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Abstract

We present an application of a particular machine-learning method (Boosted
Decision Trees, BDT's using AdaBoost) to separate stars and galaxies in pho-
tometric images using their catalog characteristics. BDTs are a well estab-
lished machine learning technique used for classification purposes. They have
been widely used specially in the field of particle and astroparticle physics,
and we use them here in an optical astronomy application. This algorithm is
able to improve from simple thresholding cuts on standard separation vari-
ables that may be affected by local effects such as blending, badly calculated
background levels or which do not include information in other bands. The
improvements are shown using the Sloan Digital Sky Survey Data Release
9, with respect to the type photometric classifier. We obtain an improve-
ment in the impurity of the galaxy sample of a factor 2-4 for this particular
dataset, adjusting for the same efficiency of the selection. Another main goal
of this study is to verify the effects that different input vectors and training
sets have on the classification performance, the results being of wider use to
other machine learning techniques.
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1. Introduction

Object classification in photometric images is an important first step in
any analysis based on catalogs from such sources, as it constitutes a funda-
mental tool to build the set to be used for model comparison or parameter
estimation. In particular, for cosmological analyses, a significant fraction
of stars contaminating the galaxy sample can change the amplitude of the
galaxy power spectrum. If this misclassified population (represented by the
impurity fraction /) is spatially unclustered, the amplitude of the power spec-
trum is changed by a factor (1 — I')? and errors must be increased to account
for it, or a correction has to be applied. A well determined clustering ampli-
tude is key for measuring effects such as the galaxy bias from a specific galaxy
population (Coupon et al., 2012), understanding large-scale cosmological ef-
fects versus a systematic stellar contamination component (see for example
Thomas et al.| (2011) and Ross et al.| (2011)) or distinguishing cosmological
models with primordial non-Gaussianities (Giannantonio et al., 2014).

Star-galaxy classification has been addressed using many different mor-
phology based cuts since the existence of the first photographic plate surveys
(MacGillivray et al| (1976), Sebok| (1979), Heydon-Dumbleton et al.| (1989),
Maddox et al.| (1990)) and with more sophisticated techniques with the ad-
vent of digital imaging, machine learning methods (Odewahn et al.| (1992),
Weir et al.| (1995), Miller and Coe, (1996), Bertin and Arnouts (1996))) and
exponentially increasing computational power. Most of the implementations
have addressed the problem from the morphological point of view too. Multi-
band imaging surveys, such as the Sloan Digital Sky Survey (SDSS) or the
Canada-France-Hawaii Telescope Legacy Survey (CFHTLS), have opened
up the possibility of adding color information as input variables (henceforth
termed features) for the classifier. This is explored in Ball et al.| (2006) for
SDSS Data Release 3 (DR3) and in |Hildebrandt et al.| (2012)) for CFHTLenS
and to select a pure star sample for Milky Way studies using SDSS DR7 in
Fadely et al. (2012). Recently, in |[Malek et al.| (2013)), the authors performed
a study in classification using Support Vector Machines with VIPERS data as
training set, highlighting the importance of adding infrared data to enhance
the classification.

In this paper, we investigate the usage of AdaBoost Boosted Decision
Trees as star-galaxy classifiers, and test their performance in galaxy selection
against the standard SDSS morphological selection in SDSS Data Release 9.
We use this popular flavor of decision trees to address this issue for the first



time on optical catalog information, where we have broadened the scope of
input features, to use color and morphological information simultaneously.
Beyond optimizing the tree parameters, the goal is to study the influence of
color and morphological information separately, and the influence of different
sizes and depth of training sets, which are required by any empirical-based
classifier.

Decision Trees (DTs) have been explored thoroughly in the past for this
purpose, as described in Suchkov et al.| (2005) who were the first to apply a
DT to separate objects from the SDSS-DR2. Later, in Ball et al. (2006) an
axis-parallel decision tree was applied, using almost 500k objects from SDSS-
DR3 with an extensive exploration of parameters using as input features the
colors of the objects, for the range up to r = 20. In [Vasconcellos et al.
(2011)) the authors broadened the scope of this work by comparing 13 different
Decision Tree algorithms up to » = 21 and using SDSS DRT as testbed, but
limiting to morphological parameters.

