
Learning from 25 years of the extensible N-Dimensional Data Format

Tim Jennessa,∗, David S. Berryb, Malcolm J. Currieb, Peter W. Draperc, Frossie Economoud, Norman Graye, Brian McIlwrathf,
Keith Shortridgeg, Mark B. Taylorh, Patrick T. Wallacef, Rodney F. Warren-Smithf

aDepartment of Astronomy, Cornell University, Ithaca, NY 14853, USA
bJoint Astronomy Centre, 660 N. A‘ohōkū Place, Hilo, HI 96720, USA

cDepartment of Physics, Institute for Computational Cosmology, University of Durham, South Road, Durham DH1 3LE, UK
dLSST Project Office, 933 N. Cherry Ave, Tucson, AZ 85721, USA

eSUPA School of Physics & Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
fRAL Space, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, UK

gAustralian Astronomical Observatory, 105 Delhi Rd, North Ryde, NSW 2113, Australia
hH. H. Wills Physics Laboratory, Bristol University, Tyndall Avenue, Bristol, UK

Abstract

The extensible N-Dimensional Data Format (NDF) was designed and developed in the late 1980s to provide a data model suitable
for use in a variety of astronomy data processing applications supported by the UK Starlink Project. Starlink applications were used
extensively, primarily in the UK astronomical community, and form the basis of a number of advanced data reduction pipelines
today. This paper provides an overview of the historical drivers for the development of NDF and the lessons learned from using a
defined hierarchical data model for many years in data reduction software, data pipelines and in data acquisition systems.

Keywords:
data formats, data models, Starlink, History of computing

1. Introduction

There is a renewed interest in file-format choices for astron-
omy with discussions on the future of FITS (Thomas et al.,
2014, 2015), projects adopting or considering HDF5 (Alexov
et al., 2012; Jenness et al., 2014) and investigations into gen-
eral purpose image formats such as JPEG2000 (Kitaeff et al.,
2014). These discussions have provided an opportunity to con-
sider existing astronomy file formats that are not as widely
known in the community as FITS. Here we discuss the extensi-
ble N-Dimensional Data Format (NDF) developed by the Star-
link Project (Wallace and Warren-Smith, 2000) in the late 1980s
(Currie, 1988; Currie et al., 1988) to bring order to the prolif-
eration of data models that were being adopted by applications
using the Starlink hierarchical file format.

In Sect. 2 we discuss the genesis and features of the Star-
link file format, with the NDF data model itself being discussed
in Sect. 3. In Sect. 4 we discuss the positive lessons learned
from developing NDF (expanding on some earlier work by
Economou et al. (2014)) and we follow that in Sect. 5, by dis-
cussing the areas where NDF could be improved. Following
this, in Sect. 6 we address the social, political and economic
considerations of data formats and models. In Appendix A we
provide examples of data models devised in the mid-1980s, the
development of which motivated the creation of NDF and also
directly influenced the NDF design. A timeline describing the
key developments relating to NDF is shown in Table 1.

∗Corresponding author
Email address: tjenness@cornell.edu (Tim Jenness)

In this paper the term “data model” refers to the organization,
naming and semantics of components in a hierarchy. The term
“file format” means how the bytes are arranged on disk and in
this context refers to the use of the Hierarchical Data System
(HDS; see the next section). Historically, NDF, as implied by
the use of “Data Format” in the name itself, uses the term “for-
mat” to refer to the data model in the sense of how the hierar-
chical items are arranged or “formatted” (cf. text formatting),
and not specifically referring to the underlying file format. In
this paper we use try to use consistent modern terminology al-
though in some cases there can be ambiguity, and in Sect. 6 we
use “format” to mean the all-encompassing concept of NDF as
a whole.

2. Hierarchical Data System

The Starlink Project, created in 1980 (Disney and Wallace,
1982; Elliott, 1981; Tritton, 1982), was set up primarily to
provide data reduction software and facilities to United King-
dom astronomers. FITS (Wells and Greisen, 1979; Wells et al.,
1981) had recently been developed and was adopted as a tape
interchange format but there was a requirement for a file format
optimized for data reduction that all Starlink applications could
understand. Files needed to be written to and read from effi-
ciently with an emphasis on the ability to group and modify re-
lated information (Starlink, 1981). This was many years before
the NCSA developed the Hierarchical Data Format (Folk, 2010;
Krauskopf and Paulsen, 1988) and it was decided to develop a

Preprint submitted to Astronomy & Computing September 11, 2018

ar
X

iv
:1

41
0.

75
13

v1
 [

as
tr

o-
ph

.I
M

]
 2

8
O

ct
 2

01
4

Table 1: Time line for developments relating to NDF. Other developments in
file format development are interspersed for reference.

1979 Flexible Image Transport System announced.
1981 HDS proposed.
1982 HDS Version 1 ready for testing.
1983 IMAGE model proposed.
1988 NCSA release the Hierarchical Data Format.
1988 FITS tables standard.
1988 NDF standard data structures released.
1991 HDS ported to Sun OS (HDS Version 3).
1998 World Coordinate Objects added to NDF.
2001 Definition of FITS standard.
2002 HDFv5 is released.
2005 Support files larger than 2GB (HDS Version 4).
2005 Add official C interface to HDS.
2007 Provenance added to NDF as extension.
2010 Version 3 of the FITS standard.
2013 64-bit integer type added to HDS.

new file format. The resulting Starlink Data System1 was first
proposed in 1981 with the first version being released in 1982
(see e.g. Disney and Wallace, 1982; Lawden, 1991). In 1983
the name was changed to the Hierarchical Data System (HDS)
to make the file format benefits more explicit. HDS itself was
in common usage within Starlink by 1986 (Lawden, 1986). It
was originally written in the BLISS programming language on
a VAX/VMS system and later rewritten in C and ported to Unix.
It was, however, designed to be only callable from FORTRAN
at this point.

Some key features of the HDS design are as follows.

• It provides a hierarchical organization of arbitrary struc-
tures, including the ability to store arrays of structures.

• The hierarchy is self-describing and can be queried.

• It gives the data author the ability to associate structures
with an arbitrary data type.

• Users can delete, copy or rename structures within a file.

• It supports automatic byte swapping whilst using the na-
tive machine byte order for newly created output files.

• VAX and IEEE floating-point formats are supported.

• Automatic type conversion allows a programmer to re-
quest that, say, a data array of 32-bit integers is accessed
as 64-bit floating point numbers.

More recently HDS has been extended to support 64-bit file
offsets so that modern large datasets can be processed2, and
also the addition of a native C-language interface and a 64-bit
integer data type (Currie et al., 2014). The primitive data types
supported by HDS are listed in Table 2.

1from which the file extension of .sdf, for Starlink Data File, was chosen.
2Support for individual data arrays containing more elements than can be

counted in a 32-bit integer is not yet possible.

Table 2: HDS basic data types. The unsigned types did not correspond to stan-
dard Fortran 77 data types and were included for compatibility with astronomy
instrumentation. HDS supports both VAX and IEEE floating-point formats.
The API code indicates the letter appended to function names to indicate the
type they support. This convention is used for the generic templating system
(Beard et al., 2006).

Name of type API Code Data type
BYTE b Signed 8-bit integer
UBYTE ub Unsigned 8-bit integer
WORD w Signed 16-bit integer
UWORD uw Unsigned 16-bit integer
INTEGER i Signed 32-bit integer
INT64 k Signed 64-bit integer
LOGICAL l Boolean
REAL r 32-bit float
DOUBLE d 64-bit float
CHAR[∗n] c String of 8-bit characters

The advantage of HDS over flat file formats is that it allows
many different kinds of data to be stored in a consistent and log-
ical fashion. It is also very flexible, in that objects can be added
or deleted whilst retaining the logical structure. HDS also pro-
vides portability of data, so that the same data objects may
be accessed from different types of computer despite platform-
specific details of byte-order and floating-point format.

3. The N-Dimensional Data Format

HDS files allowed people to arrange their data in the files
however they pleased and placed no constraints on the orga-
nization of the structures or the semantics of the content. This
resulted in serious interoperability issues when moving files be-
tween applications that nominally could read HDS files. Within
the Starlink ecosystem there were at least three prominent at-
tempts at providing data models, and these are discussed in de-
tail in Appendix A. The models were: Wright-Giddings IM-
AGE (Wright and Giddings, 1983), figaro (Shortridge, 1993,
ascl:1203.013) DST and asterix (Peden, 1987, ascl:1403.023).
The result was chaos.

Given the situation with competing schemes for using the hi-
erarchy, it became clear that a unified data model was required.
A working group was formed to analyze the competing mod-
els and come up with a standard;3 this work was completed in
the late 1980s (Currie, 1988; Currie et al., 1988). After much
debate, it was decided to develop a data model that included
the minimum structures to be useful for the general astronomer
without attempting to be everything to everybody, but design-
ing in an extension facility from the beginning. The resulting

3Throughout this document NDF standard refers to the written specification
(Currie et al., 1988) developed by the working group in collaboration with Star-
link, and also the NDF library that enforces the specification. Currently there
is no standards body working on the NDF specification and enhancements are
added as required through discussion on the developer mailing list and the ex-
istence of a single reference NDF library.

2

http://www.ascl.net/1203.013
http://www.ascl.net/1403.023

DATA_ARRAY

VARIANCE

QUALITY

QUALITY

BADBITS

HISTORY

VARIANT

CREATED

EXTEND_SIZE

CURRENT_RECORD

RECORDS(n)

DATE

COMMAND

USER

HOST

DATASET

TEXT

LABEL

UNITS

TITLE

DATA

ORIGIN

BAD_PIXEL

DATA

ORIGIN

BAD_PIXEL
DATA

ORIGIN

WCS DATA

AXIS(n)
DATA_ARRAY

LABEL

UNITS

DATA

ORIGIN

MORE
FITS

PROVENANCE

QUALITY_NAMES

NDF

Figure 1: Schematic of the NDF hierarchy. All components are optional except
for DATA ARRAY. For an alternative visualisation see Giaretta et al. (2002).

model was named the extensible N-Dimensional Data Format
(NDF). NDF combined some features of the IMAGE scheme,
such as the use of DATA ARRAY, and some features adopted from
asterix, from which the HISTORY structure was adopted com-
plete. The decision to recognize NDF structures based solely
on the presence of a DATA ARRAY array was an important com-
promise as it allowed data using the IMAGE data model, which
indirectly included data in the Bulk Data Frame (BDF; Lawden,
1989; Pavelin and Walter, 1980) format that had been converted
previously, to be used immediately in applications that had been
ported to use the NDF library.

In the following sections we describe the core components
of the NDF data model to provide an overview of the NDF ap-
proach concerning what is covered by the model and what is
deliberately left out of the model. An overview of the compo-
nents of an NDF and how they relate to each other is shown in
Fig. 1. For more details on NDF please see the detailed NDF
design document (SGP/38; Currie et al., 1988) and library doc-
umentation (SUN/33; Warren-Smith and Berry, 2012b).

3.1. Data arrays

NDF supports the concept of a primary data array and an as-
sociated variance array and quality mask. All the HDS numeri-
cal data types are available but there is also support for complex
numbers for the data and variance components. Variance was
selected as the error component to reduce the computational
overhead when propagating errors during processing. All three
components share the same basic ARRAY structure which de-
fines the dimensionality of the array and allows for the concept
of a pixel origin. The pixel origin is used to specify where the
NDF sits relative to a larger pixel coordinate system by spec-
ifying the coordinates of the bottom-left pixel. For example,
when extracting a subset of data from a bigger image, the pixel
origin will record where the subset came from. Also, when
images are registered for mosaicking they are resampled such
that their origins share a common coordinate frame resulting
in the final mosaic being a simple pixel-by-pixel combination.
See Sect. 3.3 for a discussion on how the pixel origin relates to
other coordinate systems. The BAD PIXEL flag is intended as
a hint to application software to allow simpler and faster algo-
rithms to be used if it is known that no bad values are present in
the data array. Additionally, the flag can be used to indicate that
all values are to be used, thereby disabling bad value handling
and allowing the full range of a data type. This was felt to be
particularly important for the shorter integer data types.

The quality mask uses the ARRAY type but includes an extra
level in the structure to support a bit mask. The BADBITS mask
can be used to enable or disable planes in the QUALITY array.

