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Abstract

The cosmic web is a highly complex geometrical pattern, with galaxy clusters at the intersection of filaments and
filaments at the intersection of walls. Identifying and describing the filamentary network is not a trivial task due to the
overwhelming complexity of the structure, its connectivity and the intrinsic hierarchical nature. To detect and quantify
galactic filaments we use the Bisous model, which is a marked point process built to model multi-dimensional patterns.
The Bisous filament finder works directly with the galaxy distribution data and the model intrinsically takes into account
the connectivity of the filamentary network. The Bisous model generates the visit map (the probability to find a filament
at a given point) together with the filament orientation field. Using these two fields, we can extract filament spines from
the data. Together with this paper we publish the computer code for the Bisous model that is made available in GitHub.
The Bisous filament finder has been successfully used in several cosmological applications and further development of the
model will allow to detect the filamentary network also in photometric redshift surveys, using the full redshift posterior.
We also want to encourage the astro-statistical community to use the model and to connect it with all other existing
methods for filamentary pattern detection and characterisation.

Keywords: methods: statistical, methods: data analysis, large-scale structure of universe, Markov-chain Monte Carlo
methods

1. Introduction

Galaxies, the main building blocks of our Universe, are
not uniformly distributed in space. Instead, they form var-
ious structures: groups, clusters, chains, filaments, sheets,
etc. Galactic filaments are the most prominent part of
such a structure, containing nearly half of the total mass
of the Universe (Jasche et al. 2010; Tempel et al. 2014c).

Until now, the properties of galactic filaments have not
yet been utilised fully. Compared, e.g., with galaxy clus-
ters and cosmic voids, filaments are very rarely used as a
probe of cosmology and also the role of filaments in galac-
tic evolution is poorly known. In principle, statistics of
galaxy filament properties, such as their length, width and
connectivity, can be used to measure the large-scale struc-
ture and to test cosmological as well as galaxy formation
models. However, detection and definition of filaments
has remained problematic so far. Although filamentary
structures are easily recognised visually in galaxy survey
data, their complicated hierarchical nature does not allow
a straightforward mathematical extraction and quantifica-
tion.

A variety of methods has been proposed (e.g. based on
Minkowski functionals, local topological measures, mini-
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mal spanning trees, tessellations, skeleton analysis, kine-
matics) that attempt to tackle the problem, briefly over-
viewed by Cautun et al. (2014). These include the methods
that classify all the cosmic web elements simultaneously
(Hahn et al. 2007; Aragón-Calvo et al. 2010; Falck et al.
2012; Hoffman et al. 2012; Smith et al. 2012; Cautun et al.
2013; Leclercq et al. 2015) or are specifically meant for fil-
ament detection (Bond et al. 2010; González and Padilla
2010; Sousbie 2011; Alpaslan et al. 2014; Chen et al. 2015).

The first attempts of filament identification have al-
ready given some surprising results. For example, fila-
ments have been found in voids (Beygu et al. 2013) and
other low-density environments (called tendrils: Alpaslan
et al. 2014). These examples demonstrate the potential
of filament studies to take us closer to understanding the
structure formation in the Universe.

In the current paper we use the Bisous model, a prob-
abilistic filament finder that takes an advantage of the
Bayesian framework and is straightforward to apply to ob-
servational datasets. Our approach to filament detection
uses a marked point process that takes into account the
connectivity of the filamentary network, i.e. whether or
not a given filament is linked to other filament(s). The
mathematical basis of the method has been described and
proved in Stoica et al. (2005a,b, 2007b, 2010, 2014). This
model for filament detection has been developed especially
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for application to observational datasets in cosmology. In
Tempel et al. (2014c) we applied the Bisous model to the
Sloan Digital Sky Survey (SDSS) data and published a
catalogue of filaments for the SDSS1.

The Bisous model fits well in a Bayesian framework
that may be considered as an advantage over the conven-
tional methods. The Bisous model does not attempt to
classify the web into strict components. Instead, it assigns
a confidence estimate to each detected structure. The fila-
mentary network is modelled as a whole and the connectiv-
ity between structures is intrinsically implemented in the
model. To tackle the large parameter space and global op-
timisation, the model uses the Markov-chain Monte Carlo
(MCMC) sampling together with simulated tempering and
simulated annealing.

Tempel et al. (2014b) tested the Bisous model on sim-
ulated data. Although they used only the spatial distri-
bution of galaxies/haloes as input, the detected filaments
turned out to follow also the underlying velocity field of
the simulation, thus indicating that the recovered Bisous
filaments are real dynamical structures, not just appar-
ent configurations of galaxies. Similar conclusions were
reached by Libeskind et al. (2015), using observations of
the local Universe.

