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Abstract

As astronomy enters the petascale data era, astronomers are faced with new challenges relating to storage, access and
management of data. A shift from the traditional approach of combining data and analysis at the desktop to the use of
remote services, pushing the computation to the data, is now underway. In the field of cosmological gravitational mi-
crolensing, future synoptic all–sky surveys are expected to bring the number of multiply imaged quasars from the few
tens that are currently known to a few thousands. This inflow of observational data, together with computationally de-
manding theoretical modelling via the production of microlensing magnification maps, requires a new approach. We
present our technical solutions to supporting the GPU-Enabled, High Resolution cosmological MicroLensing parame-
ter survey (GERLUMPH). This extensive dataset for cosmological microlensing modelling comprises over 70,000 in-
dividual magnification maps and ∼106 related results. We describe our approaches to hosting, organizing, and serving
∼30 Terabytes of data and metadata products. We present a set of online analysis tools developed with PHP, JavaScript
and WebGL to support access and analysis of GELRUMPH data in a Web browser. We discuss our use of graphics pro-
cessing units (GPUs) to accelerate data production, and we release the core of the GPU-D direct inverse ray–shooting
code (Thompson et al., 2010; Astrophysics Source Code Library, record ascl:1403.001) used to generate the magni-
fication maps. All of the GERLUMPH data and tools are available online from http://gerlumph.swin.edu.au.
This project made use of gSTAR, the GPU Supercomputer for Theoretical Astrophysical Research.
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1. Introduction

Quasar microlensing refers to the gravitational lens-
ing effect of stellar mass objects within foreground
galaxies that lie along the line of sight to multiply-
imaged background quasars. It provides a unique op-
portunity to study and constrain both the size and geom-
etry of the quasar’s main components (see Schmidt and
Wambsganss, 2010, for a review). This includes inves-
tigations on scales from the broad emission–line region
(∼1017 cm, e.g. Sluse et al., 2012) down to the cen-
tral supermassive black hole and accretion disc (∼1014

cm, e.g. Dai et al., 2010). These physical scales corre-
spond to typical angular scales of the order of microarc-
secs, which are well below the resolution of current tele-
scopes (Rauch and Blandford, 1991).

There are currently ∼90 known multiply imaged
quasars (Mosquera and Kochanek, 2011), 23 of which
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have been studied using microlensing techniques (see
compilation by Bate and Fluke, 2012). Consequently,
most investigations have focused on single objects: the
more challenging joint analysis of small collections
of objects has only recently commenced (e.g. Morgan
et al., 2010; Blackburne et al., 2011; Sluse et al., 2012;
Jiménez-Vicente et al., 2014).

This situation is expected to change soon, with an an-
ticipated increase in the number of known multiply im-
aged systems from a few tens to a few thousands (Oguri
and Marshall, 2010). This is due to the commence-
ment of synoptic all–sky surveys, including the Pan–
STARRS (Kaiser et al., 2002), SkyMapper (Keller et al.,
2007), and Large Synoptic Survey Telescope (LSST;
LSST Science Collaboration et al., 2009) projects.

There is a need now to explore and understand the
quasar microlensing parameter space in preparation for
these future discoveries (Bate and Fluke, 2012). The
theoretical data required for this exploration, coupled
with the inflow of observational data for thousands of
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multiply-imaged systems, will require new strategies
for effective data management to support systematic ap-
proaches to quasar modeling. Indeed, as astronomy is
now well into the petascale data era, new challenges
are arising with regards to the storage, access and man-
agement of all astronomical data (e.g. Berriman et al.,
2011). The traditional approach of analyzing observa-
tions, producing simulations, and comparing the two on
the astronomer’s desktop is now giving way to the use of
remote services and resources, pushing the computation
to the data.

1.1. GERLUMPH: GPU-enabled parameter survey
At the heart of most quasar microlensing studies lies

the creation of a magnification map - a computationally
demanding task, either in terms of the processing time
or the system memory requirements.

A magnification map is a pixellated version of the
caustic pattern in the background source plane created
by the foreground microlenses, obtained using the grav-
itational lens equation (see Section 2.1). With these
maps, models of the quasar structure can be compared
statistically to observations, using either the light–curve
or the snapshot methods (e.g. see Morgan et al., 2010;
Bate et al., 2008; Floyd et al., 2009, for some applica-
tions).

The majority of the available techniques for gener-
ating a magnification map (e.g. Wambsganss, 1999;
Kochanek, 2004; Mediavilla et al., 2011) are based on
the inverse ray–shooting technique (Kayser et al., 1986),
and are single–, or multi–core central processing unit
(CPU) implementations.

It was realized early on (e.g. Wambsganss, 1992) that
the large–scale production of magnification maps for
many multiply imaged systems would require a com-
putational power beyond the capabilities of the time. In
the following two decades, the focus on single-object
studies meant that this limitation had minimal impact
on progress in the field. With the advent of massively-
parallel, graphics processing units (GPUs), a new op-
portunity has arisen to accelerate the ray-shooting cal-
culation. This approach was demonstrated with the
brute-force GPU-D code by Thompson et al. (2010),
which was later compared with the Wambsganss (1990,
1999) single–core tree-code by Bate et al. (2010).

The aim of the GPU Enabled, High Resolution,
cosmological MicroLensing parameter survey (GER-
LUMPH), is to provide a theoretical resource, consist-
ing of tens of thousands of magnification maps, to use
in preparing for the synoptic survey era of microlens-
ing. This open data resource is complemented by online
analysis tools supporting modeling of the known and

discovered microlensed systems. GERLUMPH acts as
a moderate–data size (∼30 Terabytes) case study, where
sharing of data was a guiding principle. All of the
GERLUMPH data products and online analysis tools
are freely and publicly accessible from:

http://gerlumph.swin.edu.au

Compared to a more general simulation– or theory–
based virtual observatory, which might need to cater
for a very wide range of analysis tasks, there is only
a limited set of standard analysis tasks that are used
by the microlensing community. This made it much
more practical to build in these tools and provide them
to the user through a web browser. Development of
the browser–based solution was commensurate with the
first stable release of the WebGL1 JavaScript application
programming interface, so we took advantage of this to
investigate rich, interactive visualisation tools for com-
patible browsers.

1.2. GPU Supercomputing

While access to a single GPU can provide signifi-
cant speed-ups to existing CPU-based solutions, access
to a computing cluster equipped with GPUs provides
O(100) Tflop/s performance at the fraction of the cost
of the equivalent CPU system.

Throughout this work, we have used the GPU–
Supercomputer for Theoretical Astrophysics Research
(gSTAR), located at Swinburne University of Tech-
nology. The gSTAR facility comprises 53 CPU–core
nodes, 50 of which are equipped with two NVIDIA
C2070 GPUs; the remaining 3 nodes comprise 7
NVIDIA M2090 GPUs each. Additionally, gSTAR is
connected to a ∼1 Petabyte storage system, using the
Lustre2 parallel filesystem.

75 per cent of the computing time on gSTAR is avail-
able on a competitive basis, with requests for computing
time governed by the Astronomy Supercomputing Time
Assignment Committee (ASTAC).

1.3. Overview

In this work, we describe the data management in-
frastructure and remote analysis services developed for
GERLUMPH. The scientific motivation and outcomes
of GERLUMPH are described elsewhere (Bate and
Fluke, 2012; Vernardos and Fluke, 2013; Vernardos
et al., 2014).

1Web Graphics Library: www.khronos.org/webgl
2http://www.opensfs.org/lustre/
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In Section 2 we describe the GPU-D inverse ray–
shooting technique and present updated benchmarks,
while the core GPU code is presented in detail in Ap-
pendix A and released to the community for exami-
nation and further enhancement. Our approach to data
management and storage is described in Section 3 and
Appendix B. The GERLUMPH online eResearch tools
are presented in Section 4. Discussion and conclusions
follow in Sections 5 and 6.

2. GPU-accelerated microlensing

How should one adapt or develop code for a GPU
to accelerate a scientific computation when the exist-
ing best software solution is designed for either a sin-
gle or low number of CPU compute cores? Barsdell
et al. (2010) advocate the use of an algorithm analysis
strategy, whereby alternative algorithms are chosen that
more closely match the massively parallel GPU archi-
tecture. A compelling class of alternative algorithms are
brute force or direct calculation solutions, often related
to the way a particular scientific computation was orig-
inally proposed - before highly optimised or approxi-
mate solutions were investigated. In certain cases, brute
force algorithms present a simplified coding option for
GPUs, providing sufficient acceleration to solve prob-
lems that were not feasible with single-core CPU-only
solutions (Fluke et al., 2011).

2.1. Brute force ray-shooting
One such brute force algorithm was described and

tested in Thompson et al. (2010): inverse ray-shooting
for gravitational microlensing (see Kayser et al., 1986,
for early implementations). Here, large numbers (∼109)
of light rays are projected from the observer, through the
lens plane, where they are each deflected by N∗ individ-
ual lenses according to the gravitational lens equation,
and accumulated on a gridded source plane. For the spe-
cific case of cosmological microlensing by N∗ compact,
point-mass objects in the presence of a smooth matter
distribution, and an external shear, γ, the gravitational
lens equation is:

y =

(
1 − γ 0

0 1 + γ

)
x − κsx −

N∗∑
i=1

mi
(x − xi)

|x − xi|
2 , (1)

This equation relates the position of a light ray in the
source plane, y, to a lens plane location, x. The total
convergence, κ = κs + κ∗, has contributions from both
compact objects, κ∗, and smooth matter, κs. It is conve-
nient to introduce the smooth matter fraction:

s =
κs

κ
, (2)

allowing the definition of a map in terms of the three
parameters κ, γ, s. The number of microlenses, N∗, is:

N∗ =
κ∗A
π〈M〉

, (3)

where 〈M〉 is the mean mass of the microlenses, and A
is the area where they are distributed. A schematic rep-
resentation of the direct inverse ray-shooting technique
can be seen in Figure 1.

