
Kliko - The Scientific Compute Container Format

Gijs Molenaara,c, Spheshile Makhathinia,c, Julien N. Girardb,a, Oleg Smirnovc,a

aSKA SA, Cape Town, South Africa
bAIM/CEA-Saclay, Universit Paris Diderot, France

cDepartment of Physics & Electronics, Rhodes University, Grahamstown, South Africa

Abstract

Kliko is a Docker-based container specification for running one or multiple related compute jobs. The key concepts of
Kliko are the encapsulation of data processing software into a container and the formalization of the input, output and
task parameters. By formalizing the parameters, the software is represented as abstract building blocks with a uniform
and consistent interface. The main advantage is enhanced scriptability and empowering pipeline composition.

Formalization is realized by bundling a container with a Kliko file, which describes the IO and task parameters. This
Kliko container can then be opened and run by a Kliko runner. The Kliko runner will parse the Kliko definition and
gather the values for these parameters, for example by requesting user input or retrieving pre-defined values from disk.
Parameters can be various primitive types, for example: float, int or the path to a file.

This paper will also discuss the implementation of a support library named Kliko which can be used to create Kliko
containers, parse Kliko definitions, chain Kliko containers in workflows using a workflow manager library such as Luigi.
The Kliko library can be used inside the container to interact with the Kliko runner.

Finally to illustrate the applicability of the Kliko definition, this paper will discuss two reference implementations
based on the Kliko library: RODRIGUES, a web-based Kliko container scheduler and output visualizer specifically
for astronomical data, and VerMeerKAT, a multi-container workflow data reduction pipeline which is being used as a
prototype pipeline for the commissioning of the MeerKAT radio telescope.

The Kliko library is open source. The documentation and source code can be found on the main website.1

Keywords: Docker, containerization, astronomy, scientific computing, pipelines, data reduction

1. Introduction

1.1. Software in science

The use of computer software in research has resulted
in significant hardware and software developments in com-
puting science. Nowadays, the number of different scien-
tific software packages is overwhelming, and it has become
progressively difficult for users (e.g. a scientist) to eval-
uate the relevance, usage and the performance of these
packages.

Firstly, installing scientific software can be cumber-
some, especially when the installation and/or compilation
is poorly designed. The software code, the library depen-
dencies, the host platform and the compilers may change
over time, making it unclear how the original developer(s)
intended to install and use the software. Secondly, conflict-
ing dependencies may arise when different software pack-
ages are built together, making it difficult to install them
on the same system. Thirdly, software packages have non-
uniform interfaces as they have varying expectations of in-
teraction with a user or with other packages on the same
system.

1https://github.com/gijzelaerr/kliko

Kliko is a Docker-based encapsulating and chaining
framework that purports to mitigate these issues by cre-
ating a container of the software thereby solving the first
and second issue above. The third issue can then be solved
by building a Docker container that has minimal extra re-
quirements, i.e. the Kliko definition.

Kliko consists of two parts: i) a set of utilities for cre-
ating a container, including parsers to check if all (meta)
data is valid; and ii) a support library that can be used
to schedule a Kliko container and run it from a command
line or from a web interface.

Kliko is not a pipeline construction tool itself, nor a
web interface, but it can assist in making these.

1.2. Software containerization with Docker

Containerization is a method for building self-contained
environments (called “containers”) for applications. These
containers can then be distributed and used with minimal
effort on a large variety of platforms.

Containerizing applications is not new. Similar tech-
niques have been applied before, e.g. jail for FreeBSD 2,

2https://www.freebsd.org/doc/handbook/jails.html

Preprint submitted to Astronomy and Computing, Elsevier July 10, 2018

ar
X

iv
:1

80
7.

03
26

4v
1 

 [
as

tr
o-

ph
.I

M
] 

 9
 J

ul
 2

01
8

https://github.com/gijzelaerr/kliko
https://www.freebsd.org/doc/handbook/jails.html


zones for Solaris [16] and chroot for GNU/Linux 3. How-
ever, their application was mostly limited to enhancing se-
curity and to carry out clean builds of the UNIX system.
The addition of operating system (OS) level process isola-
tion, named control groups or cgroups[17]), to the popular
Linux kernel (since 3.8, 2008) accelerated the adoption of
containerization for the usage of software distribution.

There are multiple software projects leveraging cgroups,
for example rkt4, Docker[2]5, Singularity[10]6 and LXC7.
Docker [11] is currently the most popular container tech-
nology with the largest community of users and the most
momentum for future development and support. Kliko
aims to be agnostic of the container technology, but since
Docker has the biggest user community, we focus on this
implementation.