Filaments are in the non-linear dynamical stage of evo-
lution between the linear and fully virialised objects, and
filament evolution in simulations has gained a lot of fo-
cus during recent years. For example Bond et al. (2010)
analysed the evolution of the distribution of filaments and
their properties. They found that most of the filaments
are already in place from high redshifts and that most of
their evolution is restricted to changes in filament size.
Choi et al. (2010) showed that filament widths are most
sensitive to the non-linear growth of structure. Recently,
an in-depth study of galactic filaments in simulations was
made by Cautun et al. (2014). To move further on, the
evolution of actual filaments detected from observations
has to be analysed and compared with simulations. This
requires advanced observational methods for filament iden-
tification, such as the Bisous model.

During recent years, the Bisous model has been exten-
sively used to analyse the filamentary structure in general
and to study the influence of the filamentary environment
on galaxy/group evolution and formation. Tempel et al.
(2013) and Tempel and Libeskind (2013) showed that the
alignment of major axes of galaxies with respect to galactic
filaments depends on galaxy morphology. Guo et al. (2015)
showed that isolated galaxies that are located in filaments
have up to two times more satellites and the satellites tend
to be aligned with galactic filaments (Tempel et al. 2015).
The alignment of structures seems to be an universal trend,
having been confirmed in various studies since Tempel and
Tamm (2015) showed that galaxy pairs in filaments are
very well aligned with the underlying structure. The anal-
ysis presented in Tempel et al. (2014a) indicates that the

1The catalogue is available at http://cosmodb.to.ee.

distribution of galaxies and groups along the filaments has
also some regularity. These successful applications of the
Bisous filament finder form a good ground to develop the
model further for other astronomical applications.

The aim of this paper is to review the model presen-
tation, in order to emphasise those mathematical and ap-
plied aspects of the Bisous model directly linked with the
computational use and numerical implementation of the
model. We also want to encourage the astro-statistical
community to use the Bisous model, and to compare and
connect this model with other methods for filamentary
pattern detection and characterisation.

The general outline of the paper is the following. In
Sect. 2 we give a brief description of the mathematical
background and tools used. Sect. 3 explains the motiva-
tion and strategies how to choose the parameters for the
Bisous model. Sect. 4 outlines the algorithm used to ex-
tract single filament spines from the model output. An ex-
ample is given in Sect. 5 and the conclusions are presented
in Sect. 6. The computer code for the Bisous filament
finder is made available through GitHub2 and Appendix
A gives a brief description how to download and install the
program.

2. Mathematical tools

In this section we briefly describe the main tools we
use to detect the filamentary pattern in the galaxy distri-
bution. We outline the key points that are important to
understand the code for the Bisous model. The description
follows Tempel et al. (2014c), for details of the mathemat-
ical model we refer to Stoica et al. (2005a, 2007b, 2010).

2.1. Bisous model

The marked point process we use for filament detec-
tion is different from conventional point processes used in
the field. The Bisous process models the structure out-
lined by galaxy positions, not the distribution of galaxies
themselves.

We designate K as a finite volume (0 < ν(K) < ∞),
where a finite number of galaxies (d = {d1, . . . , dn}) are
observed. Our aim is to model the filamentary network
outlined by the positions of galaxies.

The main hypothesis of our work is that the filamen-
tary network can be modelled by a random configuration of
connected and aligned cylinders – a realisation of a marked
point process. Here the points (objects) are the centres
of cylinders and marks are the length and orientation of
cylinders (given with an uniform law). Note that this is
different from the common use of point processes in cos-
mological studies, where the points are centres of galaxies.
In the Bisous model, the centres of galaxies are just used
to calculate the probability for filaments (see below).

2https://github.com/etempel/bisous.
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Figure 1: A two-dimensional projection of a cylinder (solid rectangle)
with its shadow (dashed lines) within a pattern of galaxies (points).
The attraction regions are shown as spheres. The exact shape of the
cylinder, its shadow, and the attraction regions depend on the model
parameters.

A cylinder is an object given by its centre k ∈ K and
the shape parameters. The shape of a cylinder is char-
acterised by its radius r, the length h, and the orienta-
tion vector ω =

(√
1− τ2 cos(η),

√
1− τ2 sin(η), τ

)
. We

denote the cylinder together with its mark (the set of pa-
rameters) by s(y) = s(k, r, h, ω) ⊂ K.

Each cylinder s(y) has two end points. Around these
points spheres of radius ra are centred, forming the attrac-
tion regions. These regions are used to define the connec-
tivity and alignment rules for the model (see Sect. 2.2).
The basic cylinder within a field of galaxies is illustrated
in Fig. 1.

Let y = {y1 = (k1,m1), . . . , yn = (kn,mn)} be a con-
figuration of cylinders, where the cylinder mark is denoted
by mi. The “simplest” random configuration of cylinders
is the stationary Poisson process of unit intensity. This
process is constructed in two steps. First, the number of
cylinders n is chosen according to a Poisson distribution
of the parameter ν(K). Then the cylinder marks (lengths
and the orientation vectors) are chosen, independently and
identically distributed with ν(M), the given marks distri-
bution over the marks space M (see Tempel et al. 2014c).
In order to obtain a filamentary network composed of con-
nected and aligned cylinders, we define the probability
density:

p(y|θ) = α exp [−U(y|θ)] (1)

where θ is the vector of parameters, α is the normalising
constant, and U(y|θ) is the energy function of the system.