Boosted Decision Trees, introduced in Freund and Schapire (1997)), have
been used very successfully in high energy physics Roe et al.|(2005) including
particle classification in MiniBooNE (Yang et al., 2005), CMS data for iden-
tification of the Higgs particle (CMS-Collaboration, [2012)), AMS (Aguilar;
et al., |2013) and Fermi (Fermi-LAT-Collaboration|, 2012). In optical astron-
omy, an application has been developed to extract photometric redshifts from
imaging surveys (Gerdes et al.; 2010)), outperforming implementations based
on neural networks. They have also been used for artifact identification in
supernovae searches (Bailey et al. 2007)).

The paper is structured as follows: in Section [2, BDTs and the specific
implementation we have used are detailed. In Section [3| we describe the
dataset employed, data features chosen, training, evaluation and test sets. In
Section [4) we detail the approach for the optimization of the tree parameters
for our specific problem, i.e., obtaining high purity galaxy samples. We
show our results for the best parameter set in Section [5| and we compare the
performances for different training sets and feature selection. Then we end
with some conclusions and possible lines of future work.

2. Boosted Decision Trees

A Decision Tree is a structured classifier which makes step-by-step choices
based on a single feature describing the data. A series of sequential cuts is de-
vised to separate the data into one of two categories: signal and background.



The value of the cuts, the feature used and the order in which they are ap-
plied, are established using a training set. The process continues through
these nodes until a final node (leaf) is reached.

The training process starts at a root node with an arbitrary choice of
feature and value of the cut. The separation into signal and background is
done according to this criterion and a separation power 6 is evaluated. In this
case, we use the Gini index to determine the performance of this particular
choice:

G=p-(1—p) (1)

where p is the purity of the selected sample (whether it be signal or
background). Using the index P for the parent node and the indices s and b
for the signal and background daughter nodes, we determine the best choice
of feature and value of the cut which maximizes:

0 = abs(Gp — (G + Gy)) 2)

Every input feature is scanned, using a predetermined number of cuts
for each (parameter ncuts), to look for the best pair at each node. Thus
the configuration of the tree continues until a minimum number of data
points in a particular node is reached (parameter nevmin) or if the number of
consecutive nodes reaches a predetermined maximum (parameter mazdepth).

Decision Trees are known to be a powerful but unstable learning method,
i.e., a small change in the training sample can translate into a large change
in the tree and the result of the classification. In addition, a theoretically
‘perfect’ classification can be achieved if the tree is allowed to develop fully
so that each leaf only contains signal or background data points, therefore
separating fully the dataset. Of course, this is only an accurate description of
the training set, which most probably will not be descriptive of new data, as
it has incorporated all the noise inherent to that specific data (overfitting).

Boosting is a way of enhancing the classification performance and in-
creasing the stability with respect to statistical fluctuations in the training
sample, as well as to avoid the overfitting problem. If a training data point
is misclassified in a leaf, a weight is assigned to that data point, according
to:

1—e¢
w =

(3)
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where € is the misclassification rate of the tree. The weight w is assigned
to all such data points and a second tree is generated anew, with the origi-
nal dataset using these weights instead (well classified values keep a weight
value w = 1). The process is iterated tens or hundreds of times (parame-
ter ntrees), with all the resulting trees combined into a forest’ to provide
significantly enhanced classification power. This is the so-called AdaBoost
technique (Freund and Schapirel 1997). With this forest of trees at hand,
the classification of a single data point is performed based on the majority
vote of the classifications done by each tree.

We have used the Toolkit for Multivariate Analysis framework (Hoecker
et al., 2007)), provided with the ROOT analysis package (Brun and Rade-
makers, 1997)), widely used in high energy physics with great success. This
framework has been used in other astrophysical applications such as the
ArborZ photometric redshift code described in |Gerdes et al.| (2010). It is
specially designed for processing the parallel evaluation and application of
different multivariate classification techniques, among which are AdaBoost
Boosted Decision Trees.

