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Abstract

Probabilistic cross-identification has been successfully applied to a number of problems in astronomy from matching
simple point sources to associating stars with unknown proper motions and even radio observations with realistic mor-
phology. Here we study the Bayes factor for clustered objects and focus in particular on galaxies to assess the effect of
typical angular correlations. Numerical calculations provide the modified relationship, which (as expected) suppresses the
evidence for the associations at the shortest separations where the 2-point auto-correlation function is large. Ultimately
this means that the matching probability drops at somewhat shorter scales than in previous models.
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1. Motivation

In the new age of surveys, the identification of sources
across telescopes and instruments is one of the most funda-
mental problems in observational astronomy. Most time-
domain and multicolor studies rely on high-quality asso-
ciations of catalogs with trustworthy and intuitive quality
measures, e.g., probability. The flexible framework intro-
duced by Budavári and Szalay (2008) uses Bayesian hy-
pothesis testing to find the most likely associations. An
analytic formula can be derived in the usual limits of as-
trometric models, which enables efficient execution that
takes the same time as previous (sometimes adhoc) match-
ing methods. Simulations have shown that the Bayesian
approach handles variable uncertainties well (Heinis et al.
2009) and other studies illustrated its power on scenarios
that could not be addressed before: matching stars with-
out knowing their proper motions (Kerekes et al. 2010), in-
corporating photometry of galaxies (Marquez et al. 2014)
and even radio morphology (Fan et al. 2013); also see Bu-
davári and Loredo (2015) for a review.

The imaging data provide a likelihood function for each
detection `i(n) where the argument is the (unknown) true
celestial position in the sky. This is frequently summa-
rized by the direction of the detection xi (weighted aver-
age of pixel directions) and an astrometric uncertainty σi
assuming a Gaussian, hence `i(n)=G(xi;n, σ

2
i ). In the

flat-sky approximation, we can deal with the more gen-
eral case of elliptical errors, when the likelihood function
`i(n) ≡ p(xi|n) = G(xi;n,Σi) depends on the covariance
matrix, and hence

`i(n) =
1√
|2πΣi|

exp

{
−1

2
(xi−n)TΣ−1i (xi−n)

}
. (1)

In the spherical case, potentially warranted by large un-
certainties, one can use the Fisher (1953) distribution; see
Budavári and Szalay (2008). The following discussions ap-
ply to these situations the same way.

Following Budavári and Szalay (2008), we consider two
hypotheses and compare the marginal likelihoods by form-
ing their ratio, the so-called Bayes factor. The numerator
is the likelihood of the hypothesis that the detections be-
long to the same source in direction n, and the denomina-
tor is that of the alternative, which claims that they are
two separate objects at n1 and n2. Assuming identical
sky coverage of the observations and a corresponding p(n)
prior, this factor is

B =

∫
p(n) `1(n) `2(n) dn∫∫

p(n1) p(n2) `1(n1) `2(n2) dn1 dn2
. (2)

When B is large, the data favor the match, and the poste-
rior probability is larger than the prior; see discussion in
Budavári and Szalay (2008). If B ratio is less than one,
the no-match hypothesis is preferred in the sense that the
posterior is even lower than the prior. The above formula
is, however, not completely general as the aforementioned
studies have primarily focused on a special case in the
limit where the objects’ locations are assumed to be inde-
pendent. This simplified the calculations and an analytic
solution was possible for Gaussian and Fisher likelihood
functions.

Here we study the effect of spatial clustering on the
Bayes factor and the posterior probability, when the inde-
pendent assumption is replaced by an angular 2-point cor-
relation function. In Section 2 we discuss the assumptions
and derive the formalism. Section 3 provides an overview
of how our new model was evaluated, and Section 4 dis-
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cusses the effect on the probabilities and matching proce-
dures.

2. Galaxy Clustering in Matching

Galaxies are clustered in space, which is reflected also
in their angular distribution on the sky. We incorporate
this effect into the Bayes factor calculation using a realis-
tic power-law model for the angular two-point correlation
function.

