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• Generate contextual explanations for a comorbidity risk prediction set-
ting.

• Explanations tie predictions and posthoc features to evidence from the
context of use.

• Explanations extracted from guidelines using LLMs and knowledge-
augmentations (KAs).

• Evaluate 5 clinical LLMs and KAs on an entire dataset and divide them
by diseases.

• An expert panel found value in providing such contextual explanations.
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Abstract

Medical experts may use Artificial Intelligence (AI) systems with greater
trust if these are supported by ‘contextual explanations’ that let the prac-
titioner connect system inferences to their context of use. However, their
importance in improving model usage and understanding has not been ex-
tensively studied. Hence, we consider a comorbidity risk prediction scenario
and focus on contexts regarding the patients’ clinical state, AI predictions
about their risk of complications, and algorithmic explanations supporting the
predictions. We explore how relevant information for such dimensions can
be extracted from Medical guidelines to answer typical questions from clin-
ical practitioners. We identify this as a question answering (QA) task and
employ several state-of-the-art Large Language Models (LLM) to present
contexts around risk prediction model inferences and evaluate their accept-
ability. Finally, we study the benefits of contextual explanations by building
an end-to-end AI pipeline including data cohorting, AI risk modeling, post-
hoc model explanations, and prototyped a visual dashboard to present the
combined insights from different context dimensions and data sources, while
predicting and identifying the drivers of risk of Chronic Kidney Disease (CKD)
- a common type-2 diabetes (T2DM) comorbidity. All of these steps were per-
formed in deep engagement with medical experts, including a final evaluation
of the dashboard results by an expert medical panel. We show that LLMs,
in particular BERT and SciBERT, can be readily deployed to extract some
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relevant explanations to support clinical usage. To understand the value-add
of the contextual explanations, the expert panel evaluated these regarding
actionable insights in the relevant clinical setting. Overall, our paper is one
of the first end-to-end analyses identifying the feasibility and benefits of con-
textual explanations in a real-world clinical use case. Our findings can help
improve clinicians’ usage of AI models.

Keywords: User-driven, Clinical Explainability, Contextual Explanations,
Question-Answering Approach, Type-2 Diabetes Comorbidity Risk
Prediction
PACS: 0000, 1111
2000 MSC: 0000, 1111

1. Introduction

Artificial Intelligence (AI) and Machine Learning (ML) have been applied
to the medical and healthcare domains for decades [1, 2] but their adoption
has been slow due to various aspects including the need for explaining the
black-box nature of such methods. AI explainability (XAI) has tried to pro-
vide a rationale for model predictions so that subject matter experts (SMEs)
can interpret their results [3, 4, 5]. Studies on XAI have shown that users
in different contexts require explanations that match their different levels of
expertise and focused on their particular goals and needs [6, 7, 8, 9]. Hence,
there often is no single solution for XAI pipelines [10, 11, 9], but processes
can be followed for catering to the specific needs of the use case and the
intended users [12, 13]. The impact of AI in patient-facing applications will
increase the need not only for XAI but also for contexts that subject matter
experts (SMEs) in the clinical domain are familiar with [7, 14, 15].

Definition 1.1 (Explanation). An account of the system, its workings, the
implicit and explicit knowledge it uses to arrive at conclusions in general and
the specific decision at hand, that is sensitive to the end-user’s understanding,
context, and current needs. [16]

Definition 1.2 (Contextual Explanation). Explanations that contain con-
text, are often explicit information [17] to characterize the situation of (an)
entity(ies), wherein “an entity is a person, place, or object that is considered
relevant to the interaction between a user and an application” [18].
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In recent years, efforts to describe and formalize explanations [19, 9]
have identified various dimensions and types for it. Specifically, ‘contex-
tual explanations’ [20, 9] hold great promise to satisfy aforementioned clinical
needs and can improve the adoption of AI methods among clinical workflows.
Risk prediction is one of the most important tasks in clinical decision mak-
ing, and an increasingly important in view of the move toward personalized
medicine. [21, 22]. To interpret risk scores, clinicians often consult evidence
from different levels of the scientific pyramid [23] to lookup associations that
might impact the patient’s treatment or future trajectory. For example, ques-
tions like those in Tab. 1, are often asked by clinicians when they are trying
to understand or use AI model predictions in their practice. Additional con-
textual information, such as answers to these questions, can help clinicians
interpret and trust predictions to take actions. However, current work in
risk prediction has often narrowly focused on improving model’s accuracy,
ignoring the aforementioned needs. Interestingly, several researchers have
posited contextual explanations [24, 25, 9], that go beyond post-hoc model
explanations to frame the predictions in the context of the applied setting
and decisions being made. However, the feasibility of extracting such contex-
tual explanations and the added benefit in an end-to-end setting of clinical
relevance has not been studied and forms the focus of this paper. Specifi-
cally, we consider how to derive and support contextual explanations from
authoritative domain knowledge sources, not already considered by predic-
tion models, that clinicians would typically use to reason through decisions
presented to them when dealing with recommendations from learning health
systems.

Table 1: Questions that could be asked in clinical use cases around model explanations /
predictions, and which can benefit from contextual explanations in the context of use.

Sample Question

What treatment can be suggested for this patient who has an increased risk of
cardiovascular disease?

What other conditions does this patient have that might impact this decision?

What was the patient’s A1C value when this prediction was made?

Why are you telling me that this risk is important?

Working closely with medical experts, we identify three specific focus ar-
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eas on contexts such as the patients’ clinical state, AI predictions about their
risk of complications, and algorithmic explanations supporting the predic-
tions. Multiple data sources are required to extract such contextual explana-
tions, including patient medical records, AI model predictions, and authorita-
tive information around clinical facts and best practices. Medical guidelines
are one of the most trusted authoritative sources of information and can pro-
vide the required additional context. Here, we thus study the feasibility of
extracting answers from guidelines to typical questions from clinical practi-
tioners to satisfy their explainability needs. We can identify this problem
to be a question answering (QA) task. In the natural language processing
(NLP) domain, the efficacy and ready-availability of state-of-the art (SOTA)
deep learning based QA modules, have rendered such QA problems solvable
and is being increasingly productivized. In this paper, we thus aim to extract
such contextual explanation using SOTA LLM methods. Especially, we aim
to study the following questions relative to contextual explanations:
• Feasibility of extracting and generating contextual explanations from au-
thoritative sources: can we reliably extract contextual explanations from med-
ical guidelines using state-of-the-art QA models? Can knowledge augmenta-
tion improve the QA performance? We use a suite of readily available QA
language models, with and without knowledge augmentations, and compare
against manually annotated answers to evaluate the extracted contexts from
authoritative clinical sources to explain decisions of post-hoc model explain-
ers and risk prediction models.
•Understanding the added benefit of the derived contexts: does the derived
contextual explanations improve model usage by clinicians? We evaluate use-
fulness of these contexts from two perspectives: (a) user persona needs and
(b) model accuracy. Particularly, we discuss themes that emerged from our
conversations with clinicians to understand if clinical contexts can better
support model explanations and what more is desired of contextual explana-
tions.
• Practical considerations in a clinical workflow: what considerations and
challenges might we face in implementing support for derived contexts in a
setting of clinical relevance? To conduct our study, we developed an end-to-
end system including (i) data cohorting, (ii) AI models for risk prediction, (iii)
post-hoc explainers to identify driver of risk, and (iii) a prototype dashboard
to present the combined insights from the contextual explanations. Specifi-
cally, as a case-study, we considered the problem of predicting and identifying
the drivers of risk of chronic kidney disease (CKD) - a common type-2 diabetes
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(T2DM) comorbidity and extracted contextual explanations for 175 questions
of 5 different types. An expert panel of 4 medical experts evaluated these
explanations for 20 prototypical patients. Our end-to-end system enabled us
to identify practical steps in creating such a pipeline and the steps needed to
generalize this for other clinical settings. Also, this enabled us to answer the
aforementioned two questions and derive a holistic understanding support-
ing contextual explanations in a risk prediction setting. We further identify
scenarios within this clinical setting where contextual explanations would be
most useful and discuss how they would fit into the clinical workflow.

The rest of the paper is organized as follows. First, we provide a brief
description of the use case, the data sources, and the motivation and back-
ground for contextual explanations (Sec. 2). Next, we provide an overview of
our methodology including the end-to-end AI pipeline and prototype dash-
board used to conduct the experiments in (Sec. 3). In Sec. 4, we present
comprehensive evaluations including quantitative performance of QA lan-
guage models as well as qualitative analysis of extracted contextual explana-
tions via a thematic analysis of expert panel sessions. We present a detailed
analysis of these results in Sec. 5 and answer the aforementioned questions
of interest. Finally, in Sec. 6, we present a summary of other related works
and contrast our unique contributions, and conclude with general take-aways,
including opportunities for future research in Sec 7.

2. Motivation and Background

In this section, we provide details on several assumptions and consider-
ations that will be used to describe our methodology and will be crucial in
analyzing the experimental results. Here, we describe the content we will use
to support user-centered contextual explainability in chronic disease - comor-
bidity risk prediction settings. In Sec. 2.1, we present a high-level overview
of the selected use-case. in Sec. 2.2, we introduce the entities along which
we extract contextual explanations (or contextualized entities), which could
provide additional information to help clinicians interpret the risk prediction
scores and the factors influencing the scores in clinical settings. Finally, in
Sec. 2.3, we provide an overview of the datasets used for our study. In par-
ticualr, we describe clinical practice guidelines (CPGs) in Sec. 2.3.2. CPGs
are considered to be at the highest level of the evidence-based pyramid [23]
and is our selected source to derive high-quality clinical context.
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2.1. Use Case

Figure 1: Trace of dependencies of a contextual explanation example on system outputs
from post-hoc explainer models and question-answering methods. In this example, we have
used ontology classes and properties to annotate the data, but in this paper we mainly
focus on a multi-method approach to support such contextual explanations.

AI models promises to help clinicians by providing tools for improved de-
cision making. Risk prediction of patients is one of the key steps in a clinical
decision scenario and models for such use cases can be consumed by a broad
spectrum of clinicians with differing roles and experience, e.g. a specialist vs
a primary-care physician. Depending on their roles, the needs, and thereby
the desired functionality from a risk prediction contextualization standpoint,
can be different. We worked closely with a clinical expert to to understand
the clinical use-case and determine the context of AI tools. Crucially, we
aimed to form an understanding of the unmet needs and identify relevant
contexts that can benefit clinicans. We can further motivate this via Fig. 1
which shows an example question posited by a clinician while consuming the
ouputs of a risk prediction model. In this case, the relevant response can
be identified via contextual explanations [9] that is generated from multiple
sources and via multiple extracted contexts. Our aim, was to thus scope the
relevant contexts that will be the focus of our study. We followed a sequence
of user-centric research principles [12], to (1) define the scope of our tool’s
capabilities, (2) identify the end-user/target persona who would most benefit
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from our tool, and (3) scope the most relevant contexts. Through our in-
terviews, we identified primary-care physicians (PCP), especially those with
lesser years of experience, to be the persona who may most benefit from such
contextualizations. We describe the covered context types in Section 2.2.
Furthermore, to study our stated problem in a real-world setup, we identi-
fied the problem of risk prediction of CKD among new T2DM patients at their
first diagnosis.

This is motivated by the fact that diabetes is one of the top five chronic
diseases affecting the adult population in the US [26]. Diabetes management
involves monitoring for and treating related comorbid conditions. Effective
and timely prediction of such conditions can lead to an overall improvement
in the quality of care and thus evaluating the impact of AI models in improv-
ing clinical decision workflow can have tremendous real-world impact. Espe-
cially, we focus on CKD, a commonly occurring micro-vascular complication of
T2DM and one of the leading causes of death in the US [27], with an estimated
37 million cases in the US (who are mostly undiagnosed) and cost medicare
in 2018 81.1B, and end stage renal disease an additional 36.6B. Typically,
actions to prevent onset of CKD among T2DM patients revolve around proper
disease control, including close disease monitoring, proper treatment adher-
ence, and patient education. Incorporating accurate risk prediction of CKD

in the clinical workflow can lead to more timely actions, potentially delaying
the onset of CKD, and in some cases, preventing its progression. While such
predictions could be of use along various time-points of the patients’ T2DM
prognosis, in this paper, we predict the risk of developing CKD within 360
days of T2DM onset. Under this use case, we explore strategies to provide
context around interventions for particular patients, and explain their T2DM

state and individual risk factors.