In Docker, an image is built using a initialization script
(a “Dockerfile”) which contains the recipe to install or
build the application. The Dockerfile is a series of com-
mands applied to a basic and clean Docker image, typically
a headless Linux distribution. These base images are re-
trieved from an online database provided by Docker, and
stored locally. The Dockerfile, when executed, will create
an “image” which is a “inactive” snapshot of the virtu-
alized application. An image becomes a container when
instantiated (e.g. the application runs). The difference
between active and inactive is important, a container is an
image with an unwritten (dirty) state.

An application that is containerized is self-contained
and can be seen as a complete OS without kernel. The
container could even only contain a statically compiled
binary, but in practise it is useful to have the tools and
package manager of a Linux distribution available inside
the container. Theoretically, to run a Docker container
using Docker on a host machine, the only requirement is
to have the Docker daemon running on the host. Unfor-
tunately, there are some hardware specific edge cases like
CPU register usage optimization and GPU acceleration.
These cases will be discussed in section §7.1.

A Docker container “image” is basically a file system
snapshot of a minimal OS. The “target” application (i.e.
the one to host) and its library dependencies are installed
inside this virtual isolated file system. When the applica-
tion is started, the container file system is exposed to the
application as the working environment.

On a kernel level, cgroups and namespaces are used
to create a new isolated environment for the application,
limiting access to other processes on the host and present-
ing the isolated environment as if is a separate host to the
application. Intuitively, this can be seen as similar tech-
nology as CPU level OS virtualization like VirtualBox, but
in the case of containers, the kernel is shared by the host
and the guest.

3http://man7.org/linux/man-pages/man2/chroot.2.html
4https://github.com/coreos/rkt
5https://www.docker.com
6http://singularity.lbl.gov
7https://linuxcontainers.org

A Docker container also gets a private IP address on an
internal network range. This makes the container appear
as a separate networked machine to the host. By default,
access to network ports are restricted and access needs to
be granted per port. One can also forward the port to
an external interface where it will appear as the service is
running on the host itself.

All of the above might appear similar to simple virtu-
alization, but containerization has some clear additional
advantages. Firstly, when using Docker, available physical
resources do not need to be partitioned between the host
and the guest. While memory size allocated for a virtual
machine is fixed or not easy to change, running containers
does not require the user to fix this memory size, although
it still is possible to limit the amount of memory allocat-
able by the process. Secondly, there is no CPU instruction
emulation, as the process is directly executed on the host
kernel. Thirdly, there is minimal startup and shutdown
overhead for starting containers as the containerized OS is
reduced to minimal consumption. Startup time is instan-
taneous (in the millisecond range) and loading time will
only become noticeable when high numbers of containers
are spawned.

In addition to containerization, Docker also offers other
features: it uses an “union” file system to join multiple
layers of file systems together. The intermediate result of
each command in the Dockerfile is cached and stored in
layers. These layers can be reused by other containers,
allowing data sharing between them, which reduces the
size of the storage requirements. These layers can also be
stored in a central location, where they can be distributed
and reused in both a public or private way.

2. The Kliko specification

The Kliko specification is designed to extend container-
ization with an uniform interface resulting in simplified
interaction with the containerized application.

The Kliko specification describes how a Kliko container
should look like and what a Kliko container should expect
during runtime. The relevant terminology is listed below:

Def 1: The Kliko Image
A Docker image complying to the Kliko specification. An
image is a read-only ordered collection of root file system
changes and the corresponding execution parameters for
use within a container runtime.

Def 2: The Kliko Container
A container in an active (or inactive if exited) stateful
instantiation of a Kliko image.

Def 3: The Kliko Runner
A process that can run a Kliko image to make a con-
tainer. For example the Kliko-run command line tool, or
RODRIGUES (see §5.2).

Def 4: The Kliko Parameters
A list of parameters that can influence the behavior of the
software in the container. The list can be arbitrary in size

2

http://man7.org/linux/man-pages/man2/chroot.2.html
https://github.com/coreos/rkt
https://www.docker.com
http://singularity.lbl.gov
https://linuxcontainers.org


and consists of any combination of primitive types listed
in Table 2.

2.1. The Kliko Image

A Kliko image should contain a /kliko.yml file in
YAML8 syntax following the Kliko schema 2.4. YAML is a
human-readable data serialization language and stands for
YAML Ain’t Markup Language. The Kliko image should
also contain a /kliko file which is called during runtime
by the Kliko runner. This Kliko script can be anything ex-
ecutable, but in most cases, it will be a Python script using
the Kliko library to check and parse all related Kliko tasks
during runtime. Note that we have deliberately chosen
not to use the ENTRYPOINT or CMD statements sup-
ported by Docker. This way, Kliko is non-intrusive and
can be easily added to existing containers that already set
an ENTRYPOINT or CMD.