The model assumes that locally galaxies may be grouped
together inside rather small cylinders that connect and
align. Following these ideas the energy function in (1) can

be specified:

U(y|θ) = Ui(y|θ) + Ud(y|θ), (2)

where Ui(y|θ) is the interaction energy controlling the align-
ments and connections (see Sect. 2.2) and Ud(y|θ) is the
data energy controlling the positioning of the cylinders in
the galaxy field (see Sect. 2.3).

In order to specify the model, we have to choose its pa-
rameters. Here, the Bayesian framework is adopted, where
the prior for the parameters is denoted by p(θ) (Stoica
et al. 2007a,b, 2010). With all these elements, we con-
struct the joint probability density p(y, θ) and we propose
for the filamentary pattern estimator the cylinder config-
uration maximising it.

2.2. Interaction energy

The interaction energy term depends on the relative
position of the cylinders forming the network and it can
be expressed (in general form) as

Ui(y|θ) = −nk(y) log γk −
2∑

s=0

ns(y) log γs, (3)

where nk(y) is the number of repulsive cylinder pairs and
ns(y) is the number of cylinders connected to the network
through s end points. For filament detection, repulsive
cylinders are forbidden, hence we may consider γk = 0,
so for repulsive cylinders it’s associated energy is infinite.
The variables log γs are the potentials associated with the
0-, 1- and 2-connected cylinders.

Two cylinders y1 and y2 (yi = (ki, ri, hi, ωi)) are con-
nected if they attract each other, do not reject each other,
and are well aligned. Two cylinders attract each other
if the distance between the cylinder end points is smaller
than the interaction radius ra (see Fig. 1). Two cylinders
are well aligned if |ω1 · ω2| ≥ τ‖. We say that two cylin-
ders reject each other if their centres are closer than the
minimum allowed distance between cylinders, d(k1, k2) <
(h1 + h2)/2 − ra. Two cylinders are considered repulsive,
if they are rejecting each other, if they are not orthogo-
nal and if they have roughly the same scale (1/rratio <
r1/r2 < rratio), where the ratio of the scales rratio > 1 is
a predefined parameter. Two cylinders are considered to
be orthogonal if |ω1 · ω2| ≤ τ⊥. The constants τ‖ ∈ (0, 1)
and τ⊥ ∈ (0, 1) are predefined parameters to allow a cer-
tain range of mutual angles for aligned and perpendicular
cylinders. See fig. 2 in Tempel et al. (2014c) for illustra-
tions of these definitions.

2.3. Data energy

The data energy term describes the local properties of
a filament. For that, we use the positions of galaxies to
consider whether a cylinder is a fragment of a filament
or not. We use several criteria that should be fulfilled
simultaneously. The first one is that galaxies should be
distributed roughly uniformly along the main axis of the
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cylinder. The second one is that inside the cylinder the
number density of galaxies should be higher than in the
close-by neighbourhood (in the shadow) of the cylinder.
The third one is that the galaxies belonging to the filament
should be concentrated along the cylinder’s axis.

In the model, the data energy of a configuration of
cylinders y is defined as the sum of the energy of each
cylinder:

Ud(y|θ) = −
∑
y∈y

v(y), (4)

where the potential function of the cylinder y is denoted
by v(y).

In order to formulate these requirements we use a test
based on counts of galaxies. In short, the score for the test
is defined as

phyp = pu(y) · ph(y), (5)

where pu gives the p-value for the “local uniform spread”
and ph gives the p-value for the “locally high density”.
Both these two tests depend on two more parameters,
called the threshold densities ρu and ρh, respectively. All
the details of the tests are given in Tempel et al. (2014c)
and Stoica et al. (2014).

Additionally, to take into account the spatial distribu-
tion of galaxies in a filament we introduce the cylinder
concentration

σ2 =
1

n− 2

n∑
j=1

δ2j
r2
, (6)

where n is the number of galaxies in a cylinder, δj is
the distance to cylinder’s main symmetry axis for the jth
galaxy, and r is the radius of the cylinder.

Finally, the cylinder potential function v(y) puts to-
gether all these criteria

v(y) =

{
chyp log [phyp(y)]− cconσ2(y) if n ≥ nmin

−∞ if n < nmin

(7)

where nmin ≥ 3 is a given threshold value, and the param-
eters chyp ≥ 0 and ccon ≥ 0 are introduced to make the
location and the concentration tests numerically compara-
ble. Clearly, the higher v(y) is, the “better” is the place
to put the cylinder.

2.4. Simulation of the model

To search for the filaments in the galaxy distribution,
we need to sample from the joint probability density p(y, θ).
In this purpose we are using an iterative MCMC algorithm,
where one iteration consists of two steps. First, we choose
a value for the parameter θ, from p(θ). Second, condition-
ally on θ, we use the Metropolis-Hastings (MH) algorithm
to sample a cylinder pattern from p(y|θ) (Geyer and Møller
1994; Geyer 1999).