2.2. Selected Contextual Entities of Interest

To support the goal of providing user-centered, clinically relevant, and
contextual explanations, in consultation with a medical expert on our team
who is also a co-author, we identify three entities of interest to provide con-
textual explanations around predicting the risk of CKD among T2DM patients.
Fig. 1 shows an example of contextual explanation that can answer a clini-
cian’s question around patient management. It can be seen that such expla-
nations are usually composed of multiple entities and from multiple sources.
In general, we identified and subsequently focused on extracting the following
contexts:
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• Contextualizing the patient by connecting their clinical history and indi-
cators to treatments typically recommended for such patients, according to
CPGs.
• Contextualizing risk predictions for the patient in terms of the prediction’s
impact on decisions, based on general norms of practice concerning poten-
tial complications, as evident from guidelines and other domain knowledge,
including medical ontologies.
• Contextualizing details of algorithmic, post-hoc explanations, such as con-
necting features that were the most important to other information based on
their potential medical significance, such as through connections to physio-
logical pathways and CPGs.

Figure 2: Different types of contextualizations supported by methods, that help provide
additional context around patients, their risk predictions and features contributing to risk,
via connections to different knowledge sources including patient data, medical ontologies
and guidelines.

In Fig. 2, some examples of contexts that we support around the three
entities of interest in the risk prediction setting can be seen. Also seen in the
figure are the pathways in which answers providing context could borrow from
different domain knowledge sources and methods. For example, the answer
to the question, “What drugs to administer for chronic kidney disease?”
provides context around the patient and risk prediction, borrows both from
guidelines and patient data, and is supported by the risk prediction and
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natural language modules which we describe in Sec. 3.

2.3. Data Sources

To conduct our real-world study, we focus on two specific sources of data
as described below.

2.3.1. Patient Data

We conduct our analysis on and retrieve patient data from the claims sub-
component of the Limited IBM MarketScan Explorys Claims-EMR Data Set
(LCED), covering both administrative claims and EHR data of over 5 million
commercially insured patients between 2013 and 2017. Medical diagnoses
are encoded using International Classification of Diseases (ICD) codes. We
selected only those T2DM patients (with ICD9 codes 250.*0, 250.*2, 362.0,
and ICD10 code E11) that satisfied the following criteria as our cohort. Only
T2DM patients with the following criteria are included:

• have had two or more visits with T2DM diagnosis,

• were enrolled continuously for 12 months prior to T2DM diagnosis,

• number of visits for T2DM is greater than those for other forms of dia-
betes such as T1D, and

• age at the initial T2DM diagnosis is between 19-64 years.

Among T2DM patients, we use the first diagnosis of chronic kidney disease
(CKD) (ICD10 N18 or ICD9 585.*, 403.*) after the initial diagnosis of T2DM as
the outcome to predict. At the time of the first T2DM diagnosis, we predict the
risk of the patient developing CKD within 1 year using Clinical Classifications
Software (CCS) codes, age group, and sex as features for the predictive model.

2.3.2. Clinical Practice Guidelines

Clinical Practice Guidelines are position statements published by a board
of experts in different disease areas [28]. These guidelines are updated often,
latest summaries of updated evidence in the disease areas, and follow the
highest standards of evidence appraisal (e.g., Grading of Recommendations,
Assessment, Development and Evaluations (GRADE) evidence schemes 1).

1https://www.gradeworkinggroup.org

9



Further, the guidelines are written to be comprehensive sources covering dif-
ferent aspects of treatment, management, and assessment of the disease and
are often regarded as first-line lookup sources for clinicians and primary care
physicians [29, 28]. Given their comprehensive and updated nature, CPGs
provide a great resource for providing clinical contexts in various clinical
settings. We utilize the 2021 edition of the American Diabetes Association
(ADA) Standards of Care guidelines for our experiments.

3. Methods

To study the problem of risk prediction of CKD among T2DM patients,
we created an end-to-end AI enabled system. Fig. 3 shows a conceptual
overview of the components of this system. In general, to extract contex-
tual explanations around our three identified entities of interest, we used a
number of components including risk prediction models, post-hoc explana-
tion models, and our multi-method, question-answering approach to provide
context. Crucially, to analyze the importance of the supported contextual
explanations, we prototyped a clinical-friendly dashboard and ran qualita-
tive analysis. In this section, we provide high-level details of some of the key
components involved in the process.

Figure 3: Overall view of the different methods in our pipeline and how they interact to
provide risk prediction scores, factors contributing to the risk and contexts around the
patient, their predicted risk and the factors contributing to the risk.
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3.1. Risk Prediction Models

In the first step of our pipeline, we build risk prediction models from the
constructed cohort and the aforementioned use-case (Sec. 2.1). In particular,
we train a suite of machine learning models (ML), including both classical
and deep-learning models, and select the best performing one based on the
highest predictive accuracy and other appropriate metrics for the use case,
such as favoring models with a higher recall. We used DPM 360 [30], an open-
source, reusable, disease progression model training package, we compared
a suite of classification models on the patients’ demographic and diagnosis
history to predict future complications. In this paper, we only used the de-
mographic and diagnostic features to model risk. Furthermore, to handle
the temporal features, for some of our models, such as Logistic Regression
(LR) and Multi-layer perceptron (MLP), we used temporally aggregated fea-
tures (summation). We also compared two state-of-the art Recurrent Neural
Networks (RNN) where temporal history can be handled in a more natu-
ral manner, viz., Long-Short Term Memory (LSTM) and Gated Recurrent
Units (GRU). All model implementations are available via DPM360 includ-
ing classical ML models (backed by scikit-learn) and deep learning models
(custom built for DPM). In this paper, we split the data according to a
train-validation-test split (70-10-20). Using the best performing models on
the validation set, we present our results on the hold-out test set. Since the
data is imbalanced, we selected the models based on the best AUC-ROC and
AUC-PRC from the validation set. We also evaluate the models based on
precision, recall, and brier score [31]. Deep learning networks are known to
be under-calibrated and the last metric measures how well the model is cali-
brated, i.e., it measures the probabilistic interpretation of risk prediction. In
other words, if a model predicts a 0.7 risk for a patient, brier score measures
how well that translates to a 70% chance of the patient developing the com-
plication. The hyper-parameters for the deep-learning models were selected
using a grid search strategy varying batch sizes {8, 16, 32, 128}, number of
layers {1, 2, 3}, and dropout {0.0, 0.1, 0.2} along with standard initialization
and using ADAM as the optimizer of choice.

3.2. Post-hoc Explainer Models

While some of the classical algorithms considered in Section 3.1 are in-
herently interpretable with easy access to the features deemed important for
the model (such as LR), several of the deep learning models are black-box
models. To extract feature importances from such models, we used post-hoc
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explainers which have been found to be favored by clinicians in past stud-
ies [15]. In particular, we used the well accepted SHAP algorithm [32] to
find feature importance 2. The algorithm uses game-theoretic principles to
identify importance of features by ascertaining the dip in performance of the
model with and without access to the feature at the personalized level. Such
personalized feature importance is key so that our overall risk prediction pre-
sentations are more actionable for the clinicians by allowing them to focus
on the particular attributes of the patients that are driving their risk.

Typically, clinician time is costly and hard to obtain. Thus to conduct
the expert panel sessions and let them focus on some of the most ‘interesting’
patients, we apply Protodash [33] to select a subset of patients. Protodash
is a post-hoc sample selection method used to obtain a set of prototypical
or representative patients from the high risk category that naturally spans
the varied set of patient characteristics for the selected sub-group. This also
allows the clinician to build trust in using the AI models by inspecting the
different patient modalities of the dataset without having to inspect the entire
dataset.

3.3. Extracting Contextual Explanations from Clinical Guidelines

We intend to support a set of possible clinical questions around risk pre-
diction setting for patients. The explanations to these questions can help
provide more context around patient predicted risk, features contributing to
it and data. Each of these question sets, or question types as seen in Tab.
2, can be addressed by multiple sources. Critically, we set up our problem
of extracting context around entities of interest in a risk prediction setting
from clinical guidelines to help clinicians make sense of comorbidity risk pre-
diction scores of chronic disease as a question-answering (QA) task. Figure 4
shows a detailed overview of the steps involved in this ‘guideline QA’ task. In
this section, we give a brief overview of the important steps. For a detailed
description please refer to Appendix A.
Information Retrieval from Data Sources: We support the extraction of con-
text from three domain sources in our QA approach, including patient data,

2In this paper, our primary goal is study the importance of contextual explanations
and thus we chose SHAP as a well-known SOTA post-hoc explainer. However, we caution
the readers about known criticism of SHAP, and in general explainability methods, that
are still active area of research without a common consensus
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Figure 4: Visualization of different modules within our Question Answering (QA) pipeline
including A). information extraction modules, B). QA modules and submodules and C).
output modules.

Table 2: Question types currently supported by our QA module, we also indicate the data
sources used to address questions of the type.

Question Type
Contextualized
Entity

Domain Knowledge Source

1
Patient’s T2DM sum-
mary

Patient Patient data

2 Patient’s risk summary Risk Prediction
Risk Prediction and popula-
tion data

3
Features contributing to
patient’s CKD risk

Post-hoc Expla-
nation

Feature importances and
ADA guidelines

4
Patient’s medication
list

Patient and Risk
Prediction

Patient Data and guidelines

5 Patient’s lab values Patient Patient Data and guidelines
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medical ontologies like Clinical Classification Software (CCS) codes 3 and
medical guidelines from ADA Standards of Care 2021 (as introduced in Sec.
2). We query patient data from Limited Claims Explorys Dataset (LCED)
claim records (see Sec. 2.1) on-demand, either when we need to create ques-
tions based on patient parameters or when we need to include these patient
values in answers to questions about the patient. We extract content from
the HTML or web version of the ‘Standards of Medical Care in Diabetes’ [34]
guidelines, published by the American Diabetes Association (ADA) 4 using
a Python library, BeautifulSoup [35]. We also query patient risk predictions
and feature importances using a unique identifier, the patient ID. Some of the
extracted contexts are used for generating questions such as patient data, risk
predictions and feature importances, and others are used to query against
such as the extracted guidelines.
Question Answering Steps: Here we describe part B). of our QA architecture
(Fig. 4), including the question and answer generation modules and their
supporting submodules. In our QA setup we leverage SOTA LLMs and
introduce knowledge augmentations to improve their performance on the
ADA 2021 medical guidelines. Additionally, we introduce sub-modules to
enhance the LLMs’ capabilities to address question types 3 - 5 from Tab. 2,
i.e., diagnosis codes, drugs and clinical indicators, which are run against our
extracted guideline content. Below are the submodules in our QA setup:

Question Generation: The question generation module almost always
creates templated questions using Python’s native support for String Tem-
plates, 5 and does so based on patient data, more specifically from the pa-
tient’s diagnoses codes, lab values, and medication list. We also support the
creation of two standard, non-variant questions for each patient, i.e., whose
values don’t change from patient data, that can help clinicians easily inter-
pret their predicted risk (question type 1) and their T2DM state (question type
2). Moreover, as can be seen from Tab. 2, each of the question types that
we support on a per patient basis is populated from different data sources.
Hence, we have developed different answering methods for each, including
simple lookups and knowledge augmented language model capabilities, in-
cluding combinations of either a LM + value range comparison or LM +

3https://www.hcup-us.ahrq.gov/toolssoftware/ccs10/ccs10.jsp
4https://care.diabetesjournals.org/content/44/Supplement_1
5https://docs.python.org/3/library/string.html
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semantic filtering. We provide examples of questions and answers for each
question type in Appendix C.

Answer Generation: For questions types 1 and 2 from our supported ques-
tion types, whose context does not depend on guidelines as shown in Tab.
2, we query patient data and feature importances and use a similar templat-
ing approach for question generation to populate answer templates with the
retrieved query results. For other question types 3 - 5 that are answered by
guideline content, we pass them through our LLM and knowledge-augmented
LLM setup that we describe next.

Language Models for Generating Answers: We use a LLM approach in
order to find answers to our questions with the unstructured and natural
language discussion and recommendation sentences of the ADA 2021 guide-
lines. We have applied the original Bidirectional Encoder Representations
from Transformers (BERT) model or BERT [36] and other variants of the
same retrained on clinical datasets, including SciBERT [37], BioBERT [38],
BioBERT-ASQ [39] and BioClincalBERT-ADR [40]. All of the models we
utilize are available on the HuggingFace [41] model repository, and we choose
BERT models that were made available specifically for clinical question-
answering. We built two other submodules to enhance the capabilities of
the LLM approach, specifically to address questions with numerical compar-
isons of question type 5, and to improve the semantic match between the
question and the answers returned by a LLM (question type 3 and 4). For
details on standard processing steps to include more data types like numerical
ranges, refer to Sec. Appendix A in the appendix.