A first test was performed on a training sample based on SDSS DRT7
data (Etayo-Sotos and Sevilla-Noarbel 2013) using several of the methods
described in the package, with some standard, default values. The results
are shown in Figure [1| via the Receiver Operator Characteristic (ROC) curve
which measures the true positive rate versus the false positive rate of the
classifier for different thresholds. The BDTD method (which is a Boosted
Decision Tree with a prior step of input feature decorrelation) turns out to
have the best performance for this problem and training set. The decorrela-
tion step takes care of linear correlations between the input features (vector
x) by computing the square root S of their covariance matrix and construct-
ing a new input feature vector x’ = S~!x. The other standard methods
which were compared are:

e k-Nearest Neighbors (kNN ): a method which searches for the k closest
training events in feature space.

e Fisher Discriminant (BoostedFisher): a linear discriminant analysis in
which an axis in feature hyperspace is determined so that signal and
background are as separated as possible.

e Neural Network (MLP): a multi-layer standard perceptron implemen-
tation of this classic technique, in which a non-linear mapping of the



input feature vector is done onto a one-dimensional space as well. This
is done through a complex mesh of cells which react to the input vari-
ables and modify their final classification accordingly.

This result, coupled with the success of this specific implementation in re-
cent particle physics literature, pushed us to choose this machine learning
algorithm for our tests.

Random Forests are a particularly successful technique too in the field of
classification and regression in astronomy (see, e.g., Carrasco Kind and Brun-
ner| (2013))). They have better generalization properties as they can account
for some scatter from the training set to the application set. On the other
hand, AdaBoost BDTs can outperform slightly if the training set is repre-
sentative enough. In recent tests with photometric data both give similar
performances for classification (I.Sevilla-Noarbe and the DES Collaboration,
in prep. and|AlSayyad et al. (2015) as well as Y.Al-Sayyad, private communi-
cation). For supernovae candidate identification, random forests and boosted
decision trees also compete for best performance with variable results (see
Bailey et al.| (2007) or Goldstein et al. in prep.).

3. Dataset

We have used this implementation of BDTs on Data Release 9 (DR9)
of the Sloan Digital Sky Survey (SDSS) (Ahn et al., 2012)). The data was
downloaded using the DR9 Catalog Archive Server making a selection on
modelmag r from 14 to 23 and using only spectroscopically matched objects
from the photometric table, to provide a truth value for the purposes of
evaluating the algorithm.

Several shape features in the r-band and several magnitude measurements
in all bands for bands u, g, r, 7, 2 have been used.

We have limited the shape information to only one band as, in first ap-
proximation, the values for these parameters across bands should be quite
compatible. With respect to flux information, we have used a range of dif-
ferent magnitude types (fiber, model, petro, psf) for bands u,g,r,1, 2.

Finally, we include the photometric SDSS classification (type) for the
object, as well as the spectroscopic classification (class) which we use as the
reference (truth) value for performance in terms of purity and completeness
for this work.
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Figure 1: Efficiency vs purity plot (ROC curve) for different machine learn-
ing methods in TMVA applied to a SDSS DR7 training sample described
in [Etayo-Sotos and Sevilla-Noarbe| (2013). BDTD - decorrelated Boosted
Decision Trees - shows the best behavior.

In Table [I| we summarize all the photometric catalog features used. The
specific selection is provided in the Appendix and the resulting catalogs pro-
vides a total number of 2195172 objects.

One of the reasons for choosing this range of magnitudes and features
is also to allow for an easier comparison with the performances quoted by
(Vasconcellos et al.| 2011]), which we have used as reference. In this case, the
authors performed a thorough testing of different Decision Tree flavors. The
original AdaBoost Boosted Decision Tree implementation we chose is not
contemplated in their study, and we will quantitatively compare the results
obtained, though our goal is to understand the impact of different choices of
features and training set characteristics.

We randomly sampled the resulting catalog into training, evaluation and
test samples.

e 200000 objects went into the training sample to have a variety of smaller
training sets and measure training sample size dependency. From this
sample, the TMVA framework (see Section [4]) uses a specified amount



Table 1: List of input features of the SDSS catalogs used for the training.
Shape parameters taken only from the r band. Color parameters include all
types of magnitudes: fiber, Petrosian, model and PSF.