For applications that do not wish to support explicit quality
tracking, the NDF library supports automatic masking of the
data and variance arrays; this uses the quality mask in the input
NDF, and sets the corresponding value in the variance array to
a magic value when the data are mapped into memory. Unlike
the IMAGE scheme or FITS, which allow the magic (or blank)
value to be specified per data array, NDF specifies the magic
value to be used for each data type covering both floating-point
and integer representations, inheriting the definition from the
underlying HDS definition. Indeed, NaN (defined by the IEEE
floating-point model (IEEE Computer Society, 1985)) is not ex-
plicitly part of the standard and it is usually best to convert NaN
elements to the corresponding floating-point magic value before
further processing is applied. A single definition of the magic
value for each data type simplifies applications programming
and removes the need for the additional overhead of providing
a value for every primitive data array.
NaN was excluded from the standard as it was not supported

in VAX floating point (see e.g. Severance, 1998) and the Star-
link software was not ported to machines supporting IEEE
floating point until the 1990s (e.g., Clayton, 1991). Unlike
FITS, which did not officially support floating point until 1990
(Schlesinger et al., 1991; Wells and Grosbøl, 1989) when they
were able to adopt NaN as part of the standard, much software
pre-existed in the Starlink environment at this time and embod-
ied direct tests for magic values in data. Given the different
semantics when comparing data values for equality with NaN,
it was decided to continue with the magic value concept rather

3

than try to support two rather different representations of miss-
ing data simultaneously.

3.1.1. Data compression
The original NDF standard included the SCALED data com-

pression variant, which is commonly required when represent-
ing floating-point numbers in integer form; this is equivalent to
BSCALE and BZERO in FITS, although this variant was not im-
plemented in the NDF library until 2006 (Currie et al., 2008).
In 2010 a lossless delta compression system for integers was
added to support raw SCUBA-2 data (Holland et al., 2013).
This was a new implementation of the slim data compression
algorithm4 developed for the Atacama Cosmology Telescope
(Fowler, 2004, ascl:1409.010).

3.2. Character attributes
Each NDF has three character attributes that can be specified:

a title, a data label and a data unit. These values can be accessed
through the library API without resorting to a FITS-style exten-
sion.

3.3. Axes and world coordinate systems (WCS)
Axis information was initially specified using an AXIS array

structure with an element for each dimension of the primary
data array. The axis information was specified in an ARRAY type
structure as for data and variance, and allowed axis labels and
units to be specified. For each axis, coordinates were specified
for each pixel in the corresponding dimension of the data array.
This allowed for non-linear axes to be specified and is similar to
the -TAB formalism later adopted in FITS (Greisen et al., 2006).

The AXIS formalism worked well for spectral coordinates but
it was not suitable for cases where the world coordinate axes
are not parallel to the pixel axes, such as is often the case with
Right Ascension and Declination. Nor did it provide the meta-
data needed to allow the axis values to be transformed into other
coordinate systems, for example when changing a spectral axis
from frequency to velocity or sky axes from ICRS to Galactic.
A more general solution was required and this prompted the de-
velopment of the AST library (Warren-Smith and Berry, 1998,
ascl:1404.016) with an object-oriented approach to generalized
coordinate frames.

A full description of the data model used by AST is outside
the scope of this paper, but in outline AST uses three basic
classes - “Frame”, “Mapping” and “FrameSet”:

Frame - describes a set of related axes that are used to specify
positions within some physical or notional domain, such
as “the sky”, “the electro-magnetic spectrum”, “time”, a
“pixel array”, a “focal plane”. In general, each such do-
main can be described using several different coordinate
systems. For instance, positions in the electro-magnetic
spectrum can be described using wavelength, frequency or
various types of velocity; position on the sky can be de-
scribed using various types of equatorial, ecliptic or galac-
tic coordinates. A Frame describes positions within its

4http://sourceforge.net/projects/slimdata/

domain using a specified coordinate system, but also en-
capsulates the information needed to determine the trans-
formation from that coordinate system to any of the other
coordinate systems supported by the domain. It should be
noted that a Frame does not include any information that
relates to a different domain. For instance, a SkyFrame has
no concept of “pixel size”.

Several Frames can be joined together to form a compound
Frame describing a coordinate system of higher dimen-
sionality.

Mapping - describes a numerical recipe for transforming an
input vector into an output vector5. Most importantly, a
Mapping makes no assumptions about the coordinate sys-
tem to which the input or output vector relates. AST con-
tains many different sub-classes of Mapping that imple-
ment different types of mathematical transformations, in-
cluding all the spherical projections included in the FITS
WCS standard. Several Mappings may be joined together,
either in series or in parallel, to form a more complex com-
pound Mapping.

FrameSet - encapsulates a collection of Frames, together with
Mappings that transform positions from one Frame to an-
other. These are stored in the form of a tree structure in
which each node is a Frame and each link is a Mapping.
Within the context of an NDF, the root node always de-
scribes pixel positions in the form of GRID coordinates
(see below). Each other node represents a coordinate sys-
tem into which pixels positions may be transformed, and
will often include celestial or spectral coordinate systems.
Facilities of the FrameSet class include the ability to trans-
form given positions between any two nominated Frames,
and to adjust the Mapping between two Frames automat-
ically if either of the Frames are changed to represent a
different coordinate system.

AST support was added to the NDF standard in spring 1998
(Berry, 2001) by adding a new top-level WCS structure to NDF.
This holds a FrameSet that describes an arbitrary set of coor-
dinate systems, together with the Mappings that relate them to
pixel coordinates.

AST objects were stored simply as an array of strings us-
ing their native ASCII representation, which is more general
and flexible than adopting a FITS-WCS serialization. The NDF
library API was modified to support routines for reading and
writing the WCS FrameSet without the library user knowing
how the FrameSet is represented in the hierarchical model.

The NDF library manages a number of WCS Frames specif-
ically intended to describe coordinate systems defined by the
NDF library itself:

GRID - a coordinate system in which the first pixel in the NDF
is centered at coordinate (1,1). This is the same as the
“pixel coordinate system” in FITS.

5Most Mappings also describe the inverse transformation.

4

http://www.ascl.net/1409.010
http://www.ascl.net/1404.016
http://sourceforge.net/projects/slimdata/

PIXEL - a coordinate system in which (0,0) corresponds to
the pixel origin of the NDF. The transformation between
PIXEL and GRID is a simple shift of origin.

AXIS - a coordinate system that corresponds to the AXIS struc-
tures (if any) stored in the NDF.

FRACTION - a coordinate system in which the NDF spans a unit
box on all pixel axes.

The NDF library always removes the above Frames when
storing the WCS FrameSet within an NDF, and re-creates them
using the current state of the NDF when returning the WCS
FrameSet for an NDF. This allows the user to modify the AXIS
and pixel origin information in the NDF without having also to
remember to update the WCS information.

3.4. History

The HISTORY structure is used to track processing history
and includes the date, application name, arguments and a nar-
rative description. The structure was first developed for the as-
terix package and adopted directly into the NDF data model.
The history was, by design, not expected to be parseable by
application software; applications such as surf (Jenness and
Lightfoot, 1998, ascl:1403.008) did nonetheless use the history
to determine whether a particular application had been run on
the data, so that the user could be informed if a mandatory step
in the processing had been missed.

Comparing the history structure of Fig. 1 with that shown
in Fig. A.6 shows that the components are identical apart from
the addition of some additional fields to the NDF form (user,
host and dataset). The only other change involved the rela-
tively recent addition to increase in resolution the time stamp
to support milliseconds. This was required as computers have
become faster over the years and many processing steps can oc-
cur within a single second. Provenance handling, Sect. 3.5.2,
uses the history block to disambiguate provenance entries and
relies on the timestamp field.

3.5. Extensions

The NDF standard included a special place, named MORE, for
local extensions to the model. This allowed instruments and
applications to track additional information without requiring
standardization. The only rule was that each extension should
be given a reserved name (registered informally within the
small contemporary community) and that the data type would
define the specific data model of an extension. Some appli-
cations, for example, went so far as to include covariance in-
formation in extensions to overcome limitations in the default
error propagation model for NDF (for example specdre; Mey-
erdierks, 1995, ascl:1407.003).

Three extensions proved so popular that they are now effec-
tively part of the NDF standard, but for backwards compati-
bility with existing usage they cannot be moved out of the ex-
tension component. These extensions covered FITS headers,
provenance tracking and data labels and are described in the
following sections.

grp_reduced

grp_mos

a38_reduced a9_reduced

a38_cal

a38_mos

a38_raw1 a38_raw2

a9_cal

a9_mos

a9_raw1

a9_raw2

a9_raw3

a9_raw4

a9_raw5

Figure 2: A simple provenance tree for an example of two observations being
reduced independently and then co-added into a final mosaic.

3.5.1. FITS headers
FITS headers, consisting of 80-character header cards, are

extremely common. To simplify interoperability with FITS files
and to minimize structure overhead – as was found from expe-
rience with DST – it became commonplace to store the header
as is as an array of 80-character strings matching the FITS con-
vention, rather than attempting to parse the contents and expand
into structures.

3.5.2. Provenance
In the late 1980s disk space and processing power were more

highly constrained than they are now. At the time, therefore,
it seemed prudent to limit history propagation to a single “pri-
mary” parent. As a consequence the NDF library ensures that
each application copies history information from a single pri-
mary parent NDF to each output NDF, appending a new history
record to describe the new application. This means that if many
NDFs are combined together by a network of applications, then
each resulting output NDF will, in general, contain only a sub-
set of the history needed to determine all the NDFs and appli-
cations that were used to create the NDF. It would of course
be possible to gather this information by back-tracking through
all the intermediate NDFs, analyzing the history component of
each one, but this depends on the intermediate NDFs still being
available, which is often not the case.

In 2009, it was decided that the inconvenience of this “sin-
gle line of descent” approach to history was no longer justi-
fied by the savings in disk space and processing time, and so
an alternative system was provided that enables each NDF to
retain full information about all ancestor NDFs, and the pro-
cessing that was used to create them (Jenness et al., 2009; Jen-
ness and Economou, 2011). Thus each NDF may now con-
tain a full “family tree” that goes back as far as any NDFs that
have no recorded parents, or which have been marked explic-
itly as “root” NDFs. Each node in the tree records the name of
the ancestor NDF, the command that was used to create it, the
date and time at which it was created, and its immediate parent
nodes. Each node also allows arbitrary extra information to be

5

http://www.ascl.net/1403.008
http://www.ascl.net/1407.003

associated with the ancestor NDF. Care is taken to merge nodes
– possibly inherited from different input NDFs – that refer to
the same ancestor. A simple provenance tree is shown in Fig. 2.

For reasons of backward compatibility, it was decided to re-
tain the original NDF History mechanism, and add this new
“family tree” feature as an extra facility named “Provenance”.
Originally the family tree was stored as a fully hierarchical
structure within an NDF extension, using raw HDS. How-
ever, given the possibility for exponential growth in the number
of ancestors, the cost of navigating such a complex structure
quickly became prohibitive. Therefore, storage as raw HDS
was replaced by an optimized bespoke binary format packed
into an array of integers (the provenance model is outlined in
Appendix B).

3.5.3. Quality labels
Individual bits in the quality mask can be addressed using the

BADBITS attribute, but the NDF standard did not allow for these
bits to be labeled. This confusion was solved first in the iras90
package (Berry and Parsons, 1995, ascl:1406.014) which added
a QUALITY NAMES extension associating names with bits. kappa
tasks (Currie and Berry, 2013, ascl:1403.022) were then modi-
fied to understand this convention and allow users to enable and
disable masks by name.

3.6. Library features
Above and beyond the core data model, the NDF library

provides some additional features that can simplify applica-
tion development. The library uses an object-oriented interface,
despite being developed in Fortran, and the python interface,
pyndf, provides a full object interface whereby an NDF object
can have methods invoked upon it and provides direct access to
object attributes such as dimensionality and data label.

3.6.1. Component propagation
The NDF library allows output NDFs to be constructed from

scratch, but it also recognizes that many applications build their
output dataset(s) using one of the input datasets, termed the
“primary” input, as a template. In this case, much of the pri-
mary input data may need to be propagated to the output un-
changed, with the application attending only to those compo-
nents affected by the processing it performs. For example, scal-
ing an image would not affect coordinate data, nor many other
aspects of an NDF. Alternatively, an application might not sup-
port processing of certain NDF components and would then
need to suppress their propagation to avoid creating invalid or
inconsistent output.

These requirements are accommodated through use of a com-
ponent propagation list that specifies which of the input NDF
components should be propagated directly to the output. A de-
fault propagation list is provided which applications can easily
tailor to their specific needs. This helps to ensure uniformity
in application behavior. The default behavior of the propaga-
tion list also encourages the convention that applications should
copy any unrecognized extensions unchanged from primary in-
put to output. Applications are again free to modify this behav-
ior, but in general do not do so.