The number of light rays reaching each pixel of the
source plane, Ni j, compared to the number of rays that
would have reached each pixel in the absence of mi-
crolensing, Navg, gives the local magnification value,
µi j:

µi j =
Ni j

Navg
. (4)

A magnification map, or just map, is a pixellated version
of the source plane with fixed width and resolution. The
width of the map is measured in units of the Einstein
radius, REin, the radius of the symmetric ring that occurs
when a source is directly aligned with a gravitational
lens or microlens:

REin =

√
DosDls

Dol

4G〈M〉
c2 . (5)

This quantity depends on the angular diameter distances
from observer to lens, Dol, observer to source, Dos,
and lens to source, Dls, and the mean mass of the mi-
crolenses 〈M〉. Once a value is set for REin, each map
pixel will correspond to a physical length e.g. the pix-
els of a 25-REin wide map with a 10000-pixel resolu-
tion would span 1.25×1014 cm, for a typical value of
REin = 5×1016 cm (see Section 3.1 and Table 4 for an
explanation of these values).

The deflection calculation in equation (1) requires
≈10 floating point operations for each lens, and for sim-
ulations of realistic microlensing systems, N∗∼103−105

is typical. As each light ray deflection is independent of
all other light rays, the ray-shooting algorithm is “em-
barassingly parallel” (Barsdell et al., 2010) and thus
highly suitable for implementation on a GPU.

2.2. Brute force benchmarks

The Thompson et al. (2010) brute force ray-shooting
code, GPU-D, has now been used to generate more than
70,000 magnification maps. The validity of the code
was established by Bate et al. (2010) through direct
comparison with results from the Wambsganss (1990,
1999) tree-code. Additional testing has been performed

3



Figure 1: Schematic representation of ray–shooting. Microlenses
(black dots) are distributed in a circle of area A on the lens plane (see
equation 3). A grid of light-rays (grey and red dots) is projected back-
wards from the observer through the lens plane, where the deflection
by each lens is calculated for each ray using equation (1), and mapped
on to the source plane. A rectangular area on the source plane is se-
lected (red points) away from edge effects, divided into pixels, and
used to calculate the magnification from equation (4).

in Vernardos and Fluke (2013), investigating the de-
pendence of magnification probability distributions on
the random positions of individual microlenses, and in
Vernardos et al. (2014), comparing magnification prob-
ability distributions for maps that are considered equiva-
lent according to the coordinate transformation imposed
by the mass-sheet degeneracy. We present details on the
released version of the GPU-D code in Appendix A, en-
couraging others to use, improve and further test our
solution.

Thompson et al. (2010) found that a brute force im-
plementation of microlensing ray-tracing gave a speed-
up of 125 times relative to a single-core CPU imple-
mentation. However, this is a highly unfair comparison,
as the single-core brute force solution is known to be
computationally inefficient. A better benchmark is to
compare this solution to the highly optimised, yet still
single-core CPU-only, tree-code of Wambsganss (1990,
1999) which has been used extensively in astronomy for
more than two decades. This latter code uses a single-
core CPU solution, and so has not been able to take
advantage of incremental hardware speed-ups: clock
speeds for single CPU cores plateaued around 2004.
An alternative MPI-based tree-code solution for a dis-
tributed computing cluster was implemented by Gars-
den and Lewis (2010).

Figure 2: The computational time scales linearly with the number of
microlenses. The same set of 170 magnification maps was produced
on 5 generations of GPUs, with an increasing number of threads (see
Table 1). Our computations saturate the GPU devices for N∗≈300.
Newer cards with more threads are faster.

Bate et al. (2010) showed that for a reasonable por-
tion of the parameter space of interest to cosmolog-
ical microlensing, the brute force solution was faster
than the tree-code. This was based on tests using an
NVIDIA S1070 Tesla unit, released in 2008. Bate et al.
(2010) predicted that by using newer generations of
GPUs, there would be an immediate additional speed-
up. We now present up-to-date benchmarks of the
GPU-D code, comparing the performance on 5 genera-
tions of NVIDIA GPUs (see Table 1 for details). For
graphics cards with multiple GPUs, we only use one
GPU for benchmarking.

The key feature of each card is the number of threads,
which is the number of instances of a GPU-code that can
be executed in parallel. To test the speed-up provided by
different GPU cards, we used a set of 170 magnification
map simulations with varying numbers of microlenses
as a benchmark. Increasing the number of microlenses
(equation 3) for which we have to directly solve equa-
tion (1), will linearly increase the computational time.
This linear increase can be seen in Figure 2, where we
show the computational time as a function of the num-
ber of microlenses.

As the GPU cards become more powerful, the GPU-D
code has executed faster: our benchmark problem took
20 days to complete on a 2008 S1070 card, while it took
4.9 days on a 2013 K40 card, which has more than ten
times the number of threads (see Table 1). This consti-
tutes a speed-up factor of 4 gained in roughly 5 years.
We point out here that we used the same code on each
card, without any modifications to take advantage of
new hardware or software features.
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Table 1: Five generations of NVIDIA GPUs used to benchmark the
GPU--D brute force ray–shooting code. The main feature of the cards
that increases the peak computational power, measured in Gigaflop/s,
is the number of Threads. In the last column, is the total time to
generate a set of 170 benchmark maps.

Card Year Peak Threads Time (days)
S1070† 2008 1.04 240 20
C2070 2010 1.29 448 13.8
K10† 2012 2.67 1536 10.6
K20 2012 4.10 2496 5.9
K40 2013 5.36 2880 4.9

†the S1070 and K10 cards contain more than one GPU;
the results reported here are only for one GPU.

Figure 3: Scheduling of the GERLUMPH computations on gSTAR.
gSTAR was officially opened on the 1st of May 2012. There were
two major downtimes between November and December 2012, and
December 2013 and January 2014. An up-to-date version of this
graph can be found at http://gerlumph.swin.edu.au/status/,
as more calculations are being completed.

2.3. Experiences using gSTAR

In Figure 3 we see how the GERLUMPH datasets
have used the computational time available on gSTAR:
GD0 was generated during the preliminary phase of
gSTAR, before its official opening on May 1st 2012,
GD1 and GD2 were mostly completed within the fol-
lowing year, and GD3 will be completed by mid 2014
(see Section 3.1 and Table 3 for more details on the
GERLUMPH datasets). We have used the equivalent
of 21,000 CPU days so far, ∼9,000 of which have
been allocated to GERLUMPH via ASTAC. Sharing the
gSTAR nodes with other users lead to identifying issues
with the GPU device allocation, which have been re-
solved by working closely with the supercomputer sup-
port team.

We can compare our timing results for conducting a
parameter survey with the strategies proposed by Bate

and Fluke (2012). The general idea is to start by produc-
ing maps at the positions of the currently known macro-
models and then move progressively outwards to cover
the rest of the parameter space (see Figure 4). The au-
thors suggested different stages of the survey, depend-
ing on the parameters examined and the expected spec-
ifications of the gSTAR supercomputer. Their Stage
2 includes all maps located at and around the known
macromodel positions, with ∆κ = ∆γ = 0.01. Using
the timing relation derived by (Thompson et al., 2010,
equation 7) for a S1070 card, they estimated a compu-
tational time of 177 days, using a computational power
of 100 teraflops/s. We carried out these calculations in
74 days using the newer C2070 cards on gSTAR, at 64
Teraflop/s (maximum computational power allowed per
user). This result allowed us to design and proceed with
the exploration of other areas of parameter space, pre-
sented in detail in Section 3.1.

2.4. Convolutions
A further opportunity to utilize GPUs in quasar mi-

crolensing exists. If the physical size of the accretion
disc is less than the physical size of a map pixel, then
we are dealing with a point-source and we can use the
magnification map as is to extract observable quantities
without further processing. Otherwise, we are dealing
with a finite-size source, and the map must be convolved
with the physical source profile before we can proceed.

A convolution between a source profile and a map,
for a given value of REin, can be performed once the
source profile is transformed into a convolution kernel.
To achieve this, the projected two-dimensional source
profile is binned in pixels of equal physical size to the
map pixels, and then appended with empty (zero) pix-
els to match the pixel dimensions of the map. Now, the
convolution kernel and the map are images (pixel ar-
rays) of the same size and the convolution theorem can
be applied:

C = M ∗ K = F−1[F(M)F(K)] (6)

where C is the convolved map, M is the original map, K
is the convolution kernel, and F and F−1 are the forward
and inverse Fourier transforms respectively.

Although generating a high-resolution magnification
map typically takes from a few hours to a few days,
depending on the number of microlenses, convolution
with a source profile takes a few seconds on the GPU.
The Fast Fourier Transform algorithm (FFT, Press et al.,
1992) is a widely used algorithm that has already been
implemented for GPUs. Using the cuFFT3 library,

3http://docs.nvidia.com/cuda/cufft/

5

http://gerlumph.swin.edu.au/status/
http://docs.nvidia.com/cuda/cufft/


which includes a tested and well-documented CUDA
implementation of the FFT, we perform a convolution
for 100002-pixel maps in ∼3s. For comparison, the
same convolution using the the CPU version of FFT,
takes about a minute.

2.5. Parameter space exploration

On the theoretical side, quasar microlensing simula-
tions are intrinsically complex, with three major phys-
ical systems having to be modelled simultaneously i.e.
the accretion disc, the galaxy-lens (macrolens) and the
microlenses. A morphological analysis approach would
be well-suited for this problem: identify the parameter
combinations that lead to possible solutions and elim-
inate those which do not, rather than simplifying the
problem by reducing the number of parameters (see
Zwicky, 1969; Ritchey, 2006). Therefore, an explo-
ration of the microlensing parameter space, the most
computationally demanding stage of the process, is war-
ranted.