Augmenting Knowledge to LLM: Transformer based LLM approaches like
BERT and its variants, work on sequences of words that are often seen
together and their surrounding words, but don’t leverage the semantics of
whether these words are diseases, medications, or biological processes. We
found that in the absence of this semantic knowledge, we would often get
answers from BERT that don’t correlate on a semantic level with the ques-
tion. To eliminate such answers, we explored options for a biomedical se-
mantic mapper and zeroed in on the National Library of Medicine (NLLM)’s
Metamap tool [42]. We choose Metamap because of its extensive coverage of
biomedical semantic types and its ability to capture entity mentions within
the ADA 2021 CPG. Within our pipeline, we have integrated a Python wrap-
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per for Metamap6 that can recognize biological entities within the guideline
text and their semantic types (e.g., dsyn: disease or syndrome, phsu: phar-
macolgic substance, etc. for a complete list of types returned by Metamap
see: 7). Additionally, given this ability to filter based on semantic types,
we want to allow additional answers with mentions of related diseases. To
provide more broad answers, we use the UMLS Concept Unique Identifier
(CUI) codes from the Metamap returned outputs to map to Snomed-CT dis-
ease codes [43]. From the mapped Snomed-CT disease codes, we can traverse
the Snomed-CT disease tree to identify how many hops apart question and
answer disease codes are and if the answer codes are an ancestor of those in
the question. We operate on the idea that answers about the parent disease
code apply to children nodes. We use the outputs of these knowledge aug-
mentation modules to both pre-filter and post-sort LLM model answers for
question types 3 and 4 from Tab. 2. We report the accuracies for answers
that use these knowledge augmentations in the results section (Sec. 4). For
more details on how we used the Metamap and Snomed codes as knowledge
augmentation methods within our QA setup, refer to Appendix A.

Below in Tab. 3 and 4, we present sample questions and answers for
each question type to provide examples of questions and extracted answers
supported by our QA approach. We intentionally don’t show patient values
in these examples to be compliant with HIPAA restrictions.

3.4. Prototype Dashboard and Expert panel sessions

To present the supported contextual explanations, we have adapted a
question-driven design [12] for user-interface (UI) development and built a
running prototype of a risk prediction dashboard (as seen in Fig. 5). The
content we show on it is rendered on a per-patient basis chosen from a land-
ing page not shown here. For each patient, we show multiple panes (or UI
sections) at a high level, each of which displays content under a particular
grouping. These panes include groupings of patient details, history timeline
of claim incidences, risk prediction scores, features contributing to risk, and
questions in context. In Fig. 5, we highlight the risk prediction, feature im-
portance, and questions in context panes. The explanations pane serve as a
section where our contextual explanations, that provide context around our

6PyMetamap: https://github.com/AnthonyMRios/pymetamap
7https://lhncbc.nLLM.nih.gov/ii/tools/MetaMap/Docs/SemanticTypes_

2018AB.txt
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Table 3: Sample questions and answers for each question type supported by our question-
answering approach. Answers such as these serve as contextual explanations that provide
information to interpret risk predictions better. We don’t provide patient values here due
to HIPAA restrictions.

Question Type Sample Question Answer

1. Patient’s T2DM

summary

What is the patient’s
A1C value? What are
their most frequent di-
agnoses codes?

Patient’s A1C is A. Their most fre-
quent diagnosis codes are essential
hypertension, septicemia, etc.

2. Patient’s risk
summary

How does the predicted
risk of the patient com-
pare against the popula-
tion?

The predicted risk of chronic kidney
disease the patient is X %. The pop-
ulation averages for the same condi-
tion are as follows: For Medicare pa-
tients: Y % For patients with Charl-
son Comorbidity Index (CCI) score
of 3 : Z %

3. Features con-
tributing to pa-
tient’s CKD risk

What can be done for
Essential Hyperten-
sion?

10.3 For patients with diabetes and
hypertension, blood pressure targets
should be individualized through a
shared decision-making process that
addresses cardiovascular risk, po-
tential adverse effects of antihy-
pertensive medications, and patient
preferences. C
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Table 4: Sample questions and answers for each question type supported by our question-
answering approach. Answers such as these serve as contextual explanations that provide
information to interpret risk predictions better. We don’t provide patient values here due
to HIPAA restrictions.

Question Type Sample Question Answer

4. Patient’s lab
values

What should be done
for this patient, whose
A1C levels are greater
than 10 ?

The early introduction of insulin
should be considered if there is evi-
dence of ongoing catabolism (weight
loss), if symptoms of hyperglycemia
are present, or when A1C levels are
greater than 10% [86 mmol/mol] or
blood glucose levels greater than or
equal to 300 mg/dL [16.7 mmol/L]
are very high.

5. Patient’s med-
ication list

What do the guidelines
state about the GLP-1
RA drug the patient is
taking?

Meta-analyses of the trials reported
to date suggest that GLP-1 recep-
tor agonists and SGLT2 inhibitors
reduce risk of atherosclerotic major
adverse cardiovascular events to a
comparable degree in patients with
type 2 diabetes and established AS-
CVD (185).
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Figure 5: A screenshot of a running prototype of our risk prediction dashboard which
includes: 1) the risk prediction score, 2) the features contributing to the predicted risk
with the size of their impact on the model results, and 3) a ”questions in context pane”,
in which the user can select and see answers to questions that provide additional contex-
tual information about the patient, the predicted risk calculation, and individual features
contributing to the risk.
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identified entities of interest in the risk prediction setting - patients, their
predicted risk, and the features contributing to risk - can be selected and
browsed. Additionally, as we have described in Sec. 2, risk scores can be in-
terpreted better in the context of use, i.e., by enabling connections to patient
data, feature importance, and domain knowledge, hence, we had to support
interactions between these panes (refer Appendix D for the details), which
would make it easier for clinicians to establish the connections.

3.4.1. Expert Panel Sessions using Prototype Dashboard as an Aid

We used our risk prediction dashboard as an aid during our structured
feedback sessions, where we walked clinicians through a live demonstration of
our dashboard for a set of prototypical patients (see Tab. 5). We conducted
sessions individually with four clinicians in our expert panel to understand
whether the contextual explanations provided, patient predicted risk, and
risk explanations, were helpful for clinical practice. We explained that this
dashboard would be available in addition to the clinician’s regular EHR tools
and the patient information they provide, and is meant specifically to provide
additional information related to the CKD Risk Prediction. To strike a
balance between limited clinician time and the need for diverse feedback, we
generated such reports from among 20 prototypical CKD high-risk patients
from our T2DM cohort, identified by the Protodash algorithm [33].

During the sessions, we first familiarized each clinician with the different
sections of the risk-prediction dashboard. We asked them to imagine that
they would be meeting with the patient and had seen the CKD prediction,
and stated we wanted to understand what information would be useful to
them in understanding the prediction and its impact on their treatment de-
cisions. We then presented the dashboard as it would appear for 3 randomly
selected prototypical patients. We asked the panel members to imagine that
they were preparing to treat a patient that was new to them. We navigated
through the dashboard as instructed by the subjects, opening sections or
clicking on items as they requested. We asked the clinicians to speak aloud
as they were working with the dashboard. We also probed the relevance and
usefulness of the different sections of the dashboard and the specific content
shown in them. We asked if there was other information they would have
liked to have been provided, or questions they would want answered. Ses-
sions were recorded and transcribed, similar to the approach mentioned in
[44].

Through these sessions, we wanted to understand the usefulness of our
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supported patient contextualizations and the features contributing to their
risk. Specifically, we showed clinicians the content on different panes of this
dashboard and the supported interactions to understand what features were
most important, both from a UI and informational perspective. We report
the results of these interactions in Sec. 4.3.

4. Results and Evaluation Study

In this section, we present quantitative results for the guideline question-
answering methods (Sec. 4.1 and Sec. 4.2). As a qualitative analysis, we also
discuss themes and subthemes that we found from an analysis of discussions
from our expert panel sessions (Sec. 4.3). For our risk prediction model
we choose MLP, and derive important features for the prediction using the
SHAP model. The distribution of important features identified by SHAP can
be seen in Tab. 5. Results for these models can be browsed via the appendix
Appendix C.

4.1. Data coverage and support

Figure 6: Overview of the evidence structure in the ADA Standards of Medical Care -
Diabetes Guidelines 2021.
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Table 5: Summary (generated using Tableone library [45]) of 20 prototypical patients
highlighting the demographic and diagnoses counts. We report the disease diagnoses
by their higher-level disease groupings (e.g. for T2DM the higher-level code is endocrine,
nutritional and metabolic disorders). We highlight the conditions that are most prevalent
amongst the patients (> 50%).

Feature Overall counts (%)

Age at onset 45-54 4 (20.0)
Age at onset ≥ 55 15 (75.0)
Age at onset ≤ 44 1 (5.0)
SEX - FEMALE 7 (35.0)

Mood disorders 3 (15.0)
Diseases of the blood and blood-forming organs 3 (15.0)
Diseases of the circulatory system 17 (85.0)
Diseases of the digestive system 6 (30.0)
Diseases of the genitourinary system 9 (45.0)
Diseases of the musculoskeletal system and
connective tissue

12 (60.0)

Diseases of the nervous system and sense organs 9 (45.0)
Diseases of the respiratory system 11 (55.0)
Diseases of the skin and subcutaneous tissue 7 (35.0)
Endocrine; nutritional; and metabolic diseases and
immunity disorders

20 (100.0)

Infectious and parasitic diseases 10 (50.0)
Injury and poisoning 4 (20.0)
Mental Illness 3 (15.0)
Neoplasms 6 (30.0)
Symptoms; signs; and ill-defined conditions
and factors influencing health status

10 (50.0)
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One of the aims of this manuscript is to extract contextual explanations
from medical guidelines. To explore the feasibility of this task we first an-
alyzed the coverage of the ADA 2021 guidelines used to extract contextual
explanations of predictions in CKD comorbodity, T2DM risk prediction setup.

We extracted the recommendations and discussion sentences across the
16 chapters of the current ADA 2021 CPGs. These recommendation and
discussion sentences are expressed in natural language (See Fig. 6). Ta-
ble 6 shows a high-level overview of the coverage statistics. Specifically, the
extracted sentence corpus can hence be analyzed for the total number of to-
kens, average token length per sentence, and their composition of Metamap
semantic types, to understand the coverage of the guideline text in terms of
volume and semantic diversity. For tokens, we report words recognized by
both BERT’s tokenizer model to be consistent with our QA approach. [46]
report similar statistics for three other CPGs, neither of which are Diabetes
focused, but it can be seen that the total number of tokens and sentences
in the ADA 2021 CPG are more than the three guidelines reported in this
paper. Hence, pointing to the comprehensiveness of our approach. Also,
note that some of the recommendations were not captured by our guideline
extraction script, and hence our statistics might be lesser than the actual
count. 8.

Table 6: Coverage statistics from extracted content from the ADA Standards of Care - Di-
abetes Guidelines 2021. We report these statistics on the recommendations and discussion
sentences we extracted across chapters.

Field Count

Chapters 16
No. of sentences 2379
Tokens from BERT 118350
Avg. BERT tokens per sentence 49
Metamap Semantic types covered 116 / 126

The many semantic types (see Fig. 7 for 25 most populous semantic
types) covered by the ADA 2021 CPG reaffirms that guidelines are a com-
prehensive source of evidence-based information in the clinical domain [28].

8In future, we aim to expand our coverage and update our methods to better capture
these recommendation groups
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Figure 7: Frequency distribution for 25 / 116 of the top semantic types that were found
in the extracted guideline text.
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Further, in Sec. 5, we also discuss how well the ADA 2021 CPG alone can
support the themes we analyzed from conversations with clinicians during our
structured feedback sessions and hence discuss the CPG’s ability to serve as
a source of context in our risk prediction setting.