We start by defining the general directional Bayes fac-
tor

B′ =

∫
p(n) `1(n) `2(n) dn∫∫

p(n1,n2) `1(n1) `2(n2) dn1 dn2
, (3)

where the parameters of the alternative hypothesis n1 and
n2 can depend on each other via the join prior density
function, which is written as the product

p(n1,n2) = p(n1) p(n2|n1) (4)

by definition. The conditional prior p(n2|n1) accounts for
the fact that galaxies are clustered. Of course, the new in-
tegral is typically not separable and simple analytic calcu-
lations are not possible. First we look at how the physical
model enters the conditional p(n2|n1) prior and numeri-
cally evaluate the new integrals to illustrate the effects of
galaxy clustering.

The 2-point angular correlation function w(θ) repre-
sents the excess probability of finding a galaxy on the sky
at θ radians away from another galaxy (Peebles 1980).
With that, the conditional prior probability density can
be written as

p(n2|n1) =
1

4π

[
1 + w(θ12)

]
(5)

where θ12 is the angular separation between unit vectors
n1 and n2, i.e., n1 ·n2 =cos θ12. It is important to note
that this is a hypothetical correlation function of the model
prior and not a measurement. The measurement problems
associated with the correlation functions are outside of the
scope of this study. Here we simply assume a standard
parametrization to assess the importance of the clustering.

We adopt the usual power-law parametrization to the
correlation function

w(θ) = A

(
θ

θ0

)−δ
− C , (6)

where C is a constant due to the integral constraint∫
w(θ) sin θ dθ = A θδ0 Iδ − 2C = 0 , (7)

which is derived from the fact that the conditional prior
in eq. (5) integrates to 1, and w(θ) to 0, over the sphere.
Here

Iδ ≡
π∫

0

θ−δ sin θ dθ, (8)

so

C =
1

2
A θδ0 Iδ . (9)

This integral constraint can be calculated for any (A, δ)
parameters given a constant θ0 value used for normaliza-
tion.

For our prior distribution, we take the fiducial param-
eters from the Sloan Digital Sky Survey (York et al. 2000)
study by Budavári et al. (2003) and fix δ=0.8 and A=0.08
for the purpose of this analysis, using a constant value
θ0 =0.1◦. This results in a constant of C≈4.4·10−4, which
is indeed very small and proved to be negligible in our
analysis.

3. Numerical Evaluation

The updated Bayes factor and its denominator can be
evaluated using Monte-Carlo integration but we focus our
attention directly to the correction factor. The ratio of the
two Bayes factors is a function of all relevant parameters:

F(φ;σ1, σ2, A, δ) =
B(φ;σ1, σ2)

B′(φ;σ1, σ2, A, δ)
, (10)

where φ is the angular separation between the x1 and x2

measured directions. Looking at the definitions in eqs. (2)
and (3) we see that the numerators cancel out in the ra-
tio. If we further assume an all-sky coverage and hence
isotropic prior distribution, e.g., on the n1 variables of
both models, the normalization constants of 4π cancels
out, and we arrive at

F =

∫∫
`1(n1) `2(n2)

[
1+w(θ12)

]
dn1dn2∫

`1(n1) dn1

∫
`2(n2) dn2

. (11)

This result actually holds for partial sky coverage as well
for objects far from the edge of the field of view (Budavári
and Szalay 2008). Gaussian likelihood functions `1 and `2
further simplify the numerical problem. Because eq. (1) is
symmetric in x and n, and hence integrates to 1 over n,
the approximate solution becomes

F ≈ 1 +
〈
w(θij)

〉
, (12)

where the sample of {θij} angular separations are obtained
from random pairs of (n1,n2) of unit vectors drawn from
`1 and `2 given the observed (x1,x2) directions. The nu-
merical averaging, noted by 〈 . . . 〉, is over this sample of
angles.