2.2. Expected runtime behavior

During runtime, the Kliko runner will gather the pa-
rameters and expose them to the Kliko container. The
content of the variables is exposed by the Kliko runner
in the /parameter.json file, which should contain a flat
dictionary in JSON syntax9. JSON and YAML are struc-
turally very similar, but YAML is designed to be more
human-readable, hence our choice of YAML for the Kliko
definition. Future versions of Kliko will support both for-
mats.

While reading this text, one might get confused by the
context of the file location (inside or outside the container).
As a rule of thumb if a path in this text starts with a slash
(/) it is inside the container.

If one or more of the parameters is a file, those will be
exposed by the Kliko runner in the read-only /param files

folder during runtime. It is the responsibility of the Kliko
container to parse the /parameters.json file, perform po-
tential the run-time housekeeping and convert the param-
eter keys, values and/or files into an eventual command
do be executed.

It is recommended to write logging to stdout and stderr.
This makes it easier for the Kliko runner to visualize or
parse the output of a Kliko image.

2.3. Flavors of Kliko Images

We distinguish two flavors of Kliko containers, joined
Input/Output (read-write) and split IO (read-only). The
style of container is specified in the io field in /kliko.yml

file inside the container, see §2.4.
The difference is the way the contained software inter-

acts with the working data. In the case of split IO the
Kliko runner exposes the input data to the container in
the /input folder. This folder is read-only, to prevent ac-
cidental manipulation of the data. The Kliko container is

8http://www.yaml.org
9https://www.json.org

expected to write any output data into the /output folder.
The Kliko Runner will then handle this output data after
the container reaches the end if its lifetime. A split IO
Kliko container should always yield the same results for
multiple independent runs when presented with the same
data and parameters (formally is called, “having no side
effects”). This is basically the essence of the functional
programming paradigm.

In the case of joint IO there is only one point of in-
teraction with the Kliko host, /work which is exposed
read/write. Basically, the input and output folders are
combined into one that is mounted with read/write per-
missions. Contrary to the split IO flavor, this might be
potentially dangerous for data processing as it can alter
the original data.

From a run-time parallelization perspective, the split
IO flavor is preferred. A container without side effects
enables the Kliko Runner to do graph-based logical in-
ference of dependencies and execution scheduling, reuse
results and also run various containers in parallel, poten-
tially resulting in faster execution. In practice, existing
software does not always support this type of operation,
or it is simply not feasible to create a copy of the data. In
that case, the joined IO style has to be used.

2.4. The /kliko.yml schema

A kliko.yml file is a YAML file and it should contain
the fields listed in Table 1.

Each section contains a list of fields. Each fields state-
ment should contain a list of field elements. Each field ele-
ment has two mandatory keys, a name and a type. Name
is a short reference to the field which needs to be unique.
This will be the name for internal reference. The type
defines the type of the field, possible types are listed in
Table 2. Depending on the type there are optional extra
fields, listed in Table 3.

The schema described above is defined in the Kwal-
ify format. Kwalify is a parser and schema validator for
YAML and JSON10. The definition itself is also written in
YAML. The Kliko library pykwalify11 is used to validate
the YAML file against a schema. The full Kliko version 2
schema is listed Listing 10 in Appendix B.

2.5. The /parameters.json file

When a container is started, the Kliko runner will
mount a /parameters.json file into the container. This
file contains all parameters for the container in the JSON
format. The /kliko script supplied by the container au-
thor should read and parse the /parameters.json file.
The Kliko library (3.2) supports helper functions and scripts
to parse and validate this file. Validation is done based on
the /kliko.yml definition, which is useful for preventing
or tracking down problems.

10http://www.kuwata-lab.com/kwalify
11https://github.com/Grokzen/pykwalify

3

http://www.yaml.org
https://www.json.org
http://www.kuwata-lab.com/kwalify
https://github.com/Grokzen/pykwalify


Table 1: Required Kliko fields

field description
schema version The version of the Kliko specification, independent of the versioning of the Kliko

library
name Name of the Kliko image. For example “radioastro/simulator” for RODRIGUES.
description A more detailed description of the image.
url Website of project or repository where project is maintained
io “join” or “split”. See the two flavors of Kliko Containers in §2.3
Sections a list of one or more sections, grouping fields together.