The MH algorithm used is constructed using three types
of moves (van Lieshout and Stoica 2003; Stoica et al. 2005a,
2007b, 2010): birth (proposing with a probability pb to

add a new cylinder), death (proposing with a probabil-
ity pd to delete an existing cylinder), change (proposing
with probability pc to modify the parameters of an ex-
isting cylinder). All the practical details concerning the
implementation of the MH dynamics are given in Tempel
et al. (2014c) and Stoica et al. (2014); for a complete de-
scription we refer to van Lieshout and Stoica (2003) and
Stoica et al. (2005a).

2.5. Annealing and tempering

The MH sampling mechanism is integrated into simu-
lated annealing and simulated tempering algorithms.

Simulated annealing is a global optimisation method.
Simulated annealing iteratively samples from pn(y, θ) ∝
[p(y|θ)p(θ)]1/Tn , while the temperature Tn slowly decreases
toward zero. For marked point processes, the convergence
of a simulated annealing algorithm for a logarithmic cool-
ing schedule was proven by Stoica et al. (2005a). In this al-
gorithm, the temperature is lowered as Tn = T0/(log n+1),
where T0 is the initial temperature and Tn is the temper-
ature at the iteration n.

Simulated tempering (Marinari and Parisi 1992) is a
multi-temperature simulation technique, where the tem-
perature is changed along a fixed temperature ladder. The
temperatures are chosen from the interval [Tmin, Tmax], so
that Tn+1/Tn = const. In theory, simulated tempering
requires previous knowledge about the system energies at
each temperature, which can be computed during a trial
simulation. Another approach is to compute the weights
for temperature changes on-the-fly. We utilise the last ap-
proach and determine the weights for simulated tempering
as described in Nguyen et al. (2013).

Here we combine both schemes. Since simulated tem-
pering has rather good mixing properties, we use simu-
lated tempering before the simulated annealing stage (see
Sect. 4). This strategy helps us to save computational
time, since simulated annealing requires for convergence
the algorithm initialisation at very high temperatures.

3. Choosing the parameters for the Bisous model

All the parameters that are needed in order to run the
code are given in the configuration file and are explained
in the manual provided with the program. Table 1 shows
the main parameters that affect the detection of filaments
together with their suggested values. In this section, we
give hints for the motivation and strategies, how the pa-
rameters that influence the detected filamentary network
may be chosen.3

3Note that choosing an optimal parameter values is an open math-
ematical problem.
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Table 1: Parameters that affect the code and should be chosen based on the data and problem at hand. The suggested value (range of
values) for each parameter is given in the last column. See text for more details how to choose the optimal parameter values. The list of all
parameters is given in the manual. Parameter names are as used in the configuration file (see Appendix A).

Parameter Short description Value

MCMC parameters
nr cycles Number of MCMC cycles. Temperature is adjusted after every cycle. 10 000
nr moves Number of moves in one cycle. Temperature is fixed during one cycle. 10 000a

every cycle to output Cylinder configuration is extracted after every nth cycle. 1000
cooling schedule Temperature cooling schedule for MCMC. [1, 2, 3, 4]b

temp initial Initial (maximum) temperature. 2.0 . . . 5.0c

temp final Final (minimum) temperature. 0.3 . . . 1.0c

prob birth Proposal probability for birth moves in MH. 0.5
prob death Proposal probability for death moves in MH. 0.3
prob change Proposal probability for change moves in MH. 0.2
prob birth connected Proposal probability for connected birth for a birth move. 0.8
change delta r Maximum shift of the cylinder centre for a change move. 0.3 . . . 0.8d

change delta cosi Max. cosine between the old and new orientations for a change move. 0.95
Data term parameters

min pts Number of minimum points inside a cylinder. 3 . . . 5
cyl rad min Minimum radius of a cylinder (in physical units). 0.3 . . . 0.5e

cyl rad max Maximum radius of a cylinder (in physical units). 0.5 . . . 1.5e

cyl len min Minimum length of a cylinder (in physical units). 3.0e

cyl len max Maximum length of a cylinder (in physical units). 10.0e

cyl shadow rad Size of the cylinder shadow region in the units of cylinder radius. 1.0
hyptest uniform den Assumed uniform density for hypothesis testing. 3.0 . . . 6.0f

hyptest local den Assumed local density contrast for hypothesis testing. 3.0 . . . 6.0f

variance coeff Variance coefficient for tje data term. 0.5 . . . 1.0f

hypothesis coeff Hypothesis coefficient for the data term. 0.5 . . . 1.0f

Interaction term parameters
rad connection Connection radius for cylinders. 0.5
cos orthogonal Maximum cosine for orthogonal cylinders. 0.5
cos parallel Minimum cosine for parallel cylinders. 0.85
lg gamma 0/1/2 Interaction energy values for 0/1/2-connected cylinders. g

