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Abstract

Cosmological measurements require the calculation of nontrivial quantities over large datasets. The next
generation of survey telescopes will yield measurements ofbillions of galaxies. The scale of these datasets,
and the nature of the calculations involved, make cosmological calculations ideal models for implementation
on graphics processing units (GPUs). We consider two cosmological calculations, the two-point angular
correlation function and the aperture mass statistic, and aim to improve the calculation time by constructing
code for calculating them on the GPU. Using CUDA, we implement the two algorithms on the GPU and
compare the calculation speeds to comparable code run on theCPU. We obtain a code speed-up of between
10 - 180x faster, compared to performing the same calculation on the CPU. The code has been made publicly
available. GPUs are a useful tool for cosmological calculations, even for datasets the size of current surveys,
allowing calculations to be made one or two orders of magnitude faster.

Keywords: cosmological calculations – aperture mass – angular correlation function – GPU – CUDA –
scientific computation – cosmology

1. Introduction

The use of graphics processing units (GPUs) in
scientific computing has been steadily growing in fields
as diverse as bioinformatics, QCD lattice calcula-
tions and seismology (see, for example, Wu et al. (2012);
Cardoso and Bicudo (2011); Okamoto et al. (2010)).
In astronomy, GPUs have proven useful in many dif-
ferent computationally intensive problems such as N-
body simulations (Bédorf et al. (2012); Nitadori and Aarseth
(2012)) and radio astronomy measurements (Clark et al.
(2011)). GPU techniques have succeeded in reduc-
ing compute times for these difficult calculations by
up to a factor of 100, and in this work we show that a
similar reduction can be achieved for the calculation
of cosmological quantities.

Email addresses: djbard@slac.stanford.edu (D.
Bard),mbellis@siena.edu (M. Bellis)

1Currently at Siena College.

The next generation of large-scale astronomical
surveys (such as the Dark Energy Survey2, PanSTARRS3,
and the Large Synoptic Survey Telescope4) will pro-
duce enormous amounts of data, with measurements
of billions of stars and galaxies. The problems as-
sociated with processing such a large volume of im-
age data and how to structure and access a database
containing tens of petabytes of information has been
studied and discussed at length in the literature (e.g.
Way (2011); Berriman and Groom (2011); Brunner et al.
(2001)). In this paper, we address the challenges an
astronomer will face attempting to analyze this in-
formation, once it has been obtained from a central
database. With such a large volume of data the statis-
tical uncertainties on many cosmological quantities

2http://www.darkenergysurvey.org
3http://pan-starrs.ifa.hawaii.edu/
4www.lsst.org
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will be reduced by orders of magnitude compared to
present limits, but in order to take advantage of this
data new computation methods must be developed.
Methods used today to calculate cosmological quan-
tities tend to be of complexityO(n 2) (wheren is the
number of data points), which is not computationally
feasible with the billions of measurements expected
from future surveys, even with the expected improve-
ments in computer hardware.

Many cosmological calculations require indepen-
dent calculations of the same quantity for all data
points, which makes them ideal candidates for par-
allelization (where each calculation is farmed out to
a different processing device). In the past this has of-
ten been handled by using many CPUs in a comput-
ing cluster environment, but building these clusters
or buying time on these systems can be expensive for
researchers. GPU computing has brought a signifi-
cant amount of this computational power to the desk-
top and is therefore more affordable for individual
analysts. As GPU computing develops and becomes
more widely used by the broader astronomy commu-
nity, we foresee performing calculations in the near
future that are currently computing-limited. In this
paper, we describe the GPU implementation of two
of these cosmological calculations, the two-point an-
gular correlation function and aperture mass statistic,
using the CUDA programming language (Nickolls et al.
(2008)).