3.6.2. Data sections
The NDF library allows a subset of the array to be selected

using a slicing syntax that can work with a variety of coordinate
systems. The user can specify the section in pixel coordinates
(where the pixel origin is taken into account) or in world coor-
dinates, in which case the supplied WCS values are transformed
into pixel coordinates using the transformations defined either
by the legacy AXIS scheme or the full AST-based WCS scheme,
as described in Sect. 3.3. The section can either be specified us-
ing bounds or a center coordinate and extent. If the section is
specified using WCS values, the section of the pixel array ac-
tually used is the smallest box that encloses the specified WCS
limits. Example sections are

myimage(12h59m49s~4.5m,27.5d:28d29.8m)

to extract an area from an image where the limits along Right
Ascension are specified by a center and a half width, and the
extent along the Declination axis is defined by bounds;

myspectrum(400.:600.)

where the spectrum is truncated to a range of, say, 400 to
600 km/s;

mycube(12h34m56.7s,-41d52m09s,-100.0:250.0)

where a spectrum is extracted from a cube at a particular loca-
tion and also truncated; and

mycube(55:63,75~11,-100.0:250.0)

where a subset of a cube is extracted where the first two coor-
dinates specify pixel bounds and the third coordinate is a world
coordinate range. In all these examples a colon indicates a
range, and a tilde indicates an extent, so in the final example
55:63 means pixels 55 to 63 inclusive, and 75~11 means 11
pixels centered on Pixel 75.

3.6.3. Chunking & blocking
Mapping large data arrays into memory can use considerable

resources and astronomical data always seem to be growing at
a rate slightly exceeding the capacity of computers available
to the average astronomer. The NDF library provides an API
to allow subsets of a data array to be mapped in chunks to al-
low data files to be processed in smaller pieces. The concept
of blocking is also used to allow a subset of the image to be
mapped in chunks of a specified dimension. The distinction
between chunking and blocking is significant in that chunking
returns the data in sections that are contiguous in memory for
maximum efficiency whereas blocking allows spatially related
pixel data to be returned, at the expense of a performance loss
in reordering the data array.

3.6.4. Automated Foreign-format conversion
In many cases an astronomer would like to use a particu-

lar NDF application on a FITS file without realizing that the
application does not natively support FITS. If foreign-format
conversion is enabled, the NDF library will run the appropriate

6

http://www.ascl.net/1406.014
http://www.ascl.net/1403.022

conversion utility based on the file suffix and present the tempo-
rary, NDF, file to the application. If the user specifies an output
file with a particular foreign-format suffix the NDF library will
then create a temporary NDF for the output and convert it when
the file is closed.

3.6.5. Automated history
The library API was designed to make history updating as

easy as possible: by default, if the history structure exists the
NDF library automatically adds a new entry when a file is
written to, and if the history structure is missing no entry is
recorded.

3.6.6. Event triggers
Callback routines can be registered to be called in response

to files being read from, written to, opened or closed. This fa-
cility is used by the NDG library (Berry and Taylor, 2012) to
enable provenance handling as a plugin without requiring di-
rect changes to the NDF library itself.

4. Lessons learned

For a variety of reasons, the Starlink software, and hence
NDF, did not achieve much traction outside the UK and UK-
affiliated observatories. In particular the US astronomical com-
munity that closely adhered to FITS until the advent of HDF.
This is regrettable as NDF proved to be a rich and flexible
data model that has aged well against mounting requirements
from data processing environments. Perhaps the ultimate lesson
learnt is that data formats and models are adopted and retained
for sociological reasons as much as for technical reasons.

4.1. Key successes

NDF is a successful data model: it achieves its goal of sup-
porting broad interoperability of astronomical data between ap-
plications in a pipeline and between pipelines, across multiple
wavelengths, and across time. It did this without inhibiting
applications from including any and all of the application- or
instrument-specific features they needed to preserve. Below,
we try to tease apart some separately important strands of this
design, but summarize the key points here.

4.1.1. Do not try to do everything
There are two incompatible approaches to designing a data

model. One extreme aspires to think of everything that is
needed for all of astronomy, and to design a model where all
metadata are described and everything has its place. This is the
approach taken by the IVOA (see e.g. McDowell et al., 2012).
This is an intelligible and worthy goal and it is clear that much
can be gained if such data models can be utilized, especially if
related models (spectrum and image when combined into a data
cube) share common ground. In our experience, however, this
approach leads to long and heated discussions that generate data
models that are never quite perfect and continually need to be
tweaked as new instrumentation and metadata are developed.

Despite much detailed discussion and inventiveness at the
time the model was devised, the NDF model remains modest:
NDF does not try to do everything, but instead adds a bare min-
imum of useful structure.6 Astronomy data are fundamentally
rather simple, and the elements in the NDF data model repre-
sent both a large fraction of the information that is necessary
for high-level understanding of a dataset, and a large fraction
of what is readily interoperable between applications without
relying on detailed documentation.

For NDF there was a need to generate a usable model quickly
that took concepts that were generically useful, leaving instru-
mental details to extensions. These extensions were ignored by
generic software packages although clear rules were made re-
garding how extensions should be propagated. This approach
allowed for NDF to grow without requiring the model or the
NDF library to understand the contents of extensions.

This approach of being flexible and not attempting to solve
everything at the first attempt has been very successful, not only
in enabling new features to be added to NDF once the need be-
came obvious, but also in so far that wavelength regimes not
initially involved in the discussion can make use of NDF with-
out requiring that the core data model be changed.

4.1.2. Hierarchy can be useful
Initially it was very hard to convince people that hierarchi-

cal data structures were at all useful. This can be seen in the
Wright-Giddings layout of a simple astronomical image file us-
ing HDS. Over the years the adoption of hierarchy has been
an important part of the NDF experience, and application pro-
grammers quickly began to realize the power of being able to
relocate or modify parts of a data file, to change the organiza-
tion, or to copy related sections to a new file. NDF extensions
may contain other NDF structures, allowing software packages
to extract those NDFs, or simply focus on them, without re-
gard to the enclosing data module; this becomes very intuitive
and obvious once it is learned. A flat layout would require
additional grouping metadata to understand which components
were related, but this is neatly handled by a simple hierarchy.

4.1.3. Allow ‘private’ data (namespaces)
The NDF model is strongly hierarchical. This both makes it

easy to find and manipulate data elements, and makes it easy
for applications to extend the model, by providing a space for
private data, which does not interfere with the shareability or
intelligibility of the dataset as a whole.

The NDF model, by design, supports only a subset of the in-
formation associated with a realistic dataset; it trivially follows
that most data providers will want to include data that are not
described within the NDF model, and if the model could not ac-
commodate these extra data, it would be doomed to be no more
than a ‘quick-look’ format.

6Einstein did not quite say ‘everything should be as simple as possible, but
no simpler’, but the thought is no less true for being a misquotation, and he
might as well get the credit for it.

7

As described above (Sect. 3.5), the NDF model includes a
MORE tree, where particular applications can store application-
specific data using any of the available HDS structures (Sect. 2).
Some applications treated this as a black box; others docu-
mented what they did here, making it an extended part of the
application interface, so that their ‘private’ data were effec-
tively public, and were largely standardized in practice with-
out the long drawn-out involvement of a formal standards pro-
cess. Thus, different elements of the data within an NDF file
were painlessly standardized by different entities, on different
timescales and in response to direct community demands.

When applications wished to take advantage of the possibili-
ties here, they registered a label within the MORE tree, and were
deemed to ‘own’ everything below that part of the tree. The
community of NDF application authors was small enough that
this could be done informally, but if this were being designed
now, then a simple namespacing mechanism (using perhaps a
reversed-domain-name system) would be obvious good prac-
tice.

4.1.4. Standardized features aid application writers
Once application writers understand that there is a standard

place for error information, quality masks and other features
of the standard data model, they begin to write application soft-
ware that can use these features. Not having to use a heuristic to
determine whether a particular data array represents an image
or an error can allow the application writer to focus more on the
algorithms that matter. Once users of the software understand
that errors and masks are an option they begin to have an ex-
pectation that all the software packages will handle them. This
then motivates the developer to support these features, creating
a virtuous circle which tended to improve all of the software in
the NDF community. This is especially true if the core concepts
of the data model are simple enough that the learning curve is
small.

4.2. Other good features

In addition to the key successes there were a number of other
lessons learned while using the data model over the years.

4.2.1. Round-tripping to other data formats
For a new format to be used it must be possible to convert to

and from existing formats in a safe and reliable manner without
losing information (see for example, Jennings et al., 1995, for
a discussion of this problem with FITS and HDF files). The
NDF model on HDS format files has always been one format
amongst many formats in astronomy and much work has been
expended on providing facilities to convert NDF files into FITS
and IRAF format, and vice versa (Currie, 1997; Currie et al.,
1996). In particular, special code was used to recognize specific
data models present in FITS files to enable a more accurate con-
version of scientific information into the NDF form. Support
was also added for the multispec data model in IRAF (Valdes,
1993) to ensure that wavelength scales were not lost. A descrip-
tion of how NDF maps to FITS is given in Appendix C.

AXIS(n)

EMBOL_UNITS VARIANT

CREATED

EXTEND_SIZE

CURRENT_RECORD

RECORDS(n)

VARIANT

DATE

COMMAND

TEXT

DATA_ARRAY

HISTORY

TMIN

TMAX

TLSTEP

ENERGY_BOUNDS

REDSHIFT

EMBOL

DATA_ARRAY

SPECTRA

Figure 3: Partial layout of the structure of an asterix HDS spectra cube file
made in 1992. This file, written after the NDF standard was written, adopted
some of the elements of the NDF model and can be processed by NDF-aware
applications despite not conforming completely to the standard. Components
recognized by NDF are labeled in italics

4.2.2. Adoption of FITS header
Given hierarchical structures the default assumption might

be to use arrays of keyword structures where each structure
would contain the value, the comment and the unit. Alterna-
tively, one might simply drop the unit and comment and just
use keyword/value pairs. These approaches turned out to be ex-
tremely slow and space inefficient so the project took the prag-
matic approach of standardizing on an array of characters for-
matted identically to a FITS header. This allowed the FITS to
NDF conversion software to ignore new FITS header conven-
tions as they were developed, deferring this to the application
writer who can decide whether a particular convention is im-
portant. Without this pragmatic approach the user would have
to re-convert the files whenever a new convention is supported
and the NDF data model would have to be extended to support
such features as hierarchical keywords and header card units.
In practice the AST library (Warren-Smith and Berry, 1998)
is often used for processing the FITS header from an NDF so
this causes few problems and simplifies the NDF organization,
allowing an application to understand new FITS header conven-
tions simply by upgrading the AST library.

4.2.3. Duck typing
In the early years of NDF there were many files in existence

that did not quite conform to the standard and new files were
being created by existing applications that did not use the main
NDF library but nonetheless modified their structures to emu-
late an NDF (see for example Fig. 3). The core NDF library
thereby took an inclusive approach to finding NDF structures,
with the only requirement being the existence of a DATA ARRAY

item. If other compliant structures were found, the NDF li-
brary would use them and ignore items that it didn’t under-
stand. This “duck typing”7 approach proved to be very useful
and eased adoption of NDF. The NDF library uses this feature

7See for example http://en.wikipedia.org/wiki/Duck_typing

8

http://en.wikipedia.org/wiki/Duck_typing

to scan for NDF structures within an NDF or an HDS container.
For example, the gaia visualization tool (Draper et al., 2009,
ascl:1403.024) will scan an HDS file for all such NDF struc-
tures and make them available for display. The data type of the
structure – which may be thought of as the class name – is not
used by the library when determining whether a structure is an
NDF.

4.2.4. Extensible model
The initial NDF design document did not profess to know

the future and was deliberately designed to allow new features
to be added as they became necessary. The adoption of a char-
acter array matching an 80-character FITS header was an early
change but there have also been changes to support world co-
ordinate objects (Berry, 2001), data compression algorithms
(Currie et al., 2008) and provenance tracking (Jenness et al.,
2009). The NDF standard therefore has a proven ability to con-
tinue to evolve to meet the needs of modern astronomy data
processing.

NDF combined with HDS was a conscious decision to not
develop an interchange or archive format. HDS was designed
solely to be accessed through a reference implementation li-
brary and API and many of the NDF features were directly in-
tegrated into the reference NDF library without being specified
in the core data model. This yielded great flexibility regarding
exactly how the data are stored and greatly simplified future en-
hancements (and general future-proofing) because changes to
the data format and how data are accessed could all be hidden
from applications by changes made in one place. However, care
needs to be taken when rolling out updates: software linked
with old library versions may not be able to read newer data.
Indeed, HDS includes an internal version number and can read
earlier versions of the data format, but if a newer version is en-
countered than supported by the library HDS will know about
it and report the problem.