Table 2: Kliko variable types

type description
choice field with a predefined set of options, see the optional choices field below
str string value
float float value
file A file path. This file will be exposed in /param files at runtime by the Kliko Runner
bool A boolean value
int An integer value

An example parameters file that could be generated
based on the kliko.yml definition is shown in Listing 1.

{
"int": 10,
"file": "some-file",
"char": "gijs",
"float": 0.0,
"choice": "first"

}

Listing 1: Example parameters.json file

Note that the sections are not supplied since they are
only used for grouping and representation to the user.

3. Running Kliko containers

3.1. Running a container manually

As an example, we will describe an extremely simple
Kliko container named “fitsimagerescaler”, available on
our github repository described in §6. This container takes
a FITS image file which resides in the /input directory,
opens it, multiplies the pixel values by a parameterized
value (2 by default) and exports the result as a new FITS
image in /output. The actual code that is run in /kliko

is shown in Listing 5.
Starting the Kliko container is nothing more than start-

ing the container using Docker with some specific flags. If
the parameters.json file already exists, starting the con-
tainer from the command line looks like this:

‘pwd‘/input and ‘pwd‘/input are input and output
folders in your current working directory outside the con-
tainer. ‘pwd‘ is required since the Docker engine can only
work with absolute paths.

$ docker run -t -i \
-v `pwd`/parameters.json:/parameters.json:ro \
-v `pwd`/input:/input:ro \
-v `pwd`/output:/output:rw \
kliko/fitsimagerescaler /kliko

Listing 2: Command for running a Kliko container man-
ually. The /parameters.json file is mounted as well as
the input and output directories, in the “split” mode. The
kliko.yml is already inside the container.

This command fires up the fitsimagerescaler con-
tainer, mounts the parameters.json file as well as in-
put/output directories and runs the /kliko script located
in the root directory. In our case, the FITS image file has
to be present in the local input directory for the script to
run properly.

For the reader unfamiliar with Docker this command
might look cumbersome and error-prone but the command
constitutes the fundamental principle of Kliko (in addition
to specification and the extensive test suite). This can
be used a base to create your own Kliko runner in any
language that has Docker bindings.

This way of implementing inputs, outputs and running
generic scripts, demonstrates that it becomes fairly easy
to connect the input parameters and data (generated by
scripting and/or a web form) to software living inside the
container. Kliko implements a set of tools to insure the
robustness of this implementation.

3.2. Inside the Kliko container

The /kliko script is the first entry point into the specifics
of the container. We can easily parse the /parameters.json
file using a JSON parser in python, by performing the com-
mands in code listing 3.

4



Table 3: Kliko field types

field description
initial supply a initial (default) value for a field
max length define a maximum length in case of string type
choices define a list of choices in case of a choice field. The choices should be a mapping
label The label used for representing the field to the end user. If no label is given the name of the

field is used
required Indicates if the field is required or optional
help text An optional help text that is presented to the end user next to the field

import json
parameters = json.load(open('/parameters.json', 'r'))

Listing 3: Example of how to parse parameters.json file
with standard python packages.

However, at this point, the parameters file is not yet
validated. We can be sure that the parameters file is actu-
ally generated from our Kliko definition by installing the
Kliko library inside the Kliko container and using it from
our /kliko script4. Validation helps reduce human or pro-
gramming error.

from kliko.validate import validate
parameters = validate()

Listing 4: Example how to parse parameters.json using
the Kliko library

After the Kliko validation is performed, a dictionary is
created and all values can be used freely inside the script
itself (by passing them to functions) or passed directly
to the container OS as environment variables. All this
validation is intended to reduce human or programming
error as early as possible.

import kliko
from kliko.validate import validate
from astropy.io import fits

parameters = validate()
file = parameters['file'] # filename in /input
factor = parameters['factor'] # multiplying factor

print('welcome to fits multiply!')
print("'%s' multiplied by '%s':" % (file, factor))

data = fits.getdata(file)
multiplied = data * factor
output = path.join(kliko.output_path, path.basename(file))
fits.writeto(output, multiplied, clobber=True)

Listing 5: Example of /kliko file scale the values in a
FITS image

3.3. kliko-run

Instead of calling Docker directly, Kliko is bundled with
kliko-run, a command line utility that enables a user to

run a Kliko container in a seamless way. It also assists
in exploring the parameters that a given Kliko container
supports. Code listing 6 shows the docstring of the kliko-
run command for a simple container (available as a test
container shipped with Kliko). The optional arguments
are generated automatically from the YAML file. It shows
how any shipped application can be easily interfaced with
the host system, in a way that part (or all) of the variable
names of the application can be modified directly from
the command line. This enables Kliko, with the help of
Docker, to ship a complex software as an application that
is equipped with a simple interface. Kliko provides a sim-
ple way to implement this interface in a controlled and
robust way while being completely agnostic about the me-
chanics happening inside the container.