Large-scale structure in the universe is a valu-
able probe of the composition and evolution of mat-
ter in the universe, and can be used to constrain mod-
els of cosmology. Galaxies are good tracers of the
total matter in the universe; although we can only
directly detect the luminous matter, galaxies form
around concentrations of dark matter. We can there-
fore characterize large scale structure of matter in the
universe using the clustering of galaxies on different
length scales, which is measured using the angular
correlation function. The two-point angular correla-
tion function (or matter power spectrum in Fourier
space) is based on galaxy number counts, and mea-
sures the excess or depletion of pairs of galaxies as a
function of separation, compared to a random distri-
bution. At small scales (≈ 100h−1Mpc) we can mea-
sure the imprint of the baryon acoustic oscillations,
which gives information on the phases of acoustic

waves at recombination. At larger scales the mat-
ter power spectrum has not been affected by radia-
tion or baryons, so it is a rare probe of primordial
fluctuations and inflation. See Bassett and Hlozek
(2009) for a full review of the subject, Peebles (1980)
for a description of large-scale structure in the uni-
verse and Cole et al. (2005); Eisenstein et al. (2005)
for the first measurements of baryon acoustic oscilla-
tions. Calculating a correlation function over billions
of galaxies, and at separations ranging from arcsec-
onds to degrees, requires significant computational
power, which scales with the square of the number of
galaxies. As such it is an excellent candidate for im-
plementation on the GPU. Higher order correlation
functions (such as the three-point correlation func-
tion) can also be used to probe non-Gaussian fea-
tures in the galaxy distribution. These calculations
are even more computationally expensive than the
two-point correlation function, and would potentially
benefit enormously from parallelization on the GPU.

As we were preparing this paper, we became aware
of work by Ponce et al. (2012) presenting a method
and code for the calculation of the two-point corre-
lation function on the GPU using CUDA. We take a
different approach to the implementation of the algo-
rithm. We have also become aware of earlier work
by Roeh et al. (2009), which also takes another dif-
ferent approach to the implementation, and also con-
siders MPI implementation and the use of multiple
GPUs in parallel.

Dark matter cannot yet be detected directly, but
the effect of its gravitational field can be measured
indirectly using gravitational lensing. When light
travels through the universe, its path is deflected by
the gravitational potential of the matter it passes. The
distortion of the observed shapes of distant galaxies
as their light passes through matter in the universe
encodes information about large-scale structure and
the growth of matter in the universe. However, since
galaxies have intrinsic shapes, it is only through sta-
tistical analysis of large numbers of galaxies that we
can average out their intrinsic shapes and orienta-
tions and extract the cosmological information. There
are many ways to interpret this information (see Bartelmannand Schneider
(2001) for a review), but for the purposes of this pa-
per we concentrate on the shear peak statistic. Back-
ground galaxies tend to have the major axis tangen-
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tial to foreground mass density contours, so concen-
trations of matter along the line of sight can be de-
tected from the coherent distortions in the ensem-
ble of their shapes. Over-densities will appear as
peaks in a map of aperture mass. Counting the num-
ber of peaks as a function of peak significance al-
lows us to distinguish between different cosmologies
(Marian et al. (2009); Kratochvil et al. (2010); Dietrich and Hartlap
(2010)). We calculate the aperture mass at a point
by making a weighted sum over the tangential com-
ponents of the ellipticity of the surrounding galaxies.
Typically this sum contains tens or hundreds of thou-
sands of galaxies, and must be performed on a dense
grid of points over the sky in order to accurately re-
construct the projected mass field. The sum for each
point is independent, and can be performed in paral-
lel making it another good candidate for implemen-
tation on the GPU. Recent work by Leonard et al.
(2012) has used wavelet transformations to speed the
calculation of the aperture mass, but as far as we are
aware this is the first implementation on the GPU.

This paper is structured as follows. In Section 2
we introduce the two-point angular correlation func-
tion and describe its implementation on the GPU. We
then compare its performance to the same calculation
on the CPU using data taken from dark matter sim-
ulations. In Section 3 we describe the aperture mass
calculation and how it is implemented on the GPU
and compare its performance to the CPU implemen-
tation. In Section 4 we summarize our findings. Ac-
cess to the code is given in Appendix C.

2. Two-point angular correlation function

The combined forces of gravitational attraction
and dark energy influenced the clumping of dark mat-
ter, and accompanying galaxy distributions, that we
observe today. To quantify this clumping or clus-
tering, one can make use of the angular correlation
function w(θ), which relates the probabilityδP of
finding two galaxies at an angular separationθ on
the observable sky to the probability for a random
distribution of galaxies (Peebles (1980)):

δP = N2[1 + w(θ)]dΩ1dΩ2, (1)

wheredΩ1 anddΩ2 are elements of solid angle andN
is the mean surface density of objects. The full calcu-

lation for the angular separation for any two objects
in the sky is shown in Appendix A.