The parameters involved in generating a microlensing
magnification map can be divided into three categories:

1. Macromodel (external) parameters. These are
the convergence and shear, κ and γ, coming from
the macromodels of the galaxy-lens, together with
the smooth matter fraction, s, that separates κ into
compact and smooth matter components (see Sec-
tion 2.1).

2. Parameters of the microlenses, namely, the mass-
spectrum and positions of the microlenses.

3. Map characteristics, including the map width,
pixel resolution and average number of light rays,
Navg. Wide maps (24REin or more) allow for inves-
tigation of large sources (≥ REin) and high resolu-
tion reveals details of the background source (see
the relevant discussion in Bate and Fluke, 2012).
Finally, the more rays shot, the better the statistical
accuracy of the map.

Performing such explorations in the past was time
consuming (Wambsganss, 1992), and the only practi-
cal option was single object modelling, in line with the
observations of the time that also focused on single ob-
jects. However, with the advent of GPUs and other com-
putational accelerators it is now possible to undertake a
detailed systematic investigation of the parameter space,
in preparation for the imminent era of new discoveries.

In Table 2, we show an example of the transition in
the total number of maps produced, from single ob-
ject and limited parameter space studies to extended
parameter space explorations, as GPU computational

power became available. A GPU-based high perfor-
mance computing cluster makes it possible to scale up
the number of simulations, allowing parameter space
explorations that would have taken years, or decades,
to be completed in timescales of weeks or months (see
Bate and Fluke, 2012).

3. Data management

The GERLUMPH data consist of magnification maps
and convolution results. The total information in the
GERLUMPH maps is of the order of 7 Terapixels,
spread across ∼70,000 maps, requiring ∼25 Terabytes
of uncompressed storage space. An additional ∼0.5 Ter-
abytes of data is required for support files, such as low-
resolution preview icons, probability distributions, log
files, etc. The number of convolutions between maps
and accretion disc profiles for different values of REin
is of the order of 106. The convolution output is di-
rectly processed and a number of quantities of interest
are stored e.g. probability distributions, flux locations,
etc, which amount to a final data size of 5 Megabytes
per convolution, on average.

The amount of data (Section 3.1), and the specific
dependence on combinations of map, disc profile and
convolution parameters, raised the need for a suitable
data storage, management and access scheme. This is
achieved by managing meta-data in a MySQL relational
database (Section 3.2), and considering suitable data
formats and methods of compression (Appendix B).

3.1. The GERLUMPH datasets
The GERLUMPH magnification maps are divided

into four distinct datasets, summarized in Table 3 and
plotted in the κ, γ parameter space in Figure 4. Each
GERLUMPH dataset is targeted at answering a specific
scientific question relevant to cosmological microlens-
ing:

1. GD0 constitutes a preliminary phase of GER-
LUMPH at a lower resolution (40962 pixels per
map). Its main goal is to investigate the effect of
varying the microlens positions of the maps via
the first ever uniform exploration of the κ, γ pa-
rameter space (Vernardos and Fluke, 2013). GD0
was used to test practical issues related to data pro-
duction and management, together with supporting
gSTAR’s early stages of deployment and debug-
ging.

2. GD1 provides the first extensive coverage of the
microlensing parameter space at high resolution
(100002 pixels per map). The science goal of GD1

6



Table 2: Number of maps used in parameter space and single object studies, compared to the total of GERLUMPH maps.
Publication Number of maps Technology Approach

Wambsganss (1992) 64 CPU parameter space
Lewis and Irwin (1995) 61 CPU parameter space
Mediavilla et al. (2009) 580 CPU sample of 20 objects

Poindexter and Kochanek (2010) 1320 CPU single object
Vernardos and Fluke (2013) 2550 GPU parameter space

Vernardos et al. (2014) 12342 GPU parameter space
GERLUMPH > 70, 000 GPU parameter space

is to investigate the effect of systematically in-
cluding smooth matter in the κ, γ parameter space
(Vernardos et al., 2014).

3. GD2 targets 23 known multiply imaged systems
and their corresponding 275 published macro-
model κ, γ values (Bate and Fluke, 2012). Its main
goal is to investigate the effect of small perturba-
tions (∆κ = ∆γ = 0.01) on map properties, and
subsequently on accretion disc properties sensitive
to microlensing.

4. GD3 bridges the gap between GD1 and GD2, cre-
ating large areas of parameter space densely cov-
ered by maps (∆κ = ∆γ = 0.01), and investigating
how well constrained macromodel κ, γ values have
to be in large areas of the parameter space.

Besides their intended scientific goals, subsets of GER-
LUMPH maps can be used for detailed studies of par-
ticular microlensed systems, or for theoretical studies
across the parameter space.

For studying finite sized sources the choice of the
three major components required to perform a convo-
lution is described below and is summarized in Table
4:

1. Any map, or set of maps, from the GERLUMPH
datasets can be used, depending on the aspect of
accretion disc modelling under investigation e.g.
single system or parameter space, low or high reso-
lution, effect of smooth matter, systematics of lens
positions, etc.

2. To determine the REin of a gravitationally lensed
system, measurements of both the source and
lens redshifts are required. The CASTLES4 sur-
vey (Falco et al., 2001) consists of 59 systems
with both required redshifts measured, while Mos-
quera and Kochanek (2011) have used estimates of
lens redshifts to construct a sample of 87 lensed

4http://www.cfa.harvard.edu/castles/

Figure 4: Microlensing parameter space covered by the GERLUMPH
datasets. GD1 maps (dark blue) are distributed uniformly (∆κ = ∆γ =

0.05), GD2 maps (light blue) are found at, and around, the locations of
macromodels from the literature (Bate and Fluke, 2012), with small
perturbations (∆κ = ∆γ = 0.01), and GD3 maps (yellow) densely
cover extended regions of parameter space (with ∆κ = ∆γ = 0.01).
The black line is the critical line where µth→∞, with µth being the
macro-magnification. An up-to-date version of this graph can be
found at http://gerlumph.swin.edu.au/status/, as more of
parameter space keeps being covered.

quasars. The mean value and standard deviation of
REin from the two samples is 5.35±2.20×1016 cm
and 5.11±1.88×1016 cm respectively (for 〈M〉 = 1
M� and H0 = 70 km s−1 Mpc−1, see equation 5).
We can therefore say that a value of REin∼5×1016

cm is typical (see also Bate and Fluke, 2012),
with the majority of systems lying between 1×1016

and 9×1016 cm. This motivates the range of val-
ues we have explored; a prominent exception is
Q2237+0305 with REin =18.1×1016 cm, which is
unusually high because the galaxy-lens happens to
be very close to us at redshift z = 0.04.

3. Realistic state–of–the–art accretion disc models
may include warped discs, spinning black holes,

7

http://www.cfa.harvard.edu/castles/
http://gerlumph.swin.edu.au/status/


Table 3: The GERLUMPH magnification map datasets.

GD0 GD1 GD2 GD3∗ Total
number of maps 2550 12342 18271 ∼37000 70000

GPU days 212 2903 4722 ∼16900 12110
data size (TB) 0.17 4.7 7 ∼13.5 25

unique κ, γ combinations 170 1122 1661 ∼3255 -
κ, γ coverage uniform uniform specific systems bridging the gap -

s 1 11 11 11 -
resolution 40962 100002 100002 100002 -

width (REin) 24 25 25 25 -
realizations 15 1 1 1 -

∗in progress.

relativistic effects, etc (for a review see Abramow-
icz and Fragile, 2013). Currently, it has not been
demonstrated that microlensing is sensitive enough
to detect the observational signatures of such fea-
tures (e.g. Mortonson et al., 2005). Instead, using
simple geometrical disc profiles greatly reduces the
size of the parameter space that needs to be inves-
tigated, while still spanning a wide range of possi-
bilities. Example profiles include a uniform disc, a
Gaussian disc, a power-law (the thin-disc model,
Shakura and Sunyaev, 1973), or profiles with a
central brightness depression corresponding to the
event horizon of the supermassive black hole. The
size of the profile, a more important parameter than
the shape, is allowed to vary between 5×1014 to
5×1016 cm (by size we mean the radius at which
the brightness essentially drops to zero, as opposed
to the half-light radius). This range allows us to
study physical scales from the X-ray emitting re-
gion of the disc, which is expected to be small and
centrally located (∼1014 cm, e.g. Dai et al., 2010),
out to the broad emission-line region (∼1017 cm,
e.g. Sluse et al., 2012).

Ideally, one would keep the result of each convolu-
tion i.e. a convolved map, and use this for future ex-
traction of arbitrary properties that can be compared to
observations. However, keeping each convolved map
will quickly lead to data sizes beyond our storage ca-
pabilities; 106 convolved maps, each 381 Megabytes in
size, require ∼4 Petabytes of final data size to store (c.f.
gSTAR has total storage disk space of ∼1 Petabyte).
Therefore, each convolved map has to be processed di-
rectly and then discarded. Given the speed at which con-
volutions can be calculated on the GPU (∼3 s/map), this
is a reasonable strategy.

Table 4: Summary of the GERLUMPH convolution components. Size
denotes the radius where the disc brightness profile drops to zero. The
shape of the profile can vary from a simple geometrical to a more
realistic configuration.

maps: ∼70,000 GERLUMPH maps
Einstein radii: 1 < REin < 9 [1016 cm]

disc sizes: 0.5 < size < 50 [1015 cm]
disc shapes: uniform disc, gaussian, etc.