$ kliko-run kliko/fitsimagerescaler --help

usage: kliko-run [-h] [--target_folder TARGET_FOLDER] --choice
{second,first}↪→

--char CHAR [--float FLOAT] --file FILE --int
INT↪→

image_name

positional arguments:
image_name

optional arguments:
-h, --help show this help message and exit
--target_folder TARGET_FOLDER

specify output or work folder
(default: ./output)↪→
--choice {second,first}

choice field (default: second)
--char CHAR char field, maximum of 10 chars
(default: empty)↪→
--float FLOAT float field (default: 0.0)
--file FILE file field, this file will be put in
/input in case↪→

of split io, /work in case of join io
--int INT int field

Listing 6: Output of the kliko-run command

4. Chaining containers

Kliko containers can also be chained. Chaining means
that the output of a container is connected to the input
of a consequetively executed container. This enables the
creation of workflows. Additionally, if the Kliko contain-
ers are “split IO”, we can execute containers that do not

5



depend on each other in parallel. Their intermediate re-
sults can be cached, which can speed up execution time
of future workflow runs and can help debugging problems
with the workflow by examining intermediate results.

There are various workflow creation frameworks and li-
braries available. We evaluated two popular Python-based
workflow management libraries, airflow12 and Luigi13. Al-
though Kliko is designed to be workflow management in-
dependent, Luigi is a better fit. Airflow is intended to
visualize automated repetitive tasks like cron jobs, while
Luigi is more oriented towards once-off batch processing.
Luigi is an open source Python library that handles de-
pendency resolution, does workflow management, option-
ally visualizes data in a web interface and can handle and
retry failures. At the core of a Luigi workflow is the Task,
which is a Python class that defines what to be executed,
how to check if this task has already been executed and
optionally if it depends on the result of another task. This
is a very simple but powerful concept that integrates flu-
ently with Kliko. The Kliko library contains a KlikoTask
definition which can be used to integrate Kliko in a Luigi
pipeline.

5. Example usage of Kliko

5.1. VerMeerKAT

Figure 1: Flow diagram of the VerMeerKAT data reduction pipeline.

To illustrate the mechanics of chaining container to-
gether we explain a real world application here, the Ver-
MeerKAT pipeline.

VerMeerKAT is a semi-automated data reduction pipeline
for the first phase of deployment of the MeerKAT tele-
scope14[3][8]. All steps in this pipeline are shown in Fig-
ure 1. It is a closed source project used internally at SKA
South Africa and is based on a set of bash scripts. Using
bash for this is not ideal; it is hard to make a portable
pipeline, not trivial to recover and continue from errors,
reuse intermediate results. Parallelization is possible, but
this needs to be manually and explicitly defined in the
scripts.

For this paper we made a Kliko version of this pipeline15.
Using Kliko for composing this pipelines has some key ad-
vantages; i) easy installation and deployment of the soft-
ware ii) optional caching of intermediate data products;

12https://airflow.apache.org
13https://github.com/spotify/luigi
14http://www.ska.ac.za/gallery/meerkat/
15https://github.com/gijzelaerr/vermeerkat-kliko

ii) implicit parallelization of tasks independent steps; and
iii) progress visualization and reporting using a tool like
Luigi.

The VerMeerKAT pipeline, (see Figure 1), starts by
querying the MeerKAT data archive for a given set of ob-
servations (step 1), along with the meta-data for that ob-
servation. Next step is to convert the downloaded data
from the hdf5 format to a MeasurementSet (MS)[9] (step
2), since most radio astronomy tools only support this for-
mat. Once the data is in the MS format, it is then taken
through a series of manual and automated tools that ex-
cise data points that are contaminated by radio frequency
interference [15, 13] (step 3, 4 and 5). The data are then
calibrated [7, 18] and imaged [4] (step 6).

For the creation of the VerMeerKAT Kliko containers,
we make use of the packages from KERN[12]. KERN is
a bi-annually released set of radio astronomical software
packages. This suite contains most of the tools that a radio
astronomer needs to process radio telescope data. These
packages are precompiled binaries in the Debian format
and contain all the metadata required for installing the
package like dependencies and conflicts. KERN is only
supported on Ubuntu 16.04 at the moment of writing, but
that is no problem inside a Docker container.