Parameter Type Description
Radius containing 50%
petToR50.x Shape of Petrosian flux
Radius containing 90%
petroR90.x Shape of Petrosian flux
Logarithm of likelihood of fit to
lnlstar.r Shape PSF shape
Inlexp.r Shape Logarithm of hkephood of fit to
an exponential profile
Logarithm of likelihood of fit to
lnldev.r Shape a deVaucouleurs profile
mel r Shape Ellipticity component 1
me2_r Shape Ellipticity component 2
mrrcc._r Shape Sum of second moments of object

Magnitude as measured
using the optical fiber aperture
petromag_[ugriz] | Magnitude Petrosian magnitude in each band
Magnitude as best measured by
either exponential or deVaucouleurs profile
psfmag_[ugriz] Magnitude | Magnitude as measured using the local PSF

fibermag_[ugriz] | Magnitude

modelmag_[ugriz] | Magnitude

mag_[u]-mag_[g] Color u — g color
mag_[g]-mag_|r] Color g — r color
mag_[r]-mag_[i

] Color r — i color
]

mag_[i]-mag_[z Color i — z color




for actual training. This is useful for the comparison of different codes
in the same execution.

e 800000 objects went into the evaluation sample, which we use to opti-
mize the classifier parameters.

e Therest (1195172) conform the testing sample which is the one actually
used to evaluate real performance.

In Figure [2| the magnitude distribution for the objects in the catalog is
shown, in this case, for the training set (same relative distributions as for the
evaluation and testing sets).
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Figure 2: Number count distribution of stars and galaxies in the training set
for the downloaded SDSS DR9 catalog.

4. Methodology

To measure performance, we define the efficiency (E) and impurity (1) of
the galaxy sample as:
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where (Ngglected Nsciected) is the number of true (stars, galaxies) selected

by the classifier at magnitude m and N;gfglmes corresponds to the total sample
of true galaxies. True stars and galaxies are determined according to its
spectral classification in the SDSS catalog via the class parameter.

These metrics show a method of direct comparison against science case
requirements, usually expressed in these terms (or, equivalently, completeness
and purity). In our case, we will be concerned with obtaining the lowest
impurity from stars possible in our galaxy sample, given a fixed efficiency
value.

To optimize and test the behavior of this classifier, we have followed these

steps:

1. Train and evaluate on the training and evaluation sets in a grid of BDT
parameters. Select best set in terms of performance (impurity level for
a given efficiency).

2. Evaluate the performance on the evaluation set for different training
set sizes and depths, as well as the computation times.

3. Test the chosen configuration against the photometric type performance
provided by the SDSS catalogs with the test set.

4. Verify the impact of a different choice of features assuming the same
parameters and training set size are valid. We will implicitly assume
here the independence of the BDT parameters with respect to these
choices.

The BDT parameters to be tuned are described below. The values of the
grid are shown in Table , based on previous experience (Etayo-Sotos and
Sevilla-Noarbe, 2013):

e ntrees: Number of decision trees involved in the computation.
e nevmin: Minimum number of events held in a leaf.

e maxdepth: Maximum size of the tree, in terms of steps from the first
decision.
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Table 2: List of Boosted Decision Trees parameters as named in the TMVA
environment and the values for which their performance is evaluated. In bold
face, the selected values after parallel coordinate analysis (see text).

Parameter Range
ntrees 200,400,1000,2000,3000
nevmin 10,50,100,400,1000
maxdepth 5,10,15,20,30
ncuts 20,50,200,500,1000

e ncuts: Number of bins used for the cuts in each feature being tested.

This grid was explored by submitting multiple batch jobs to a cluster
both for the training and evaluation sets, as defined in Section [3] We have
narrowed down to this particular set of values in each case after a test in a
wider range, the limits being imposed by performance and relative gain with
respect to execution time.

The computation was performed using the Euler cluster at the CIEMAT
Spanish national lab, in Madrid. This cluster is composed of 144 nodes with
2GB RAM and two Quad-core Xeon processors each at 3.0 GHz clock speed.