4.2. Quantitative Evaluation of Guideline QA

One of our key aim is to study whether SOTA LLM methods can be used
to extract high quality contextual explanations. Thus, while we can address
different question types in our QA approach, as seen in Tab. 2, we only eval-
uate those question types that are addressed by ML methods, i.e., through
our knowledge and knowledge augmented LLM modules (as described in Sec.
3 and seen in Fig. 4). We evaluate feature importance questions of types
3 (of diagnostic importance), type 4 (of treatment importance), and type 5
(asking about clinical indicators and important for both diagnostic and man-
agement purposes). Additionally, we evaluate answers to questions of types
3 and 4 differently from question type 5 since questions of types 3 and 4 are
served by the knowledge augmented LLM modules and questions of type 5
are addressed by the LLM with the numerical range comparison module. For
answers to questions of type 3 and 4, we report standard and frequently used
NLP QA metrics including mean average precision (MAP) [47], F1-score their
contributors of precision and recall and BLEU scores. For answers to ques-
tions of type 5, we report the number of times the combination of the LLM
and numerical range comparison module could correctly predict whether the
answer outputted was in / out range for the numerical value being asked
about in the question.

4.2.1. Evaluation Results of Feature Importance Questions of Diagnostic Im-
portance

We first evaluated the quality of extracted contextual explanations for
feature importance questions, type 3. As outlined in Sec. 3.3, our aim was
to evaluate the readiness of SOTA LLM models for this task. Here we re-
port the results for 71 questions covering relevant feature importances for
patients’ risk predictions and these questions cover 14 CCS LVL 1 diag-
nosis code types. As mentioned previously, we report the performance in
terms of a number of standard metrics. However, given our information ex-
traction setting, among these we are especially interested in the precision
metrics. These metrics measure how many documents, among the ones re-
trieved, were relevant. Furthermore, ‘MAP’ and ‘precision@k’ measures the
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same while considering the order of retrieval. This aligns closely with how
clinicians evaluate presented informations where the presented answers are
expected to accurate in order of most acceptable to least. It is to be noted,
that we evaluated the predicted results to disease feature importance ques-
tions against candidate answers by manually inspecting the ADA 2021 CPG.
The annotations were done by an author and some of these annotations were
verified by a clinical expert on the team who is also a co-author in this paper.
We report results on the expert validated subset in Appendix C. Table 7
reports results in comparison to the entire annotated dataset of 85 feature
questions and 654 candidate answers for the out-of-the shelf LLM models
under consideration. The results show that in terms of ‘MAP’ as well as
‘precision at k’ metrics, vanilla BERT outperforms the other LLM models.
SciBERT is a close second with an improved recall and F1 score. We analyze
the importance of these results further in Sec. 5.

Additionally, we also evaluated the results by augmenting the base LLM
models with different strategies. Tab. 8 reports the result scores for answers
to question type 3 using the best knowledge augmentation strategy (across
the five different settings) for each LLM models. Overall, we can see a signif-
icant improvement in ‘MAP’ and ‘precision at 5’ for knowledge augmented
BERT model (BERT-KA) over BERT, the best performing base language
model. In terms of other metrics, knowledge augmented SciBERT-KA shows
a consistent improvement for all metrics while being best/second-best overall.

While these evaluation numbers are reported from a small evaluation set
of 71 questions and 654 candidate actual answers, we consider this as a some-
what comprehensive evaluation due to the diversity of diseases covered (1844
diseases) and in total semantic types covered within the answers (116 seman-
tic types, see Tab. 6), both in the candidate and predicted sets. Overall,
from these results, we see that knowledge augmentation can improve the base
language model performance.

4.2.2. Evaluation Results for Drug Questions

To demonstrate the flexibility of the LLM setup on various settings that
match the coverage of the T2D guideline data (see Fig. 7) as well as to test
the generalizability of our results. We also report results for 6 anti-diabetic
drug questions of question type 4. Table 9 show the results for out-of-the shelf
language models as well as the knowledge augmented language models for the
metrics of interest. Overall, we once again found the knowledge-augmented
language models to be the best performing ones. In terms of ‘MAP’ and
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Table 7: Performance of Guideline QA on different language model approaches reported
at mean average precision (MAP), F1 and recall at top-10 answers and precision at top-1
and top-5 for 71 disease feature importance questions. The models are sorted by MAP
values, to indicate an ordering of the best models.

bleu P@1 P@5 map f1 recall
model

BERT 0.117 0.468 0.382 0.390 0.213 0.241
BioBERT 0.116 0.431 0.339 0.346 0.200 0.238
BioBERT-BioASQ 0.132 0.383 0.329 0.332 0.217 0.281
BioClinicalBERT-ADR 0.125 0.368 0.317 0.316 0.205 0.259
SciBERT 0.165 0.461 0.349 0.364 0.261 0.354

Table 8: Performance of Guideline QA of knowledge augmented language models reported
at mean average precision (MAP), F1 and recall at top-10 answers and precision at top-1
and top-5 for 71 disease feature importance questions. Here we show the best knowledge
augmentation approach per model to indicate highest gains over baseline performance for
the native language model approaches we tried. Best and second-best values for each
column is highlighted in Green and Blue color, respectively. Language model (e.g. BERT)
suffixed with KA represents the corresponding knowledge augmented model (e.g. BERT-
KA).

bleu P@1 P@5 map f1 recall
model

BERT-KA 0.075 0.467 0.419 0.438 0.169 0.186
BioBERT-KA 0.127 0.434 0.348 0.353 0.215 0.254
BioBERT-BioASQ-KA 0.141 0.458 0.362 0.369 0.237 0.280
BioClinicalBERT-ADR-KA 0.121 0.406 0.321 0.330 0.202 0.242
SciBERT-KA 0.192 0.473 0.341 0.375 0.291 0.405
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‘precision at 5’, BERT-KA comes out as the best performing model, where
as SCIBERT-KA comes out as either the best or the second-best model for
all metrics. It is to be noted that the overall results are significantly better
than the ones for disease questions. One possible reason behind this effect
may be related to the fact that drugs are referred directly in guidelines and
thus QA models are able to pick these sentences with greater efficacy.

Table 9: Performance of Guideline QA with different knowledge augmentations of language
model approaches reported at mean average precision (MAP), F1 and recall at top-10
answers and precision at top-1 and top-5 for 6 anti-diabetic drug feature questions. Best
and second-best values for each column is highlighted in Green and Blue color, respectively.
Language model (e.g. BERT) suffixed with KA represents the corresponding knowledge
augmented model (e.g. BERT-KA).

bleu P@1 P@5 map f1 recall
model

BERT 0.100 0.910 0.751 0.757 0.254 0.206
BioBERT 0.100 0.726 0.643 0.635 0.231 0.192
BioBERT-BioASQ 0.081 0.708 0.694 0.704 0.222 0.162
BioClinicalBERT-ADR 0.075 0.593 0.614 0.597 0.192 0.146
SciBERT 0.121 0.947 0.757 0.772 0.281 0.228

BERT-KA 0.099 0.900 0.863 0.821 0.281 0.213
BioBERT-KA 0.083 0.802 0.704 0.720 0.234 0.170
BioBERT-BioASQ-KA 0.117 0.711 0.725 0.716 0.272 0.221
BioClinicalBERT-ADR-KA 0.085 0.598 0.595 0.587 0.199 0.152
SciBERT-KA 0.128 0.912 0.823 0.794 0.298 0.232

4.2.3. Evaluation Results of Clinical Indicator Questions

In Tab. 10, we report the accuracy statistics for the performance of our
rule augmentation / numerical range comparison module of our QA approach.
We show granular breakdowns based on different numerical operators, greater
than, lesser than, and equal to, to indicate which settings are being picked
up the best by the rule augmentation and which others are harder. In this
evaluation, we manually went through the outputted answers to ensure that
they were within range of the numerical values in questions. The reason
for this annotation approach is that the guidelines have few sentences for
actions to be taken on clinical indicators. Hence, there is not much diversity
in the answers that a LLM like BERT can output before passing the answer
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Table 10: Results of Guideline QA with rule augmentation of language model approaches
for numerical comparisons reported for 9 questions across the 20 prototypical patients
identified from our predicted high-risk chronic kidney disease cohort. The split of question
variations is equal across the different numerical range comparison operators of lesser than,
equal to and greater than.

Comparison Accuracy TP TN FP FN Total

Overall 0.78 7 7 3 0 18
Lesser Than 0.84 2 3 1 0 6
Equal To 0.67 1 3 2 0 6
Greater Than 100 4 2 0 0 6

TP - True Positives, TN - True Negatives, FP - False Posi-
tives, FN - False Negatives. Accuracy computed as accuracy
= (TP + TN)/ Total

to our range comparison module for validation. These accuracies highlight
the value in combining syntactic parsing output with a LLM to improve its
capabilities.

Overall, these quantitative evaluations points to the potential in apply-
ing scalable, augmented LLM-based approaches to extract content from au-
thoritative guideline literature that can then be used to provide context to
interpret model predictions, such as in our setting, risk prediction scores and
their model explanations.

4.3. Qualitative Evaluation with Clinicians

We conducted a thematic analyses on the responses and feedback received
during the expert panel sessions (Sec. 3.4), as follows. Three independent re-
searchers, who are coauthors on this paper, reviewed the transcripts, flagged
significant utterances, and characterized these utterances in terms of the ma-
jor points and themes they expressed. The researchers then reviewed their
sets of identified themes and utterances together, and grouped and combined
them into a single agreed-upon set of overarching themes. We report this
combined list of themes below (Tab. 11, 12, 13, 14). These themes reflect
areas that clinicians prioritize and where the support of explanation-driven,
AI risk prediction tools would be appreciated.

As seen in Tab. 11, 12, 13 and 14, we have grouped the discussions from
the expert panel sessions into four high-level themes spanning different areas
where clinicians would benefit the most in a chronic disease, comorbidity

29



risk-prediction setting such as ours. The high-level themes we found include
‘Theme 1: Clinical Value of Explanations and Contextualizations’, ‘Theme
2: Highlighting Actionability’, ‘Theme 3: Connections to Patient Data’ and
‘Theme 4: Connections to External Knowledge’. We were further able to
create sub-themes for more granular topics that came up during the discus-
sions under each of these themes, bringing the theme and sub-theme total to
four high-level themes and twelve sub-themes .

Table 11: Clinical Value of Explanations and Contextualizations - 1st theme that emerged
during our expert panel interviews with clinicians where we walked through the risk predic-
tion dashboard and the contextual explanations that we support. We attach a description
for each sub-theme that we found and we also provide examples in quotes.

Sub-theme Description

Value of Contextual Informa-
tion around CKD risk

All clinicians saw value in connecting the T2DM patient’s CKD risks to data
on their other conditions, and to, relevant recommendations from the T2DM

guidelines. For example, some clinicians reasoned about “how the patient’s
CKD risk changes their dosage / treatment” and some others were interested
about “connections to other conditions that patient has.”

Value of Contextual Informa-
tion around Individual Fea-
tures

Clinicians found that information from T2DM guidelines and cited literature
relevant to factors that contributed to the system’s predicted CKD risk were
helpful to understand how the factors could be related to CKD or T2DM, and
how they might interact with other factors shown. For example, “how does
a skull fracture elevate CKD risk?” This was particularly valuable when not
previously known by the clinician, for example: “it is surprising, and I have
learned something about celiac disease and abdominal pain connection” in
patients with diabetes.

Value of Contextual Informa-
tion around patient’s T2DM

Besides the patient’s CKD risk and its implications, the clinicians were inter-
ested to know about the patient’s T2DM state, their comorbid conditions and
other parameters in relation to their T2DM diagnosis. For example, the clini-
cians wanted to know “how long has the patient had their T2DM” or “what is
their A1C progression?”

More specifically, under ‘Theme 1: Clinical Value of Explanations and
Contexts’, we group instances where clinicians could make sense of the risk
predictions and post-hoc explanations by the additional context provided, or
instances where clinicians would appreciate more context. Within ‘Theme 2:
Highlight Actionability,’ we discuss instances where clinicians mentioned a
need to depict actionable features and indicate actions for them concerning
the patient’s T2DM diagnoses or their elevated CKD risk. Under ‘Theme 3:
Connections to Patient Data,’ we cover instances where clinicians looked for
connections to patient history or their lab results while reasoning about the
patient case. Finally, under ‘Theme 4: Connections to External Knowledge,’
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Table 12: Highlighting Actionability - 2nd theme that emerged during our expert panel
interviews with clinicians, where we walked through the risk prediction dashboard and the
contextual explanations that we support. We attach a description for each sub-theme that
we found and we also provide examples in quotes.

Sub-theme Description

Highlight Actionable and Mod-
ifiable Factors

Most of the clinicians were interested in highlighting patient risk factors that
could be controlled or acted upon, vs. those (such as age) that could not be
influenced: “what factors can be changed?”