Listing 7 is an example Dockerfile for the wsclean[14]
Kliko container in VerMeerKAT. When this file is built it
will install the KERN package of wsclean inside the con-
tainer and bundle the container with the Kliko definition
and parser script. The Docker files for the other steps are
very similar.

FROM kernsuite/base:1
RUN docker-apt-install wsclean
ADD kliko.yml /
ADD kliko /

Listing 7: Dockerfile for a KERN package

Listing 8 is an example Kliko task definition. This ex-
ample will use the rfimasker Kliko containers. It depends
on the H5tomsTask Kliko task. When this task is invoked
using Luigi, Luigi will do the dependency resolution, check
if the required tasks have run and if not, run them. The
progress can be visualized with the Luigi interface (Figure
2). All other steps in the workflow are very similar to this
example.

from kliko.luigi_util import KlikoTask

class RfiMaskerTask(KlikoTask):
@classmethod
def image_name(cls):

return "vermeerkat/rfimasker:0.1"

def requires(self):
return H5tomsTask()

Listing 8: An example KlikoTask

6

https://airflow.apache.org
https://github.com/spotify/luigi


Figure 2: Screenshot of Luigi, running the vermeerkat pipeline

5.2. RODRIGUES

Another project using Kliko is RODRIGUES (RATT
Online Deconvolved Radio Image Generation Using Eso-
teric Software)16. RODRIGUES is a web-based Kliko job
scheduling tool and it uses the Kliko as a required format
for the job. RODRIGUES acts as a “kliko runner”. A
user of RODRIGUES can log into RODRIGUES and add
a new Kliko container. RODRIGUES will open the Kliko
container, parse the parameters and expose these parame-
ters to the user using a web form (Figure 4). The user can
then fill in the parameters in this form and submit the job
into the RODRIGUES container queue. The container will
be run on the system configured by the RODRIGUES sys-
tem administrator. Once the job is finished the results are
presented to the user in the same web interface (Figure 3).

RODRIGUES makes it much easier to schedule new
jobs with varying parameters, enabling scientists with min-
imal programming or computing knowledge to run experi-
ments in a clean, visual, structured and reproducible way.

6. Software availability

Kliko and its library are open source, licensed under
the GNU Public License 2.017. Kliko is bundled with an
extensive test suite which covers 80% of the source code as
of the current release 0.6.1. The Kliko library is written
in Python and is compatible with Python 2.7, all Python 3
versions and even PyPy. Development and distribution is
done on Github and a third party continuous integration
service runs the full test suite on all supported platforms
for every commit and every Github pull request.

16https://github.com/ska-sa/rodrigues
17https://github.com/gijzelaerr/kliko

Figure 3: Screenshot of RODRIGUES, the result visualizer.

Figure 4: Screenshot of RODRIGUES, parameter form is generated
from Kliko definition.

7

https://github.com/ska-sa/rodrigues
https://github.com/gijzelaerr/kliko


7. Discussions and Prospects

7.1. Limitations

While developing Kliko, we ran into various issues with
Docker which might limit the applicability. It is up to
the user to decide if this affects the usefulness of Docker
and or Kliko. These issues are listed hereafter for your
consideration. That said, the field of containerization is
evolving very fast and hopefully most of these issues will
be resolved soon or can be worked around.

First of all, being able to run a Docker container on
a system is very similar to giving the user administrative
access to the machine, that is the user can escalate easily
to root privileges 18 [5]. The singularity containerization
technology has a more secure design and we are planning
to add support for this framework in future versions of
Kliko.

Additionally, using GPU acceleration with NVidia hard-
ware is not trivial, since the kernel driver version and li-
brary version need to match up, breaking the indepen-
dence between host and container. There is a workaround
available, but this requires a replacement of the Docker
daemon with a custom one 19.

A similar issue arises with optimization flags. For ex-
ample, SIMD instructions can greatly enhance the run-
time speed, but not all x86 processors support all SIMD
optimization. This will result in crashes of the binary if it
is compiled with optimization not supported by the host.
Again this breaks the platform independence assumption.
A good strategy is to be conservative and compile your
binaries for the oldest architecture you intend to support.
The good news is that it is easier to support multiple target
platforms in the same binary when using modern versions
of GCC 20.

Another issue is that it is easy to inherit Docker def-
initions from other Docker definitions, but it is currently
not possible to combine Docker definitions together or to
inherit from multiple Docker definitions at the same time
(merge). Following the Docker philosophy, Docker con-
tainers should have a single responsibility, so this should
not be a problem, it does not require mixing of Docker
definitions. However, in practice, this is not always possi-
ble: sometimes various big libraries need to communicate
in the same memory space so a new Docker container with
all software needs to be created. The results are far away
from minimal small single purpose Docker containers.