Figure 1 illustrates this correction in a scenario con-
sistent with the astrometric accuracy of the Sloan Digital
Sky Survey (Pier et al. 2003) with σ1 =σ2 =0.1′′. The cor-
rection factor was obtained for each observed separation φ
by averaging 4 million random pairs of directions (n1, n2)
for high accuracy. From left to right the panels show the
strong effect of increasing the slope δ from 0.6 to 1. Within
each plot, however, the curves for various amplitudes A in
the interval [0.06, 0.1] differ only slightly.
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Figure 1: The ratio F compares the Bayes factors with and without clustering as a function of angular separation φ. The different graphs
illustrate the effect for a range of A and δ parameters of the angular correlation function. The sources are assumed to have the same
astrometric uncertainty of σ=0.1′′. The panels from left to right show the results for δ = 0.6, 0.8, 1, respectively. Within each panel the three
curves correspond to A = 0.1, 0.08, 0.06 with decreasing intensity. As expected, the stronger the clustering (larger A and δ values), the more
significant the correction is. The dotted line at F =1 corresponds to no correlations.
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Figure 2: The reduced Bayes factor as a function of angular separation. The panels correspond to those in Figure 1 and demonstrate the
reduction in the evidence in the presence of clustering. While the slope δ has measurable effect across the panels, the different amplitudes A
yield practically indistinguishable curves on these scales.
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By applying these corrections to the analytic results of
Budavári and Szalay (2008)

B(φ;σ1, σ2) =
2

σ2
1+σ2

2

exp

[
− φ2

2(σ2
1+σ2

2)

]
, (13)

we can see the effects on the Bayes factors in Figure 2.
The panels lines and colors are organized identically to
that in Figure 1 for easy comparison. We see that at these
scales the effect of the amplitude A is practically indistin-
guishable but the slope of the correlation function δ has
a big impact. The dashed line at zero corresponds to the
boundary above which the data favor a match. Note that
eq. (13) does not hold if there are other sources nearby
with a non-negligible Bayes factor.

Strictly speaking, B=1 really corresponds to the spe-
cial case when the posterior probability P is the same as
the prior P0 of the hypothesis that assumes a true associ-
ation. In general the dependence is given by

P =

[
1 +

1−P0

BP0

]−1
. (14)

The prior P0 is primarily a function of the average sur-
face density of sources in the catalogs and of the overlap
of the two selections functions, which can be accurately
taken into account using maximum likelihood estimates
(Budavári and Loredo 2015). For illustration purposes we
pick P0 =10−8, which corresponds to a density of about 1.5
galaxies per square arc minute. Figure 3 shows the result-
ing Bayes factors (top panels) and the posterior probabil-
ities (bottom panels) in three different matching scenarios
with 0.1′′ and 0.5′′ astrometric uncertainties. For these
curves we opted for the fiducial A=0.08 amplitude. In
essence the top left panel is a summary of Figure 2 and
the corresponding probability curves are just below it. We
see that due to the clustering a drop in the posterior occurs
at shorter separations. The middle and right panels illus-
trate the same trends for different σ1 and σ2 accuracies.
The difference is more visible in these scenarios.

4. Discussion

The new probability model for the cross-identification
of galaxies introduced in this paper enables us to study the
effect of clustering strength on catalog matching. While
at the shortest separations the effect on the Bayes factor
can be as large as a factor of a hundred, and the pos-
terior of each match becomes lower, the transition scale
in the probability as a function of the angular distance is
only slightly shifted. We note that due to the consistently
lower probabilities, the original matching procedure (us-
ing analytic evidence calculation) can be thought of as a
fast pre-filter for catalogs, since that selection criterion is
more inclusive. In other words, in practice one can use
the independent model to look for candidates but use the
corrected values for resolving multiple matches in crowded
regions if necessary.

In our experiments we found that while the corrected
log10B

′ was not a simple quadratic function of the sepa-
ration, it was always possible to accurately approximate
the relevant part of the peak with even polynomials of φ,
i.e.,

log10B
′(φ) ≈

K∑
k=0

βkφ
2k . (15)

The (generalized) linear fitting can be easily solved for the
β coefficients. We found that only 4-5 coefficients would
produce fits without systematics left in the residuals. Such
approximation can be used in a practical setting for high-
speed evaluation of the corrected Bayes factor even if in-
terpolation is cumbersome, e.g., in a database SQL query.

The one caveat of the analysis is that the angular corre-
lation function is not very well known at the smallest sep-
arations. In principle, changes to that end of the correla-
tion function can modulate the conditional prior p(n2|n1)
and the integral going from θ = 0. At such short scales,
however, the volume of the integral shrinks very fast and
hence the effect would be relatively small. Finally, the
physical size of the galaxies should eventually put an end
to the increase in the real space clustering. These effects
are expected to make the correction factors smaller.
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