4.3. Extension Difficulties

Some aspects involving the use of NDF caused confusion
amongst users, particularly when extensions were involved.

4.3.1. Extension complexity
Currie et al. (1988) provided an algorithm for designing sim-

ple elemental building blocks that could be reused. However,
many extensions created in the early years of NDF became
more complex than was strictly necessary by ignoring the de-
sign decisions of NDF and using highly complex HDS struc-
tures. The lack of a standard table structure was only partly
to blame. In many cases it would have been beneficial to use
NDF structures in the extensions, which would have allowed
the NDF library to read the data (by giving the full path to the
structure) without resorting to low-level HDS API calls. The
NDF structures would also have been visible to general-purpose
tools for visualization. Future designers should not expect their
respective community to design any elemental structures or the
API to support them.

4.3.2. Name versus type
Extension implementors often ignored or misunderstood an-

other fundamental precept of standard structures, the difference
between the name and type of a structure. They relied on the
structure name, often omitting to define a type. The data type
defines the content, semantics, and processing rules. The name
is just an instance of the particular structure. This approach
could lead to name clashes, or restrict to only one instance
within a given structure. Software other than the originator’s
encountering the structure would not know the meanings and
how to handle the structure’s contents. Note that this hap-
pened at a time when object-oriented concepts were not widely
known. Again more oversight would have helped.

The same confusion is evident in FITS extensions where
there is no standard header to record the extension’s type,8 per-
haps borne of FITS’s lack of semantics, although Wells had
added the extension keywords partly with Starlink hierarchi-
cal data in mind. Keyword EXTNAME is often used to attribute
meaning. Reserving EXTNAME for the NDF component path,
and adding an EXTTYPE header permitted a round trip between
NDF and FITS (see Sect. 4.2.1). EXTTYPE, proposed by George
(1993), was never adopted into the FITS standard (Pence et al.,
1993).

5. Areas for improvement

As the NDF data model has been used we have come to re-
alize that some parts of the standard could do with adjustment
and other enhancements should be made. The following items
could be implemented and the current standard does not pre-
clude them. One caveat is that there are no longer any full-time
developers tasked with improving NDF and any improvements
would be driven by external priorities of the key stakeholders
(as was the case with the recent addition of provenance and
data compression).

5.1. Quality masking

The initial design for the quality mask used a single unsigned
byte allowing eight different quality assignments in a single
data file. The design did not allow for the possibility of support-
ing larger unsigned integer data types. This restriction should
be raised to allow more assignments. The SMURF map-maker
(Chapin et al., 2013, ascl:1310.007) already makes use of more
than eight internally and uses an unsigned short. When the re-
sults are written out mask types have to be combined if more
than eight were present in the output data file.

5.2. Table support

Tables were added to FITS (Harten et al., 1988) during the
initial development of NDF and the need for tables was consid-
ered a lower priority in the drive for a standardized image model
and table support was never added to NDF. The omission of a

8This type is not to be confused with the extension type (XTENSION) which
defines how the data are stored rather than what they represent.

9

http://www.ascl.net/1403.024
http://www.ascl.net/1310.007

table model was belatedly addressed in the early 1990s from
outside Starlink. Giaretta proposed and demonstrated that HDS
could be used to store tables, being especially suited to column-
oriented operations. Such a TABLE data structure was later in-
terfaced through the CHI subroutine library (Wood, 1992) for
the catpac package (Wood, 1994). This initiative failed, how-
ever, due to a lack of documentation and promotion. The effort
was not completely wasted. The fits2ndf conversion tool (Cur-
rie et al., 1996) creates an extended form of the TABLE model
(see Appendix A.4) to encapsulate within an NDF the ancillary
FITS tables associated with image data.

Starlink software eventually took the pragmatic solution of
using FITS binary tables (Cotton et al., 1995) for output ta-
bles.9 This cannot solve the problem of integrating data tables
into image data files and the format would benefit from a native
data type. The JCMT raw data format instead uses individual
1-dimensional data arrays to store time-series data but this is
inefficient and adds programming overhead.

5.3. Flexible variance definitions
The adoption of variance as a standard part of NDF was an

important motivator for application writers to add support for
error propagation and almost all the Starlink applications now
support variance. The next step is to support different types of
errors, including covariance (see e.g. Meyerdierks, 1992). This
has been proposed many times (see e.g. Meyerdierks, 1991) but
is a very difficult problem to solve in the general case and may
involve having to support pluggable algorithms for handling
special types of error propagation.

5.4. Data checksums
The FITS DATASUM facility (Seaman et al., 2012) is very use-

ful and NDF should support it. Ideally it should be possible to
generate a reference checksum for a structure. It may be that
this has to be done in conjunction with HDS.

5.5. Character encodings
The CHAR data type in HDS uses an 8-bit character type,

assumed to contain only ASCII. It was designed long before
Unicode came to exist and has no support for accented charac-
ters or non-ASCII character sets. Multi-byte Unicode should
be supported in any modern format to allow metadata to be rep-
resented properly. HDS cannot support the storage of common
astronomical unit symbols such as µm or Å. It may be possible
to use the automatic type conversion concept already in use for
numeric data types to allow Unicode to be added to NDF with-
out forcing every application to be rewritten. If an application
uses the standard API for reading character components they
will get ASCII even if that involves replacing Unicode charac-
ters with either normalized versions of characters outside the
ASCII character set (for example, dropping accents) or whites-
pace. A new API would be provided for reading and writing
Unicode strings.

9Text formats such as tab-separated lists and Starlink’s own Small Text List
format supported by the CURSA package (Davenhall et al., 2001) were also
more popular than HDS tables.

5.6. Provenance growth

Whilst the provenance handling works extremely well and
is very useful for tracking what processing has gone into mak-
ing a data product, the provenance information can become ex-
tremely large during long and complicated pipeline processing
such as those found in products from ORAC-DR (Cavanagh
et al., 2008; Jenness and Economou, 2015, ascl:1310.001).
There can be many thousands of provenance entries including
some loops where products are fed back into earlier stages be-
cause of iterations. The provenance tracking eventually begins
to take up a non-trivial amount of time to collate and copy from
input files to output files. One solution to this may be to offload
the provenance handling to a database during processing, only
writing the information to the file when processing is complete
and the file is to be exported. It would be fairly straightforward
to modify the NDG library to use the Core Provenance Library
(Macko and Seltzer, 2012).

5.7. Library limitations

Whilst there are many advantages to having a single library
providing the access layer to an NDF, there is also a related
problem of limitations in this one library causing limitations
to all users. In particular the current NDF library is single-
threaded due to use of a single block of memory tracking ac-
cess status. Furthermore the HDS library itself is also single-
threaded with its own internal state. As more and more pro-
grams become multi-threaded to make use of increased num-
bers of cores in modern CPUs this limitation becomes more
and more frustrating.

Another issue associated with the library is the use of 32-bit
integers as counters in data arrays. It is now easy to imagine
data cubes that exceed this many pixels and a new API may be
needed to ease the transition to 64-bit counters.

Whilst the HDS library is written entirely in ANSI C, the
NDF and related ARY (Warren-Smith and Berry, 2012a) and
NDG (Berry and Taylor, 2012) libraries are written mainly in
Fortran. This puts off people outside the Starlink community
and adds complications when providing interfaces to higher-
level languages such as Python, Perl and Java. Indeed a subset
of the NDF model was written as a Java layer on top of the C
HDS library, precisely to avoid the added dependency to the
Fortran runtime library.

Ideally NDF would be rewritten in C and be made thread-
safe.

6. Social, Political and Economic Considerations

We draw attention in this paper to many technical aspects
of the NDF design that remain relevant today. However, the
data format and associated model has its roots in the social,
political, economic and, indeed, technological circumstances of
the late 1980s. So it is relevant to examine what effect these
had, how they have changed, and how they affect data format
choices being made today. We also discuss briefly some of the
political and economic issues that data format developers need
to address when promoting their products.

10

http://www.ascl.net/1310.001

6.1. Historical Perspective

In the period when the NDF was being designed, the Star-
link Project was funded to support the computing needs of as-
tronomical research in the UK, across all wavebands. On the
software side, its remit was to centrally provide, curate and dis-
tribute software, to foster collaboration between UK software
development projects, and to develop standards for their use.
Together with central purchasing of computer hardware, good
networking and a centrally managed team of system adminis-
trators located around the UK, the project was an innovation
that attracted much interest.

Some, however, saw an element of socialism in this arrange-
ment and argued that, in a more free-market approach, individ-
ual research groups should develop software (and by implica-
tion data formats and models) independently and that the fittest
should survive and be used by other groups. That, indeed, was
the default situation in most countries. In the UK, however, two
key objections trumped this argument. One was that the quality,
reliability, maintainability and suitability for long-term re-use
of software and standards produced in this way was inadequate,
essentially because those embarking on such projects, while be-
ing talented scientists, at that time typically lacked software en-
gineering skills. The second was that resources for astronomy
are limited and that funding multiple similar projects in order
to later discard most of the work in favor of just one is wasteful.
Consequently, UK-wide collaborative development of software
and standards, including data formats, was the option that re-
ceived funding.

The broad range of astronomy to be supported by Starlink
and the consequent diverse data requirements was a severe chal-
lenge and exposed the Project to many issues that other groups
had to face only later on. As we have described, the problem
was made more tractable by using a single very flexible and
extensible data format, rather than a set of individual ad-hoc
solutions for each branch of astronomy. So the motivation for
developing NDF was, in essence, economic. It was cheaper to
take that route.

Starlink’s success was sometimes judged by international
take-up10 of its software and standards, but its funding was pri-
marily in support of UK astronomy, so software promotion and
support activities outside the UK only took place on a best-
efforts basis. While widespread adoption of NDF outside of
UK projects would have been a bonus, it was not a funded goal
and, indeed, the Project took few steps even to monitor it.

A key consequence of this “funding boundary” was that Star-
link staff were not involved in discussions about data handling
for new projects unless there was direct UK involvement. Such
early discussions are typically crucial in securing “buy-in” from
potential new users of software. They allow the software’s ca-
pabilities and the costs and benefits of using it to be explored,
and provide a timely opportunity to add features that may be
of special interest to that project. By restricting this activity to
UK projects, usage of Starlink’s NDF inevitably became much

10At one time overseas users accounted for about 12 % of the user population
for the Starlink Software Collection as a whole (Lawden, 1992).

more widespread within the UK and its overseas observatories
than elsewhere.

6.2. Current Environment
Nevertheless, widespread international adoption will be up-

permost in the mind of anyone contemplating a new data format
today. This paper’s authors have been reflecting on the rele-
vant issues over many years, but unfortunately we cannot offer
a simple winning formula. Even the most seasoned of standards
organisations will struggle to reconcile the vested interests of
particular groups with the wider interests of their community
and to inspire the confidence needed for widespread adoption
of a standard. Perhaps the best that can be said is that designing
a standard requires a great deal of discussion and consultation.
This can be lengthy and needs robust processes and good lead-
ership, but it is something that has to be done and should not be
rushed. Time spent getting it right is repaid later by extending
the lifetime and uptake of the standard when in service.

While we have no silver bullet, it is perhaps relevant to ask
how we might start out again now, if embarking on a new data
format project with widespread international adoption in to-
day’s environment as a goal. It turns out that many of the prob-
lems we faced in the 1980s have now been addressed by devel-
opments in other areas and that if we seek out current best prac-
tice in software development the number of difficult choices is
fairly small.

Despite its successes, it is unlikely that we would take the
FITS route and define a file format without also implementing
accompanying software. This is because it requires the soft-
ware to be written independently, which means (inevitably) by
different groups - and it all needs to inter-operate. Specifying
not just the bit-patterns but also the semantic interpretation of
data in sufficient detail for widespread inter-operability is ex-
tremely difficult. If one examines, say, the HTML standards
(Hickson et al., 2014), they are very lengthy and require a huge
effort to produce, yet still inter-operability often fails in prac-
tice. Astronomical data formats have the potential to become
much more complex than this.

One must also avoid designing a data format that cannot eas-
ily be implemented in software. This may be because the al-
gorithmic details are not apparent but turn out to be complex
or ambiguous, or because of the ubiquitous tendency to over-
design and to be wildly over-optimistic about the resources
needed for implementation.

