisions and
personalized medication [2]. However, due to limitations of equip-
ment, instruments, materials, test methods, etc., data inaccuracy
always occurs [1][14] and has to be dealt with. Typically, test re-
sults are within respective tolerable ranges (or imprecision ranges,
∗A part of work is done while visiting UCSB.

values in this range are acceptable though imprecise). In our previ-
ous work [12], we studied the impact of imprecision on prediction
results where a pre-trained model is used to predict future state
of hyperthyroidism for patients. It was demonstrated that small
ranges of imprecisions can cause large ranges of predicted results,
which might cause mis-labeling and inappropriate actions (treat-
ments or no treatments) for individual patients. In this paper, we
study the issue of building robust models while taking imprecision
into account with better generalization.

In image classification, it has long been found that if one im-
age is visually imperceptibly perturbed, a prediction label may be
different. To overcome this problem, a popular solution is noise
injection [6]. The main focus was on methods to generate useful
noisy or adversarial examples. By including noise-injected exam-
ples in training, resulting classification models are more sensitive
to discriminate these images. In healthcare, adversarial patients
have also been studied in different kinds of classification task [9][8].
Obviously, samples in imprecision range are not noise, since impre-
cise samples are also accepted values. The above approaches need
to be extended to address imprecision range problem readily.

In existing deep learning methods, loss functions play a central
role in model learning. By calculating the local gradient of a loss
function, the gradient descent (GD) algorithm updates the model
parameters in each iteration. Virtually all loss functions assume
that the values in a learning dataset are the only correct values. A
predicted value based on these is then used to calculate the loss
for gradient descent. However, in lab tests for patients, the values
in imprecision range usually have some probability of true values,
By assuming the lab test results have the only correct values, the
learned model will likely deviate from the real model, leading to
incorrect, inconsistent predictions when predicting new samples.

In this paper, “IR loss” is proposed and incorporated into LSTM
model for disease progress prediction. In our method, each data
in imprecision range space has a certain probability to be the real
value, participating in the loss calculation. So the loss is defined
as the integral of the error of each point in the impression range
space. Then the sampling method for imprecision space is designed.
The continuous imprecision space is discretized, and a sequence of
imprecise data sets are obtained. Then a heuristic learning algorithm
is proposed to learn the model parameters based on the imprecise
data sets sequentially. Experimental results on a real dataset show
that the prediction method based on IR loss is more robust, which
can provide more stable and consistent prediction result when test
samples are generated from imprecision range.

The paper is organized as follows. Section 2 discusses related
work. Section 3 introduces the proposed loss function and the corre-
sponding model learning method. Section 4 presents experimental
results. Section 5 concludes the paper.
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2 RELATEDWORK
One area of work studied the influence of variety forms of input
perturbations through experimental or theoretical analysis. In [13],
an iterative algorithm was developed for approximately compute
the sensitivity from neuron to layer, and finally to the entire CNN
network. Impact of data precision on learning was first observed in
our earlier paper [12], which also discussed related work. This paper
continues the study by developing an effective learning method.

To learning against input perturbations, a popular method is
noise injection [10][6]. By adding the noisy or adversarial samples
into training process, the model is expected to have more distin-
guish ability in classification task. The studies focused more on to
generating such samples. In healthcare field, adversarial patient
are defined and examined in [8]. Different methods [7][5] were
provided to generate adversarial examples in medical deep learning
classifiers. Obviously, we cannot treat each samples in imprecision
range as noise, since imprecise samples could be accepted values. So
the current solution cannot be used into imprecision problem read-
ily. How to use unseen imprecise samples to build a more robust
model is addressed in this paper.

For discretize the continuous input space, interval valued data re-
gression method provides a potential solution. In [11], each interval
valued observation was viewed as a hypercube. By dividing each
side of a 𝑝-dimensional hypercube into𝑚 equal parts to discretize
the interval data. However, the data in this paper is essentially
different from interval data. In the interval method, each data value
is an interval (e.g., cluster data) represented as a minimal and a
maximal value. In this paper, a test result is single-valued element,
but its value can be possibly anyone in imprecision range.