For network intensive applications Docker may be less
well suited, since the use of network address translation[6].
Also here there is a workaround available by disabling the
translation and using the host network stack directly.

18https://github.com/docker/docker/issues/6324
19https://github.com/NVIDIA/nvidia-docker
20https://lwn.net/Articles/691932

7.2. Future Work

During the development and usage of Kliko we became
aware of CommonWL[1], a more generic approach to de-
scribe applications input/output flow and parameters. We
will investigate how we can incorporate CommonWL into
Kliko to extend the usability and user base.

At the moment Kliko is designed with other container
solutions in mind. Singularity is an alternative that looks
to be gaining momentum within the scientific compute
(HPC) community since it is more aware and careful of
the security implications that come by allowing running
containers on a shared infrastructure.

7.2.1. Streaming Kliko

Kliko was born in the field of radio astronomy. Most
tools in this field operate on data living on disk. Radio
astronomy uses several file formats, for example, casacore
Measurement Sets, FITS images and, in some cases HDF5.
Using the file system is an easy to understand and tech-
nically stable approach, but problems arise when the size
of the dataset grows. Emerging telescope arrays such as
MeerKAT, followed by SKA phase 1, will result in an ex-
ponential growth in data rates. Repeatedly reading and
writing data from to slowest medium in a computer – the
disk – is not going to scale and a new strategy is needed.
Directly streaming data between processing tasks will be
required. Although this is already being done 21 in some
pipelines, there is no field-wide accepted standard that fits
all needs. Our plan of action is to investigate existing so-
lutions being used, investigate industry standards 22, op-
tionally create a sub-specification and open source refer-
ence implementation with support libraries for the most
used public languages23.

8. Conclusions

Kliko is a Docker-based container specification. It is
used to create abstract descriptions of the input and out-
put of existing software resulting in Kliko containers. These
Kliko containers can be used to encapsulate a single job
or can be chained together in a pipeline. In the future,
we probably will adopt the CWL standard to extend the
interoperability with other existing workflow tools. Kliko
is written in Python, open source and available free to use.

9. Acknowledgments

J. Girard acknowledges the financial support from the
UnivEarthS Labex program of Sorbonne Paris Cité (ANR-
10-LABX-0023 and ANR-11-IDEX-0005-02). The research
of O. Smirnov is supported by the South African Research
Chairs Initiative of the Department of Science and Tech-
nology and National Research Foundation.

21https://github.com/ska-sa/spead2
22https://github.com/google/protobuf
23http://arxiv.org/pdf/1507.03989.pdf

8

https://github.com/docker/docker/issues/6324
https://github.com/NVIDIA/nvidia-docker
https://lwn.net/Articles/691932
https://github.com/ska-sa/spead2
https://github.com/google/protobuf
http://arxiv.org/pdf/1507.03989.pdf


10. References

References

[1] Peter Amstutz, Michael R. Crusoe, Neboja Tijani, Brad Chap-
man, John Chilton, Michael Heuer, Andrey Kartashov, Dan
Leehr, Herv Mnager, Maya Nedeljkovich, Matt Scales, Stian
Soiland-Reyes, and Luka Stojanovic. Common Workflow Lan-
guage, v1.0. 7 2016.

[2] Carl Boettiger. An introduction to docker for reproducible
research, with examples from the R environment. CoRR,
abs/1410.0846, 2014.

[3] RS Booth, WJG De Blok, JL Jonas, and B Fanaroff. Meerkat
key project science, specifications, and proposals. arXiv
preprint arXiv:0910.2935, 2009.

[4] D. S. Briggs, F. R. Schwab, and R. A. Sramek. Imaging. In
G. B. Taylor, C. L. Carilli, and R. A. Perley, editors, Synthesis
Imaging in Radio Astronomy II, volume 180 of Astronomical
Society of the Pacific Conference Series, page 127, 1999.

[5] Thanh Bui. Analysis of docker security, January 2015.
[6] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Ru-

bio. An updated performance comparison of virtual machines
and linux containers. In 2015 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS),
pages 171–172. IEEE, March 2015.

[7] J. P. Hamaker. Understanding radio polarimetry. A&A,
456(1):395–404, 2006.

[8] Justin L Jonas. Meerkatthe south african array with compos-
ite dishes and wide-band single pixel feeds. Proceedings of the
IEEE, 97(8):1522–1530, 2009.