For each convolved map, we calculate and store
the magnification probability distribution (see Section
3.2.1). Additionally, we produce and store flux ratio
data viz. the location and magnification value of typ-
ically a few thousand pixels from the convolved map, to
allow for accretion disc studies of the type performed by
Bate et al. (2008), or Floyd et al. (2009). At this stage
we choose not to generate any light-curve data from the
convolved maps, as this further increases the storage
requirements and is more closely linked to customized
analysis fitting processes for studying specific systems
(e.g., see Kochanek, 2004). We note in passing that
there are opportunities for additional GPU-acceleration
of the light-curve analysis and fitting process in the fu-
ture.

3.2. The GERLUMPH databases
The GERLUMPH data are organized in a MySQL5

relational database. MySQL is a popular, open-source,
well-documented, database technology and data stor-
age system, which has been used in astronomy before
(e.g. Lemson and Springel, 2006). The database ta-
bles hold the metadata for each map, or convolution,

5http://www.mysql.com/products/community/
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Figure 5: A schematic representation of the flow of data from pro-
duction to the user. The GERLUMPH implementation can be seen
under each component. Data are produced on a supercomputer, and
are subsequently moved to the storage devices, with the metadata put
into a database. The web server, database server, and stored data can
physically lie on the same, or different machines. The user makes a
request at the server, which contacts the database to get the metadata,
and the storage devices to retrieve the actual data, before returning the
result to the user.

together with the corresponding index of the output di-
rectory.

The actual data do not reside in the database itself.
Instead, they are located in indexed directories, which
keeps the resulting disk size of the database small (a
few Megabytes). The physical location of the data is on
gSTAR’s storage disks, under a flat file system: all in-
dexed output directories are stored under a single direc-
tory for magnification maps, convolutions, etc. This ap-
proach allows us the flexibility of being able to move the
data to appropriate storage devices, while the database
and web servers (see Section 4) can run on separate ma-
chines. A schematic flow of data from their production
on gSTAR to the user can be seen in Figure 5.

In the following, we describe the GERLUMPH rela-
tional database in terms of the entity-relationship model
(Chen, 1976; Barker, 1990). It consists of six entity
types:

1. ‘map’ is a magnification map.
2. ‘disc’ is an accretion disc profile.
3. ‘convolution’ is a convolution between a map and

a disc profile.
4. ‘macromodel’ is the κ, γ values at the position of an

image of a multiply imaged quasar, derived from

macromodels of the lens galaxy.
5. ‘job’ is a batch of map or convolution simulations

submitted to the supercomputer.
6. ‘download’ is one or more maps selected for down-

load by a GERLUMPH user.

The ‘map’ and ‘convolution’ types constitute our actual
results, the ‘disc’ and ‘macromodel’ types are comple-
menting our main data, while the ‘job’ and ‘download’
types are for management purposes only. Each entity
type is represented by a table whose fields are the entity
attributes that are physical parameters (e.g., κ, γ, s, reso-
lution, width, etc) or attributes facilitating data manage-
ment (e.g., computational time, file size, date and time
of submission to the supercomputer job queue, etc). For
the complete list of attributes stored for each entity see
Figure 6.

In a relational database, entities are related to each
other by relationships. For example, a ‘map’ can corre-
spond to a ‘macromodel’, and a ‘macromodel’ can have
a ‘map’ (the inverse relationship). Additionally, each
relationship can have a degree, e.g. a ‘map’ can cor-
respond to none or many ‘macromodel’ entities i.e. a
(0,N) relationship. The GERLUMPH database entity
types, relationships, degrees of relationships and pri-
mary keys are shown in the entity-relationship diagram
of Figure 6.

The primary key can be one or more attributes unique
to each entity. In other words, each database table en-
try can be uniquely characterized by its primary key, or
index. We use this unique index of each entity to name
the directory holding the actual data.

The contents (attributes) of each of the 6 GER-
LUMPH tables (entities), together with the file structure
of the corresponding output directories, are described in
the following.

3.2.1. The ‘map’ main table
The magnification map table contains all the meta-

data relevant to a map. Eight fields contain the map
parameters viz. κ, γ, s,Navg, resolution, lens positions,
number of lenses, and map width, which have been de-
scribed in Sections 2.1 and 3.1. There are four addi-
tional fields that contain the GPU computational time
for generating the map, the GERLUMPH dataset the
map belongs to (see Table 3), the date and time of sub-
mission to the gSTAR job queue and the status of the
submitted job (waiting in the queue, running, or com-
plete).

The last field is the unique index of the map, which
holds the name of the output directory containing the
map related data. Selecting maps from the database will
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Figure 6: The entity-relationship diagram for the GERLUMPH database. Entities (tables) are connected to each other by relations, such as
corresponds to or has. Relations can have degrees, e.g. one-to-one (1,1), one-to-many (1,N), or none-to-many (0,N). We have used the Crow’s foot
and the (min,max)-notation to denote relationships on the diagram. The primary keys and common attributes between entities are shown in grey.

seamlessly make use of the map index to retrieve the
data. All the data files (.dat extension) are stored in
text format and comprise about 0.02% of the total data
size. The actual maps comprise the bulk of the GER-
LUMPH data, their data format and properties are dis-
cussed in more detail in Appendix B. The data available
in each directory consist of the following files:

1. map.bin: ray counts per map pixel, the actual
magnification map data, stored in 32-bit binary for-
mat. The size of this file is 381 Megabytes for our
100002-pixel maps.

2. meta.dat: input parameters used to generate each
map and log information from gSTAR’s queue.
This compact file (<100 lines) contains informa-
tion about the supercomputer nodes and GPUs
used in the computation, as well as the number of
microlenses used, the date and time of submission
to the supercomputer, the status of the job, and the
computational time, which are used to update the

corresponding database table fields.
3. mapmeta.dat: general physical properties of the

map, stored separately for easy and quick access:
κ, γ, resolution, width, average number of rays per
map pixel, 〈N〉, and average magnification, 〈µ〉.
Using the last two quantities one can convert from
ray counts to magnification per pixel through equa-
tion (4), where Navg is given by the ratio 〈µ〉/〈N〉.

4. lenspos.dat: input microlens positions in the
lens plane.

5. icon.png: an icon (200x200 sampled pixels) of
the magnification map for preview purposes, stored
as a Portable Netowrk Graphics6 (PNG) image.

6. sample.png: a larger image (1000x1000 sampled
pixels) of the magnification map with more detail,
stored in PNG format. This image is used by tools

6http://www.w3.org/Graphics/PNG/
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like Colorbar, where a map preview is needed,
but the map icon is not sufficiently large.

7. mpd.dat: the full magnification probability distri-
bution (MPD) of the map. For comparisons be-
tween maps, it is often more convenient to use the
MPD, or magnification histogram; the frequency
of each magnification value in a map is counted
and then divided by the total number of pixels.
An example map and the corresponding MPD are
shown in Figures 7 and 12.

8. mpd.png: a plot of the map MPD (680x510 pixels)
for preview purposes, stored as a PNG image.

3.2.2. The ‘convolution’ main table
This table contains the convolution parameters viz.

the unique index of the magnification map, the unique
index of the accretion disc profile (see next section) and
the value of REin used. Each convolution is assigned a
unique index, which is used to name the output direc-
tory with the convolution results. Finally, each entry
contains the date and time of submission to the gSTAR
job queue and the status of the submitted job.

Selecting maps (or disc profiles) from the database
will seamlessly make use of the map (disc profile) and
convolution index to retrieve all the related convolution
data. The data available in each directory consist of the
following files:

1. convmeta.dat: input parameters for each convo-
lution and log information from gSTAR’s queue
kept as a reference. This is a small file (< 50 lines)
stored in text format.

2. mpd.dat: the full magnification probability distri-
bution of the convolved map, similar to the map
MPD, stored in text format.

3. icon.png: an icon (200x200 sampled pixels) of
the convolved magnification map for preview pur-
poses stored as a PNG image.

4. pixelFlux.bin: typically a few thousand pixel
locations and magnification values from the con-
volved map. This is a binary file, with pixel lo-
cation on the map represented by two short inte-
gers (2 bytes each) and the magnification value by
a float (4 bytes, see Appendix B).

3.2.3. The ‘disc’ complementary table
Keeping the disc profile information used for per-

forming convolutions with GERLUMPH maps e.g.,
shape, size, etc, in a database table greatly facili-
tates generating and retrieving GERLUMPH results. In
this table, we store a short name for the profile (e.g.,
Gaussian+hole), a long name, which better explains the

profile properties (e.g., a two-dimensional normalized
Gaussian distribution with a hole), the size of the profile
in physical units, and additional information sufficient
to reproduce the profile itself (e.g., the values for σx

and σy of a two-dimensional Gaussian). Finally, there
is the unique profile index, which points to the output
directory holding the profile data.

The disc brightness profile is calculated on a two-
dimensional regular grid of 1000 to 3000 points per di-
mension, depending on the physical size of the profile.
The data available in each directory consist of the fol-
lowing files:

1. profileMeta.dat: physical dimensions of the
generated disc profile, and the resolution of the
grid, Nx,Ny, stored in text format.

2. profile.png: an image of the disc profile (up
to 3000x3000 resolution) for preview purposes,
stored in PNG format.

3. profile.bin: this is a binary file, with informa-
tion stored as 32-bit float numbers. The first Nx

and Ny numbers hold the x and y values of the
grid points in physical units. The following Nx×Ny

numbers represent the normalized brightness val-
ues in each grid location.

At this stage, there are only a few sets of pre-
computed disc profiles of some basic geometry in the
‘disc’ table. A tool could be envisaged here, allowing
for users to upload their own accretion disc profiles as
motivated by their work. This would be considered in a
future, fully integrated, online version of GERLUMPH
and depend on the available hardware/software imple-
mentation (e.g. GPU-accelerated web-server, storing
user data in the database, etc). For the present, any ad-
ditions/suggestions of accretion disc profiles should be
addressed to the authors.