For these reasons we would probably consider developing
any new data formats alongside a reference software implemen-
tation. This is a procedure used by most participants in interna-
tional software standards discussions in order to guide and in-
form their negotiations and to ensure that they have a working
product as soon as the standard is complete. It ensures that the
standard and the implementation never diverge too far and that
the data semantics and their implications are fully understood
(these details being difficult to capture other than in software).
In an astronomy context it should be unnecessary for each par-
ticipant to develop their own separate software. Rather, a sin-
gle collaboratively developed software project might provide a
suitable nucleus for the whole enterprise.

11

When developing NDF, the discussion surrounding its de-
sign was open, inclusive and collaborative, but the development
of software to implement it occurred later and (despite even-
tually being released under an open-source licence) followed
what would now be recognized as “closed source” development
practices. We did not then have the benefit of modern collab-
orative software development tools, but the success of the free
open-source software (FOSS) movement has shown the power
of the open-source development model and some of its features
would certainly have been very attractive.

There are, of course, many open-source software tools, envi-
ronments and development processes in use in different FOSS
projects. However, the relevant features found in most cases
are: i) frequent builds, so that a functioning development ver-
sion of the software is always available, ii) anyone can partici-
pate in discussions and iii) anyone can contribute code (possibly
subject to review by others). Such a system would seem to meet
many of the requirements for developing a data format spec-
ification alongside a reference software implementation while
simultaneously stimulating informed discussion, feedback and,
of course, attracting coding contributions which are always the
scarcest commodity in such an undertaking. One should per-
haps add that good management would also be essential and
that fundamental choices such as implementation language and
software dependencies can be critically important.

6.3. Thoughts on the data format business

A crucial issue for a project developing or maintaining an as-
tronomical data format is to ensure that it can continually gain
new users, something that tends to become easier as the project
grows and becomes more capable and better-known. This prin-
cipally means that it must work to be adopted by new instru-
mentation groups that will be producing important astronomi-
cal data in future. This, in turn, means winning the arguments
for and against adopting a particular data format within these
groups.

Although general-purpose application software suites are
also big players in the data format game, new ones start up
relatively infrequently and may take decades to mature. Their
capabilities also tend to lag behind the demands of new instru-
mentation. They therefore present less of an opportunity for
promoting a new data format. Having a major software suite on
board is definitely worthwhile, but an existing well-entrenched
data format in a major application suite presents a huge barrier
to entry that can only really be addressed by implementing a
transparent compatibility layer (and/or automated conversion)
so that changes to existing applications are unnecessary. This is
more of a technical challenge than a political one and we will
asume that such a layer will always be put in place, so that ac-
cess to existing applications is not an issue in deciding to adopt
a data format.

The problems that then arise in discussions with instrumenta-
tion groups vary, but often economic factors enter. Such a group
is most likely to adopt a format that already closely matches
their requirements, so that they minimise their work. But this
only applies if the software is open, in the sense that they can

make any changes themselves. If changes need to be imple-
mented (or integrated) by a different data format project, it can
be a serious disincentive unless the data format project commits
to making the changes well in advance and enjoys a significant
level of trust. With an open-source data format development
project, however, the openness is built-in and this barrier should
be much reduced. Nevertheless, any changes would still need
to avoid regression in the software that already exists.11 This, in
itself, can be a serious obstacle if the system is already complex,
as most data format software is. If the data format is designed to
be extensible, however, this burden is greatly reduced because
extending the system consists largely of making additions and
not changing what already exists.

Different problems can arise if a new instrumentation group
is large and/or particularly well-funded. Such groups may have
little incentive to collaborate for economic reasons and might be
tempted to start from scratch themselves producing, in effect, a
rival project. This is arguably how most data formats arise in
the first place. Unfortunately, the result may have limited appli-
cability outside the originating project. Political arguments may
sway the decision and these will be easier to make if the pro-
posed data format already enjoys wide use. The argument be-
comes much easier to win, however, if the data format offering
is intrinsically extensible, because this pretty much guarantees
that the work involved in building on what exists will be sub-
stantially less than starting from scratch. Moreover, it need not
involve any compromise to the instrumentation group’s goals
because there is no constraint on what can be added.

If major new instrumentation projects could be harnessed to
contribute to a collaborative open-source data format project
with worldwide adoption as a goal, then major benefits might
accrue. Perhaps the most significant would be that instead of
new incompatible formats regularly arising they could instead
be new compatible additions to a single format of increasing
capability. There are many examples where well-funded initia-
tives build on an existing FOSS project for their own purposes
and the new developments are then fed back into the main trunk
for all to benefit. There seems to be little reason why astronomi-
cal data formats couldn’t develop in a similar, evolutionary way
if openness and extensibility are fully embraced.

7. Conclusions

The NDF data model did bring order to the chaos of arbitrary
hierarchical structures and succeeded in the promise of provid-
ing a base specification that can be adopted by many applica-
tions processing data from disparate instrumentation. The shift
from arbitrary use of hierarchical structures to a data model en-
forced by a library and API was extremely important and al-
lowed application developers to know what to expect in data
files.

From its beginnings in the mid-1980s the NDF data model
has been used throughout the Starlink software collection

11The alternative is to fork the project, but there will be reluctance to do this
because support for the code that already exists will be lost.

12

within diverse applications such as smurf (Chapin et al.,
2013), ccdpack (Draper et al., 2011; Warren-Smith, 1993,
ascl:1403.021), gaia and kappa.

NDF was also adopted by UK-operated observatories. fi-
garo had a strong influence on the infrared spectroscopy com-
munity in the United Kingdom and the United Kingdom In-
frared Telescope (UKIRT) initially adopted DST (Sect. Ap-
pendix A.2) for CGS3 and CGS4 (Wright et al., 1993). NDF
was adopted at UKIRT in 1995 although a unified UKIRT NDF-
based data model for all instruments, involving HDS contain-
ers of NDF structures to handle multiple exposures, was not
adopted until the release of the ORAC system (Bridger et al.,
2000). The James Clerk Maxwell Telescope (JCMT) initially
used a proposed submillimeter standard format known as the
Global Section Datafile (GSD; Jenness et al., 1999, formerly
General Single Dish Data). In 1996 SCUBA (Holland et al.,
1999) was delivered using NDF, and a unified NDF raw data
model was adopted for ACSIS (Buckle et al., 2009) from 2006
and SCUBA-2 (Holland et al., 2013) from 2009. NDF data
files are available from the UKIRT and JCMT archives at the
Canadian Astronomy Data Centre (Bell et al., 2014; Economou
et al., 2015; Economou et al., 2008) and both telescopes con-
tinue to write data using NDF. The Anglo-Australian Obser-
vatory (AAO) adopted HDS and initially used DST for instru-
ments such as UCLES (Diego et al., 1990). IRIS (Allen et al.,
1993) could use both DST and NDF, whereas 2DF (Lewis et al.,
2002) used NDF.

The NDF data model also supported a number of data-
structuring experiments. The model allowed applications writ-
ten in Fortran to adopt object-oriented methodologies by adopt-
ing NDF as a backing store and using the self-describing fea-
tures to represent objects (Bailey, 1993). The HDX framework
(Giaretta et al., 2003) was developed around 2002 as a flexible
way of layering high-level data structures, presented as a virtual
XML DOM, atop otherwise unstructured external data stores.
This was in turn used to develop Starlink’s NDX framework,
which allowed FITS files to be viewed and manipulated using
the concepts from NDF. The NDX experiment was an attempt
to directly apply the lessons of the long NDF/HDS experience
– namely that a small amount of structure, overlaid on concep-
tually separate bit buckets, can very promptly bring order out of
chaos. The experiment successfully demonstrated the viability
and power of the approach, and was used in some Starlink Java
applications (including treeview (Bly et al., 2003) and splat
(Draper et al., 2005; Škoda et al., 2014, ascl:1402.007)); how-
ever it lost out to the more mainstream approach adopted by
others within the VO, and was not more widely adopted.

For the future we are considering the possibility of replac-
ing the HDS layer with a more widely used hierarchical data
format such as HDF5 (Folk et al., 2011). This would have the
advantage of making NDF available to a much larger commu-
nity, albeit with NDF still being in Fortran, and also remove the
need to support HDS in the longer term. NDF and all the ex-
isting Starlink applications would continue to work so long as
a conversion program is made available to convert HDS struc-
tures to HDF5 structures. This would have the added advantage
of making it straightforward to add support for tables natively

DATA_ARRAY

TITLE

DATA_MIN

DATA_MAX

AXIS1_DATA

AXIS1_LABEL

IMAGE

Figure A.4: Example components of a Wright-Giddings IMAGE file. Italicized
text indicates the components that are shared with NDF.

to the NDF data model. Many of the concepts in NDF map
directly to HDF5. One remaining issue is that HDF5 does not
support the notion of arrays of groups so the HISTORY and AXIS
structures in NDF would need to be remapped into a flatter lay-
out, maybe with numbered components in an AXIS or HISTORY
group.

8. Acknowledgments

This research has made use of NASA’s Astrophysics Data
System. The Starlink software is currently maintained by the
Joint Astronomy Centre, Hawaii. We thank Jim Peden and
Trevor Ponman for providing comments on the manuscript re-
garding the early days of HDS and the development of asterix.
We also thank to the two anonymous referees for their useful
comments.

The source code for the NDF library and the Starlink soft-
ware (ascl:1110.012) is open-source and is available on Github
at https://github.com/Starlink

Appendix A. Early HDS-based data models

This section provides an overview of the HDS-based data
models developed within the Starlink ecosystem that influenced
the development of NDF.

Appendix A.1. Wright-Giddings IMAGE

An early proposal (Wright and Giddings, 1983, but see
also Currie et al. (1988)) introduced the IMAGE organiza-
tional scheme. This Wright-Giddings design specified that
data should go into a DATA ARRAY item and there should also
be items for pre-computed data minimum and maximum, as
well as a value for an array-specific blank value (similar to the
FITS BLANK header keyword). Errors were represented as stan-
dard deviations and stored in DATA ERROR and bad-pixel masks
were stored in DATA QUALITY. An example layout is given in
Fig. A.4.

Prior to HDS becoming generally available, the Starlink
Project adopted the Bulk Data Frame (BDF; Lawden, 1989;
Pavelin and Walter, 1980) as part of its INTERIM software envi-
ronment. BDF was heavily influenced by FITS and used many

13

http://www.ascl.net/1403.021
http://www.ascl.net/1402.007
http://www.ascl.net/1110.012
.

Z

X

Y

DATA

LABEL

UNITS
OBS

OBJECT

FITS
KEYWORD1

KEYWORD2

KEYWORDn

DATA

UNITS

LABEL

ERRORS

DATA

LABEL

UNITS

FIGARO

Figure A.5: Partial model representing the structure of a DST file. Structures
make use of a hierarchy and reuse concepts in the data array and axis definition.
Italicized text indicates the components that are shared with NDF.

of the same conventions. Software was provided to convert
BDF format files to HDS using the IMAGE model (Chipper-
field, 1986), and the IMAGE model became reasonably popu-
lar, because of its simplicity, and because of the many BDF files
that existed at the time. There were however a number of short-
comings with the IMAGE design, not the least of which was
that it did not make use of hierarchical structures. The design
was flat and heavily influenced by FITS and BDF.

Appendix A.2. Figaro DST
The figaro data reduction package (Cohen, 1988; Shortridge,

1993, ascl:1203.013) independently adopted a hierarchical de-
sign based on HDS. This DST data model12 made good use of
structures and supported standard deviations for errors. Axis
information was stored in structures labeled X and Y, and the
main image/spectral data were stored in a structure labeled Z.
The main data array was Z.DATA13. FITS-style keyword/value
pairs were encoded explicitly in a structure called FITS but us-
ing scalar components for each header item. Any comments
associated with the FITS keywords were held in a similar struc-
ture labelled COMMENTS. This basic structure suggests a bias to-
wards 1- or 2-dimensional data, but it could handle data of up to
6 dimensions; the Z.DATA array could have as many dimensions
as HDS would support, and the axis structures for the higher di-
mensions were labelled – awkwardly – from T through to W. An
example layout can be found in Fig. A.5.

12The reason for the name has been lost in the mists of time but our best
guess is that it stood for Data STructures.

13where the ‘.’ indicates a parent-child relationship analogous to a directory
separator in the file system.

Around 1990, the code used by figaro to access DST files
was reworked to handle both DST and NDF files (Shortridge,
1990). Support for NDF did not use the actual NDF library;
instead it used direct HDS calls for both models, but would
use different names for the HDS items it accessed depending
on the data model used in the file. This involved a significant
reworking of the figaro code, but maintained compatibility with
existing DST files. However, it has failed to keep up with recent
changes to NDF, such as support for 64-bit data.