3 METHOD
In this paper, a prediction model 𝑓 is developed to predict the
progress of hyperthyroidism two years in advance based on the
blood test data in the first 𝑘 months. That is 𝑦 = 𝑓 (𝑥), where 𝑥

is the blood test result sequence in the first 𝑘 months. 𝑦 is the
predicted values two years later. After we obtain the predicted test
values, the disease progress is obtained by analyzing the “normal”,
“abnormal” states of the test measures. Since 𝑥 can be regarded as a
time series, we exploit LSTM as our basic prediction model. In the
traditional LSTM modeling and training process, SGD method are
often used to learn the model parameters based on an loss function.
The traditional loss for a training sample 𝑥 is:

𝐿(𝑥) = |𝑦 − 𝑓 (𝑥) |𝛼 (1)

where 𝛼 is 1 or 2, corresponding to the commonly used absolute
loss function and square loss function.

In Equation (1), 𝑥 is the group of blood test results. Each test
value has an imprecision range, any value from this range is also
acceptable. Obviously, the loss defined in Equation (1) does not
consider the samples in the imprecision range. It simply assumes
the lab test value is the only correct one. The predicted result
based on this value is used to calculate the loss and gradient. If
it is not the correct value, the above calculation may cause the
deviation in parameter learning and correspondingly the inaccurate,
inconsistent prediction results for the test data.

Figure 1: The discretization example in two dimensional
space.

To deal with the above problem, we modify the imprecision
range loss. Let Ipr(𝑥) denote the imprecision range for 𝑥 . Assume
data 𝑥 ′ ∈ Ipr(𝑥) is the true value with a certain probability 𝑝 (𝑥 ′),
then the loss at 𝑥 could be defined as:

𝐿𝐷 (𝑥) =
∫
Ipr(𝑥)

𝑃 (𝑥)𝐿(𝑥)𝑑𝑥 (2)

where 𝑃 (𝑥) is the probability of 𝑥 being the true value such that∫
Ipr(𝑥)𝑃 (𝑥)𝑑𝑥 = 1. The probability 𝑃 (𝑥) can also be regarded as the
weight to control each samples in imprecision range contributed to
the total loss of 𝑥 . When 𝑃 (𝑥) = 1 and 𝑃 (𝑥 ′) = 0 for each 𝑥 ′ in Ipr(𝑥)
and 𝑥 ′ ≠ 𝑥 , Equation (2) degenerates to the traditional loss function
𝐿(𝑥) in Equation (1). In this case, 𝑥 is the only correct value.

The total loss for all training samples is given as:

𝐿𝑜𝑠𝑠 =
∑︁

𝐿𝐷 (𝑥) =
∑︁
𝑥 ∈𝐷

∫
Ipr(𝑥)

𝑃 (𝑥)𝐿(𝑥)𝑑𝑥, (3)

The right side of the above equation is a continuous integral
term, and is possibly hard to evaluate. We consider to simplify it by
discretization. Since each 𝑥 is a multivariate variable. Its imprecision
ranges form an imprecision space with infinitely dense points. We
use the points with fixed size steps to discrietize this space.

Let 𝑥𝑘 denote a single blood test result, 𝑟 denote its maximum
acceptable range as a percentage. The lower and the upper boundary
are then 𝑥𝑘 ± 𝑟 ∗𝑥𝑘 . We uniformly generate the imprecise sample
𝑥𝑘 with fixed step 𝑠 . The sample scale is defined as Δ 𝑗 = Δ0 +
( 𝑗−1) ∗ 𝑠 , where Δ0 = 0, 𝑗 = {1, 2, ..., 𝑁 }, 𝑁 is the total number of
steps. Obviously, we have 𝑁 = 𝑟/𝑠 . For example, if 𝑟 = 10%, 𝑠 =

0.01, we have 𝑁 = 10, and Δ = {0.01, 0.02, ..., 0.1}. This process can
be easily extended to multidimensional input. Fig. 1 illustrates an
example in a two-dimensional space. 𝑙1, 𝑢1, 𝑙2, 𝑢2 are the lower and
upper boundaries of the imprecision space for the two dimensional
input value 𝑥 = {𝑥1, 𝑥2}. The green dot is the generated imprecision
sample when Δ = 0.04. In this way, the discretized imprecision
sample 𝑥 𝑗 is generated from its imprecision range as follows:

𝑥 𝑗 = 𝑥 ± Δ 𝑗 ∗ 𝑥 (4)

For each sample 𝑥 , we generate a set of imprecision samples {𝑥1, 𝑥2,
..., 𝑥𝑁 } from its imprecision space. Let 𝑥0 be the lab returned value
𝑥 . We further assume samples by using the same scale Δ share
the same weight. We discretize the weight vectors {𝑤0,𝑤1, ...,𝑤𝑁 }
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from function 𝑃 (𝑥). Then the loss could be updated as:

𝐿𝑜𝑠𝑠 =
∑︁
𝑥 ∈𝐷

𝐿𝐷 (𝑥) =
∑︁
𝑥 ∈𝐷

∑︁
𝑥𝑖 ∈Ipr(𝑥)

𝑃 (𝑥𝑖 )𝐿(𝑥𝑖 ) (5)

=
∑︁
𝑥 ∈𝐷

𝑁∑︁
𝑗=0

𝑤 𝑗𝐿(𝑥 𝑗 ) (6)

Equation (6) is also rewritten as
∑
𝑥 ∈𝐷 𝑤0𝐿(𝑥)+

∑
𝑥 ∈𝐷

∑𝑁
𝑗=1𝑤 𝑗𝐿(𝑥 𝑗 ).

The term
∑𝑁

𝑗=1𝑤 𝑗𝐿(𝑥 𝑗 ) carries twomeanings. The prediction based
on each accepted samples in the imprecision range should be as
centralized and close as possible. At the same time, all predictions
should be as close as possible to the true value. It implies that the
learning results should be accurate and stable, and consequently
more trustable.

Further, the imprecision samples with the same sample scale Δ 𝑗

are grouped together to form the data set 𝐷 𝑗 . Then the loss could
be rewritten as:

𝐿𝑜𝑠𝑠 =
∑︁

𝑥0∈𝐷0

𝑤0𝐿(𝑥0) +
∑︁

𝑥1∈𝐷1

𝑤1𝐿(𝑥1) + . . . +
∑︁

𝑥𝑁 ∈𝐷𝑁

𝑤𝑁 𝐿(𝑥𝑁 ),

=

𝑁∑︁
𝑗=0

𝐿𝑜𝑠𝑠𝐷 𝑗
(7)

where 𝐿𝑜𝑠𝑠𝐷 𝑗
=
∑
𝑥 𝑗 ∈𝐷 𝑗

𝑤 𝑗𝐿(𝑥 𝑗 ).
The goal of model training is to find the optimal model parame-

ters \̂ to minimize the loss function defined in Equation (7):

\̂ = 𝑎𝑟𝑔𝑚𝑖𝑛\ 𝐿𝑜𝑠𝑠 (8)

To achieve this goal, we divide the global optimization problem
into the combination of optimization problems on each individual
imprecision set 𝐷𝑖 . It is reasonable to assume that the closer to
the center point 𝑥 , the greater the weight should be. So we have
𝑤0 > 𝑤1 > 𝑤2 > · · · > 𝑤𝑁 . The model is trained sequentially from
larger weights to smaller ones. Specifically, the model is trained on
the first data set 𝐷0 to obtain the initial parameters by minimizing
𝐿𝑜𝑠𝑠𝐷 𝑗

. Then, on the basis of the initial model, we use 𝐷1 for the
next training round to get model 𝑓1. The above process is carried out
in turn. The final prediction model 𝑓𝑁 is obtained after 𝑁 iteration.
The detailed learning process is illustrated in Algorithm 1.

Algorithm 1: Model learning
Input: training set
Output: model \
0. SGD learning \̂0 by minimizing the loss 𝐿𝑜𝑠𝑠𝐷0 ;
1. for each 𝐷𝑖 ∈ {𝐷1, 𝐷2, ..., 𝐷𝑁 };
2. Initial model parameter using \𝑖−1;
3. SGD training new \ to obtain 𝑓𝑖 ;
4. update model 𝑓 = 𝑓𝑖 ;
5. end for
6. return finial model 𝑓𝑁

4 EXPERIMENTAL EVALUATIONS
4.1 Experimental Setup
There are 2,460 patients in the hyperthyroidism dataset used in our
experiments, which is is generated from Ruijin hospital, a reputable

hospital in Shanghai, China. The whole dataset is divided into a
training set and a test set, with 1960 patients and 500 patients
respectively. For hyperthyroidism disease, the blood test measures
FT3, FT4, TSH, and TRAb are used for prediction.