3.2.4. The ‘macromodel’ complementary table
This table holds information on existing macromod-

els compiled from the literature originally by Bate and
Fluke (2012), and subsequent updates. It provides the
connection from specific macromodels and lens systems
to the κ, γ parameter space. Each entry consists of the
name of the lens system (e.g., Q2237+0305), the name
of the macromodel used (e.g., single isothermal sphere),
the reference to the relevant publication, the link to the
Astrophysics Data System7 (ADS) entry, the multiple
image labels (e.g., A, B, etc), and the published κ, γ val-
ues for that image.

7http://adsabs.harvard.edu/index.html
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There is also a unique index for each entry, however,
the corresponding output directory is empty. This is be-
cause currently all the information required on macro-
models can be stored entirely in the database. However,
the infrastructure is there in case more information on
macromodels is required in the future.

A future possibility could be to integrate an online
macromodeling tool (e.g. Mowgli Naudus et al., 2010)
with the GERLUMPH magnification maps. For the
present, researchers that would like their macromodels
specifically to appear in the GERLUMPH database are
asked to contact the authors.

3.2.5. The ‘job’ management table

Due to the very large number of map and convolution
simulations that have to be performed (∼104 and ∼106

respectively), these are grouped in batches and submit-
ted to the gSTAR job queue. The ‘job’ table holds in-
formation on batches of jobs, such as the version of
the code used to carry out the simulations, the name of
the gSTAR queue where the jobs were submitted (dif-
ferent queues have different GPU cards), the number
of individual jobs in the batch, the unique job indices,
a comment on the jobs (e.g., ‘GD2 maps part A’), the
submission and completion date and time, and the sta-
tus of the batch. This information is useful in resolv-
ing issues which may occur with the supercomputer e.g.
power/network failures, input/output errors, etc.

3.2.6. The ‘download’ management table

This table manages the interaction of users with the
GERLUMPH data. Currently, the option of download-
ing any of the GERLUMPH maps is enabled (see also
Vernardos et al., 2014). The ‘downloads’ table contains
a user identification code (no actual user data are stored,
this is just a way to distinguish between different users),
number of maps downloaded, the map indices, the com-
pressed and uncompressed size of the data, the date and
time of access and the status of the download. The in-
dex of each entry points to a directory where the desired
map data are temporarily stored in a compressed format
(gzip or bzip2) and available for download.

Should the map download option be disabled in the
future, the ‘download’ table could still be used as a
‘user’ table to manage a different kind of user inter-
action with the data. This could include an inventory
with the most commonly used maps, uploaded user-
generated maps for comparisons, etc.

4. eTools

Access to the GERLUMPH data requires simply a
web browser and an internet connection to the server
located at:

http://gerlumph.swin.edu.au

The web server uses the popular LAMP (Linux Apache
MySQL PHP, e.g. see Lee and Ware, 2002) freely avail-
able, open-source software bundle. The data managed
by the web server are the magnification map data (∼25
Terabytes), the convolution data (∼5 Terabytes), and
support files, such as preview icons, probability distri-
butions, etc, (∼0.5 Terabytes) as described in Section
3.1. Users are expected to access the meta-data in the
GERLUMPH database and the pre-computed support
files most frequently. Therefore, the provided set of on-
line tools described below has been designed to make
efficient and effective use of these data.

To support online access to the GERLUMPH maps,
we have developed a series of tools that can be used in
an up-to-date web browser8 with JavaScript support en-
abled. The jQuery9 JavaScript library has proven very
useful in creating the tools described below. For spe-
cific applications, we find that WebGL provides a per-
formance boost, especially for online image processing
(like map convolution). WebGL is a JavaScript API for
rendering interactive 3D and 2D graphics within any
compatible web browser10, allowing for user-side GPU
acceleration. In the following, we describe ways of ac-
cessing and analyzing the GERLUMPH data through a
set of online tools.

4.1. Query the map table: the getquery tool
The getquery tool is the basic tool providing general

access to the GERLUMPH datasets (Section 3.1 and Ta-
ble 3) via the database tables described in Section 3.2.

4.1.1. Description
A range of values for κ, γ and s can be specified,

and the matched results from any of the GERLUMPH
datasets will be returned. The properties of the result-
ing maps are listed in a table, and their κ, γ values are
plotted in the parameter space. Parameter space results
from Vernardos and Fluke (2013) and Vernardos et al.
(2014), along with other properties of the κ, γ parameter

8recommended browsers are Firefox 17 and Chrome 32, or later
versions.

9version 1.7: http://jquery.com/
10to test whether your browser supports WebGL visit the following

web page: http://get.webgl.org/
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Figure 7: The main features of the getquery tool, located at http://gerlumph.swin.edu.au/getquery/: A - Properties of the matching
maps returned from a successful query to the ‘map’ database table. The user can select any single map by clicking on the table rows, or a collection
of maps by checking the boxes. B - The κ, γ values of the selected maps. Properties of the parameter space can be displayed in the background. The
user can click on the points to select single maps. C - Tools for single maps: preview the map and its MPD, a list of equivalent maps, disc profiles
the map has been convolved with, and macromodels that lie close to the map in the κ, γ parameter space. D - Tools for multiple maps: a summary
of the selected maps, previewing all the selected maps and MPDs, selecting the maps for download and proceeding to check out. E - Activate help
pop-up text for the current page, giving more details for each feature and tool.

space (e.g. the number of microlenses, magnification
contours, etc), can be displayed in the background of
the plot. Online tools are provided for further analysis
of single, or groups of maps. A screenshot highlighting
the main features of the getquery tool is presented in
Figure 7.

Single maps can be selected by clicking on a table
row, or a point on the parameter space plot, while mul-
tiple maps can be selected by checking the boxes on
the table. The single map tools are then automatically
updated by loading a map and MPD preview, a set of
equivalent maps due to the mass-sheet degeneracy, a list
of all the accretion disc profiles the map has been con-
volved with, and a list of neighbouring macromodels
of actual systems on the κ, γ parameter space. Further
actions and links to specialized tools are provided for
more detailed analysis e.g. the map preview is linked to

the colorbar tool (see Section 4.6) for caustic structure
inspection, the list of equivalent maps and neighbour-
ing macromodels can be plotted on the κ, γ parameter
space, etc. The available multiple-map tools consist of
a summary of the selected maps (number of maps, size
of data, etc), previewing all the maps and MPDs, se-
lecting the maps for download and proceeding to check
out. Each of these actions is accompanied by detailed
instructions, either by enabling the help instructions (lo-
cation E on Figure 7), or in the description found at the
top of each tool’s own web page.

4.1.2. Implementation
All the tools are based on a template: a descrip-

tion of each tool’s functions and features appears at
the top of the web page, followed by the main part
of the tool, where all the user interactions take place.
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Figure 8: The main features of the macromodel tool, located at http://gerlumph.swin.edu.au/macromodels/: A - The user can retrieve
observational information by clicking on the selected system’s name, or retrieve the publication abstract by clicking on the reference. B - The κ, γ
values of the selected system/macromodel. Properties of the parameter space can be displayed in the background. The user can click on the get
maps link to retrieve the corresponding maps from the main ‘map’ table. C - Step 1: select a system from the database. A list of the multiple
images of the system is displayed, which can be selected to highlight the corresponding values on the κ, γ plot. D - Step 2: select a publication
containing macromodels of the selected system (there may be only one paper available for some systems). A list of the macromodels is displayed,
which can be selected to highlight the corresponding values on the κ, γ plot. E - Switch the order of steps 1 and 2. For example, search for a given
system and retrieve all the macromodels from the literature, or search for a given publication and retrieve all the macromodels it includes (for one
or more systems). F - Activate help pop-up text for the current page, giving more details for each feature and subsequent actions.

The tool web page is loaded by a template PHP script,
and then the content is initialized by a JavaScript func-
tion. In the case of the getquery tool, this content can
be the default κ, γ, s values, or other initial values, in
the case where the user is redirected here from another
tool (e.g., the macromodel tool, see Section 4.2, or the
getquery tool itself, see below). Further calls to other
PHP scripts may result, which perform specialized tasks
as described below.

Upon changing the values for the κ, γ, s and selecting
the GERLUMPH dataset in the relevant HTML form
fields, a request will be sent to the server. The request is
handled using AJAX11 techniques, which allow updates
to parts of a web page without reloading the whole page.
The main part of the tool (shown in Figure 7) is updated
with a list of matching GERLUMPH maps, returned by
a PHP script that performs a query on the κ, γ, s and
dataset fields of the ‘map’ database table. Once the re-

11Asynchronous JavaScript and XML (AJAX) is not another pro-
gramming language, rather a new way to use existing standards:
http://www.w3schools.com/ajax/

sponse from the server is received, JavaScript callback
functions create a HTML table listing the results, and
plot the κ, γ values in the parameter space. The parame-
ter space plot is drawn using Flot12, a JavaScript plotting
library.

Selecting a single map from the table (click on a row),
or from the parameter space plot (click on a point), will
launch a series of AJAX calls, which will update the
content of the single tool panels (location C on Figure 7)
without reloading the web page. The following results
are returned by PHP scripts: the map and MPD preview
icons, a list of equivalent maps due to the mass–sheet
degeneracy (see Vernardos et al., 2014), a list of neigh-
bouring macromodels from the literature (if any), and
a list of accretion disc profiles the map has been con-
volved with. The only information required by these
scripts is the map unique index, which is a hidden field
in the HTML table, already available from the previ-
ous communication with the database. The returned in-
formation is either metadata from the database tables

12http://www.flotcharts.org/
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(e.g. equivalent maps are returned from the ‘map’ table,
neighbouring macromodels from the ‘macromodel’ ta-
ble, accretion disc profiles from the ‘disc’ table, etc),
or actual data from the output directories (e.g. the
icon.png and mpd.png preview icons).