The estimator for the angular correlation func-
tion ŵ(θ) is calculated from the positions of galax-
ies in the sky. Three quantities go into this calcula-
tion: DD (data-data),RR (random-random), andDR
(data-random). For an angular separationθ, DD is
the number of pairs of galaxies in data separated byθ.
A random distribution of galaxies is generated over
the same region of the sky as the data from which
DD is calculated, and this random sample is used to
calculateRR in the same fashion asDD. DR is the
cross-correlation between these two datasets, i.e., the
number of galaxies in the random distribution that
are an angular distanceθ from the galaxies in the
data sample. While there are different estimators for
w(θ), we have chosen to work with a widely accepted
estimator from Landy and Szalay (1993), though we
show that the code presented in this paper allows the
user to easily experiment with other estimators. The
estimator ˆw(θ) is calculated as

ŵ(θ) =
DD − 2DR + RR

RR
. (2)

To calculateDD, the analyst must calculate the
angular separation from every galaxy to every other
galaxy, taking care to not calculate the separation of
a galaxy from itself or to double count by calculating
the distance from galaxyi to galaxyj and then from
galaxyj to galaxyi. Given a catalog ofn galaxies,
there aren(n − 1)/2 calculations. There is an anal-
ogous number of calculations fornr randomly dis-
tributed galaxies in the calculation ofRR. To cal-
culate theDR cross-correlation term, there arennr

calculations as every observed galaxy must be corre-
lated with every simulated galaxy.

The full calculation ofDD, RR, andDR is effec-
tively anO(n2) operation. A standard technique for
speeding up the calculation is to use a tree algorithm
to make approximations for the density of galaxies
at larger angular separations (Jarvis et al., 2004). In
this kind of technique, the dataset is binned in re-
gions on the sky, and the average of galaxies in that
bin is used in place of the individual galaxy values.
This reduces the calculation time for the two-point
function fromO(n1∗n2) toO(n1+n2), wheren1 andn2

are the number of galaxies in two bins. If the angular

3



correlation function is to be calculated for bins at a
separation smaller than some threshold valueb (usu-
ally the bin size), then the bins can be split in half and
the averages re-calculated. Splitting can continue un-
til each bin contains one galaxy, in which case we
recover the exact calculation. We show here how the
exact calculation can be implemented on the GPU
for all angular scales, with a similar improvement in
calculation time.

2.1. GPU Implementation

For the GPU implementation, we make use of the
CUDA programming language (Nickolls et al. (2008)),
a widely-used language developed by NVIDIA for
use with their GPUs. In CUDA terminology, threads
are the individual calculations performed in parallel
by the GPU, and a kernel is the code that defines
the calculation and specifies the number of threads
that will run this calculation. Threads are grouped
into blocks, which defines how the threads will be
distributed on the GPU, and what sections of local
memory they can access. To calculate the angular
separations that go intoDD, we have noted that there
aren(n−1)/2 calculations when double counting and
self-separations are avoided.

To calculate DD, we accumulate counts of galaxy
pairs in bins of the distance between the galaxies, us-
ing a predetermined range of angular separation for
the binning. Histogramming on GPUs is nontrivial
and NVIDIA provides examples of how this can be
done (Podlozhnyuk (2007)), but we found these dif-
ficult to adapt to our routines. Therefore we imple-
mented our own solution, which, while slower than
the highly optimized NVIDIA code, is very flexible
and adaptable.

When constructing the algorithm to perform this
calculation, we need to consider the memory usage
on the GPU. The amount of memory available to
the GPU is usually less than that available to the
CPU, but if GPU global memory is used for the ini-
tial transfer of data from the CPU and GPU local
memory is used only for the histogramming, we can
avoid this potential limitation (provided the GPU global
memory is large enough to hold the full dataset). How-
ever, execution of GPU code can be dramatically slowed
if multiple threads were to attempt to access the same
memory address at the same time. For this reason,

we adopt a very trivial algorithm for breaking down
the full calculation into smaller packets, and at the
same time using atomic operations for the histogram-
ming.

The coordinates for all the galaxies are copied to
the GPU in global memory. The matrix of the neces-
sary calculations is broken into submatrices. We loop
over these submatrices and for each one we launch
the same kernel, where we pass that kernel the ma-
trix indices that define the location of this submatrix
in the larger matrix of calculations. Each column in
the submatrix is calculated by a different thread.

