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Abstract

Simulation of the dynamics of dust-gas circumstellar discs is crucial in understanding the mechanisms of planet

formation. The dynamics of small grains in the disc is stiffly coupled to the gas, while the dynamics of grown solids is

decoupled. Moreover, in some parts of the disc the concentration of the dust is low (dust to gas mass ratio is about

0.01), while in other parts it can be much higher. These factors place high requirements on the numerical methods for

disc simulations. In particular, when gas and dust are simulated with two different fluids, explicit methods require very

small timestep (must be less than dust stopping time tstop during which the velocity of a solid particle is equalized with

respect to the gas velocity) to obtain solution, while some implicit methods requires high temporal resolution to obtain

acceptable accuracy. Moreover, recent studies underlined that for Smoothed particle hydrodynamics (SPH) when the gas

and the dust are simulated with different sets of particles only high spatial resolution h < cststop guaranties suppression

of numerical overdissipation due to gas and dust interaction.

To address these problems, we developed a fast algorithm based on the ideas of (1) implicit integration of linear

(Epstein) drag and (2) exact conservation of local linear momentum. We derived formulas for monodisperse dust-gas in

two-fluid SPH and tested the new method on problems with known analytical solutions. We found that our method is

a promising alternative for the previously developed two-fluid SPH scheme in case of stiff linear drag thanks to the fact

that spatial resolution condition h < cststop is not required anymore for accurate results.

Keywords: protoplanetary discs — hydrodynamics — Epstain drag simulation

1. Introduction

Simulation of the dynamics of circumstellar discs is

crucial in understanding the mechanisms of planet forma-

tion. The state-of-the-art models of formation and evo-

lution of circumstellar discs include a variety of physical

processes: dynamics of a two-phase medium (gas and solid

particles) in the field of the star and in their own gravita-

tional field, radiation transfer, chemical processes, effects
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of magnetic hydrodynamics and other phenomena. The re-

view by Haworth et al. (2016) describes applied approaches

and newest computational challenges for this field. For

the simulation of disc dynamics such software solutions

as GANDALF (Hubber et al., 2018), PHANTOM (Price

et al., 2017), GADGET (Springel, 2005), ZEUS (Stone and

Norman, 1992), FEoSaD (Vorobyov and Basu, 2006), Som-

brero (Snytnikov and Stoyanovskaya, 2013; Stoyanovskaya

et al., 2017a) and many others are developed. They are run

on supercomputers with shared and distributed memory.
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The selection of parallelization strategies is determined by

the supercomputer hardware architecture and methods of

solution of the model core equations. Additional physical

and chemical processes can be included in the core model

and developed parallelized codes by the operator splitting

technique with use of the algorithms, requiring only minor

changes in the core code.

An example of this approach is the inclusion of the

dust dynamics in the supercomputer codes for simulation

of formation and evolution of the circumstellar discs. At

the early evolution stages the circumstellar disc matter

consists above 95% gas and one up to several % dust (e.g.

Williams and Best (2014)). Gas dynamics processes in

discs (for example, the formation of gas giants, episodic

bursts of young stars) are modeled on the base of Navier-

Stokes equations with turbulent viscosity. However, com-

puter simulations of terrestrial planet formation require

the introduction of dust dynamics models together with

gas dynamics. Tiny dust particles and centimeter size

objects are often simulated in the disc model with Eu-

ler equations for gas dynamics with zero pressure. Gas

and dust are dynamically coupled by gravitation field and

interact through drag force. Drag force causes the mo-

mentum transfer between dust and gas. The computing of

drag force between gas and dust in the circumstellar discs

appeared to be a sophisticated computational challenge.

Its highlights are given in Section 2.

In this paper we introduce a novel method for treat-

ing gas and dust mixture in two-fluid Smoothed particle

hydrodynamics simulation (TFSPH).

This method suggests that gas and dust medium is

simulated with two different sets of particles. Contrary to

previous TFSPH methods (e.g. Monaghan and Kocharyan

(1995); Lorén-Aguilar and Bate (2014)), the scheme both

conserves momentum locally and allows computationally

fast semi-implicit integration. The latter grants overcom-

ing prohibitively strict temporal and spatial resolution cri-

teria known for small grains (see Section 2 for details).

Moreover, the method allows for inclusion of the dust dy-

namics into parallelized codes for gas discs simulation on

the base of SPH.

In Section 3 we specify the continuity equations and

equations of motions of the gas and in a circumstellar disc.

In Section 4 we describe the known approaches to the com-

puting of drag force for the two-fluid SPH and outline our

own developed method. In Section 5 we specify the tested

numerical schemes for the problem. In Sections 6 and 7

we describe the test problems, and in Section 8 we present

the results of calculations. Conclusions and directions for

further research are summarized in Section 9.