Highlight the Impact of CKD
risk prediction on Treatment
Decisions for Diabetes and
other conditions

When shown information from treatment guidelines, the clinicians wanted to
understand how they reflect the patient’s CKD risk and T2D diagnosis:“are
any of these proposed medications contraindicated?”

Suggest Specific Actions to Re-
duce CKD risk

Clinicians wanted to understand ways to reduce the CKD risk including ways
of addressing risk factors and changes to medications: “do any of the patient’s
current medications increase risk of renal toxicity?’

Table 13: Connection to Patient Data - 3rd theme that emerged during our expert panel
interviews with clinicians, where we walked through the risk prediction dashboard and the
contextual explanations we support. We attach a description for each sub-theme that we
found and we also provide examples in quotes.

Sub-theme Description

Connections to Patient’s Clin-
ical Indicators

The clinicians indicated that they want to see clinical indicators for diagnoses
( if available ), when interpreting the factors that led to the risk or the pa-
tient’s CKD risk score: “Given the patient has essential hypertension, what
was their lab systolic blood pressure reading,” or “The patient’s eGFR value
will be important to show for CKD,” or “what do the guidelines say about
this patient’s systolic and diastolic blood pressure readings.”

Need for Information on Re-
lated Diagnoses

When shown factors which were diagnosis codes that influenced the risk pre-
diction, clinicians wanted to see what other diagnoses that the patients had,
that might align or contribute: “show COVID-19 answers for lower respira-
tory disorders?” or “what episodes of abdominal pain did the patient have?”

Connections to Patient’s His-
tory

When shown certain factors, the clinicians wanted to know the when the
patient had the diagnosis, if the condition was a current one, and about
changes over time. for example, “when did the patient have a genitourinary
diagnosis?”, or“what does their eGFR progression look like?’
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Table 14: Connection to External Medical Domain Knowledge - 4th theme that emerged
during our expert panel interviews with clinicians, where we walked through the risk
prediction dashboard and the contextualization we support. We attach a description for
each sub-theme that we found and we also provide examples in quotes.

Sub-theme Description

Links to Medication Databases

When deciding upon treatment suggestions for patients given the knowledge
of their CKD risk and T2DM diagnosis,the clinicians wanted to understand how
their medications interact : “what drugs they are on currently have a bad
renal impact?” or “how does their current anti-diabetic drug interact with a
CKD drug?”

Links to Published Articles

When connections between the CKD risk prediction and the factors contribut-
ing to the risk were unclear, clinicians mentioned they would look for pub-
lished references: “what is the connection between CKD and respiratory disor-
ders?” or ”how does celiac disease mention from the guideline answer, affect
CKD?”

Support familiar categoriza-
tions

Some clinicians were looking for more provenance around the categorization
schemes we were utilizing to show higher-level physiological pathways for
diagnoses codes, and were also hoping for connections to familiar schemes
like “ICD-10”: “how are hemorrhoids linked to the circulatory system?”

we describe instances where clinicians mentioned a need to make connections
to the latest literature, other medication databases, or other clinical schemes
they utilize. In addition, these themes have an order among them, to ad-
dress the clinical value of explanations from Theme 1 and the actionability
aspects from Theme 2, the content requests from Themes 3 and 4 would be
contributing features, which are the connections to patient data from Theme
3 and the links to external knowledge from Theme 4. We present deeper
breakdowns in the form of sub-themes and descriptions for each of these four
themes in Tab. 11, 12, 13 and 14.

As the expert panel sessions were conducted mid-way through our cur-
rent implementation, some of these themes served as a means for further
refinements, such as features to support a ‘need for more related diagnoses,’
and ‘connections to patient’s clinical indicators,’ To address these themes,
we refined different modules of our pipeline, including the user interface, the
question-answering, and post-explanation modules. In future, to address the
requests under ‘Theme 4: Connections to External Knowledge,’ we plan to
support connections to external resources, which clinicians may find valuable.

In summary, these themes and sub-themes from the expert panel ses-
sions validate our hypothesis about the need for additional clinical context
to situate risk predictions and span requests for better connections and pre-
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sentations of domain knowledge that clinicians are familiar with in these
settings.

5. Discussion

In this section we analyze both the quantitative and qualitative results
presented in Sec. 4. We analyze both the feasibility of supporting contextual
explanations from authoritative sources such as CPGs, and the usefulness
of providing contextual explanations from an analysis of the themes derived
from our expert panel sessions.

5.1. Feasibility of extracting and generating contextual explanations from au-
thoritative sources

For our feasibility analysis, we further analyze the results for type 3 ques-
tions with respect to the disease groups to gain a deeper understanding of
the QA performance. Specifically, we want to understand whether SOTA
LLM backed QA methods, potentially augmented with knowledge, are ready
for real-world use for our states use-case as well as identify patterns that
might apply to other CPGs in different disease areas. We pose a number of
questions around this idea as follows:
Is CPG guideline suitable for T2DM contexts: How well are the disease sub-
groups among T2DM patients covered in the guidelines? Here, we attempt
to understand the applicability of ADA 2021 CPG in our use-case. From
Fig. 8, we can interpret that the guidelines cover a smaller number of disease
groups 9 than the patient data. Since CPGs are authoritative literature in
their disease fields, their coverage is mainly limited to the primary disease
area. Thus ADA 2021 CPG focuses on Diabetes, an Endocrine, Nutritional
and Metabolic Disorder, and its comorbid conditions (mainly spanning dis-
eases of the circulatory and genitourinary systems). Unsurprisingly, these
patterns are seen in the Fig 8 as well where the Endocrine, Nutritional and
Metabolic Disorder have the largest coverage in the guideline data, a 66%.
In contrast, patients might have other conditions that do not arise from the
T2DM diagnosis alone, and hence we can deduce that we see more diversity in
disease groups in the patient data.

9Disease groups are derived by rolling up disease codes both in the patient data and
guidelines to their higher-level CCS LVL 1 groups.
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Figure 8: Comparing disease group occurrences in the ADA CPG 2021 versus those in the
feature importance questions from our chosen prototypical patients.
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Figure 9: Overall view of the performance of all language models in our experiments over
the 14 disease groups covered in feature importance questions.

35



0.10 0.05 0.00 0.05 0.10 0.15
Residual of MAP

Diseases of the blood and blood-forming organs

Diseases of the circulatory system

Diseases of the digestive system

Diseases of the genitourinary system

Diseases of the musculoskeletal system and connective tissue

Diseases of the nervous system and sense organs

Diseases of the respiratory system

Diseases of the skin and subcutaneous tissue

Endocrine; nutritional; and metabolic diseases and immunity disorders

Infectious and parasitic diseases

Injury and poisoning

Mental Illness

Neoplasms

Symptoms; signs; and ill-defined conditions and factors influencing health status

Figure 10: Comparative performances of top-performing native language models, BERT
vs. SciBERT. Plotting the residuals under equal performance hypothesis for the 140
feature importance questions that span 14 disease groups. Orange box indicates BERT
performs better on average while Yellow indicates SciBERT is the better choice for the
disease group.
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Can a single SOTA LLM method be used to extract the contexts? We at-
tempt to understand if the LLMs are inherently better at certain disease
groups over others. Fig 9 shows the distribution of base LLM models over
the disease groups. We can see that there are a few disease groups which
have a higher MAP performance than others (towards the right end of the
plot), some have their the box centers in the middle of the plot and others
who are not doing as well since they are in the first quadrant of the plot.
While the results are not strikingly decisive and statistically significant ev-
erywhere, in concordance with our overall results, we note that SciBERT
and BERT models have better performance over most of the disease groups.
Thus to further discern between these top 2 performing models, we conducted
a point-wise analysis of relative performance difference between BERT and
SciBERT (distribution of residual values between the MAP performances of
BERT and Scibert under equal performance hypothesis). Fig. 10 shows the
outcomes of the analysis where orange box indicates that BERT performs
better on average while yellow indicates the same for SciBERT. We see that
BERT is better for most disease groups, especially for ‘Disease of the blood
and bone forming organs’, ‘Diseases of the digestive system’, ‘Diseases of the
nervous system and sense organs’, ‘Endocrine, nutritional, and metabolic
diseases and immunity disorders’, ‘Injury and poisoning’, and ‘Neoplasms’
(0 not contained in the inter-quartile range). SciBERT is only doing better
on ‘Diseases of the respiratory system’ (and marginally better for ‘Mental
Illness’). These results, in addition to the quantitative results, indicate that
LLM models are better at addressing some disease groups than others. While
vanilla BERT is a defensible choice, the results point to the need for domain
adaptation for LLM for this problem. However, considering the limited avail-
ability of data, novel ML methods such as one-short learning and as weak
supervised techniques may be required to improve the performances of these
LLMs reliably across multiple disease groups.

Does knowledge augmentation reliably improve QA methods? We proposed
4 possible strategies for Knowledge-augmentation (See Appending Appendix
A.2). Among these settings, the best knowledge augmentation strategies
reflected in Table. 8 originated from a composite of strategies. As seen from
Tab. 7, 8 and 9, the guideline QA’s best MAP score of 0.82 is obtained in a
BERT + knowledge augmented setting on drug questions and among disease
features, the guideline QA’s best MAP score is 0.438. The recall with its
highest value of 0.405 is obtained in a post-filtering knowledge augmentation
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Figure 11: Lift in performance over native language models by different knowledge aug-
mentation strategies over the 14 disease groups covered in feature importance questions.
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setting 5 of SciBERT (Tab. 8), where we sort answers by disease overlap
between question and answer and we also see the best BLEU score of 0.19
in this setting. These points to the fact that there is value in either filtering
the answers to be passed to a LLM or sorting the answers from it, using
aids from known domain knowledge sources that data sources like guidelines
are expected to adhere to. We further analyzes these at disease sub-group
level in Fig. 11 where we plot the lift in performance over corresponding base
LLM using any particular strategy. While any one strategy is not found
to be dominating the others, for most disease groups we can find one or
more strategy that improves the performance (median lift greater than 0).
These results support our previous insight that there is a value in augmenting
domain knowledge. However, finding a single universal strategy is difficult
and may need further research.

Overall, how feasible it is to extracting contexts from guidelines? Which
strategies are beneficial? Are the methods scalable? We have addressed 175
clinically relevant questions that provide context around 20 prototypical pa-
tients, their predicted risk, and the factors influencing their risk. We have im-
plemented logical adaptations given what we know about the guideline data
to improve the LLM model’s capabilities and performance. These adapta-
tions include knowledge augmentation from well-used medical ontologies like
Metamap and Snomed to improve semantic overlap and rule augmentation
to address numerical range questions. Our baseline LLM, BERT itself, has
a variable performance that does well on some questions and not on others.
Similarly, the best performances on the LLM + knowledge augmentation ap-
proaches varies across pre-filtering settings 3 and 4, that filter by Metamap
disease codes and Snomed disease hops and post filtering-setting 5 that sorts
by Snomed disease hops. From our result evaluations, we see that the order
of introducing the knowledge augmentation outputs impacts the accuracy
scores, namely the MAP and recall. Mainly, pre-filtering the answer set be-
fore passing to a LLM can help it output more precise answers. In the best
case, pre-filtering settings provide a gain of 4% over the baseline LLMs both
for disease and drug questions (BERT-KA from Tab. 7 and BERT-KA from
Tab. 9). Similarly, post sorting the answers from a LLM can improve the
recall, and in the best case (SciBERT-KA from Tab. 8), we see a gain of 5%
from the baseline LLM.

Our result numbers also indicate that unsupervised adaptations can only
reach a certain accuracy and point to the need for domain adaptations to
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medical guidelines. Additionally, since we were dealing with a setting with
little or no annotations on the ADA 2021 CPG, we had to create our own
annotations. Currently, we are dealing with a relatively small annotated cor-
pora (85 questions and 654 candidate sentences), and we consulted with a
medical expert on our team to review these annotations. Even for this small
corpora, we find that it is time-consuming for a clinical expert (s) to review
the annotations or create them. We are exploring techniques like weak su-
pervision to scale and improve the coverage of the annotations. In summary,
our guideline QA results depict incremental gains in adding knowledge and
rule augmentations to enhance LLMs’ performance and capabilities in do-
main applications and point to the need for supervised and semi-supervised
approaches to improve these gains.