In the LSTM network, there are 2 hidden layers, each layer con-
taining 128 LSTM cell units. We employ dropout method to reduce
over-fitting and apply the Adam-Optimizer in training. Each exper-
iment runs for 10 times and each data given in the experimental
results is the average of the 10 runs. For the parameter setting, 𝑟 is
set to be 10% and 𝑠 = 0.1, then Δ is 0.01 ∼ 0.1 with interval 0.01 to
generate 𝐷1 ∼ 𝐷10.

4.2 Evaluation Metrics
After predicting 𝑓 (𝑥), the label 𝑙 (𝑓 (𝑥)) for “normal”, “abnormal”
description can be obtained by comparing the value of 𝑓 (𝑥) with the
reference range. We use 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 to measure the label prediction
accuracy of the prediction method. Given one label 𝑙 , let TP model
the positive samples in the test set and the predictions are correct.
TN represents the negative samples and the predictions are correct.
For each test patient 𝑥 , we generate the imprecise sample 𝑥 𝑗 , 𝑗 =
{1, 2, . . . , 𝑁 } from its imprecision range. In order to measure the
value prediction accuracy, we further define the 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 metric,
which is the distance from the predicted value based on imprecision
samples to the real value.

Accuracy =
|TP | + |TN |

|𝐷Test |

Distance =
𝑁∑︁
𝑗=1

|𝑓 (𝑥 𝑗 ) − 𝑦 |𝛼

4.3 Findings
In experiments, we compare the performance of the new Impreci-
sion Range Loss (IR Loss) with the one by adopting the traditional
Least Square Error loss (LS Loss).

Fig. 2 illustrates the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 comparisons. We can see that the
average 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 and the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of all the four test measures
based on the proposed method are higher than the traditional ones.
Especially for the TRAb measure, there are 4% improvements.

From the definition, the metric 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 describes the degree of
deviation between the predicted values and the true values when
𝑥 are sampled from the imprecision range. According to Fig. 3, we
can see that the 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 of the proposed method are all smaller
than the traditional method. It demonstrates that the method based
on the proposed IR loss could provide more consistent prediction
in the small range.

Our previous work demonstrated that the performance declines
when test samples are generated from its imprecision range [12].
To see how the proposed IR loss address this problem, in Fig. 4, we
provide the results when the proposed method applied to imprecise
test data when𝐷𝑒𝑙𝑡𝑎 is set to be different values. From the figure, we
can see that the accuracy of the proposed IR loss is always higher
than that of traditional loss. In addition, when Δ increases, the
decrease rate of 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of the proposed method is much lower
than that of the traditional method. This trend is more obvious
when Δ is large.



Figure 2: The 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 comparison of LS loss and IR Loss Figure 3: The 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 comparison of LS loss and IR Loss

Figure 4: The prediction stability of the proposed IR Loss Figure 5: The performance with different parameter setting

Discretization is very important in the proposed method. In this
experiment, Discretization parameter 𝑠 is set to be 0.02, 0.01, 0.005
respectively. Then three different Δ sequences obtained. The predic-
tion performance in different sampling sequences is illustrated in
Fig. 5. The figure does not establish that finer the sampling granular-
ity provides better results. When 𝑠 = 0.01, the method achieve the
best performance. Similarly, it is not clear that the more imprecise
data sets are introduced, the better the performance will be. The
increase of Δ means the number of imprecise data set increases, the
performance does not steadily increase.

5 CONCLUSIONS
The learning method presented in this paper centers around a re-
fined error function and input data imprecision range. This basically
addressed the problems observed in our previous study [12] with
a satisfactory solution. Further improvements may possibly take
into consideration of output data imprecision range and probability
distributions of the imprecise samples. Also, it remains to be seen if
such methods are effective in other applications in, e.g., healthcare
and engineering.
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