Further tasks can be performed by each single map
tool: the image of the map can be inspected in more de-
tail than the preview icon using the Colorbar tool (Sec-
tion 4.6), the equivalent maps can be overlaid on the κ, γ
parameter space, the collection of equivalent maps can
be loaded separately in the getquery tool, and exist-
ing neighbouring macromodels can be inspected using
the macromodel tool (Section 4.2). These tasks are ei-
ther performed on the current web page by JavaScript
functions using data already loaded from the server, or
by passing on the necessary data (usually just the unique
indices of maps, macromodels, etc) to other tools, open-
ing a new web page.

The tools for multiple maps make use of the unique
indices of the checked maps in the HTML table. A sum-
mary of the selected maps i.e. number of maps, total un-
compressed data size and set of parameters, can be dis-
played by a JavaScript function using existing loaded in-
formation from the server. The preview icons of all the
maps and their corresponding MPDs can be opened in a
separate web page, where the map indices are passed by
simple form submission using the HTML GET or POST
methods.

When the Download option is chosen, the currently
selected map indices are stored in a PHP session ar-
ray variable. The values in this array are available to
any page within the GERLUMPH website. In this way,
when the user proceeds to Checkout, the contents of this
PHP session variable are displayed, which include all
the maps selected for download while browsing with
the GERLUMPH tools. Moreover, each user session
is assigned a unique identification code by the server,
which is the one used to distinguish between users in
the ‘download’ database table (see Section 3.2.6). This
is the only application that uses PHP session variables
on the server.

4.2. Specific systems: the macromodel tool

GERLUMPH magnification maps for specific mul-
tiply imaged systems can be accessed by using the
macromodel tool.

4.2.1. Description
The existing macromodels from the literature, as

compiled by Bate and Fluke (2012), have been inserted
in the ‘macromodel’ database table, according to the

schema shown in Figure 6. The user can proceed in
two interchangeable steps: select a specific system and
retrieve all its macromodels and relevant publications,
or select a specific publication, which can contain more
than one system or macromodel. Matching database
entries are returned and plotted on the κ, γ parameter
space. The plotted κ, γ values can then be highlighted
according to which multiple image or macromodel (as
presented in the related publication) they belong to. Fi-
nally, links to the publication abstracts are provided
and an image of the system is displayed (usually from
CASTLES), together with lens and source redshifts, and
other observed properties from the literature. A screen-
shot outlining the features of the macromodel tool de-
scribed above is shown in Figure 8.

The connection to the GERLUMPH magnification
map database is provided by clicking on any of the κ, γ
points on the plot. A short description appears (loca-
tion B in Figure 8) with information about the system,
image, macromodel, and publication the selected κ, γ
combination corresponds to. A link to the getquery

tool page is provided, which will automatically perform
a query to the ‘map’ database and return all the available
maps for the specific macromodel in question. After re-
trieving the maps, one can proceed further as described
in the getquery tool section.

4.2.2. Implementation
A description of the macromodel tool and its fea-

tures appears at the top of the web page, followed by
the main part of the tool shown in Figure 8, where all
the user interactions take place. The web page is gener-
ated by a PHP script, and then the content is initialized
by a JavaScript function to display all the available sys-
tems in the first step. If a user is redirected here from
the getquery tool, the macromodel tool will be initial-
ized with the selected system. Modifying the available
options launches a series of AJAX calls to PHP scripts,
which retrieve various pieces of information from the
‘macromodel’ database table. Subsequently, the content
of the main part of the tool will be updated by JavaScript
callback functions, without reloading the web page.

This tool works in two consecutive steps: start with a
given system and retrieve all the related papers, or start
with a paper and retrieve all the systems it includes. For
a selected system in step one, the list of papers on that
system will be updated in step 2, the labels of the multi-
ple images of the system will be loaded and displayed,
and all the macromodel κ, γ values for that system will
be plotted in the parameter space. If there are more
than one papers on the selected system, another series
of AJAX calls will be performed when one of the pa-
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pers is selected. Alternatively, the available macromod-
els and the link to the ADS abstract (appearing above
the parameter space plot) will be updated straightaway.

Observational properties on a selected system are also
loaded, but remain hidden in the background until the
user selects to inspect them by clicking on the system’s
name appearing on the top of the parameter space plot.
The associated PHP script retrieves an image of the sys-
tem by searching the CASTLES web page, using the
default XML parser to read its contents, and gets ad-
ditional observational information, such as the lens and
source redshifts, the REin, etc, from Table 1 of Mosquera
and Kochanek (2011), stored locally as a text file. This
is a basic implementation of getting observational in-
formation from different available sources, however, a
connection to more extensive databases, like the Mas-
terLens13 project, could be envisioned here.

4.3. Mean MPD
Apart from the general getquery and macromodel

tools, that can be used with any of the GERLUMPH
maps, there are online tools that are specially designed
for particular GERLUMPH datasets. One such tool is
the meanMPD tool, which is designed specifically for
GD0 maps.

4.3.1. Description
This tool shows variations of the MPD between 15

different realizations of the same map, having the same
parameters κ, γ, etc, but different microlens positions.
The derived mean MPD and standard deviation, which
have been presented in Figure 4 of Vernardos and Fluke
(2013), can also be displayed. Using this tool gives
more control over these results, as one can choose which
individual MPDs to display, as well as the number of
bins used for the distributions. In this way, individ-
ual MPDs that are quite different from the mean can be
identified and understood. An example is shown in Fig-
ure 9, for a trial combination of κ, γ = (0.75, 0.1).

4.3.2. Implementation
The κ, γ values are selected in a similar way in all

the tools for specific datasets: a parameter space plot is
created with all the available values from the targeted
GERLUMPH dataset, the user can browse through this
plot and select different κ, γ combinations.

An AJAX call executes a PHP script on the server re-
turning the desired data and/or metadata. The meanMPD
tool is using data from the mpd.dat file (see Section

13http://masterlens.astro.utah.edu/

Figure 9: An example of the meanMPD tool, which is using the GD0
maps. The mean MPD (magenta line) and its ±2σ deviations are plot-
ted. Five individual MPDs (grey lines) are also shown. By comparing
them to the mean, one can see that two MPDs are decreasing faster
than the rest, for low magnification values. The meanMPD tool is ac-
cessible at http://gerlumph.swin.edu.au/tools/meanMPD/.

3.2) that holds the magnification probability distribu-
tion. However, these data are binned into a histogram
before they are returned to the user. By default, the
number of bins is set to 100, with a maximum limit of
400 that can be selected by the user. The returned his-
togram data are then stored in JavaScript variables and
can be further manipulated.

After the individual and mean MPD histogram data
are returned from the server, a JavaScript callback func-
tion plots the probability distributions. There are 15
individual MPDs for each κ, γ combination from GD0,
the derived mean MPD, and the ±1σ and ±2σ regions,
which can be toggled on the plot by selecting check-
boxes that correspond to each of the histograms.

4.4. MPDs

This tool examines the effect of smooth matter on the
MPDs and is designed specifically for the GD1 dataset.

4.4.1. Description
A plot showing variations of 11 MPDs for a given κ, γ

pair, but different s values, is created. The mean MPD
and standard deviation can also be displayed whenever
available (from GD0, only for s = 0). Probability sums
for µ < µlim and µ > µlim, where µlim is a magnifica-
tion value set by the user, can be calculated and plotted
as a function of s. In this way, the effect of including
smooth matter on microlensing induced magnification
fluctuations can be examined. In Figure 6 of Vernar-
dos et al. (2014), the values of the probability sums for
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µ < 0.3µth and µ > 3µth, where µth = 1
(1−κ)2−γ2 is the

macro-magnification, are investigated as a function of s.
Using the MPDs tool, probability sums can be calculated
and similar plots can be produced, up to (or beyond) any
value of magnification. A screenshot outlining the fea-
tures of this tool is shown in Figure 10 for a trial com-
bination of κ, γ = (0.75, 0.1), for which the mean MPD
is shown in Figure 9.

4.4.2. Implementation
The MPDs tool has been implemented almost identi-

cally to the meanMPD tool. The nature of the data re-
turned from the server is the same: a collection of MPDs
binned into histograms. However, there is the additional
feature of calculating probability sums once the data are
returned to the user and stored in JavaScript variables.
The µlim for the sums is set using a text input field, or
a slider, generated using the jQuery user interface14 (lo-
cation C in Figure 10). The background of the plot is
actually a HTML5 canvas element, which can be drawn
using JavaScript functions creating the colored back-
ground in location A of Figure 10. Once the sums for
low and high probabilities are calculated as a function
of s, a barplot is created using Flot (location E in Figure
10).

4.5. Probability surface
The P-surface tool shows variations of the proba-

bility surface with respect to magnification and smooth
matter fraction.

4.5.1. Description
The same MPD information as in MPDs is used, but

visualized in a different way. The changes in the shape
of the MPDs with respect to s are more clearly seen
on the probability surface, and contours are used to fur-
ther highlight its shape. In Figure 4 of Vernardos et al.
(2014), similar probability surfaces are displayed, how-
ever, with this tool the user has control over the contour
levels and the number of bins used for the MPDs. An
example probability surface for a trial combination of
κ, γ = (0.75, 0.1) is shown in Figure 11. The individual
MPDs for this κ, γ combination are shown in Figure 10,
and the mean MPD for s = 0 is shown in Figure 9.