We are, to the best of our knowledge, the first to report any QA perfor-
mance numbers on the ADA CPG 2021 dataset. Additionally, we are the
first few who have tried a LLM approach for more scalable upstream tasks
on medical guidelines like question answering than the current more time-
consuming and dataset-dependent task of converting guidelines to rules and
applying logical reasoning techniques over these rules [48, 49]. Our approach
to guideline extraction and question answering (Fig. 4) is a step towards
providing a more flexible way ( [46, 50]) to swap in guideline text from differ-
ent diseases as needed. Our enhanced LLM approach (Fig. 4) can be applied
to any medical text corpus like medical guidelines extracted into a machine-
comprehensible format and can address different question types (as seen in
Tab. 2) relevant in risk prediction settings.

5.2. Understanding the added benefit of the derived contexts

What were the takeaways and feedback from clinicians about the supported
contextual explanations? The four major themes - Clinical Value of Expla-
nations and Contextualizations, Highlighting Actionability, Connections to
Patient Data, and Connections to External Knowledge Sources - that we
found during the expert panel interviews to evaluate our contextualization
approach, mainly point to the overall value of supporting different types
of contexts, both from literature and patient data, and the need to bet-
ter present connections between these contexts. Many of the contexts the
clinicians on our expert panel were looking for were around the post-hoc ex-
planations of the factors contributing to the risk. This finding corroborates a
recent study that reports that post-hoc explanations themselves are insuffi-
cient to provide reasoning that clinicians can interpret and act upon [7], and
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also add to the well-accepted belief that risk scores are insufficient.

Figure 12: Summarizing the coverage of our current data sources to support the themes
we found from our expert panel discussions.

Do the supported data sources address the clinicians needs? Through further
analysis, we find that the contexts the clinicians were looking for and dis-
cussing can be addressed either by connections to patient history and data
- patients’ diagnoses, medications, and lab values - or through published lit-
erature. Specifically, we find that the different questions and question types
(Tab. 2) that we support from the T2DM guidelines can address 6 of the
12 sub-themes (Fig. 12), i.e., providing contextual information around
patient’s T2DM state, their CKD risk and the individual features (Theme 1),
highlighting the impact of CKD risk on treatment decisions for T2DM (Theme
2), providing links to published articles (Theme 4), and showcasing connec-
tions to patient clinical indicators (Theme 3) where mentioned. Some other
themes can be easily addressed by enabling connections from the CKD risk
scores and the features contributing to them, to patient timelines for diag-
noses and lab values. Other themes - support for familiar categorizations
(Theme 4) and the need for information on related diagnoses (Theme 3) -
benefit from connections to medical ontologies that support either drill-downs
to more specific diagnoses or abstracting up to higher-level pathways. We
currently only support abstractions to higher level physiological pathways on
the prototype dashboard (e.g., all disease of the circulatory system can be
filtered from the patient’s feature importances) and are investigating how to
support drill-downs based off of these pathways more broadly.
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Figure 13: Illustration of findings for a Primary Care Physician (PCP) - one target persona
among clinicians - whose workflow is dependent on the patient context and the clinician-
patient history. We show an example scenario where the predicted risk for a returning
patient has increased since the last visit. This context and the PCP’s mental model drive
the PCP’s following actions, such as differential treatment decisions made by probing
reasons for the increased risk.

What can be the impact of our contextual explanations beyond the comor-
bidity risk prediction setting? To identify specific scenarios in which our con-
textualizations might be most impactful, we discussed with a clinical expert
typical situations of T2DM patient care by clinician type and patient charac-
teristics to understand where risk predictions could help clinicians improve
patient care planning. While current literature [13] on designing healthcare
models points to a user-centered approach, from this understanding of clini-
cian workflows, our discussion showed the importance of grounding such user
centered work in specific clinical scenarios (see Fig 13). For example, it be-
came clear that dashboards containing contextual explanations around risk
prediction could be used by clinicians in different ways. For example, a clin-
ician seeing a patient for the first time and/or for the first diagnosis would
be interested in creating their mental model of the patient’s diagnosis and
understanding the causes for the risk, whereas a clinician seeing a return-
ing patient with a previously established diagnosis (where clinicians might
be more interested in understanding any changes to the risk prediction over
time and the effectiveness of various interventions). Hence, based on these
understandings, we formalized our use case to provide contextual explana-
tions to a PCP around the predicted risk of CKD among new T2DM patients
at their first diagnosis.
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Additionally, while we focus our approach in the risk prediction of CKD

among T2DM patients, the contextualization approach can be applied to other
comorbid risk prediction settings given access to authoritative guidelines in
the disease area, and likewise, the themes that we analyze from our ex-
pert panel interviews are also general enough to be considered applicable in
other disease settings. These themes indicate a larger need for AI systems
to support insights from multiple data and knowledge sources and present
them as actionable and contextual explanations [9] (also pointed out in the
self-explanation scorecard from [51]). In summary, our approach is a step
towards extracting clinically relevant context from different data and knowl-
edge sources, including guidelines, patient data, and medical ontologies, and
using these contexts to augment and explain answers to a list of clinically
relevant questions that can help clinicians reason and interpret the risk pre-
dictions for patients.

What are some future directions that emerge from the clinician discussions?
Some subthemes under Theme 2: Highlighting Actionability provide future
directions, highlighting actionable factors and suggesting specific actions to
reduce CKD risk are not currently addressed by our contextualization ap-
proach. These sub-themes require more investigation and development of
methods to identify actionable, most relevant factors to CKD risk. Another
point which we observed is that some of the factors that the model picked up
on are not covered by the T2DM guidelines, and could either be factors only
relevant to CKD, or are those that are not considered to be well-known enough
to be covered in position statements like CPGs. We are also investigating
how to combine insights from multiple guidelines (also mentioned in [52]) and
if that would be useful. In summary, while some of these themes provide val-
idation for the modules we currently support in our multi-method approach
to provide context, others offer directions for us to build towards, such as
enabling connections to external medication databases, supporting tempo-
rality in post-hoc explanations of risk, and efforts to better present answers
in terms of relevance and actionability. We are also considering interviewing
more user groups within the clinical domain to strengthen an understanding
of where such a risk prediction tool would be most impactful. Future steps
would also include a practical study in a clinical setting to further assess the
utility of our method.
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6. Related Work

Our methods build on both expert feedback and past efforts to leverage
clinical domain knowledge for generating explanations within AI assistants.
Some notable and relevant past works include: MYCIN [1], where domain lit-
erature was encoded as rules and trace-based explanations, which addressed
‘Why,’ ‘What,’ and ‘How,’ were provided for the treatment of infectious
diseases; the DESIREE project [53], where case, experience, and guideline-
based knowledge was used to generate insights relevant to patient cases; and
a mortality risk prediction effort [54] of cardiovascular patients, where a prob-
abilistic model was utilized to combine insights from patient features, and
domain knowledge, to ascertain patient conformance to the literature. How-
ever, these approaches are either not flexible nor scalable for the ingestion of
new domain knowledge [1, 53], or are narrowly focused in their approach to
explanations along limited dimensions [54]. We attempt to allow clinicians
to probe the supporting evidence systematically and thoroughly while ask-
ing holistic questions about the supporting evidence(s) to understand their
patients better.

On the guideline QA front, there have been several efforts on representa-
tion formats for guidelines and more recent work on applying machine learn-
ing and language model approaches on guidelines for upstream tasks other
than QA [50, 46, 55]. Guideline representation efforts attempt to model
guidelines as rules that can then be checked against patient data for con-
formance. While rule engineering is more accurate than applying machine
learning models, it is not scalable without human effort. In a more scalable
effort, Schlegel et al. [55], have shown how a standard NLP pipeline of tools
like named entity recognizers, syntactic, semantic, and dependency parsers
can be applied to convert guideline text into annotated text snippets. How-
ever, their system, ClinicalTractor, is not available for reuse yet, and hence
we could not use it for the semantic annotation portion of our QA pipeline.
Another similar effort is from Hussain et al. [50], where they use heuristic pat-
terns to identify different composition patterns in guideline sentences. These
guideline natural language understanding efforts while useful, still require
significant effort to be used upstream by QA approaches and could instead
be used to augment QA approaches such as ours with additional information
that can help improve semantic and syntactic coherence of answers.

On the other hand, with the rise of LLM [36], several papers have been
published on adapting language models to the biomedical and clinical do-
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mains by the pre-training of these models on large biomedical corpora [38, 56].
There are currently very few efforts on the applications of these domain
adapted language models to medical guidelines [46]. Hussein and Woldek [46]
have applied language models to identify condition-action statements from
three medical guidelines, and they find that the combination of syntactic
and semantic features from Metamap can boost the performance of language
models like BioBERT. However, it is not immediately clear how the extrac-
tion of condition-action statements can be used in a QA setting where the
range of question types like those we support goes beyond condition-action
pairs. For example, questions asking about diagnoses features don’t always
have a condition to be searched against. Contrarily, Sarrouti et al. [57], have
designed a semantic biomedical question answering system that achieves the
state-of-the-art results on the BioASQ challenge by using UMLS similarity
scores and a novel passage retrieval algorithm to find candidate answers from
Pubmed documents. In their future work, they list the needs for large train-
ing samples as a limiting factor to use a deep learning algorithm. While we
agree, we have shown how knowledge augmentation algorithms can improve
the performance of deep learning language models in new settings such as
unseen guidelines.

Several studies have also tried to utilize patient data to query the litera-
ture for applicable evidence or treatment suggestions. However, very few of
these studies combine multiple modalities and sources of data and knowledge
for querying. Agosti et al. [58], conducted an analysis of query reformulation
techniques for precision medicine. Natarajan et al. [59], conducted an anal-
ysis of clinical queries in an electronic health record search utility and found
that queries on diseases and lab results were most searched. Patel et al. [60],
matched patient records to clinical trials using ontologies and used a purely
logical A-box and T-box approach to query literature.

Finally, several studies have hinted that model explanations alone are
not sufficient and indicate that context can be an important dimension to
make these explanations more useful. We summarize a few studies which
either contextualize model explanations with links to knowledge or can pro-
vide context around risk prediction scores to make them more useful. Rieger
et al. [61], found that interpretations are useful by penalizing explanations
to align neural networks with prior knowledge. Zhang et al. [62], presented
context-aware and time-aware attention-based model for Disease Risk Pre-
diction with Interpretability. They used disease code hierarchies as context
in RNN network’s attention layer. Weber et al. [63], attempted a Knowledge-
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based XAI through CBR and found that there is more to explanations than
models can tell. Yao et al. [64], refined Language Models with Compositional
Explanations by align LLM and post-hoc output with human knowledge and
Tonekaboni et al. [15], analyzed what clinicians want and found that Con-
textualizing Explainable Machine Learning for Clinical End Use.

7. Conclusion

Contextual explanations have been posited to be useful for clinicians
for real-world usage of AI models. In this paper, we have developed an
end-to-end AI systems and studied the feasibility and usability of extracted
contextual explanations from medical guidelines using state-of-the art QA
methods. We have focused our study in a risk prediction use-case for CKD

among T2DM patients and have conducted both quantitative and qualitative
analysis. Upon conversations with clinicians, we have selected three entities
of interest in the risk prediction setting to provide contextual explanations
along - the patient, their predicted risk, and the model explanations of their
risk. Crucially, we have identified several themes covering the explainability
needs of clinicians. The supported contextual explanations support some of
these themes and thus improves clinician’s confidence is using AI supported
systems. We also found state-of-the art large language models to be effective
in extracting such contexts, especially for certain disease sub-groups. While
our results support the hypothesis that presenting contextual explanations
to clinicians is both feasible and usable, the performance and requirement
gaps points to the need for further research in this field. For example, while
we have considered three domain sources for the contexts in this paper, the
themes from the expert panel interviews also indicate that there may be value
to connecting to other sources, including extracting additional guideline de-
tails from tables and flowcharts, and potentially involving multiple layers
of the evidence pyramid to include such sources as systematic reviews, ran-
domized clinical trials, cohort studies, and expert opinions. Similarly, novel
machine learning techniques such as weak-supervision or one-shot learning
may be need to improve the quality of extracted contextual explanations. A
combination of both may also enable other approaches such as ‘prompt en-
gineering’ whereby patient data can be used to seed the QA model questions
and get richer response. Our future research will be directed at overcoming
the aforementioned opportunities. Overall, by closely working with clinical
experts and adopting inter-disciplinary approaches, from the use case crystal-
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lization and methods development, to the evaluation stages, we have shown
the promise in supporting clinically relevant contexts to help clinicians better
interpret risk prediction scores and their model explanations.
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G. Guézennec, J. Bouaud, Implementing guideline-based, experience-
based, and case-based approaches to enrich decision support for the
management of breast cancer patients in the desiree project., in: EFMI-
STC, 2018, pp. 190–194.