Shared memory is allocated for each thread-block
for the histogramming. The histogram is simply an
array of integers used to hold the number of galaxies
with a particular angular separation. We increment
the entries of the histogram using theatomicAdd()
operation in CUDA. There could still be serialization
occurring if multiple threads calculate a similar an-
gular separation, requiring the results to be put into
the same bin and therefore accessing the same mem-
ory address. This will depend on the dataset and the
binning used, and can range from a 5% slow-down
for fine bins to a 50% slow-down for coarse bins. Af-
ter all the distances are calculated and recorded in the
shared memory histogram they are summed over all
the blocks and copied over to global memory. At this
point, the kernel returns to the CPU, where the his-
togram is copied to the GPU memory and added to a
histogram in the CPU memory. The full calculation
is complete when we have walked through all of the
submatrices. A summary of the process to calculate
DD, RR, or DR can be stated as follows.

1. Copy vectors of galaxy positions to

the GPU global memory.

2. Determine size and position of

submatrices of the calculation.

3. Launch kernel for each submatrix:

Allocate local memory for

histogramming on each block.

Each thread calculates the angular

separation for a column of the

submatrix.

4. Sum the local memory histogram arrays

in global memory.

5 Copy the histogram arrays back to the
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CPU and sum them.

6. Continue to loop over all the

submatrices until the entire

calculation is done.

The code allows the user to both set the low and
high range limits of the histogram and choose one of
three preset bin-widths: evenly spaced bins, logarith-
mic binning, and logarithmic base-10 binning. Log-
arithmic binning allows finer bins to be used at small
angular separations, where we have the most data.
We have found that other groups will use different
binning when performing their calculations and so
we have built in this flexibility to make it easier for
direct comparisons. The time it takes to process a
dataset can depend on these parameters due to the al-
gorithm we have chosen to implement. Specifically,
if we select a wide range over which to histogram the
distances, the time may be slightly longer because
more calculated distances need to be dropped into
the histogram. If the binning is very coarse, the time
may also increase because of serialization issues in
memory access.

We note that for the DR calculation, there is no
double counting or self-distances to worry about. In
this case there are about twice as many calculations
to be done, but the procedure for breaking up the ma-
trix into submatrices is still the same. We show a
visualization of this process in Fig. 2.

2.2. Performance

We test the consistency of the calculations and
measure the increase in speed by comparing our GPU
implementation to a straightforward implementation
on a CPU using the C programming language. The
details of both the GPU and CPU computing hard-
ware and environment we used are given in Appendix B.

The dataset we used is a subset of a dark mat-
ter N-body simulation that is subsequently “deco-
rated” with galaxies such that the galaxies realisti-
cally trace the underlying dark matter distribution
( Wechsler et al. (2012); Busha et al. (2012)). We
use galaxies from the simulation with a redshift of
z < 0.1. The dataset is read in from a text file that has
two columns: the right ascension (RA) and declina-
tion (DEC) in arc minutes for each galaxy. The an-
gular range covered in this dataset is 0◦ < RA < 90◦

and 0◦ < DEC < 90◦ and we generate a flat distri-
bution of galaxies over the same range. We use this
dataset to demonstrate the speed of the full calcula-
tion for different numbers of galaxies.

The first step is to show that the GPU implemen-
tation gives the same values as those calculated with
the CPU. We compare the two implementations us-
ing 105 galaxies for theDR component, which re-
quires n2 = (105)2 = 1010 calculations. We use
254 bins and logarithmic binning with a wide range
of histogram bins. There are 172 non-empty bins
and only 30 of them have exactly the same numbers
when the CPU or GPU are used. However, closer
inspection of bins with different numbers of entries
shows they are almost exactly the same. The frac-
tional difference between the bins is always between
10−3 − 10−8, with the smaller fractional differences
found in bins with a large number of entries. We at-
tribute this discrepancy to either differences in float-
ing point implementation or trigonometric and loga-
rithmic implementations on the CPU and GPU.