4.5.2. Implementation
Exactly the same binned MPD data as in the MPDs

tool are used for creating the probability surface plot,
however, they are not returned to the user’s browser and

14http://jqueryui.com/

Figure 11: The probability surface for κ, γ = (0.75, 0.1), as a function
of s and µ. Contours are drawn at log P = -1.5,-2,-2.5,-3.5, and can be
controlled by the user. There is a gradual narrowing of the MPD as s
is increased, and a secondary peak can be observed for s = 0.7 − 0.8.

all the processing happens on the server side. The sur-
face is plotted with the user specified contour levels us-
ing the Python matplotlib15 library. A PNG image of
the plot is produced and returned to the user’s browser.

Processing of the probability surface data on the
user’s side could be performed with a suitable
JavaScript algorithm that calculates contours based on
the data. Extensions of such contour plots to larger
sets of data and/or a real time contour drawing could be
achieved by porting the contour algorithm to WebGL.
Developping such an algorithm is beyond the scope of
this work.

4.6. The colorbar tool

Characteristics of the caustic network on a map and
features of its corresponding MPD can be highlighted
using the colorbar tool. In doing so, properties which
may not be directly noticeable in a map with fixed colors
can be emphasized and studied.

4.6.1. Description
An example of the colorbar tool can be seen in

Figure 12, for κ, γ, s = (0.75, 0.1, 0.6). Magnifica-
tion values for which log µ/µth > 0.1 (1.25×µth) are
shown in orange and purple colors. The probability to
get a magnification value coming from these regions of
the map is 0.276 (see Figure 10, where the probability
sum is calculated for these values of κ, γ, s and for log
µ/µth > 0.1).

15http://matplotlib.org/
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Figure 10: The main features of the MPDs tool, which is using the GD1 data and is accessible at
http://gerlumph.swin.edu.au/macromodels/: A - The individual MPDs, for different values of s. B - The mean MPD and stan-
dard deviation can be displayed, whenever available (from GD0, for s = 0). C - The user can type-in, or use the slider, to select a value for µlim.
The probability sums are then calculated and plotted as a function of s. For this example, µlim has been set to 1.25 ×µth (log µ/µth = 0.1). D - The
calculated probability sums are displayed here. Displaying the MPDs can be controlled by the checkboxes. E - Plot of the probability sums as a
function of s. The sum for µ < µlim is shown in light blue and the sum for µ > µlim is shown in light red. The total probability sum for all values of
µ has to be equal to unity.

It is very hard to display and manipulate a full high
resolution map in our online approach: displaying a
100002 pixel map in full resolution would require 6×9
HD resolution monitors (1920×1200 pixel resolution)
while manipulating the color of its pixels in real time
may require more than one GPU. Colorbar is designed
to allow for easy map visualization in a web browser.
Therefore, we are using a 10002-pixel sample image of
each map for this purpose (the sample.png file dis-
cussed in Section 3.2). This image can be easily scaled
on a standard desktop or notebook display with vertical
resolution of 800 pixels.

It is underlined here that the purpose of the 10002–
pixel map sample and the colorbar tool is to provide
an easy and fast way of exploring the two-dimensional
configuration of caustics and their connection to the
MPD; it is more of a demonstration tool. We find that
sampling the full map is sufficient for this purpose; se-
lecting a small number of pixels to represent the whole
map, without using information from their neighbour-
ing pixels, as opposed to the slower method of rescal-
ing the map with some pixel averaging. Any scientific
goal, such as map convolution or light curve extrac-

tion, should make use of the full high resolution GER-
LUMPH maps.

4.6.2. Implementation
The colorbar itself (location B in Figure 12) is

a HTML5 canvas element, drawn using standard
JavaScript methods to create and apply linear gradients.
A list of predefined colorbars is available as an option16.
The colors used in the gradient appear above the color-
bar and can be added, removed or modified by the user.
The position of the colors in the gradient can be typed
in, or selected with the sliders (created using the jQuery
user interface). Color values can be typed in using a
hexadecimal (hex) notation for the combination of Red,
Green, and Blue color values (RGB), or selected via the
JSColor17 color picker.

The MPD data of the selected map are loaded upon
initialization, and binned in a 100-bin histogram. The
JavaScript functions used to plot the probability distri-
butions (location D in Figure 12) are the same as in the

16color symbols from http://colorbrewer2.org/
17http://jscolor.com/
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Figure 12: A user created color bar and the corresponding regions on the magnification map and MPD. Yellow and white colored regions on
the map correspond to µ < 1.25×µth magnification values (the yellow color has been used twice to create a sharp transition between yellow and
orange in the colorbar). The colorbar tool is located at http://gerlumph.swin.edu.au/tools/colorbar/ and its main features are: A - A
1000x1000 pixel map sample, showing the networks of caustics colored according to the color bar. B - A user created color bar, with the options
of selecting the colors and changing their position on the bar. C - Options for manipulating the colorbar and downloading its RGB values in text
format. D - The corresponding MPD, colored according to the color bar.

meanMPD and MPDs tools. However, the area under the
plotted data is set to transparent, allowing for the back-
ground color gradient to be visible, which is simply an-
other canvas element drawn exactly as the colorbar, thus
creating the effect of coloring the MPD.

The map pixel data are loaded upon initialization
from the sample.png file. In fact, the colored map
(location A in Figure 12) is simply another canvas el-
ement drawn by WebGL. After the colorbar has been
initialized and the data retrieved from the server, the
pixel values from the map and the colorbar canvas are
loaded into WebGL textures. The map sample is a black
and white image loaded as a two–dimensional texture,
where each pixel has the same RGB color triplet, scaled
within the allowed range of colors (0-255). The pixels
from the colorbar canvas are read in a one–dimensional
texture of 256 pixels, each with the RGB triplet of the
corresponding color on the colorbar.

Most of the WebGL related set-up takes place using
JavaScript, except the part of the code which will run on
the GPU viz. the vertex and fragment shaders, written

in GLSL18. The WebGL–drawn scene is very simple –
a single square object filling the entire field of view –
meaning that the vertex shader used to create it is very
basic. The fragment shader is using the loaded textures
to color the map pixels: the grayscale value of each map
pixel (0-255) is used as an index for the colorbar pixel
texture, using the retrieved RGB triplet from the color-
bar to assign its color to the map pixel.

The process of assigning colors to map pixels could
be performed using JavaScript only, which runs on the
CPU, but there would be severe performance penalties.
Our WebGL implementation is using the GPU, allowing
large number of pixels to be processed in parallel, and
creating the real time effect of changing the map colors.

5. Discussion

GERLUMPH is a cosmological microlensing theo-
retical parameter survey that takes up the challenge of

18OpenGL Shading Language, for more information visit the web
page: http://www.khronos.org/opengles/
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parameter space exploration, in preparation for the new
discoveries of microlensed quasars by synoptic all–sky
surveys of the next decade. The goal is to understand the
structure of the central quasar regions, mainly the super-
massive black hole and the surrounding accretion disc,
making connections to quasar and galaxy evolution in
the Universe.

A number of applications to using the GERLUMPH
results have been presented in the form of online eRe-
search tools, described in Section 4. The total size of
the GERLUMPH data is ∼30 Terabytes (see Section
3.1), which is managed by a database and a web inter-
face (see Section 3.2). We comment below on our ap-
proach to turning such a moderately sized dataset into
a resource open to the community, the flexibility of the
components we decided to use, and potential future ex-
tensions.

The first step was to use freely available open source
software. The nature of our application turned out to
be within the capabilities of such software, without the
need for optimized commercial solutions; the size of the
database (70,000 maps and ∼106 convolutions) and the
basic nature of the queries performed are perfectly man-
ageable by the open version of MySQL. Moreover, us-
ing popular solutions within the community of web de-
veloppers (e.g., the LAMP scheme), means that there
is a plethora of available libraries and extensions, as
well as extensive documentation. Finally, experiment-
ing with new technologies, such as WebGL, provided
us with insight on developing powerful online tools for
astronomy, especially regarding image processing.

The three main components of the GERLUMPH on-
line resource are the data, database, and web servers
(see Figure 5). Our current implementation is using sep-
arate physical machines for each of those components,
located at and supported by Swinburne University of
Technology. However, it is straightforward to move the
components to other academic, or commercial, service
providers, with minimal changes to the scripts. Such
action is not presently required, but it may be consid-
ered in the future, after taking the community needs and
usage into account.

The initial set of online tools described in this paper
has been designed to demonstrate the power and flexi-
bility of our data and database implementation. One can
select and inspect properties of any κ, γ range of interest
within the GERLUMPH datasets. As an example, for
κ = 0.75 and γ = 0.1 one can:

• examine the dependence of the MPDs on the ran-
dom positions of microlenses (Figure 9);

• examine the dependence on s and calculated prob-

ability sums in Figure 10, the shape of the proba-
bility surface (Figure 11); and

• inspect the caustic networks on the actual maps and
their connection to the MPD (Figure 12).

It is straightforward to directly compare the output of
the online tools to existing parameter space results (e.g.
Vernardos and Fluke, 2013; Vernardos et al., 2014).
Further connections to macromodels, observational data
and convolution results have been demonstrated.

Future uses of the GERLUMPH infrastructure can be
envisioned:

Observer’s tools. With the currently available GER-
LUMPH convolution data, theoretical flux ratios
could be extracted online and used in comparisons
with existing (e.g. Bate et al., 2008; Floyd et al.,
2009; Jiménez-Vicente et al., 2014) or future ob-
servations. A similar online tool could be envi-
sioned for generating light–curves.

Server side processing on request or WebGL? In-
stead of pre–computing all the possible map–
profile combinations on gSTAR and storing them
in the database for users to access, we could al-
low for this process to take place on the server on
user request. This would likely require a dedicated
high–end server, possibly using GPU acceleration
at various stages of data generation, and a sched-
uler to manage the user requests. However, our
GPU–accelerated convolution code is reasonably
fast (∼3 s for a convolution of a 100002–pixel map
with a disc profile), with further possibilities for
additional speed–up (e.g. light–curve extraction on
the GPU), making a cost–effective solution realis-
tic.