Appendix A.3. Asterix

The asterixX-ray data reduction package (Allan et al., 1995;
Peden, 1987; Saxton and Mellor, 1992, ascl:1403.023) used the
HDS format exclusively until the introduction of an abstract
data access interface (Allan, 1995) which allowed for the use
of HDS and FITS format files. asterix defined many data mod-
els designed for the specific uses of X-ray astronomy, with a
particular focus on photon event lists. An example layout of
an alignment file is shown in Fig. A.6. The asterix data mod-
els were not competing directly with IMAGE or DST but this
experience fed directly into the design of NDF. For example,
the HISTORY structure was adopted without change. Once NDF
was available some data models were modified to use features
from NDF such as adopting the DATA ARRAY label (see Fig. 3
for an example).

Appendix A.4. HDS TABLE structure used by FITS2NDF

The fits2ndf conversion tool (Currie et al., 1996) creates
an NDF extension of type TABLE for each FITS TABLE or
BINTABLE extension. The TABLE structure is an extended ver-
sion of the Giaretta design. It comprises a scalar, NROWS, to set
the number of rows in the table, and an array structure COLUMNS
also of type COLUMNS. The COLUMNS structure contains a series
of COLUMN-type structures, one for each field in the table. The
name of each column comes from the corresponding TTYPEn
keyword value. The conversion does rely on the column name
not being longer than fifteen characters. A COLUMN structure
has one mandatory component, DATA, an array of values for the
field, and can be 2-dimensional if the field is an array. Other
FITS keywords (TFORMn, TSCALn, and TFORMn) prescribe the
primitive type of DATA, including expansion of scaled form.
Components to store the original format, the TTYPEn comment,
and units may also be present.

An example of part of such a structure is shown in Fig. A.7.

Appendix B. Provenance data model

This appendix describes the data model used to record the
“family tree” of ancestor NDFs that were used to create an NDF.
Each node in the tree describes a single NDF, with the root node
being the NDF for which provenance is being recorded. Thus
the parents of the root node each describe one of the NDFs that
were used to create the NDF described by the root node. A node
stores the following items of information about the associated
NDF:

14

http://www.ascl.net/1203.013
http://www.ascl.net/1403.023

ALIGN

HISTORY

VARIANT

CREATED

EXTEND_SIZE

CURRENT_RECORD

RECORDS(n)

VARIANT

DATE

COMMAND

TEXT

INTERFACE

ON_AXIS_AREA

HIST_LABEL

AXIS1_UNITS

AXIS1_LABEL

AREA(n,m)
DATA_RECORD(i)

MJD_ARRAY(i)

DATA_ARRAY

AXIS_ARRAY

DATA_UNITS

ROSAT_TO_WFC
MJD_ARRAY

DATA_RECORD(n)

DATE_MJD

EULER

ERROR

CAL_TYPE

TOP_LEVEL

Figure A.6: Example model of the structure of an asterix HDS file. Extensive use is made of hierarchy and the HISTORY structure is identical to the NDF standard
version. Italicized text indicates the components that are shared with NDF.

• The path to the NDF within the local file system. This is a
blank string for the root node, since the main NDF may be
moved to a new location.

• The UTC date and time at which the NDF was created.

• A boolean flag indicating if the NDF is “hidden” – mean-
ing that the NDF will not be included as an ancestor when
provenance is copied from one NDF to another.

• A string identifying the command that created the NDF.

• History information. For the root node, this is just a 4-byte
hash code that represents the contents of the main NDF’s
HISTORY component. This hash code is subsequently
used to identify the same history information within other
NDFs. For non-root nodes, the history information con-
tains any history records read from the corresponding an-
cestor NDF that were not also present in any of the ances-
tors direct parents14.

• Any extra arbitrary information associated with the NDF.
There are no conventions on what this extra information
represents.

• A list of pointers to nodes representing the direct parents
of the NDF.

The full tree of nodes is stored on disk in an extension named
PROVENANCE within the main NDF, and is encoded into an array
of integers in order to avoid the overhead of reading and writing
complicated HDS structures.

Each application will normally first create a basic tree for
each output NDF, holding a single root node describing the out-
put NDF. It will then read the provenance tree from each input

14This is done to avoid unnecessary duplication of History records in differ-
ent nodes.

NDF and append each one to the provenance tree of the out-
put NDF, making it a direct parent of the root node. When the
application closes, the final output tree is stored in the output
NDF.

This whole process can be automated by registering han-
dlers with the NDF library that are called whenever an NDF
is opened. The only change that then needs to be made to an
application to enable basic provenance tracking is for the appli-
cation to add two calls to mark the start and end of a “prove-
nance recording context”. Alternatively, to achieve finer con-
trol of which input NDFs are recorded as parents of each output
NDF, it is possible for an application to handle the reading and
writing of provenance trees itself.

It is possible that a single input NDF may be used many times
in the creation of an output NDF. For instance, if NDF A is
added to NDF B to create NDF C, and A is then added to C to
create D, then A (and all its ancestors) would appear twice in
the provenance tree of D. To avoid this, whenever a new parent
is added to the root node, each node within the tree of the new
parent is compared with each node already in the tree. If they
match, the tree of the new parent is “snipped” at that point to
exclude the duplicated node (and all its parent nodes). This
comparison needs to be done carefully since it is possible for
two nodes to include the same path, creator and date, and yet
still refer to different NDFs15. For this reason, the comparison
two nodes are considered equal if:

1. they have the same path, date and creator, and
2. they have the same number of parent nodes, and
3. each pair of corresponding parent nodes are equal

The third requirement above means that two nodes will never
be considered equal if any of the ancestors of the two nodes
differ.

15For instance, if an NDF is created, used once, and then immediately re-
placed with a new NDF

15

FITS_EXT_1 <TABLE> {structure}

NROWS <_INTEGER> 4

COLUMNS <COLUMNS> {structure}

SPORDER <COLUMN> {structure}

COMMENT <_CHAR*19> 'Spectrum order'
DATA(4) <_WORD> 1,2,3,5

FORMAT <_CHAR*3> 'I11'

NELEM <COLUMN> {structure}

COMMENT <_CHAR*19> 'Number of elements'
DATA(4) <_WORD> 1024,1024,1024,1024

FORMAT <_CHAR*3> 'I11'

WAVELENGTH <COLUMN> {structure}

COMMENT <_CHAR*19> 'Wavelengths of elements'
DATA(1024,4) <_DOUBLE> 2897.6015206853,

... 5707.2796545742

UNITS <_CHAR*9> 'Angstroms'
FORMAT <_CHAR*6> 'G25.16'

NROWS

COLUMNS COLUMN(n)

COMMENT

DATA(NROWS)

UNITS

FORMAT

TABLE

Figure A.7: On the left is a partial dump of the structure of a TABLE structure within an NDF extension. This structure trace is done with the generic hdstrace

command that lists the content of an arbitrary HDS structure (similar to the HDF5 h5ls command). The name of the NDF extension, in this case FITS EXT 1,
can be specified or take the generic form as above, where the digit counts the extensions. This example specifies that the table has four rows and three columns
(SPORDER, NELEM and WAVELENGTH). Note how the structure type (indicated by the angle brackets) indicates how an application should interpret the contents; in
this case the important types are TABLE, COLUMNS and COLUMN. On the right is a schematic representing the structure hierarchy.

Appendix C. NDF structure serialization into FITS

The generalized extensions (Grosbøl et al., 1988) addition to
the FITS standard made provision for hierarchical data through
three keywords: EXTNAME, EXTVER, and EXTLEVEL. Indeed
EXTLEVEL was added by Don Wells specifically with Starlink
HDS in mind. However, there were two concepts missing from
these to preserve an NDF structure. First and more important
is the type of a structure. Type defines the semantics and pro-
cessing rules of an NDF structure. In object-oriented parlance
it is the class. Therefore we introduced an additional keyword
EXTTYPE to preserve this information. Note that the definition
of EXTNAME was somewhat terse and vague in Grosbøl et al.
(1988) being just the name, and some FITS writers have in ef-
fect used it as the type (cf. Sect. 4.3.2). The second missing
feature was a means to record the shape of a structure.

To map from the hierarchical NDF structure to the flat FITS
serialization array components such as VARIANCE and QUALITY
are written to FITS IMAGE extensions, whose headers re-
tain information stored in other top-level components such
as WCS and LABEL. Specially formatted headers may be writ-
ten to record the HISTORY, which if not edited, can be read
back into NDF HISTORY records. This is not as robust as we
would like, and a recent formatting change to cfitsio (Pence,
1999, ascl:1010.001) temporarily prevented recovery of some
records. Likewise provenance information, if present, is stored
via five keywords, PRV[CDIMP]n for the nth NDF. This lim-
its the maximum number of NDFs in the provenance tree to
9999. Existing FITS-like headers within the NDF (Sect. 3.5.1)
are merged, but with NDF information such as the array shape
or WCS superseding the original keyword values.

NDF extension structures become binary tables when in
FITS form. Each primitive component within a structure be-
comes a column in the table with the appropriate data type and

dimension. Each element of an array of structures becomes a
separate binary table. A more-compact storage would be to cre-
ate a single table for the array structure, forming a superset of
columns, then writing a row for each structure element, using
null values where necessary. However, the adopted structure
significantly simplified the recursive code. Also in practice ar-
ray structures are small and usually 1-dimensional.

The following header items are set to enable recovery of the
hierarchical structure.

EXTNAME Within a FITS IMAGE extension this is the name of
an array component, since these are in well-defined loca-
tions within the NDF. Within a binary table, which could
record arbitrary NDF structures, EXTNAME stores the dot-
separated path within the hierarchical structure. The path
may also include indices to the elements of an array of
structures, written as comma-separated list between paren-
theses.

A common issue especially for NDF extensions is that the
path name is too long for the 68 characters in a FITS
header EXTNAME is set to a special string @EXTNAMEF

that can never be in the component path. The full
path is written as a long string to keyword EXTNAMEF
using the HEASARC long-string CONTINUE convention
(HEASARC FITS Working Group, 2007).

EXTTYPE The non-primitive data type of the NDF extension or
structure.

EXTSHAPE This records the shape of the NDF extension as a
comma-separated list.

HDUCLAS1 Set to NDF.

HDUCLAS2 The name of the NDF array component.

16

http://www.ascl.net/1010.001

For the reverse operation, the FITS reader decides whether
or not it knows the semantics of the FITS file to map FITS ex-
tensions to NDF components. Various products from known
sources are recognised from keyword values. In the the case of
a former NDF, the reader examines the HDUCLAS1 keyword. If
its value is NDF, the reader endeavors to recreate the NDF com-
ponents and extensions from the keywords listed above, work-
ing through the FITS extensions in order.

For an arbitrary FITS file there is no reason to expect that its
data model maps well to the NDF model. The default behav-
ior is for the primary HDU to map to the NDF DATA ARRAY,
in which blank and NaN values become the NDF bad value; the
WCS headers are used to form an NDF WCS or AXIS compo-
nent. For many cases having the primary array and metadata
is adequate for the conversion. It’s analogous to the early IM-
AGE-model files operating as NDFs. However, additional FITS
extensions are preserved by default too, being converted to a se-
ries of NDF extensions. The HDS type of each NDF extension
depends on the XTENSION keyword. It is NDF for an IMAGE,
and TABLE (Appendix A.4) for BINTABLE and TABLE. The
latter representation is often not optimal, as such extensions can
be used to represent many different data models. An example
is when a binary table holds a series of data arrays observed at
different locations such as from multi-object spectroscopy. It
is possible with generic HDS tools to manipulate such data into
NDF form. Where the user knows the mappings between multi-
extension FITS and NDF array components, the FITS reader
has a mechanism for specifying these mappings.

Full details of the conversions between NDF and FITS are
available in Currie et al. (1996).

References

Alexov, A., et al., 2012. Status of LOFAR Data in HDF5 Format, in: Ballester,
P., Egret, D., Lorente, N.P.F. (Eds.), Astronomical Data Analysis Software
and Systems XXI, volume 461 of ASP Conf. Ser.. p. 283.

Allan, D.J., 1995. An Abstract Data Interface, in: Shaw, R.A., Payne, H.E.,
Hayes, J.J.E. (Eds.), Astronomical Data Analysis Software and Systems IV,
volume 77 of ASP Conf. Ser.. p. 199.

Allan, D.J., Vallance, R.J., Saxton, R.D., 1995. ASTERIX – X-ray Data Pro-
cessing System. Starlink User Note 98. Starlink Project.