For timing comparisons using the CPU and GPU,
we choose theDR calculation for 104, 105, and 106

galaxies. We use 254 bins and logarithmic binning.
We note that to calculate eitherDD or RR each re-
quire about one-half the number of calculations as
DR and so the full calculation for ˆw(θ) should take
about twice the amount of time shown here, given
only one CPU or GPU. The times are calculated us-
ing the UNIX/Linux commandtime, which gives the
total time required to execute any command and re-
turn control to the user. While this gives less fine-
grained information about where the programs spend
their time, we choose this method as it gives the best
sense of how much time it costs the analyst to actu-
ally make these calculations. While both the CPU
and GPU implementation spend most of their time
actually calculating the angular separations, this is
a slightly smaller percentage of the total time when
using the GPU. Therefore, when testing with small
numbers of galaxies, the GPU implementation does
not quite increase asn2

galaxies. The results are summa-
rized in Table 1. For 105 galaxies, we note that there
is a 140× increase in speed when using the GPU and
for 106 galaxies a 180× increase in speed.
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Table 1: Speed of angular correlation calculations (in seconds)
when performed on either the CPU or GPU, for different num-
bers of galaxies. The times are for theDR component; there are
n2 calculations performed, wheren is the number of galaxies.
All times are in seconds. These tests used a histogram with 254
bins and logarithmic binning. Compilation details can be found
in Appendix B.

104 galaxies 105 galaxies 106 galaxies
CPU 23.9 2305 231,225
GPU 0.2 16.0 1,254

For completeness we ran a variety ofDR calcu-
lations with the 105 galaxy sample, where we vary
the number of bins, the range of bins, and whether or
not we use equal bin widths or logarithmic binning
(natural and base 10). As we mentioned before, if
too many threads are accessing the same histogram
bin, then the calculation can take longer. In addition,
if the range of the bins is less than the range of the
data, time can be saved by ignoring calculations that
would fall outside the bin range. Running over a va-
riety of these combinations, we found that theDR
calculation for 105 galaxies can take between 11 and
57 seconds. Therefore users should be aware that
depending on their choice of binning, timing results
may vary.

We note that the implementation described here
does not use the GPU with maximum efficiency. Mod-
ern GPUs can perform memory transfer and kernel
launches in parallel, and we plan to take advantage of
this capability in future code development. This will
be particularly important for use with future, larger
datasets.

3. Shear Peak Statistics

As described in Section 1, light from distant galax-
ies is lensed by structures along the line-of-sight, and
therefore the statistical ensemble of observed galaxy
shapes encodes information about the matter power
spectrum of the universe. This information can be
used to constrain models of cosmology, which pre-
dict differing amounts of structure on different mass
and distance scales, and in different epochs.

The tidal gravitational field of matter along the
line-of-sight causes the shear field to be tangentially
aligned around projected mass-density peaks. This

alignment can be used to detect matter over-densities
by constructing the aperture mass (Map) described in
Schneider (1996) which is the weighted sum of the
tangential components of shape of the galaxies (ǫt)
surrounding a position in the sky (θ0):

Map(θ0) =
1

ngal

∑

i

Q(θi)ǫi,t, (3)

If the filter functionQ has a shape that follows the ex-
pected shear profile of a mass peak, then the aperture
mass is a matched filter for detecting these peaks.Q
can have a generic (e.g. Gaussian) shape, or be op-
timized for detections of halos with an NFW density
profile (Navarro et al. (1996); Schirmer et al. (2007)):

QNFW (x) =
1

1+ e6−150x + e−47+50x

tanh(x/0.15)
x/0.15

, (4)

wherex = θi/θmax, andθmax defines the radius of the
filter. See Maturi et al. (2010) for a detailed study of
different filter shapes and their impact on cosmolog-
ical constraints. The filter radius is chosen to maxi-
mize the sensitivity to cosmology, and typically sev-
eral different filter sizes are combined to obtain infor-
mation on both large-scale and smaller-scale struc-
tures in the matter density of the universe. We look
for peaks in the map of signal-to-noise ratio (SNR),
where the noise can also be calculated directly from
the data:

SNR(θ0) =

√
2
∑

i Q(θi)ǫi
√

∑

i Q2(θi)ǫ2
. (5)

The easiest way to implement this algorithm on
the CPU is with compiled C code, using nested loops
over vectors containing the measured galaxy parame-
ters. We can reduce the time required for calculation
by considering only galaxies that have a significant
contribution to the aperture mass.