[9] AJ Kemball and MH Wieringa. Measurementset definition ver-
sion 2.0. URL: http://casa. nrao. edu/Memos/229. html, 2000.

[10] Gregory M. Kurtzer. Singularity 2.1.2 - Linux application and
environment containers for science, August 2016.

[11] Dirk Merkel. Docker: Lightweight linux containers for consis-
tent development and deployment. Linux J., 2014(239), March
2014.

[12] Gijs Molenaar. Kern - a bi-annually released set of radio astro-
nomical software packages (in preperation), 2017.

[13] A. R. Offringa, J. J. van de Gronde, and J. B. T. M. Roerdink.
A morphological algorithm for improved radio-frequency inter-
ference detection. A&A, 539, March 2012.

[14] AR Offringa, Benjamin McKinley, Natasha Hurley-Walker,
FH Briggs, RB Wayth, DL Kaplan, ME Bell, Lu Feng,
AR Neben, JD Hughes, et al. Wsclean: an implementation of a
fast, generic wide-field imager for radio astronomy. Monthly No-
tices of the Royal Astronomical Society, 444(1):606–619, 2014.

[15] Jayanti Prasad and Jayaram Chengalur. Flagcal: a flagging and
calibration package for radio interferometric data. Experimental
Astronomy, 33(1):157–171, 2012.

[16] Daniel Price and Andrew Tucker. Solaris zones: Operat-
ing system support for consolidating commercial workloads.
In LISA ’04: Eighteenth Systems Administration Conference,
pages 241–254, 2004.

[17] Rami Rosen. Resource management: Linux kernel namespaces
and cgroups. Haifux, May, 186, 2013.

[18] Smirnov, O. M. Revisiting the radio interferometer measure-
ment equation. ii. calibration and direction-dependent effects.
A&A, 527:A107, 2011.

Appendix A. The Kliko validation specification

schema;fields:
type: map
mapping:
name:

type: str
required: True

type:
type: str
required: True
enum: >

['choice', 'char', 'float', 'file', 'bool', 'int']
initial:

type: any
required: False

max_length:
type: int
required: False

choices:
type: map
required: False
mapping:

regex;(.*):
type: str

label:
type: str
required: False

help_text:
type: str
required: False

required:
type: bool
required: False

type: map
mapping:
schema_version:
type: int

author:
type: str

name:
type: str

description:
type: str

container:
type: str
pattern: .+/.+

email:
type: str
pattern: .+@.+

url:
type: str
pattern: >

https?:\/\/(www\.)?[-a-zA-Z0-9@:
%._\+~#=]{2,256}\.[a-z]{2,6}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)

io:
type: str
required: True
enum: ['split', 'join']

sections:
type: seq
matching: "any"
sequence:

- type: map
mapping:

name:
type: str
required: True

description:
type: str
required: True

fields:
type: seq
required: True
sequence:

- include: fields

Listing 9: The Kliko definition version 2

9



Appendix B. An example kliko.yml file

schema_version: 2
name: Kliko test image
description: for testing purposes only
container: kliko/klikotest
author: Gijs Molenaar
email: gijsmolenaar@gmail.com
url: http://github.com/gijzelaerr/kliko
io: split

sections:
-
name: section1
description: The first section
fields:
-
name: choice
label: choice field
type: choice
initial: second
required: True
choices:

first: option 1
second: option 2

-
name: char
label: char field
help_text: maximum of 10 chars
type: char
max_length: 10
initial: empty
required: True

-
name: float
label: float field
type: float
initial: 0.0
required: False

-
name: section2
description: The final section
fields:
-
name: file
label: file field
help_text: a helpful text
type: file
required: True

-
name: int
label: int field
type: int
required: True

Listing 10: Example /kliko.yml

10


	1 Introduction
	1.1 Software in science
	1.2 Software containerization with Docker

	2 The Kliko specification
	2.1 The Kliko Image
	2.2 Expected runtime behavior
	2.3 Flavors of Kliko Images
	2.4 The /kliko.yml schema
	2.5 The /parameters.json file

	3 Running Kliko containers
	3.1 Running a container manually
	3.2 Inside the Kliko container
	3.3 kliko-run

	4 Chaining containers
	5 Example usage of Kliko
	5.1 VerMeerKAT
	5.2 RODRIGUES

	6 Software availability
	7 Discussions and Prospects
	7.1 Limitations
	7.2 Future Work
	7.2.1 Streaming Kliko


	8 Conclusions
	9 Acknowledgments
	10 References
	Appendix A The Kliko validation specification
	Appendix B An example kliko.yml file