Allen, D. A. et al., 1993. IRIS – an Infrared Imager and Spectrometer for the
Anglo-Australian Telescope. Proceedings of the Astronomical Society of
Australia 10, 298.

Bailey, J., 1993. An Object-Oriented Data Reduction System in FORTRAN,
in: Hanisch, R.J., Brissenden, R.J.V., Barnes, J. (Eds.), Astronomical Data
Analysis Software and Systems II, volume 52 of ASP Conf. Ser.. p. 199.

Beard, S.M., Allan, P.M., Currie, M.J., Draper, P.W., 2006. GENERIC — A
utility for preprocessing generic Fortran and C subroutines. Starlink User
Note 7. Starlink Project.

Bell, G.S., Currie, M.J., Redman, R.O., Purves, M., Jenness, T., 2014. A New
Archive of UKIRT Legacy Data at CADC, in: Manset, N., Forshay, P. (Eds.),
Astronomical Data Analysis Software and Systems XXIII, volume 485 of
ASP Conf. Ser.. p. 143.

Berry, D.S., 2001. Providing Improved WCS Facilities Through the Starlink
AST and NDF Libraries, in: Harnden, Jr., F.R., Primini, F.A., Payne, H.E.
(Eds.), Astronomical Data Analysis Software and Systems X, volume 238
of ASP Conf. Ser.. p. 129.

Berry, D.S., Parsons, D., 1995. IRAS90 – Programmer’s Guide. Starlink User
Note 165. Starlink Project.

Berry, D.S., Taylor, M.B., 2012. NDG – Routines for Accessing Groups of
NDFs. Starlink User Note 2. Starlink Project.

Bly, M.J., Giaretta, D., Currie, M.J., Taylor, M., 2003. Starlink Software De-
velopments, in: Payne, H.E., Jedrzejewski, R.I., Hook, R.N. (Eds.), Astro-
nomical Data Analysis Software and Systems XII, volume 295 of ASP Conf.
Ser.. p. 445.

Bridger, A. et al., 2000. ORAC: a modern observing system for UKIRT, in:
Lewis, H. (Ed.), Advanced Telescope and Instrumentation Control Software,
volume 4009 of Proc. SPIE. pp. 227–238. doi:10.1117/12.388393.

Buckle, J. V. et al., 2009. HARP/ACSIS: a submillimetre spectral imaging
system on the James Clerk Maxwell Telescope. MNRAS 399, 1026–1043.
doi:10.1111/j.1365-2966.2009.15347.x, arXiv:0907.3610.

Cavanagh, B., Jenness, T., Economou, F., Currie, M.J., 2008. The ORAC-DR
data reduction pipeline. Astron. Nach. 329, 295–297. doi:10.1002/asna.
200710944.

Chapin, E.L., Berry, D.S., Gibb, A.G., Jenness, T., Scott, D., Tilanus, R.P.J.,
Economou, F., Holland, W.S., 2013. SCUBA-2: iterative map-making with
the Sub-Millimetre User Reduction Facility. MNRAS 430, 2545–2573.
doi:10.1093/mnras/stt052.

Chipperfield, A.J., 1986. STARIN – Convert INTERIM to HDS Image Data
Format. Starlink User Note 96. Starlink Project.

Clayton, C., 1991. The Unix Starlink software collection. Starlink Bulletin 8,
11.

Cohen, J.G., 1988. The FIGARO Package for Astronomical Data Analysis, in:
Robinson, L.B. (Ed.), Instrumentation for Ground-Based Optical Astron-
omy, p. 448. doi:10.1007/978-1-4612-3880-5_43.

Cotton, W.D., Tody, D., Pence, W.D., 1995. Binary table extension to FITS.
A&AS 113, 159.

Currie, M.J., 1988. Standard data formats. Starlink Bulletin 2, 11.
Currie, M.J., 1997. Data-format conversion. Starlink Bulletin 19, 14.
Currie, M.J., Berry, D.S., 2013. KAPPA – Kernel Application Package. Starlink

User Note 95. Starlink Project.
Currie, M.J., Berry, D.S., Jenness, T., Gibb, A.G., Bell, G.S., Draper, P.W.,

2014. Starlink in 2013, in: Manset, N., Forshay, P. (Eds.), Astronomical
Data Analysis Software and Systems XXIII, volume 485 of ASP Conf. Ser..
p. 391.

Currie, M.J., Draper, P.W., Berry, D.S., Jenness, T., Cavanagh, B., Economou,
F., 2008. Starlink Software Developments, in: Argyle, R.W., Bunclark, P.S.,
Lewis, J.R. (Eds.), Astronomical Data Analysis Software and Systems XVII,
volume 394 of ASP Conf. Ser.. p. 650.

Currie, M.J., Privett, G.J., Chipperfield, A.J., Berry, D.S., Davenhall, A.C.,
1996. CONVERT – A Format-conversion Package. Starlink User Note 55.
Starlink Project.

Currie, M.J., Wallace, P.T., Warren-Smith, R.F., 1988. Starlink Standard Data
Structures. Starlink General Paper 38. Starlink Project.

Davenhall, A.C., Clowes, R.G., Howell, S.B., 2001. CURSA – A Package
for Manipulating Astronomical Catalogues., in: Clowes, R., Adamson, A.,
Bromage, G. (Eds.), The New Era of Wide Field Astronomy, volume 232 of
ASP Conf. Ser.. p. 314.

Diego, F., Charalambous, A., Fish, A.C., Walker, D.D., 1990. Final tests and
commissioning of the UCL Echelle Spectrograph, in: Crawford, D.L. (Ed.),
Instrumentation in Astronomy VII, volume 1235 of Proc. SPIE. pp. 562–
576. doi:10.1117/12.19119.

Disney, M.J., Wallace, P.T., 1982. STARLINK. QJRAS 23, 485.
Draper, P.W., Allan, A., Berry, D.S., Currie, M.J., Giaretta, D., Rankin, S.,

Gray, N., Taylor, M.B., 2005. Starlink Software Developments, in: Shop-
bell, P., Britton, M., Ebert, R. (Eds.), Astronomical Data Analysis Software
and Systems XIV, volume 347 of ASP Conf. Ser.. p. 22.

Draper, P.W., Berry, D.S., Jenness, T., Economou, F., 2009. GAIA – Version
4, in: Bohlender, D.A., Durand, D., Dowler, P. (Eds.), Astronomical Data
Analysis Software and Systems XVIII, volume 411 of ASP Conf. Ser.. p.
575.

Draper, P.W., Taylor, M.B., Allan, A., 2011. CCDPACK – CCD data reduction
package. Starlink User Note 139. Starlink Project.

Economou, F., Gaudet, S., Jenness, T., Redman, R.O., Goliath, S., Dowler, P.,
Schade, D., Chrysostomou, A., 2015. Observatory/data centre partnerships
and the VO-centric archive: The JCMT Science Archive experience. Astron.
Comp. submitted.

Economou, F., Jenness, T., Chrysostomou, A., Cavanagh, B., Redman, R.,
Berry, D.S., 2008. The JCMT Legacy Survey: The challenges of the JCMT
Science Archive, in: Argyle, R.W., Bunclark, P.S., Lewis, J.R. (Eds.), As-
tronomical Data Analysis Software and Systems XVII, volume 394 of ASP
Conf. Ser.. p. 450.

17

http://dx.doi.org/10.1117/12.388393
http://dx.doi.org/10.1111/j.1365-2966.2009.15347.x
http://arxiv.org/abs/0907.3610
http://dx.doi.org/10.1002/asna.200710944
http://dx.doi.org/10.1002/asna.200710944
http://dx.doi.org/10.1093/mnras/stt052
http://dx.doi.org/10.1007/978-1-4612-3880-5_43
http://dx.doi.org/10.1117/12.19119

Economou, F., Jenness, T., Currie, M.J., Berry, D.S., 2014. Advantages of ex-
tensible self-described data formats: Lessons learned from NDF, in: Manset,
N., Forshay, P. (Eds.), Astronomical Data Analysis Software and Systems
XXIII, volume 485 of ASP Conf. Ser.. p. 355.

Elliott, I., 1981. STARLINK. Irish Astronomical Journal 14, 197.
Folk, M., 2010. HDF — Past, Present, Future. HDF and HDF-

EOS Workshop XIV. URL: http://www.slideshare.net/HDFEOS/

the-hdf-group-past-present-and-future.
Folk, M., Heber, G., Koziol, Q., Pourmal, E., Robinson, D., 2011. An Overview

of the HDF5 Technology Suite and Its Applications, in: Proceedings of the
EDBT/ICDT 2011 Workshop on Array Databases, ACM. AD ’11. pp. 36–
47. doi:10.1145/1966895.1966900.

Fowler, J.W., 2004. The Atacama Cosmology Telescope Project, in: Zmuidzi-
nas, J., Holland, W.S., Withington, S. (Eds.), Millimeter and Submillime-
ter Detectors for Astronomy II, volume 5498 of Proc. SPIE. pp. 1–10.
doi:10.1117/12.553054.

George, I.M., 1993. OFSP Proposal on the use of EXTNAME, EXTCLASS and
EXTTYPE keywords. URL: http://fits.gsfc.nasa.gov/fitsbits/
saf.93/saf.9306.

Giaretta, D., Taylor, M., Draper, P., Gray, N., McIlwrath, B., 2003. HDX Data
Model: FITS, NDF and XML Implementation, in: Payne, H.E., Jedrze-
jewski, R.I., Hook, R.N. (Eds.), Astronomical Data Analysis Software and
Systems XII, volume 295 of ASP Conf. Ser.. p. 221.

Giaretta, D., Wallace, P., Bly, M., McIlwrath, B., Page, C., Gray, N., Taylor,
M., 2002. VO Data Model - FITS, XML plus NDF: the Whole is More than
the Sum of the Parts, in: Bohlender, D.A., Durand, D., Handley, T.H. (Eds.),
Astronomical Data Analysis Software and Systems XI, volume 281 of ASP
Conf. Ser.. p. 20.

Greisen, E.W., Calabretta, M.R., Valdes, F.G., Allen, S.L., 2006. Representa-
tions of spectral coordinates in FITS. A&A 446, 747–771. doi:10.1051/
0004-6361:20053818.

Grosbøl, P., Harten, R.H., Greisen, E.W., Wells, D.C., 1988. Generalized ex-
tensions and blocking factors for FITS. A&AS 73, 359–364.

Harten, R.H., Grosbøl, P., Greisen, E.W., Wells, D.C., 1988. The FITS tables
extension. A&AS 73, 365–372.

HEASARC FITS Working Group, 2007. The CONTINUE Long
String Keyword Convention. http://fits.gsfc.nasa.gov/registry/
continue/continue.pdf.

Hickson, I., et al., 2014. HTML5 — A vocabulary and associated APIs for
HTML and XHTML. W3C Proposed Recommendation. URL: http://
www.w3.org/TR/html5/.

Holland, W.S., et al., 2013. SCUBA-2: the 10 000 pixel bolometer camera on
the James Clerk Maxwell Telescope. MNRAS 430, 2513–2533. doi:10.
1093/mnras/sts612.

Holland, W. S. et al., 1999. SCUBA: a common-user submillime-
tre camera operating on the James Clerk Maxwell Telescope. MN-
RAS 303, 659–672. doi:10.1046/j.1365-8711.1999.02111.x,
arXiv:astro-ph/9809122.

IEEE Computer Society, 1985. IEEE Standard for Binary Floating-Point Arith-
metic. doi:10.1109/IEEESTD.1985.82928. IEEE Std 754-1985.

Jenness, T., Berry, D.S., Cavanagh, B., Currie, M.J., Draper, P.W., Economou,
F., 2009. Developments in the Starlink Software Collection, in: Bohlender,
D.A., Durand, D., Dowler, P. (Eds.), Astronomical Data Analysis Software
and Systems XVIII, volume 411 of ASP Conf. Ser.. p. 418.

Jenness, T., Economou, F., 2011. Data Management at the UKIRT and
JCMT, in: Gajadhar, S. et al. (Eds.), Telescopes from Afar, p. 42.
arXiv:1111.5855.

Jenness, T., Economou, F., 2015. ORAC-DR: A generic data reduction pipeline
infrastructure. Astron. Comp submitted.

Jenness, T., Lightfoot, J.F., 1998. Reducing SCUBA Data at the James Clerk
Maxwell Telescope, in: Albrecht, R., Hook, R.N., Bushouse, H.A. (Eds.),
Astronomical Data Analysis Software and Systems VII, volume 145 of ASP
Conf. Ser.. p. 216.