The complexity of this algorithm is∝ O(npts ∗
ngals), wherenpts is the number of points in space for
which we wish to evaluate the aperture mass (e.g. a
grid of 512×512 points), andngals is the number of
galaxies that significantly contribute to the aperture
mass. Since we ignore galaxies far from the recon-
struction point where the value of the filter function
goes to zero,ngals is proportional to the filter radius
squared,θ2max, as given in Equation 4.
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This becomes a computational problem with a
large dataset, since we must make a nontrivial calcu-
lation of aperture mass for all surrounding galaxies
for each point on the sky. For small area or shal-
low surveys this is a feasible calculation on a desk-
top machine, provided we use a low-density grid of
reconstruction points. Larger, deeper surveys, which
contain a higher galaxy density and a larger area over
which to calculate the aperture mass, become prob-
lematic.

3.1. GPU Implementation

The implementation on the GPU is straightfor-
ward, and simply parallelizes the brute-force method
described above, using CUDA. First, the vectors of
galaxy parameters are copied into global memory on
the GPU. The kernel is then launched, where each
thread calculates the contributions of the surround-
ing galaxies for one point on the reconstruction grid,
summing the contributions and returning the result-
ing aperture mass and SNR. The number of threads
required is equal to the number of points in the re-
construction grid. The process can be broken down
as follows:

1. Copy vectors of galaxy positions and

shear components to the GPU global

memory.

2. Launch kernel:

Each thread calculates the aperture

mass for one point on the grid,

looping over the surrounding

galaxies and summing the

contributions to the aperture mass.

3. Copy vector of aperture mass from GPU

global memory.

The complexity of this algorithm isO(ngals), or
O(θ2max), since we parallelize the calculations over the
grid of reconstruction points.

GPU units designed for scientific computing have
a large on-chip memory. We use a Tesla M2070
GPU card with Fermi architecture and 5.25GB on-
chip global memory (with ECC on). See Appendix B
for more details on the system architecture. This is
sufficient memory to store the positions and shear
components for tens of millions of galaxies. The
more important limit in the amount of data we can

process in a single kernel launched on the GPU is the
number of threads that can be launched simultane-
ously. This will eventually limit the possible density
of the reconstructed aperture mass map. By splitting
the sky into overlapping segments and calculating the
aperture mass for each segment sequentially we can
easily circumvent this issue. However, for the survey
size and reconstruction grid density we consider in
this work, it has not been necessary to do this. All
performance numbers in Section 3.2 are given for all
data processed in a single kernel launch with no seg-
mentation of the dataset required.

3.2. Performance

We compare the performance of the CPU and
GPU algorithms to analyze realistic shear data. We
create input catalogs from simulated shear fields cre-
ated from a ray-traced N-body dark matter simula-
tion from Kratochvil et al. (2010), with model galax-
ies as tracers of the shear field. We use a galaxy den-
sity of 35 galaxies per arcmin2 (which is roughly the
galaxy density expected to be used in LSST weak
lensing analyses ( Wittman et al. (2009)). There are
a total of 106 galaxies in our dataset, which repre-
sents an area of sky of∼ 7.9 deg2. Using more or
less galaxies does not impact the computational time,
only the memory usage and the time required for
transferring data to the GPU, so we compare com-
pute times for different filter sizes and different den-
sities of the reconstruction grid. Table 2 shows the
speed for the CPU and GPU implementation of the
aperture mass code in these different cases. This in-
formation is shown graphically in Figure 1. We can
see from this figure that, for a constant dataset and
grid size, the calculation speed scales as the square
of the filter size for the GPU calculation. The scal-
ing is different for the CPU calculation, because the
optimisation flags we use to compile the code allow
loop unrolling (see Appendix B for details) which
becomes more significant at larger filter radius.

As for the timing tests for the angular correlation
function, we include in our GPU timing the time re-
quired for all data to be copied to and from the GPU
global memory. This comprises∼ 3 seconds and is
constant for all filter and grid sizes. The aperture
mass maps obtained from both methods are identi-
cal.
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Table 2: Speed of calculation (in seconds) for CPU and GPU code for increasing density of reconstruction grid, and for increasing
filter radius. The GPU code gives calculation times 100 - 300 times faster.