5. Results and discussion

We will now use the impurity metric defined in equation [5| as the value
to compare the performance of each Boosted Decision Tree set we produce,
as well as for the SDSS type parameter. In order to compare fairly with the
latter we have adjusted the selection cut for each BDT so that its efficiency
(equation M) was within 0.1% of the efficiency found for the type classifier at
that particular magnitude bin (in modelmag r).

In this section we detail the strategy to select the parameters for the BDT,
as well as the impact of a varying training set size, composition, depth and
feature selection, which can also provide hints for the expected performance
of other machine learning methods which extract the same information and
relationships in the data.

5.1. Selection of optimal parameters for the BDT's

We have executed the 625 jobs of the parameter grid, corresponding to
all combinations of parameters in Table [2)), and obtained a 9-element vector
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with the impurity level for each magnitude bin (modelmag in r-band). We se-
lect the parameter set which provides the best (lowest) overall impurity level
in the evaluation set (boldface in Table [2). In order to do so, we visualize
the performance of all possible combinations through a parallel coordinates
plot such as the one shown in Figure |3 This type of representation allows
showing a set of points in a N-dimensional space, with four input parameters
and a 9-component vector output, so that N lines are drawn, each encom-
passing the whole range of each input and output value. A point in this
N-dimensional space is represented as a polyline with vertices on the parallel
axes. In our case, the first four points connected by the polyline represent
the input parameter values of Table [2, and are connected by continuing the
polyline to the 9-output components of the impurity vector, which is the
metric we are using. With this tool, it is possible to distinguish the overall
performance of a particular combination of input values for the parameters
against the background of other possible combinations. In the figure, the
specific combination which provides a good overall impurity level through-
out the magnitude range is shown with a thicker line. This combination is
highlighted in boldface in Table

Examples of the effect of the change of specific features are shown in Fig-
ure[d] The increase in the number of trees, tree depth and number of cuts in
each feature decrease the impurity level achieved until a certain stable value
beyond which there is no significant gain though we incur in an execution
time penalization as well as increasing the risk of overfitting (although the
boosting approach tries to avoid this).

The training set size used was subselected to include 30000 randomly-
picked galaxies and 6000 stars likewise chosen. This size provides a suitable
trade-off between computation time and training performance. We will show
in Section [5.2] the results when these values are modified.

5.2. Dependence with training set size

The number of samples, both for signal and background, is directly related
to the performance of the classifier, as an increasingly varied array of galaxy
and star types are covered. The fact that we have used an unbiased sample,
in the sense that no targeting has been specifically done for these objects,
and covering a wide area, which diminishes the impact of sample variance,
makes this catalog an exceptional resource, up to the available depth. These
characteristics allow us to understand the impact of the training sample solely

12
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Figure 3: Parallel coordinates visualization showing the relationships of the
four input parameters (first four axes) with the impurities obtained at each
magnitude range (last nine axes). The thicker line corresponds to the choice
of parameters and the resulting impurity levels on the evaluation set, chosen
for this paper.

in terms of its size, without worrying about the specific kinds of objects which
populate the sample.

In Figure |5| we show the evolution of the impurity level (our chosen com-
parison metric) with respect to the size of the training set, as well as the
relative mixing of galaxies and stars. In Table (3| the training times for dif-
ferent source and background sample sizes are shown.

By studying both results, a good compromise in terms of speed and im-
purity metric is the choice of using 30000 galaxies and 6000 stars. Increasing
the number of galaxies does not improve things much and on the other hand,
not providing sufficient number of stars to have a well balanced sample can
ruin our impurity performance, as the classifier will tend to classify objects
as galaxies. This can be seen in the lower right panel of Figure [5| or in
any panel, when the available star sample is only populated by 500 objects,
leaving a small star-to-galaxy ratio which will tend to make objects to be
classified predominantly as galaxies, as some specific stellar types may have
been randomly left out or are underrepresented.
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Figure 4: Impurity level comparison with variations of a single parameter.