Jenness, T. et al., 2014. An overview of the planned CCAT software system, in:
Chiozzi, G., Radziwill, N.M. (Eds.), Software and Cyberinfrastructure for
Astronomy III, volume 9152 of Proc. SPIE. p. 91522W. doi:10.1117/12.
2056516, arXiv:1406.1515.

Jenness, T., Tilanus, R.P.J., Meyerdierks, H., Fairclough, J., 1999. The Global
Section Datafile (GSD) access library. Starlink User Note 229. Joint Astron-
omy Centre.

Jennings, D.G., Pence, W.D., Folk, M., 1995. Convert: Bridging the Scien-

tific Data Format Chasm, in: Shaw, R.A., Payne, H.E., Hayes, J.J.E. (Eds.),
Astronomical Data Analysis Software and Systems IV, volume 77 of ASP
Conf. Ser.. p. 229.

Kitaeff, V.V., Cannon, A., Wicenec, A., Taubman, D., 2014. Astro-
nomical imagery: Considerations for a contemporary approach with
JPEG2000. Astron. Comp. in press. doi:10.1016/j.ascom.2014.06.
002, arXiv:1403.2801.

Krauskopf, T., Paulsen, G.B., 1988. Hierarchical Data Format Version 1.0.
Technical Report. National Center for Supercomputing Applications, Uni-
versity of Illinois at Urbana-Champaign.

Lawden, M., 1992. Statistician’s corner. Starlink Bulletin 10, 30.
Lawden, M.D., 1986. The Starlink Astronomical Network. Bulletin

d’Information du Centre de Donnees Stellaires 30, 13.
Lawden, M.D., 1989. INTERIM – Starlink Software Environment. Starlink

User Note 4. Starlink Project.
Lawden, M.D., 1991. Ten years ago. Starlink Bulletin 8, 2.
Lewis, I. J. et al., 2002. The Anglo-Australian Observatory 2dF facility.

MNRAS 333, 279–299. doi:10.1046/j.1365-8711.2002.05333.x,
arXiv:astro-ph/0202175.

Macko, P., Seltzer, M., 2012. A general-purpose provenance library, in: Pro-
ceedings of the 4th USENIX Conference on Theory and Practice of Prove-
nance, USENIX Association, Berkeley, CA, USA. TaPP’12. pp. 6–6. URL:
http://dl.acm.org/citation.cfm?id=2342875.2342881.

McDowell, J. et al., 2012. IVOA Recommendation: Spectrum Data Model 1.1.
ArXiv e-prints arXiv:1204.3055.

Meyerdierks, H., 1991. Error handling applications. Starlink Bulletin 8, 19.
Meyerdierks, H., 1992. Fitting Resampled Spectra, in: Grosbøl, P.J., de Ruijss-

cher, R.C.E. (Eds.), 4th ESO/ST-ECF Data Analysis Workshop, volume 41
of European Southern Observatory Conference and Workshop Proceedings.
p. 47.

Meyerdierks, H., 1995. SPECDRE – Spectroscopy Data Reduction. Starlink
User Note 140. Starlink Project.

Pavelin, C.J., Walter, A.J.H., 1980. Proposed STARLINK Software Environ-
ment, in: Elliott, D.A. (Ed.), Applications of Digital Image Processing to
Astronomy, volume 264 of Proc. SPIE. p. 70. doi:10.1117/12.959785.

Peden, J.C.M., 1987. High energy data analysis at Birmingham. Journal of the
British Interplanetary Society 40, 185–188.

Pence, B., Corcoran, M., George, I.M., 1993. Minutes of the OGIP FITS Stan-
dard Panel Meeting 1993 Jul 21. URL: ftp://legacy.gsfc.nasa.gov/
fits_info/ofwg_minutes/ofwg_93jul21.txt.

Pence, W., 1999. CFITSIO, v2.0: A New Full-Featured Data Interface, in:
Mehringer, D.M., Plante, R.L., Roberts, D.A. (Eds.), Astronomical Data
Analysis Software and Systems VIII, volume 172 of ASP Conf. Ser.. p. 487.

Saxton, R., Mellor, G., 1992. ASTERIX at the R.A.S. Starlink Bulletin 9, 3.
Schlesinger, B.M., Grosbøl, P., Wells, D., 1991. FITS, IAU FITS Working

Group. Report for the period Sep 1987–Mar 1991. Bulletin of the American
Astronomical Society 23, 993–994.

Seaman, R., Pence, W., Rots, A., 2012. FITS Checksum Proposal. ArXiv
e-prints arXiv:1201.1345.

Severance, C., 1998. IEEE 754: An Interview with William Kahan. Computer
31, 114–115. doi:10.1109/MC.1998.660194.

Shortridge, K., 1990. FIGARO 3 — the FIGARO yet to come. Starlink Bulletin
6, 18.

Shortridge, K., 1993. The Evolution of the FIGARO Data Reduction System,
in: Hanisch, R.J., Brissenden, R.J.V., Barnes, J. (Eds.), Astronomical Data
Analysis Software and Systems II, volume 52 of ASP Conf. Ser.. p. 219.

Starlink, 1981. Enterprise Starlink Information Bulletin #4. Starlink Project.
Thomas, B., et al., 2014. Significant problems in FITS limit its use in modern

astronomical research, in: Manset, N., Forshay, P. (Eds.), Astronomical Data
Analysis Software and Systems XXIII, volume 485 of ASP Conf. Ser.. p.
351.

Thomas, B., et al., 2015. The Future of Astronomical Data Formats: Learning
from FITS. Astron. Comp. submitted.

Tritton, K.P., 1982. Starlink. Memorie della Societa Astronomica Italiana 53,
55–59.

Valdes, F., 1993. The IRAF/NOAO Spectral World Coordinate Systems, in:
Hanisch, R.J., Brissenden, R.J.V., Barnes, J. (Eds.), Astronomical Data
Analysis Software and Systems II, volume 52 of ASP Conf. Ser.. p. 467.

Škoda, P., Draper, P.W., Neves, M.C., Andrešič, D., Jenness, T., 2014. Spectro-
scopic Analysis in the Virtual Observatory Environment with SPLAT-VO.
Astron. Comp. in press. doi:10.1016/j.ascom.2014.06.001.

18

http://www.slideshare.net/HDFEOS/the-hdf-group-past-present-and-future
http://www.slideshare.net/HDFEOS/the-hdf-group-past-present-and-future
http://dx.doi.org/10.1145/1966895.1966900
http://dx.doi.org/10.1117/12.553054
http://fits.gsfc.nasa.gov/fitsbits/saf.93/saf.9306
http://fits.gsfc.nasa.gov/fitsbits/saf.93/saf.9306
http://dx.doi.org/10.1051/0004-6361:20053818
http://dx.doi.org/10.1051/0004-6361:20053818
http://fits.gsfc.nasa.gov/registry/continue/continue.pdf
http://fits.gsfc.nasa.gov/registry/continue/continue.pdf
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/
http://dx.doi.org/10.1093/mnras/sts612
http://dx.doi.org/10.1093/mnras/sts612
http://dx.doi.org/10.1046/j.1365-8711.1999.02111.x
http://arxiv.org/abs/astro-ph/9809122
http://dx.doi.org/10.1109/IEEESTD.1985.82928
http://arxiv.org/abs/1111.5855
http://dx.doi.org/10.1117/12.2056516
http://dx.doi.org/10.1117/12.2056516
http://arxiv.org/abs/1406.1515
http://dx.doi.org/10.1016/j.ascom.2014.06.002
http://dx.doi.org/10.1016/j.ascom.2014.06.002
http://arxiv.org/abs/1403.2801
http://dx.doi.org/10.1046/j.1365-8711.2002.05333.x
http://arxiv.org/abs/astro-ph/0202175
http://dl.acm.org/citation.cfm?id=2342875.2342881
http://arxiv.org/abs/1204.3055
http://dx.doi.org/10.1117/12.959785
ftp://legacy.gsfc.nasa.gov/fits_info/ofwg_minutes/ofwg_93jul21.txt
ftp://legacy.gsfc.nasa.gov/fits_info/ofwg_minutes/ofwg_93jul21.txt
http://arxiv.org/abs/1201.1345
http://dx.doi.org/10.1109/MC.1998.660194
http://dx.doi.org/10.1016/j.ascom.2014.06.001

Wallace, P.T., Warren-Smith, R.F., 2000. Starlink: Astronomical computing in
the United Kingdom. Information Handling in Astronomy 250, 93. doi:10.
1007/978-94-011-4345-5_7.

Warren-Smith, R.F., 1993. Calibration of large-field mosaics, in: Grosbøl, P., de
Ruijsscher, R. (Eds.), 5th ESO/ST-ECF Data Analysis Workshop, volume 47
of European Southern Observatory Conference and Workshop Proceedings.
p. 39.

Warren-Smith, R.F., Berry, D.S., 1998. World Coordinate Systems as Objects,
in: Albrecht, R., Hook, R.N., Bushouse, H.A. (Eds.), Astronomical Data
Analysis Software and Systems VII, volume 145 of ASP Conf. Ser.. p. 41.

Warren-Smith, R.F., Berry, D.S., 2012a. ARY – A Subroutine for Accessing
ARRAY Data Structures. Starlink User Note 11. Starlink Project.

Warren-Smith, R.F., Berry, D.S., 2012b. NDF – Routines for Accessing the
Exensible N-Dimensional Data Format. Starlink User Note 33. Starlink
Project.

Wells, D., Grosbøl, P., 1989. Floating Point Proposal for FITS. URL: http:
//fits.gsfc.nasa.gov/fp89.txt.

Wells, D.C., Greisen, E.W., 1979. FITS – a Flexible Image Transport System,
in: Sedmak, G., Capaccioli, M., Allen, R.J. (Eds.), Image Processing in
Astronomy, p. 445.

Wells, D.C., Greisen, E.W., Harten, R.H., 1981. FITS – a Flexible Image Trans-
port System. A&AS 44, 363.

Wood, A., 1992. CHI – Catalogue Handling Interface – Programmer’s Manual.
Starlink User Note 119. Starlink Project.

Wood, A., 1994. CATPAC – Catalogue Applications Package on UNIX. Star-
link User Note 120. Starlink Project.

Wright, G.S., Mountain, C.M., Bridger, A., Daly, P.N., Griffin, J.L., Ramsay
Howat, S.K., 1993. CGS4 experience: two years later, in: Fowler, A.M.
(Ed.), Infrared Detectors and Instrumentation, volume 1946 of Proc. SPIE.
pp. 547–557.

Wright, S.L., Giddings, J.R., 1983. Standard Starlink Data Structures (draft
proposal). Starlink Project.

19

http://dx.doi.org/10.1007/978-94-011-4345-5_7
http://dx.doi.org/10.1007/978-94-011-4345-5_7
http://fits.gsfc.nasa.gov/fp89.txt
http://fits.gsfc.nasa.gov/fp89.txt

	1 Introduction
	2 Hierarchical Data System
	3 The N-Dimensional Data Format
	3.1 Data arrays
	3.1.1 Data compression

	3.2 Character attributes
	3.3 Axes and world coordinate systems (WCS)
	3.4 History
	3.5 Extensions
	3.5.1 FITS headers
	3.5.2 Provenance
	3.5.3 Quality labels

	3.6 Library features
	3.6.1 Component propagation
	3.6.2 Data sections
	3.6.3 Chunking & blocking
	3.6.4 Automated Foreign-format conversion
	3.6.5 Automated history
	3.6.6 Event triggers

	4 Lessons learned
	4.1 Key successes
	4.1.1 Do not try to do everything
	4.1.2 Hierarchy can be useful
	4.1.3 Allow `private' data (namespaces)
	4.1.4 Standardized features aid application writers

	4.2 Other good features
	4.2.1 Round-tripping to other data formats
	4.2.2 Adoption of FITS header
	4.2.3 Duck typing
	4.2.4 Extensible model

	4.3 Extension Difficulties
	4.3.1 Extension complexity
	4.3.2 Name versus type

	5 Areas for improvement
	5.1 Quality masking
	5.2 Table support
	5.3 Flexible variance definitions
	5.4 Data checksums
	5.5 Character encodings
	5.6 Provenance growth
	5.7 Library limitations

	6 Social, Political and Economic Considerations
	6.1 Historical Perspective
	6.2 Current Environment
	6.3 Thoughts on the data format business

	7 Conclusions
	8 Acknowledgments
	Appendix A Early HDS-based data models
	Appendix A.1 Wright-Giddings IMAGE
	Appendix A.2 Figaro DST
	Appendix A.3 Asterix
	Appendix A.4 HDS TABLE structure used by FITS2NDF

	Appendix B Provenance data model
	Appendix C NDF structure serialization into FITS