2′ 4′ 8′ 16′ 32′

CPU
512×512 grid 558 781 1,478 4,108 12,794

1024×1024 grid 2,105 2,627 5,204 15,311 48,474
2048×2048 grid 8,855 11,941 22,546 61,406 189,861

GPU
512×512 grid 11 12 15 23 45

1024×1024 grid 38 41 50 78 162
2048×2048 grid 143 156 190 297 627

Figure 1: Calculation time for CPU code (top, black) and GPU
code (bottom, red) for increasing filter size. The solid lines
correspond to a reconstruction grid of 512×512 points, dashed
lines are for 1024×1024 points and dotted lines for a grid of
2048×2048 points.

Using the GPU code decreases the calculation
time by 100×-300× compared to the calculation on
the CPU. Recent work by Leonard et al. (2012) has
produced a very fast method of calculating the aper-
ture mass using a wavelet transformation. They achieved
speed-up factors from 5x-1200x, depending on filter
radius, for an image of 1024x1024 pixels. We take a
very different approach to the aperture mass calcula-
tion, but we find similar improvements in speed, with
the advantage that our approach calculates the noise
directly from the data (as outlined in Bartelmann and Schneider
(2001)), whereas the Leonard et al. (2012) technique
requires randomization of the data and repeated mea-
surements to obtain the uncertainty. Our approach
saves considerable computing time. The timings given
in this section include the time necessary for calcu-

lation of the noise.

4. Summary

We have implemented code to perform calcula-
tions of the two-point angular correlation function
and the aperture mass statistic on the GPU. We have
demonstrated that this implementation can reduce com-
pute times for these calculations by factors of 100×-
300×, depending on the amount of data to be pro-
cessed. The code for making this calculation is pub-
licly available from Github (see Appendix C for de-
tails). With a straightforward division of the dataset
into sub-sets, our code can also be used on clusters
of independent GPUs. Faster compute speeds mean
that a full MC-based calculation of the errors for the
angular correlation function can reasonably be per-
formed, without approximations or assumptions that
are required to make the calculation reasonable for
CPU codes (e.g. kd-tree calculation (Jarvis et al. (2004))).
We intend to evaluate this in future work.

The increasing size of astronomical datasets will
require a new approach to data analysis. We ex-
pect that the use of the GPU in everyday cosmo-
logical calculations will become more common in
the next few years, especially since faster compute
times allows experimentation in techniques used to
make the calculation and rapid comparison of the re-
sults. We expect this application to be extended to
other computationally challenging calculations, such
as the three-point and higher order angular correla-
tion functions, and the shear correlation functions.
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Appendix A. Angular separation calculation

The angular distance between two galaxies can
be calculated using:

∆α = α2 − α1

A = cos2 δ2 sin2∆α

B = cosδ1 sinδ2 − sinδ1 cosδ2 cos∆α

C = sinδ1 sinδ2 + cosδ1 cosδ2 cos∆α

θ =
180◦

π
arctan















√
A + B2

C















whereθ is the angular separation between any
two galaxies in degrees and (αi, δi) is the right as-
cension and declination of theith galaxy.

Appendix B. Computing environment

The GPU implementations for both algorithms
were tested on a Tesla M2070. This device has 5375
MB of global memory (with ECC turned on) and
49152 bytes of shared memory. The clock speed for
the GPU processors is 1.15 GHz. For tests using the
CPU, we run on an Intel Xeon E5540 processor with
a 2.53 GHz clock speed and 3 GB of on-board mem-
ory.

We use floating-point precision for all our calcu-
lations; we found that using double precision had no
impact on our results.

We compile our code using CUDA version 4.10
(both driver and runtime) andgcc version 4.1.2. The
operating system is Scientific Linux, version SL5,
using kernel 2.6.18.

For the timing comparisons, we write the CPU
code using C/C++ and compile using thegcc com-
piler with the optimization flags-O1. This flag gives
about a 30% improvement over not using this flag.
Greater degrees of optimization (-O2, -O3) did not
give any additional increase in speed.

Appendix C. Code repository

Our code is publicly available on Github, a soft-
ware hosting service that usesgit for version con-
trol. The repository can be found at

https://github.com/djbard/ccogs and can be
cloned by anyone who hasgit installed on their sys-
tem.

Along with the code, we have provided sample
datasets and scripts to run and test your installation.
Each package has its ownREADME that details how
to build and run the software. Problems or improve-
ments can be directed to the authors.

This software is licensed under the MIT License.
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