Spine extraction parameters
minimim visitmap value Minimum visit map value for filament spines 0.05 . . . 0.3
minimum orientation strength Minimum orientation strength for spine detection. 0.6 . . . 0.8

a The number of moves in one cycle depends largely on the dataset used. The number of moves should be larger
than the actual number of cylinders in one configuration.

b The available options are: 1 – constant temperature; 2 – simulated annealing; 3 – simulated tempering; 4 –
combined simulated tempering plus simulated annealing.

c The simulating temperature affects the number of 0-, 1-, 2-connected cylinders in a configuration. These values
should be adjusted based on a test simulation.

d The maximum cylinder shift is given in the units of connection radius. It should be smaller than the connection
radius.

e The cylinder radius determines roughly the scale of filaments that should be detected. The cylinder radius and
size should be chosen so that the cylindrical shape of the cylinder is maintained.

f These values affect the balance between the different components of the data term. These should be chosen based
on the data potential distributions (see Fig. 3).

g The interaction energy values affect most severely the balance between the 0-, 1-, 2-connected cylinders. These
values should be chosen based on a test simulation since they depend on the dataset used. Usually, lg gamma 0
should be positive, lg gamma 1 be around zero, and lg gamma 2 be positive.
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3.1. Parameters for the data potential

The data energy is defined using three quantities: pu
to describe the local uniform spread of galaxies along the
filament, ph to describe the locally high density condition,
and σ2 to describe the cylinder concentration. The values
of pu and ph depend on the threshold densities ρu and ρh,
respectively. In fact, ρu controls the level of the degree of
uniformity inside cylinders, while ρh controls the difference
between the intensity inside the cylinder compared with
the environs of the cylinder.

To give the hypothesis testing term (log phyp) and the
concentration term (σ2) equivalent weights, we introduced
the constants chyp and ccon. The Fig. 3 shows the influence
of these components on the data energy.

Clearly the data potential depends on the radius and
length of the cylinder. These parameters can be fixed or
pre-chosen: they can be modelled in a Bayesian framework
or estimated based on the galaxy field. The cylinder length
is controlled by the mark distribution. For the radius, we
determine it following the gradient (perpendicular to the
cylinder) of the galaxy density. The radius, where the
density gradient is the highest, is taken as the cylinder
radius.4

3.2. Parameters for the interaction potential

The interaction potential determines the connectivity
of the detected filamentary network. The interaction po-
tentials are defined so that connected cylinders are encour-
aged, while isolated cylinders are rather penalised. This is
done by selecting the connection potentials log γs. These
parameters act together with the data term. If they are
too strong compared to data energies then we may detect
filaments where they do not exist. On the contrary, if con-
nection potentials are too weak, no connected network is
formed. Our strategy here is to fix the order of magnitude
of the interaction term, based on the data term, and in-
corporate the interaction term in the Bayesian framework.

3.3. Parameters for the Metropolis-Hastings dynamics

There are several parameters that affect the dynamics
of a MH simulation. The quality of the filamentary net-
work detection is defined by the model, but bad dynamics
can alter the detection. The proposal probabilities were
chosen 0 < pb, pd, pc ≤ 1 such that pb + pd + pc ≤ 1. For
simplicity these parameters do not depend on the current
state of the sampler. Since we want to detect filaments,
we suggest an increased probability for the birth move.

In practice, the number of moves of a MH simulation
should be as large as possible (infinite in theory), but,
however, it is mainly determined by the time available for
computations. Since the MH simulation is complemented

4This computation of the radius may slightly change the definition
of our mathematical model, but nothing is changed in the philosophy
behind it. Instead of a process of cylinders, we now have a process
of segments, which we use to build cylinders.

by a simulated annealing/tempering optimisation scheme,
we also have to determine the number of moves between
temperature updates: we suggest that this number should
be large enough, at least of the order of magnitude of the
number of cylinders in a configuration.

In the implementation of the MH dynamic, we have to
fix the effective sampling volume (the Lebesque measure
ν(K)) for the simulation. Since the filamentary structure
is rather sparse, it is reasonable to limit the sampling vol-
ume to the regions where galaxies exist (see Tempel et al.
2014c, for more details).

3.4. Choosing the temperature values

Convergence for simulated annealing is guaranteed if
the initial temperature is higher than a certain bound that
depends on the maximum number of objects in a config-
uration. We can compute this using hard core repulsion
interactions. Nevertheless, this is computationally too ex-
pensive. Therefore, we have chosen the temperature val-
ues based on several trials and errors. In the code, a set
of testing values is proposed.

For simulated tempering, we choose NT temperature
values in the range Tmin and Tmax, where the temperature
limits are chosen based on a test simulation. For simulated
annealing, we set the initial temperature (Tmax), where the
simulation starts and the final temperature (Tmin) at the
end of the simulation.