[54] A. Raghu, J. Guttag, K. Young, E. Pomerantsev, A. V. Dalca, C. M.
Stultz, Learning to predict with supporting evidence: applications to
clinical risk prediction, in: CHIL ’21: Proceedings of the Conference on
Health, Inference, and Learning, ACM, 2021, pp. 95–104.

52



[55] D. R. Schlegel, K. Gordon, C. Gaudioso, M. Peleg, Clinical tractor:
A framework for automatic natural language understanding of clinical
practice guidelines, in: AMIA Annual Symposium Proceedings, Vol.
2019, American Medical Informatics Association, 2019, p. 784.

[56] Y. Gu, R. Tinn, H. Cheng, M. Lucas, N. Usuyama, X. Liu, T. Nau-
mann, J. Gao, H. Poon, Domain-specific language model pretraining for
biomedical natural language processing, ACM Transactions on Comput-
ing for Healthcare (HEALTH) 3 (1) (2021) 1–23.

[57] M. Sarrouti, S. O. El Alaoui, Sembionlqa: a semantic biomedical ques-
tion answering system for retrieving exact and ideal answers to natural
language questions, Artificial intelligence in medicine 102 (2020) 101767.

[58] M. Agosti, G. M. Di Nunzio, S. Marchesin, An analysis of query refor-
mulation techniques for precision medicine, in: Proceedings of the 42nd
International ACM SIGIR Conference on Research and Development in
Information Retrieval, 2019, pp. 973–976.

[59] K. Natarajan, D. Stein, S. Jain, N. Elhadad, An analysis of clinical
queries in an electronic health record search utility, International journal
of medical informatics 79 (7) (2010) 515–522.

[60] C. Patel, J. Cimino, J. Dolby, A. Fokoue, A. Kalyanpur, A. Kershen-
baum, L. Ma, E. Schonberg, K. Srinivas, Matching patient records to
clinical trials using ontologies, in: The Semantic Web, Springer, 2007,
pp. 816–829.

[61] L. Rieger, C. Singh, W. Murdoch, B. Yu, Interpretations are useful:
penalizing explanations to align neural networks with prior knowledge,
in: International Conference on Machine Learning, PMLR, 2020, pp.
8116–8126.

[62] X. Zhang, B. Qian, Y. Li, S. Cao, I. Davidson, Context-aware and
time-aware attention-based model for disease risk prediction with in-
terpretability, IEEE Transactions on Knowledge and Data Engineering
(2021).

[63] R. Weber, M. Shrestha, A. J. Johs, Knowledge-based xai through cbr:
There is more to explanations than models can tell, arXiv preprint
arXiv:2108.10363 (2021).

53



[64] H. Yao, Y. Chen, Q. Ye, X. Jin, X. Ren, Refining language models with
compositional explanations, Advances in Neural Information Processing
Systems 34 (2021).

[65] W. McKinney, et al., Pandas: a foundational python library for data
analysis and statistics, Python for high performance and scientific com-
puting 14 (9) (2011) 1–9.

[66] Y. Chen, A. Subburathinam, C.-H. Chen, M. J. Zaki, Personalized food
recommendation as constrained question answering over a large-scale
food knowledge graph, in: Proceedings of the 14th ACM International
Conference on Web Search and Data Mining, 2021, pp. 544–552.

[67] E. W. Dijkstra, et al., A note on two problems in connexion with graphs,
Numerische mathematik 1 (1) (1959) 269–271.

[68] A. Hagberg, P. Swart, D. S Chult, Exploring network structure, dy-
namics, and function using networkx, Tech. rep., Los Alamos National
Lab.(LANL), Los Alamos, NM (United States) (2008).

[69] J.-B. Lamy, A. Venot, C. Duclos, Pymedtermino: an open-source generic
api for advanced terminology services, in: Digital Healthcare Empower-
ing Europeans, IOS Press, 2015, pp. 924–928.

Appendix A. QA Architecture

We discuss in this section the extraction methods for information retrieval
from the different data sources that we support as context, the sub-modules
which help in question and explanation generation, and finally, the standard
evaluation modules which can output scores for some of the question types.

Appendix A.1. Information Retrieval

Here we describe the information extraction portion of our QA pipeline,
as seen in part A). of Fig. 4. We support the extraction of context from
three domain sources in our QA approach, including patient data, medical
ontologies like Clinical Classification Software (CCS) codes 10 and medical
guidelines from ADA Standards of Care 2021 (as introduced in Sec. 2). We

10https://www.hcup-us.ahrq.gov/toolssoftware/ccs10/ccs10.jsp
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query patient data from Limited Claims Explorys Dataset (LCED) claim
records (see Sec. 2.1) on-demand, either when we need to create questions
based on patient parameters or when we need to include these patient values
in answers to questions about the patient. As for extracting content from
CCS codes, we download a static version of the ‘CCS for ICD-10-PCS Tool’
file and use four fields from this downloaded file - ‘Field 2: CCS Category,
Field 3: Code Description, Field 7: Multi-level 2 Category, and Field 8:
Multi-level 2 Category Description’. Field 8 in particular, connects the lower
level disease codes we see in the patient data to their higher level 2 groupings
(e.g., Essential Hypertension’s Multi-level 2 Category Description is Disease
of the Circulatory System).

We extract content from the HTML or web version of the ‘Standards of
Medical Care in Diabetes’ [34] guidelines, published by the American Dia-
betes Association (ADA) 11 using a Python library, BeautifulSoup [35]. The
ADA CPGs, are updated annually and are an example of a well-maintained
CPG, whose format has been fairly consistent over the past decade. The ADA
CPG is released both in web-friendly formats like HTML and in PDF formats.
The content in the ADA CPG is split across chapters, where each chapter
focuses on a different aspect of diabetes management or treatment. Further-
more, each chapter contains different recommendation groups, each contain-
ing recommendations, discussions, and references for a sub-area within the
chapter (Fig. 6) [19]. The recommendations themselves are supported by
different grades of evidence and are graded accordingly. For example, a rec-
ommendation supported by a systematic review or meta-analysis is assigned a
grade A, whereas only an expert opinion is graded as E. Also, while the refer-
ences for the recommendations are not made available as direct associations,
they can be found within the discussion supporting the recommendations.
Mainly, within each chapter in the ADA guidelines, we extract the content
of different sections, including the recommendations, supporting discussions,
and references within these sections. We then write the output of this ex-
traction, mirroring the structure of the original guidelines (see Fig. 6), to a
semi-structured JSON format, which is then used within our QA modules.

11https://care.diabetesjournals.org/content/44/Supplement_1
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Appendix A.2. QA Architecture

Here we describe the processes and modules, seen in part B) of Fig. 4,
that are involved in generating questions based on question types for each
patient (see Tab. 2) and the answers from the different domain sources of
context in our risk prediction setting.

Question Generation The question generation module almost always
creates templated questions using Python’s native support for String Tem-
plates, 12 and does so based on patient data, more specifically from the
patient’s diagnoses codes, lab values, and medication list. The patient’s di-
agnoses codes are sometimes abstracted from their higher-level disease group-
ings supported by the CCS scheme. A subset of these diagnosis codes can
be included in the features that the post-hoc explanation module found were
contributing to the patient’s predicted risk. In an attempt to provide more
context around these features, we create instances of the type 3 question ,
e.g., “What can be done for this patient’s essential hypertension?” We also
support the creation of two standard, non-variant questions for each patient,
i.e., whose values don’t change from patient data, that can help clinicians
easily interpret their predicted risk (question type 1) and their T2DM state
(question type 2).

Moreover, as can be seen from Tab. 2, each of the question types that
we support on a per patient basis is populated from different data sources.
Hence, we have developed different answering methods for each, including
simple lookups and knowledge augmented language model capabilities, in-
cluding combinations of either a LLM + value range comparison or LLM +
knowledge augmentation. We provide examples of questions and answers for
each question type in Appendix C.

Answer Generation In our answer generation module of our QA ap-
proach, we support different submodules that can output answers to ques-
tions related to the question types. The answer generation module is capable
of inputting questions generated by the previous question generation module
and interacting with extracted content from our supported data sources.

Template-based Answer Generation: Question types 1 and 2 from Tab. 2
can be addressed by simple query lookups of our supported data sources. We
populate the Python String Template object with the results of the queried
components retrieved by using the widely-used Python Pandas library [65].

12https://docs.python.org/3/library/string.html
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This process of creating natural language templates that can then be popu-
lated with values on a per-patient basis is supported by the Template-based
Answer Generation module of our QA pipeline (Fig. 4). The results of these
questions can be summarized or built from structured datasets, like patient
data, their model outputs, like risk predictions, and features contributing to
their predicted risk and population averages. Hence, there is no fuzziness in
the results, which is why we don’t evaluate the accuracy of this submodule.

This submodule is also leveraged in combination with other answer gener-
ation submodules when there is a pattern in the answers and slots to be filled.
We discuss these details shortly after we set up our knowledge augmented
language model capabilities and their usage.

Numerical Range Comparison: BERT LLMs cannot currently determine
if a question that has a numerical value comparison, e.g., “What can be done
for patients, whose Hemoglobin A1C > 10?”, falls in the range of the answer
returned. However, clinicians often look for recommendations that match
patients’ lab values in clinical settings such as ours. Further, within the ADA
2021 guidelines, there are mentions for suggestions based on different ranges
for lab values, e.g., a recommendation from the Pharmacological Chapter
of these guidelines has a recommendation with the mention of “when A1C
levels (> 10% [ 86 mmol/mol ].” Hence, for question type 3 from Tab. 2, we
need to determine if the patient’s lab values are in the range of the answer
returned by the LLM module. To address this requirement of performing
numerical range comparison between the question and answer produced by
LLM, we leverage syntactic parsing capabilities (similar to [66]) to identify
numerical phrases in the question and answer and then determine if each
numerical phrase from the question is in range of the same in the answer.

We use Natural Language Toolkit (NLTK) chunking and parsing function-
alities to identify noun phrases, comparatives, and numerical mentions within
both the question and answer. We then write regular expression (regex) rules
to identify the patterns of the positional tags returned by NLTK that can
constitute numerical phrases. For each of the numerical phrases, we convert
them into a tuple of “(noun phrase, [upper bound, lower bound]).” This
tuple representation allows us to go through the phrases between the ques-
tion and answer iteratively, and for those that match on the noun phrase
dimension, identify if the ranges are in agreement. With these steps, we can
then populate an answer using the Template-based Answer generation mod-
ule, which says if the answer outputted by LLM is in/out of the range of the
question. Hence, in this manner, we enhance the capabilities of BERT LLMs
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for numerical range comparisons via rule-based syntactic methods, which is
also why we consider this step a rule augmentation of LLMs’ capabilities.

Knowledge Augmentations to LLMs: Transformer based LLM approaches
like BERT work on sequences of words that are often seen together and
their surrounding words, but don’t leverage the semantics of whether these
words are diseases, medications, or biological processes. We found that in
the absence of this semantic knowledge, we would often get answers from
the LLM that don’t correlate on a semantic level with the question. For
example, a sentence from the Comorbidities chapter of the ADA 2021 CPG
on Dementia was returned as a valid answer to a question asking about
an Abdominal Hernia. To eliminate such answers, we explored options for
a biomedical semantic mapper and zeroed in on the National Library of
Medicine (NLLM)’s Metamap tool [42]. We choose Metamap because of its
extensive coverage of biomedical semantic types and its ability to capture
entity mentions within the ADA 2021 CPG. Within our pipeline, we have
integrated a Python wrapper for Metamap13 that can recognize biological
entities within the guideline text and their semantic types (e.g., dsyn: disease
or syndrome, bpoc: biological processes, etc. for a complete list of types
returned by Metamap see: 14).

We run Metamap on question types 3 and 4 from Tab. 2 to only output
answers from BERT when there is a valid semantic match between the ques-
tion and answer. Specifically, using this knowledge augmentation module,
for question type 3, we only output answers whose matched term is a noun
and is recognized as a disease term by Metamap, and similarly, for question
type 5, we only output answers whose matched term is a noun and is recog-
nized as medication by Metamap. We have observed that depending on the
mention of a biological entity in the text, a disease term can be recognized
as a disease, biological process, or a finding by Metamap. Hence, we allow
for flexibility among semantic types, in filtering disease matches for question
type 3. For example, we want to allow answers with the mention of the
term ‘hypertensive’ for a question on hypertension, although hypertensive is
identified as a finding by Metamap.