Note well that the process of selecting the most adequate training set size
and mix, as well as the one with best performance (Section has been
through an iterative process in which a default set of parameters were used
with varying sample size, then the most adequate parameters were chosen,
again training sample size sensitivity was reanalyzed, etc.
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Figure 5: Impurity level for 3000 (upper left), 10000 (upper right), 30000
(lower left) and 100000 (lower right) galaxies in the training set, and variable

star sample.

Table 3: Training times (in seconds) for different choices of galaxies and
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stars, source and background respectively, in the training sample.

Training time (s) Nb. Galaxies in training
Nb. stars in training | 1000 | 3000 | 10000 | 30000 | 100000
500 36 89 201 599 2550
3000 118 | 203 280 709 2980
6000 253 | 346 355 795 3030
12000 47 | 322 489 1160 3230

5.3. Dependence with training set depth

A common circumstance that many present and future photometric sur-
veys will face is the lack of adequate training for their machine learning based
classifiers, due to the unavailability of overlapping areas with spectroscopic
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information reaching the full survey depth. In this section, we experiment
with variations in the availability of training samples depending on the mag-
nitude limit we impose to them, and verify the impact on the impurity of
the galaxy sample.

In Figure [0] the results for different choice of training depths are shown.

50

g 5
3 455 Full depth
E e Training depth < 19.5
2 40 Training depth < 20.5
5 353 ----------- Training depth < 21.5
g F »  Standard SDSS cut
30
250
ZUE—
15;—
10F-
5E-
= - -
O I o PO PR I TP reerrsil AP APRNETET PRPRPRRR B
14 15 16 17 18 19 20 21 22 23

Model mag r-band

Figure 6: Effect of the usage of different depths for the training sample,
defined in terms of a limit to modelmag r.

It can be verified that such variations are indeed significant and more
important specially at magnitudes deeper than where training was available.
In fact, a morphological cut approach, such as the SDSS photometric type
can be as valid as a machine learning method employing multiple features,
if the training is not deep enough.

5.4. Dependence with features

It is interesting to explore what the different features from Table [1| con-
tribute to the overall result. We separate for this study the available features
into shape-related, magnitude-related and color-related, as specified on the
second column of the aforementioned table.

In Figure [7] the impact of different choice of features are shown.
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Figure 7: Effect of the usage of different kinds of input features on the galaxy
purity classification, as compared with the SDSS type parameter, based on
"flux concentration’ (modelmag - psfmag).

Color and magnitude information are clearly the most important sources
from which the BDTs cull their information. Using shape features (light
radii, ellipticity, fit likelihoods to models), on the other hand, cannot com-
pete with the clues provided by a concentration parameter, which proves to
be a robust measurement. Indeed, adding this combination to the shape
input features is an important improvement to the classifier, and provides a
similar response. Therefore, when using single band information, a simple
cut on a 'concentration’-like parameter (e.g. differences in fluxes from PSF
magnitudes and model magnitudes, or the SPREAD MODEL parameter show-
cased in |Desai et al.| (2012) and |[Soumagnac et al. (2015)) should be enough.

5.5. Fvaluation against SDSS DRY photometric type

To test independently of the training and evaluation set, we have used
the test set, with the chosen parameters and training size. The results are
shown in in Figure [§ to be compared with the results for the photometric
type provided with the catalog. This classifier has a similar performance
to the standard psfmag-cmodelmag > 0.145 cutﬂ Our suggested BDT ap-

https://www.sdss3.org/dr8 /algorithms// classify.php
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proach provides an improvement of 2 to 4 times on the impurity level, with
this relatively simple training approach, using color, magnitude and shape
information.

— BDT

#  Standard SDSS cut

Impurity level(%)

-
o

e b b b b b b b b by
14 15 16 17 18 19 20 21 22 23
Model mag r-band

Figure 8: Comparison of the impurity in the galaxy sample in SDSS DR9 for
the standard type classifier, and the method presented in this paper using
Boosted Decision Trees.

We can compare our results with the ones reported by [Vasconcellos et al.
(2011) by fixing the efficiency values to approximately the same ones they
show in Figure 6 of their paper. We obtain impurity levels around or below
1% (except of ~ 2% at the magnitude bin of 14-15), maybe slightly smaller
than what it is shown for their DT classifier. However, their dataset is
shallower, and their choice of parameters is morphological, further evidencing
the conclusions of our work in terms of dependency of performance with depth
and feature selection.