4. Statistical analysis of the detected filamentary
network

The algorithm as described in the previous sections
produces N realisations of the filamentary network. In
order to improve the quality of statistical inference, the
realisations are obtained using both single and parallel
MCMC runs. Each realisation includes the information for
all cylinders in a configuration. This data is used to con-
struct the statistical tools for the analysis of filamentary
network. The proposed tools are the visit and orientation
maps, and the algorithm to extract the spines of single
filaments.

4.1. Construction of the visit and orientation maps

First, the visit map L(k) estimates the probability that
a given point k = (x, y, z) is touched by the filamentary
pattern, defined as

L(k) =
1

N

N∑
i=1

1{k ∈ Yi}, (8)

where Y1, . . . ,YN areN cylinder configurations and 1{k ∈
Yi} is the indicator function selecting only points that are
covered by any of the cylinders in the configuration Yi.
The visit map can be seen as the mean estimate of the
filamentary pattern.
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Second, for the filamentary network we define the den-
sity map D(k) as a weighted visit map

D(k) =
1

N

N∑
i=1

∑
y∈Yi

W (k, y)∑
y∈Yi

1{k ∈ y}
, (9)

W (k, y) = ev(y)1{k ∈ y}, (10)

where the first summation is over realisations and the next
summations are over cylinders in the given configuration
Yi. W (y) defines the weight for a cylinder y in a loca-
tion k, while the potential function v(y) is defined using
Eq. (7).

Third, we define the orientation field G(k, ω) for a point
k and for an orientation ω = φ(η, τ):

G(k, ω) =

N∑
i=1

∑
y∈Yi

W (k, y)(ω · ωy)2

N∑
i=1

∑
y∈Yi

W (k, y)

, (11)

where ω ·ωy denotes the scalar product between the cylin-
der orientation ωy and the orientation vector field ω. The
orientation field in a location k can be calculated for ev-
ery orientation ω and according to the definition G(k, ω) ∈
[0, 1].

Based on the orientation field, we define the density
field for orientation strengths. It is defined as the maxi-
mum (over ω) of the orientation field at a given location k

DG(k) = max {G(k, ω)} . (12)

The corresponding orientation for the maximum valueDG(k)
at the location k is defined as

ωG(k) = arg max
ω
{G(k, ω)} . (13)

Basically, ωG(k) gives the orientation of a filament at the
location k and DG(k) measures the strength of the orien-
tation, i.e. whether the orientation is clearly defined or
not.

For computing the previous estimator, the orientation
ω is restricted to be one of the orientations of the cylinders
in the location k, since the best orientation is always very
close to cylinder orientations. This significantly simplifies
the estimation of the best orientation in the location k.

4.2. Extraction of single filaments

To extract the spines of single filaments, we use a very
similar algorithm to that described in Tempel et al. (2014c).
Basically, this algorithm walks along the ridges given by
the filament density map and tests whether the filament
orientation is defined and if it coincides with the walking
direction. Filaments are extracted as a set of points that
form the spines of the filaments. The exact description of
the procedure is outlined below and Fig. 2 shows the gen-
eral flow chart for the filament spine extraction algorithm.

Start spine extraction Stop the process

Find a new suitable
point for filament

extraction [Steps i–ii]

Look at both sides
from that point along

the density ridge
(along the filament

orientation) [Step iii]

Move along the density
ridge and extract

spine points while the
filament conditions are
satisfied [Steps iv–ix]

Extract a single fila-
ment as a set of points.

Mask out the region
around the extracted

filament [Step x]

Continue filament extrac-
tion until all the region
is masked out [Step xi]

Figure 2: Flow chart that outlines the filament spine extraction al-
gorithm. See Sect. 4.2 for more information. The roman numbers
correspond to the individual steps pointed out in Sect. 4.2.

For every point k we have the following values: the fila-
ment visit map and the density map values L(k) and D(k);
the orientation strength DG(k) and the filament orienta-
tion ωG(k). To extract single filaments from the Bisous
model output using these four quantities, we follow the
steps as given below.

i We start at a point (designated as k0) of the highest
visit map value L(k) that is not yet masked out. Ini-
tially, all the regions where L(k) < Llim are masked
out, where Llim is the limiting visit map value. The
initial visit map is calculated on a grid with a grid
step approximately of the scale (radius) of the cylin-
ders. After the maximum is found, the visit map is
calculated locally on a finer grid (the final accuracy
should be much smaller than the cylinder radius) and
an updated maximum in the visit map is found. If the
new maximum is farther away from the initial one than
half the grid step (the filament spine goes through a
nearby grid cell), the point is masked out and a new
highest visit map location that is not yet masked out
is chosen.

ii We start extracting a filament if the orientation at that
point is well defined. The orientation is well defined if
DG(k0) > DG lim, where DG lim is the limiting orienta-
tion strength value. Otherwise, we mask out the region
around this point and proceed with the step (i). The
size of the masked region is taken to be the cylinder
radius. Masking removes the regions that are already
explored.

iii When extracting the filament from the point k0, we
look to both sides along the direction ωG(k0).