Additionally, given this ability to filter based on semantic types, we want

13PyMetamap: https://github.com/AnthonyMRios/pymetamap
14https://lhncbc.nLLM.nih.gov/ii/tools/MetaMap/Docs/SemanticTypes_

2018AB.txt
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to allow additional answers with mentions of related diseases. To provide
more broad answers, we use the UMLS Concept Unique Identifier (CUI)
codes from the Metamap returned outputs to map to Snomed-CT disease
codes [43]. From the mapped Snomed-CT disease codes, we can traverse
the Snomed-CT disease tree to identify how many hops apart question and
answer disease codes are and if the answer codes are an ancestor of those
in the question. We operate on the idea that answers about the parent
disease code apply to children nodes. For example, a question about “What
can be done for Asthma” can borrow from an answer on “What can be
done for respiratory diseases?” Conversely, if disease codes in the question
and answer are far apart in the Snomed tree, it would signify that they
are semantically less related. In addition to Metamap codes, we append
to the candidate guideline sentences the hop distances from each question
computed by applying the Dijkstra’s algorithm [67] on an uploaded Snomed
graph in Python package NetworkX [68] and ancestor values derived from
using Python library PyMedTermino’s [69] is ancestor function.

We use the outputs of these knowledge augmentation modules to both pre-
filter and post-sort the LLMs answers. The LLM and LLM + post sorting
settings 1, 2 and 5, were run against 410 passage chunks of guideline text, of
average length 267 tokens, since BERT has a 512 token limit for an answer
passage. The LLMs on the pre-filtering settings 3 and 5 were run on passage
chunks of variable length, depending on the number of filtered sentences to
be passed to the LLM model. In the pre-filtering settings, we varied the
values of the features that we were filtering by to understand which feature
values improve accuracy. In essence, the pre-filtering settings can be thought
of as algorithmic knobs to control the set of answers that the LLM has
to process. In contrast, in the post-filtering settings we sorted the LLM’s
answers by feature values, and here we could control the ordering of answers
to be outputted. In the pre-filtering setting 2, we filter the guideline sentences
by length of disease overlap with the question. In pre-filtering setting 4, we
have more possibilities in the feature column because the number of Snomed
disease hops between a question and answer can range between a continuous
range of integer values. We report if restricting the number of hops to allow
for more general yet precise answers improves accuracy. Similarly, in the
post-sorting settings, 2 and 4, we use the feature values from the knowledge
augmentation modules in addition to the LLM’s own confidence scores to
rank answers. Specifically, in setting 2, we sort the LLMs answerset on
variations to a combination of length of disease overlap between question
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and answer Metamap phrases and the LLM confidence scores. In setting 5,
we sort the LLMS answerset based on variations to a combination of sum of
hops between question and answer Snomed disease codes, number of Snomed
ancestors in the answer and LLM confidence scores.

We report the accuracies for answers that address questions of question
types 3 from Tab. 2, that use these knowledge augmentations in the results
section (Sec. 4). We have written functions that use the NLTK toolkit in
our evaluation submodule to generate standard, natural language processing
(NLP), accuracy scores like F1, precision, recall, and BLEU. Overall, the
integration of a semantic mapping tool helps us enhance the capabilities of
BERT LLMs for more precise and better semantic matches via knowledge-
driven methods.

Appendix B. True Label Annotations for Guideline Questions

We generated annotations for creating the gold standard dataset for fea-
ture importance questions (question type 3 from question types supported
by our QA approach, see Tab. 2), whose results are presented in the main
manuscript of the paper. These questions included disease feature impor-
tances of diagnostic value. The annotations were done by the first author
by reading the ADA 2021 CPG and looking for answers to these questions.
We also ran our annotations by a medical expert on our team, who is also
a co-author on this paper, to verify if they were clinically meaningful. The
medical expert validated 47 questions out of the 71 questions annotated by
the first author and we report results on this expert validated set in Sec.
Appendix C. To the best of our knowledge, we are the first to report a
dataset of questions with annotated answers on the ADA 2021 CPG. It is to
be noted that these annotations are not endorsed by the ADA. Nevertheless,
we hope that our annotations can serve as a valuable resource for academic
advances in the clinical informatics community.

Appendix C. Results

Here we present additional material to support the results of our risk
prediction and question-answering module described in Sec. 4.2.
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Appendix C.1. Model Performance: Risk-Prediction Model and Post-Hoc
Explainers

We present the performance of the risk prediction models in Tab. C.15.
As the table shows, while GRU performs the best overall, depending on the
use case, we may want to prefer other models. For the purposes of this
paper, we chose MLP as our risk prediction model to benefit from the higher
recall (such that the probability of false negatives is low) and high brier-score
(to allow a more natural interpretation of our model outputs for clinicians),
while still achieving an acceptable level of overall performance (AUC-ROC
= 0.59).

Table C.15: Results of CKD risk from different prediction models

Method Precision Recall AUC-ROC AUC-PRC Brier

LR 0.333 0.023 0.582 0.215 0.127
MLP 0.139 0.977 0.587 0.224 0.621
LSTM 0.242 0.442 0.678 0.263 0.208
GRU 0.240 0.605 0.677 0.311 0.220

Age at onset 45 – 54
Dis. of digestive sys. (abdominal hernia)

Dis. of the genitourinary sys. (calc. of urinary tract)
Dis. of the nervous sys. and sense organ (retinal detachments.

defects, vascular occlusion, and retinopathy)

Dis. of the circulatory sys. (hemorrhoids)
Dis. of the skin and subcutaneous tis. (other skin dis.)

Dis. of the musculoskeletal sys. and connective tis. 
(spondylosis; intervertebral disc disorders, other back prob.)

Dis. of the circulatory sys. (essential hypertension.)
Dis. of the digestive sys. (other gastrointestinal dis.)

Dis. of respiratory sys. (other lower respiratory dis.)
Dis. of the nervous sys. and sense organs (headache incl. migr.)
Endocrine, nutritional, and metabolic dis. and immunity disorders

(gout and other crystal arthropathies)
Dis. of the circulatory sys. (other circulatory dis.)

Dis. of the skin and subcutaneous tis. (other inflammatory
cond. of skin)

Neoplasms (neoplasm of unspec. nature of uncertain behavior)
Dis. of the circulatory sys. (other dis. of veins and lymphatics)
Endocrine, nutritional, and metabolic dis. and immunity disorders

(thyroid disorders)
Dis. of the genitourinary sys. (other male genital disorders)

Sex

Neoplasms (leukemias)

Figure C.14: Feature importance for CKD prediction among 20 prototypical patients using
SHAP (left), showing absolute importance, and (right) showing feature impact on model
prediction w.r.t. presence/absence of features

Feature importance for risk factors found by algorithmic explainers can
be further contextualized, as mentioned previously. The left hand column of
Fig. C.14 shows the top 20 features for the set of 20 prototypical patients
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under investigation. These prototypical patients are all found to be at high-
risk for CKD and hence, would be interesting to clinicians within the scope
of this T2DM and CKD use case. For these prototypical patients, we present
aggregated feature importance, as seen in Tab. 5, to account for HIPAA
restrictions. We can see that demographic features, such as age and the
presence of other disorders, such as ‘other skin disorders,’ were found to
be important for the CKD risk prediction. The right side of Fig. C.14
shows an alternate view of the same, providing a view into the spread of
individual importance. From this deeper view, we can see that features such
as ‘calculus of urinary tract’ could be the most important drivers of risk for
some patients. Such results further support our need to personalize features
found to be important for the risk predictions.

While insights about the importance of such features are helpful, such
clinical and patho-physiological features may need further contextualization
for clinicians. Our structured feedback sessions found that clinicians found
the contextual explanations we support around these features helpful, and
we cover some of this next.

As seen in Tab. C.16 and Tab. C.17, we provide results numbers on
a small set of expert validated answers from our guideline annotations of 12
questions and 47 candidate answers. We are considering methods like weak
supervision to increase the expert validation coverage of our annotations. We
find that generally the results on the expert validated answers (Tab. C.16 and
C.17) follow the trend of accuracy values in the larger annotation set, in that
the precision is highest in the pre-filtering by number of Snomed disease hop
settings (setting 4) - 0.29 and that the recall and bleu is high in post-filtering
by number of disease overlaps between question and answer (SciBERT +
KA in Tab. C.17), setting 3 - 0.6 and 0.2 respectively. However, contrary
to the larger set of results the F1 are highest in both the vanilla BERT and
BioBERT-BioASQ + KA settings, 0.22.

In Fig. C.15, we also report the distribution of the number of hops
between disease code pairs found in the question and candidate answers to
provide an idea of how far or close the questions are to sentences within the
guidelines. As can be seen, most question and answer pairs are between 5 -
15 hops away. We find that the results are best when we filter answer codes
less than 3− 6 hops away from the question disease codes.
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Table C.16: Performance of Guideline QA with different language model approaches re-
ported at mean average precision (map), F1 and recall at top-10 answers and precision
at top-1 and top-5 for 12 expert validated questions. Best and second-best values for
each column is highlighted in Green and Blue color, respectively. Language model (e.g.
BERT) suffixed with KA represents the corresponding knowledge augmented model (e.g.
BERT-KA).

bleu P@1 P@5 map f1 recall
model
BERT 0.155 0.363 0.262 0.267 0.224 0.365
BioBERT 0.121 0.296 0.200 0.222 0.186 0.342
BioBERT-BioASQ 0.131 0.259 0.200 0.205 0.192 0.363
BioClinicalBERT-ADR 0.112 0.227 0.178 0.179 0.171 0.351
SciBERT 0.153 0.366 0.216 0.244 0.235 0.463

Table C.17: Performance of Guideline QA with different language model approaches +
knowledge augmentations reported at mean average precision (map), F1 and recall at top-
10 answers and precision at top-1 and top-5 for 12 expert validated questions. Best and
second-best values for each column are highlighted in Green and Blue color, respectively.
Language model (e.g. BERT) suffixed with KA represents the corresponding knowledge
augmented model (e.g. BERT-KA).

bleu P@1 P@5 map f1 recall
model
BERT-KA 0.021 0.296 0.296 0.296 0.127 0.081
BioBERT-KA 0.143 0.440 0.215 0.258 0.222 0.319
BioBERT-BioASQ-KA 0.147 0.366 0.249 0.272 0.227 0.335
BioClinicalBERT-ADR-KA 0.123 0.321 0.209 0.221 0.201 0.384
SciBERT-KA 0.201 0.356 0.209 0.284 0.297 0.600
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Figure C.15: Distribution of number of hops between Snomed disease pairs from questions
and candidate guideline answers. As can be seen most disease pairs are between 5 - 15
hops apart with 20 being the maximum number of hops.
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Appendix D. Risk Prediction Dashboard Description

We provide additional views of the different panes in our risk prediction
dashboard that hosts our supported contextual explanations alongside the
different entities that we contextualize, the patient, their risk prediction and
the important features found to contribute to the risk prediction. We also
support interactions between each of these panes which can help clinicians
easily find the content that contextualizes the entities. These interactions or
brushing capabilities include (see Fig. D.16, D.17, D.18):

Figure D.16: The risk prediction pane of our risk prediction dashboard, wherein the risk
score is displayed alongside a severity of the score on a threshold scale.

• Clicking on the patient details pane brings up questions in the questions
in context pane asking about the patient’s diabetes state

• When a month is chosen on the history timeline, questions about a
commonly accepted diabetes indicator, Hemoglobin A1C (HbA1C), are
brought up or filtered in the questions in context pane

• Clicking anywhere in the risk prediction pane brings up questions about
the patient’s predicted risk

• In the feature importances pane, features can be filtered by the selection
of their corresponding, higher-level disease grouping

• Clicking on a feature in the feature importance chart brings up ques-
tions about the feature

• Finally, clicking on a higher-level disease grouping also brings up ques-
tions about the disease grouping
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Figure D.17: The feature importances pane of our risk prediction dashboard shows in
order of importance the features that contributed to the patient’s predicted CKD risk. The
diagnostic features can also be filtered by their higher-level disease groupings and can be
selected from the filter by column seen on the left of this figure.
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Figure D.18: Here is the questions in context pane, which has a list dropdown option as
seen on the top of this figure, where clinicians can browse through the question list we
support for the patient being shown. These questions span the different question types we
support, and the length of the question list is variable depending on how many diagnostic
features contributed to the patient’s predicted risk. Also seen here is the detail we support
for each question and their answer, including provenance details like the confidence score
and the data source for the predicted answer.
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