The separation power of the BDT method can be qualitatively appreci-
ated in Figure [9]

6. Conclusions

In this work we have showed the improvements that we obtain by applying
AdaBoost Boosted Decision Trees on SDSS DR9 photometric data to classify
objects as stars or galaxies, using colors as well as morphological features,
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Figure 9: PSF - model magnitude (left) and BDT (right) separation variables
of spectroscopic stars and galaxies, as a function of the modeled magnitude
in the r band (for SDSS DR7 objects, from Etayo-Sotos and Sevilla-Noarbe
(2013)))

using a prior feature decorrelation step. This technique, very successful in
other fields akin to astrophysics, has never been applied, to our knowledge,
for this optical astronomy application. Using spectroscopic data from the
survey itself, we have tuned the parameters for best performance, and then
compared against the usage of the standard type photometric parameter from
the SDSS catalogs, obtaining up to a factor 4 improvement in the impurity
of the galaxy sample.

In addition to this we have made a few variations on the training sample
to verify the impact on the classification. These results have general validity
for other machine learning classifiers, which rely on the same available catalog
information.

The BDT parameter choice has been done scanning through different
values, and using different training set sizes. Using a parallel coordinates
plot for this kind of analysis has proven to be a very simple and useful tool
which is widely extensible to other machine learning approaches. For this
unbiased sample, which would cover a varied array of galactic and stellar
types, we notice that beyond 30k objects for training, the improvement is
not relevant.

Training set mixture is a desirable feature of the training set, as too many
galaxies in the sample tend to fool the classifier oftentimes into assigning stars
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as galaxies. Therefore, a relevant presence of background objects (in our case,
at least 20%) is necessary to ensure an applicable training.

Colors and magnitudes are the most important features used by the BDT's
to improve the performance over the morphology-based SDSS type, though
the latter, proves to be a simple and robust figure (based on concentration
of light) which is easy to implement and can be sufficient for many studies,
as has been proven in the literature. Using light concentration together with
shape information in this machine learning implementation simply converges
to the standard type classification. It is the addition of information of color
space that gives the additional edge.

Extensions to this work include new object types such as quasars (more
relevant on next generation deeper surveys) or image artifacts. Including
photometric redshift as an input feature is also an alternative avenue to pur-
sue as a 'color’ selection. Finally, a veritable improvement of this classifier
would be incorporating it into a Bayesian framework. This way, the com-
putation of correlation functions for example, that made use of the survey
galaxies would not have to have a sample previously selected, but incorpo-
rate all objects with an associated probability. See for example Fadely et al.
(2012), (Carrasco Kind and Brunner| (2014), Kim et al. in prep. This would
be an asset too for weak lensing measurements, in which a contamination
of the shear catalog by stars introduces an additive bias in the shear-shear
correlation function (E. Sheldon, private communication).

The code used is made availablelﬂ with this publication. I requires previous
installation of the ROOT framework]l We used version 5.18 for all our tests.
The dataset can be downloaded using the query in the Appendix and is also
available onlind’l
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Appendix: Query to obtain the catalog

SELECT

p.ra, p.dec

p.petromag u, p.petromag g, p.petromag.r, p.petromag i,
p.petromag_z, p.modelmag u, p.modelmag g, p.modelmag.r,
p.modelmag i, p.modelmag z, p.psfmag u, p.psfmag.g,

p.psfmag.r, p.psfmag_i, p.psfmag_z, p.fibermag u,

p.fibermag. g, p.fibermag r, p.fibermag_ i, p.fibermag z,
p.petrorad.r, p.petrorb50.r, p.petror90_r, p.lnlstar.r, p.lnlexp.r,
p.1lnldev.r, p.melr, p.me2.r, p.mrrccr, s.class

into mydb.SGtable

from dr9.PhotoPrimary

AS p

JOIN dr9.SpecObj

AS s

ON s.bestobjid = p.objid

WHERE p.modelmag r between 14.0 and 23.0
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