iv To extract the filament, we move from the point k0 in
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the direction ±ωG(k0) by δx. The new point is desig-
nated as ki. The step size can be arbitrary, but obvi-
ously a smaller step produces smoother filaments. The
recommended step size δx = r, where r is the radius
of a cylinder.

v Next, using Eq. (9) we compute the density map D(·)
in the plane that passes through the point ki and is
perpendicular to the filament direction ωG(ki). From
that map we find the location of the maximum density
(marked as ki′) that is closest to the point ki. This
step is necessary to restrict the filament spine to the
highest density regions. Additionally, we test whether
the point ki′ belongs to the masked out region: we stop
and proceed with step (x) if this region has already
been explored.

vi We test, whether the orientation is defined (DG(ki′) >
DG lim) at ki′. If the orientation is not defined, we stop
the algorithm and proceed with the step (x).

vii If the orientation is defined, we move forward by δx
and find the next point in the current filament. This
new point is used to test two additional criteria.

viii First, to avoid breaks in the filament, we calculate the
curvature5 of the filament at the point ki′ using this
point and its neighbours. We use the limiting value
κ > κlim = 1/r (r is the radius of cylinder) to stop the
filament finding algorithm.

ix Second, we require that the orientations at the point
ki′ and at the neighbouring points ki±1 are similar:
max|ωG(ki′) · ωG(ki±1)| > τ‖. If these criteria are sat-
isfied, we move in the direction ±ωG(ki′) by δx and
proceed with the step (v). Otherwise, we stop the fila-
ment finding algorithm and continue with the step (x).

x If all the filament points from both sides of k0 have
been found we save the extracted points as a single
filament and mask out the region around that filament.

xi We shall return to the first step (i) again until all the
analysed volume is explored (masked out).

There are two parameters that define the filament spines:
Llim defines the limiting visit map density and DG lim de-
fines the orientation and estimates the strength of orien-
tation for a filament. Both criteria do not affect strong
filaments, but they influence the regions where filaments
intersect or the regions where filaments are poorly defined.
The limiting visit map density should be high enough to
have a sufficiently large number of cylinders in a given lo-
cation for statistical analysis. If the number of realisations
is greater than 1000, we suggest to choose Llim = 0.05, i.e.
there should be at least 50 cylinders in every location.
The suggested value for the limiting orientation strength
DG lim is 0.75: this value guarantees that at least half of
the cylinders are similarly oriented at a given location.

5The curvature κ = 1/R, where R is the radius of the sphere that
is touching three points.
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Figure 3: The distribution of the cylinder’s potential (black solid
line) in the example dataset. The two components – the location
test and the concentration term – of the cylinder’s data energy are
shown with red and blue lines, respectively. Note that the curves
are smoothed to better show the overall distributions of potentials.
Due to the low number of galaxies inside cylinders, the values of
the location test potential are discrete and the real distribution has
several peaks. The figure illustrates that the location test and the
concentration term are equally important in the total potential of the
cylinder. The use of the two tests improves the data energy since it
is more selective than a single test.
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Figure 5: A 5 h−1Mpc thick slice in the example dataset. To make the filamentary structures easier to see a smaller area of the full example
dataset is shown. Galaxies in this slice are shown as red points. The cylinders in the MCMC realisations are shown as small lines. Altogether
there are 500 different realisations. They are colour-coded as following: green for 2-connected, cyan for 1-connected and yellow for isolated
cylinders. The extracted filament spines are shown as dark blue lines. The figure shows that the filamentary network is clearly visible,
following nicely the distribution of galaxies.

5. Example dataset for the Bisous model

The use of the Bisous model is explained using an ex-
ample dataset accompanied with the program. The exam-
ple dataset is a 300x320x260 h−1Mpc brick from the main
spectroscopic flux-limited sample of galaxies of the SDSS
DR10 down to mr = 17.77 mag. For filament detection
we suppressed the fingers-of-God redshift distortions (see
Tempel et al. (2014d) for the details of the full dataset.)
The example dataset includes 179 463 galaxies.

The example parameter file6 is prepared to detect simi-
lar filamentary structures as in Tempel et al. (2014c). The
suggested values for the most important parameters are
given in Table 1. Since the Bisous model is stochastic,
clearly, the realisations are not all identical. Moreover,
the practical implementation we propose does not tell us
whether we are close to the solution or not. Taking infer-
ence from one realisation is not a very efficient strategy.
Our results are more robust when using the proposed sta-
tistical tools: the visit map, the orientation map, and the
filament spines.

We show below some basic statistics and describe the
detected filamentary network, using the example dataset.

6The example parameter file can be downloaded together with
the source code from GitHub (see Appendix A).

Fig. 3 shows the distribution of the data term probabil-
ities together with the location test and the concentration
term (see Sect. 2.3) probabilities for individual cylinders in
a detected filamentary network. As mentioned above, the
scaling parameters (see Sect. 3.1) for the location test and
the concentration term should be chosen based on these
distributions.