Should such higher level user interactions with the
server and data be enabled, it would also be possi-
ble to allow for users to upload and store their own
generated magnification maps. Using a common
predefined data format, all the platform of GER-
LUMPH tools could be used on the uploaded user
maps. The likely amount of maps uploaded will
be manageable by the database, and only sufficient
storage disk space should be provided.

The possibility of performing all these tasks on
the user’s side by using high performance WebGL
tools should be investigated. The outcome would
be to distribute the demanding computations from
the server to the users’ GPUs, without the need
for a powerful server machine, but with the trade–
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off being much larger size of data being transfered
from and to the server and database.

Outreach and education. The use of web tech-
nologies with astronomical data by the public has
proven to be successful in a number of cases (e.g.
Galaxy zoo, Raddick et al., 2010, etc). A set of
tools specially designed for outreach and education
purposes could be imagined, with the first candi-
date being the implementation of the inverse ray–
shooting technique itself (Appendix A) in WebGL.
An advantage of a web–based service is that an al-
ternative front–end can be applied depending on
the specific needs of the users: from novice to mas-
ter user.

6. Conclusions

Thompson et al. (2010) and Bate et al. (2010) demon-
strated the benefits of combining the inherent paral-
lelism of the inverse ray-shooting technique with a GPU
graphics card, resulting in the GPU-D code. On the basis
of these results, Bate and Fluke (2012) suggested a strat-
egy for a cosmological microlensing theoretical param-
eter survey that would require a GPU supercomputer,
and GERLUMPH is the realisation of this vision.

Since the inauguration of the gSTAR supercomputer
at Swinburne University of Technology in 2012, we
have made rapid progress on GERLUMPH: more than
70,000 high-resolution magnification maps are already
available for microlensing studies. The four GER-
LUMPH datasets (GD0-GD3) comprise a public, freely
available data resource.

Investigating properties of the microlensing param-
eter space is a crucial step in preparation for the up-
coming synoptic all–sky survey era (see Vernardos and
Fluke, 2013; Vernardos et al., 2014, for results and dis-
cussion). With the imminent inflow of data for thou-
sands of multiply imaged systems, the GERLUMPH
online resource provides the tools for supporting fu-
ture studies on statistically interesting samples of mi-
crolensed quasars. This includes both quick look–up of
the microlensing properties for each new discovery, or
more extensive analyses across all of microlensing pa-
rameter space.

Our online, browser-based eTools encourage analy-
sis to occur via the remote processing paradigm. It is
straightforward to add additional eTools driven by the
needs of the quasar microlensing community. Through
integration with the existing CASTLES gravitational
lens database and links to publications via the ADS ab-
stract service, the GERLUMPH eTools provide a natu-

ral connection between observational results and theo-
retical simulations. Together with next–generation ob-
servational databases (e.g. MasterLens) and other mod-
elling applications (e.g. Mowgli Naudus et al., 2010),
the GERLUMPH resource provides a key pillar of the
future microlensing eResearch cloud.
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Appendix A. GPU-D: code release

Graphics processing units (GPUs) have emerged as
credible, low-cost, computational co-processors, capa-
ble of providing speed-ups from O(10) to O(100) com-
pared to low-core-count CPU codes. The massively par-
allel architecture of GPUs means that they provide the
best performance for algorithms with high levels of data
parallelism and high arithmetic intensity (i.e. a high ra-
tio of floating point computations compared to memory
look-ups).

Although the parallelisation of GPU–based brute
force ray–shooting is discussed at length in Thompson
et al. (2010), the code itself was not released. We now
remedy this by releasing a version of GPU-D that has the
basic functionality for producing magnification maps.
The important part is the CUDA kernel, not what the
code is wrapped inside (see Figure A.13). The GPU-D

code can be downloaded from:

http://gerlumph.swin.edu.au/GPUD/

and is available in the Astrophysical Source Code Li-
brary (ASCL; Thompson et al., 2014)

Through this code release, we encourage additions
and enhancements to the core functionality, along with
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Figure A.13: A schematic control flow of the GPU-D code. The main
program lensDriver.cpp initializes the parameters, initializes the
GPU device, allocates and transfers memory between the CPU and
the GPU, and executes the main calculation. The CUDA kernel that
directly solves equation (1) in parallel is in the runCudaLens func-
tion, in the cudaLens.cu file.

providing opportunities for others to benchmark this
code against their own preferred alternatives. Due to
slight differences in system architecture, and the id-
iosyncrasies of GPUs (e.g. computations are not nec-
essarily associative, depending on the order in which
the elements of a summation are scheduled), the exact
output generated by other users may differ subtly from
results in the GERLUMPH database.

Appendix B. The data format and compression

The bulk of the GERLUMPH data consists of mag-
nification maps, amounting to a total of ∼25 Terabytes
in size. The map data format and compression scheme
will effect users attempting to download maps from the
web server (see Section 4) to use with their own analy-
sis tools. Moreover, the total size affects the way data
is stored; for the moment, map data reside on gSTAR’s
hard drives, which have a total capacity of ∼1 Petabyte,
more than enough for GERLUMPH’s needs.

Nevertheless, GERLUMPH was designed to be a
flexible resource, and although currently there is no plan
to move off gSTAR, this may be considered in the fu-
ture (e.g., moving to a dedicated data and web server,
or a cloud-based solution). In this case, the total data
size will play a role and compression options will have
to be considered. In this section, we discuss the cho-
sen data format and techniques of compression for the
magnification map files.

From a data point of view, a map is just a series of in-
teger values (ray-counts per pixel). The maximum pixel
value in a map will set the number of bits used to store
its pixel ray-counts, which in turn will set the final file
size.

The first step, is to find the maximum pixel value
among the ∼6 Terapixels available and set the re-
quired number of bits. In Table B.5 we show the
maximum pixel value from three representative GER-
LUMPH datasets, and in Table B.6 we show the largest
integer number that can be represented by a fixed num-
ber of bits. We can see that a 24-bit representation will
be sufficient for the GERLUMPH maps, however, this
representation does not correspond to any standard data
type used by modern programming languages. There-
fore, the simplest solution is to choose the next avail-
able representation, 32-bits per pixel, which results in
381 Megabytes per map, and a total of 25 Terabytes for
a collection of 70,000 maps. If required, the total data
size can be further reduced by a number of techniques
described below.

First, we can make use of the fact that pixel val-
ues in a map do not cover continuously the range from
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Table B.6: A different minimum number of bits is required according to the maximum integer number we want to represent in binary form. Given
the values of Table B.5, this table shows how many bits have to be used to represent the pixel information in the GERLUMPH maps, either in
ray-count or indexed format. The file size of a 100002-pixel map and the total size of a hypothetical collection of 70,000 such maps is shown as
well.

14-bit 16-bit 20-bit 22-bit 24-bit 32-bit
max. integer value 16383 65535 1048575 4194304 16777215 4294967295
ray-count no no probably yes yes yes
indexed no probably yes yes yes yes
data type available no yes no no no yes
map size (Megabytes) 167 191 238 262 286 381
size of 70,000 maps (Terabytes) 11.2 12.8 15.9 17.5 19.1 25.4

Table B.5: The maximum pixel value and the maximum number of
distinct pixel values among all maps of GD0, GD1 and GD2. The two
values do not necessarily come from the same map of each dataset.

max. ray-count max. distinct values
GD0 109117 11776
GD1 998878 58042
GD2 990652 46306

the minimum to the maximum value. For example, the
maximum value in all of GD0 pixels is 109117, but the
maximum number of distinct pixel values found in any
GD0 map is only 11776 (see Table B.5). Therefore, we
can convert a map with ray-counts to an indexed map
and an index file. The index file will hold all the dis-
tinct ray-count values, each matched to an index run-
ning from zero to the maximum number of distinct ray-
counts in the map. The indexed map will have its pixel
ray-count values replaced by the appropriate index.

We can then choose a binary representation for the
indexed map with fewer bits than the ray-count map.
For example, the maximum index value in GD1 would
be 58042, which can be represented by 16 bits, bringing
the map size down to 191 Megabytes, and the total data
size of a collection of 70,000 such maps to 13 Terabytes
(see Tables B.5 and B.6). The index file itself is small:
if we use 16 bits to represent the index value and 32 bits
for the corresponding ray-count value, we will end up
with a file size of 0.34 Megabytes for the index file of a
map with 58042 distinct pixel values (the maximum of
GD1). Using indexed maps could effectively halve the
required disk space to store the GERLUMPH data.

Finally, rather than using the standard 16-bit and 32-
bit data types, we could define our own data types, us-
ing in each case the minimum required number of bits
to represent a particular map (see Table B.6). In Figure
B.14, we can see the percentage of maps with the min-
imum number of bits required to represent them (in in-

Figure B.14: Percentage of maps that can be represented by a given
number of bits after being converted from ray-count to indexed for-
mat, according to the maximum number of distinct pixel values they
contain. A sample of 50,000 existing GERLUMPH maps was used to
produce this plot.

dexed format), from a sample of 50,000 existing GER-
LUMPH maps. It is clear that in case we decide to use
different number of bits per map, we will end up with a
mix of different file sizes.

GERLUMPH map data are stored in 32-bit ray-count
format, which is the simplest choice from a program-
ming point of view. Using indexed maps can reduce the
file size to half, from 381 to 191 Megabytes per map.
We can use standard Unix tools to further compress the
map binary files (such as gzip or bzip2), with 50 to 80
per cent compression ratios likely, as reported by Bate
and Fluke (2012). To conclude, if required, it is possi-
ble to reduce the total data size of the GERLUMPH map
data from 25 Terabytes to 2.6 - 6.4 Terabytes, without
any loss of information.
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