The Bisous model is monitored by following the suffi-
cient statistics7 – the numbers of the 0-, 1-, 2-connected
cylinders in the configuration. The numbers of these cylin-
ders as a function of the cycles in the MCMC simulation
are shown in Fig. 4 (upper panel). In the middle panel of
Fig. 4 we show the average data potentials for the 0-, 1-, 2-
connected cylinders. With “good” model parameters, the
average data potential is the “best” for the 2-connected
cylinders and the “worst” for the 0-connected cylinders.

Fig. 4 also illustrates how simulated tempering and
simulated annealing work. At the start of the program,
we fixed 20 temperature steps in the range 0.4. . . 1.5. We
can see that the upper temperature value is slightly low-
ered during the program. If the upper temperature is too
high, all the configurations are equally probable, hence, the
data and interaction potentials have a weak effect – we do

7These statistics can be monitored at runtime since the program
constantly updates the statistics file. See the program manual for
more details.
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Figure 6: The distribution of galaxy distances from filament spines.
The distribution is shown as a function of the radius of the cylinder
the galaxy belongs to. The radius of the cylinder roughly defines
the filament scale. The marginal distributions are shown as white
lines along the axes of the figure. The figure clearly illustrates that
galaxies are located close to filament spines.

not detect connected structures. Since the temperature in
simulated tempering is jumping up and down, the num-
bers of the 0-, 1-, 2-connected cylinders also change. At
a low temperature, the numbers of the 0-, 1-, 2-connected
cylinders do not change dramatically, the configuration is
practically frozen.

An example of the detected filamentary network is shown
in Fig. 5. In this Figure individual cylinders are shown as
small lines and the detected filament spines are highlighted
as solid blue lines. We can clearly see that galaxies trace
the visit map and the filament spines are aligned with the
orientation of cylinders. Fig. 5 also shows that some of
the galaxies appear to be “orphans”, not belonging to any
cylinder. This happens because the algorithm requires at
least three galaxies for a cylinder. Those orphan galax-
ies are located in regions, where the number density of
galaxies is too low. However, it does not mean that those
galaxies do not belong to any filament. They might belong
to weaker filaments crossing voids, but are undetected in
the Bisous model because of the low number density of
galaxies.

Finally, to show how filament spines follow the distribu-
tion of galaxies, we calculated the distribution of galaxy
distances from the nearest filament spines, as shown in
Fig. 6. Since the filament scale (the radius of the cylinder)
is not entirely fixed in the model, we show this distribution
as a function of the filament radius (the filament scale is
defined by the radius of the cylinder). Fig. 6 shows that
most of the galaxies are located close to filaments and are
usually closer than 0.4 h−1Mpc from the filament spines.
The distance of a galaxy from a filament spine is roughly
independent of the filament thickness. This is mostly be-
cause the variable filament radius in the model helps to
detect filaments also in regions where the number density
of galaxies is lower. The filament radius in the Bisous

model is only a very rough estimate of the true filament
thickness.

6. Conclusions

This paper presents the use of the Bisous model, a
marked point process with interactions for tracing the fil-
amentary network in the distribution of galaxies. This
method works directly on the galaxy distribution and is
specifically developed for observational datasets. We re-
view the Bisous model and emphasise those mathematical
and applied aspects of the model, which are directly linked
with its computational use and numerical implementation.

Our probabilistic filament finder computes the visit
map (the filament detection probability field) and the fil-
ament orientation field that are moments estimators of a
complex geometrical pattern. Using these two fields, we
define the spines of the filaments and extract single fila-
ments from the data.

In Tempel et al. (2014c) we applied the Bisous model
to the SDSS data and showed that the detected filaments
fit well with the visible large-scale structure.

Together with the current paper, we publish the com-
puter code of the Bisous model. The code is available in
GitHub8. Appendix A gives a brief description how to
download and install the program.

The current implementation of the Bisous model works
with discrete points, i.e. we suppose that the galaxy co-
ordinates are accurate. Since the Bisous model uses the
distribution of galaxies to calculate the probability for the
filamentary network, the model can be developed further
to detect filamentary structure in photometric redshift sur-
veys. In this case, the full posterior for photometric red-
shifts can be taken into account in the Bisous model. It
is highly promising to apply this method to accurate pho-
tometric redshift surveys such as J-PAS (Benitez et al.
2014).
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Appendix A. Download and installation details

The computer code is made available through GitHub
from the following webpage https://github.com/etempel/
bisous. To download the code, follow the instructions in
GitHub.

The program is written in Fortran using the Fortran 2003
standard. The code has been tested using the Intel For-
tran Compiler, but it should compile with any Fortran

8https://github.com/etempel/bisous.
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compiler that supports the Fortran 2003 standard. The
code can be compiled using the Makefile. If you use Intel
Fortran Compiler there is no need to modify the Makefile,
otherwise you should specify your Fortran compiler. To
compile the program on Unix systems you should just give
the command make. This will generate an executable file
bisous program.

To run the program you should prepare a configuration
file, e.g. config example.ini. Then just type bisous program

config example.ini.
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