2. Numerical simulation of dust dynamics in cir-

cumstellar discs. Existing approaches and prob-

lems

The dust stopping time tstop, during which the veloc-

ity of a solid particle is equalized with respect to the gas

velocity, presents a characteristic time scale of the prob-

lem. If explicit methods are used for the integration of the

equations of motion for a separate particle or for a dust

cloud, then the time step τ must satisfy the condition (see,

e.g. Stoyanovskaya et al. (2017b))

τ < 2tstop. (1)

The dust stopping time tstop depends on the size of a parti-

cle. In the Epstein drag mode of the diluted gas flow about

a solid body (according to Epstein (1924) s < 2.25λ, where

λ is the mean free path of a gas molecule, s is the radius of

a spherical dust particle) it is determined by the equation

(e.g.Rice et al. (2004)):

tstop =
sρs

csρg
, (2)

where ρs is the material density of the dust (not a volume

density), ρg is the volume gas density in the circumstellar

disc, cs is the sound speed in a gas.

At early stages, the dust particles in the disc have typ-

ical sizes from 1 µm to few cm. For the particles with sizes
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about 1 µm the time tstop in the disc is about 100 sec (see,

for example, Stoyanovskaya et al. (2017b); Laibe and Price

(2012a)); however, we want to simulate the disc dynamics

for 104 years or more. This means, that in view of (1),

the numerical solution of the nonstationary equations for

the gas and dust medium, expanded for typical times of

the disc dynamics with explicit integration schemes would

require about 1010 time steps. To get rid of such a huge

computational costs a quasistationary approach is often

used for the simulation of tiny dust particles. In this

approach, the dust velocity at the moment τ � tstop is

calculated from the algebraic quasistationarity condition,

relating the dust and gas velocities, rather than from the

solution of a differential equation of motion. On the other

hand, for bodies with sizes about 1 cm tstop is of the order

of 106 sec, which is compatible with the orbital period of

a particle with orbital radius of 1 au. For those bodies the

quasistationary approach is unjustified.

Therefore, the need for development of numerical meth-

ods arises, allowing for integration of the equations of mo-

tion for the dust with time step τ , determined only by the

Courant condition for gas dynamics, rather than by tstop.

Such schemes employ implicit algorithms for drag comput-

ing, e.g. Monaghan (1997), or analytic integration of equa-

tions for the dust velocity field in every point of the space,

e.g. Lorén-Aguilar and Bate (2015). The methods for so-

lution of the equations of motion for the dust, based on

these concepts, are used in Bai and Stone (2010); Zhu et al.

(2012); Cha and Nayakshin (2011); Barrière-Fouchet et al.

(2005); Cuello et al. (2016) and other works. They are

systematically reviewed in Stoyanovskaya et al. (2017b).

The next challenge is the transition from dilute to dense

particulate flows. If the dust to gas mass ratio ε =
ρd

ρg

does not exceed several percents, it is possible to take into

account only the effect of drag force from gas on dust,

neglecting the backreaction of the dust with a tiny total

mass on the dynamics of the massive gas. The dust to gas

mass ratio ε ≈ 0.01 is characteristic for molecular clouds

forming discs. However, in certain areas of the disc (spiral

arms (Rice et al., 2004), inner parts of the disc (Vorobyov

et al., 2018), self-gravitating gaseous clumps (Cha and

Nayakshin, 2011; Humphries and Nayakshin, 2018)) the

dust concentration with respect to gas can increase essen-

tially. In this case, the equation for gas motion must be

completed with a term, describing the exchange of mo-

mentum with dust particles. In a medium with high drag

coefficient between gas and dust at elevated dust concen-

tration an adequate computing of the momentum transfer

from dust to gas is a challenge (e.g. Lorén-Aguilar and

Bate (2014); Laibe and Price (2014); Ishiki et al. (2017);

Yang and Johansen (2016); Vorobyov et al. (2018)).

In particular, Vorobyov et al. (2018) applied a grid-

based method (Stone and Norman, 1992) for simulating

the dynamics of gaseous and dusty components of a disc.

Gas and dust characteristics were determined in the same

space points. A first order implicit scheme (e.g. Cha and

Nayakshin (2011)) with operator splitting was applied for

calculation of mutual drag between gas and dust. The

numerical methods were tested on the problem of sound

wave propagation (Laibe and Price, 2012a) and on the

shock tube problem (Sod, 1978; Laibe and Price, 2011).

It was found that for a system with mutual momentum

transfer between gas and dust, the applied scheme required

a time step τ much smaller than the tstop. However, if

only the impact of gas on the dynamics of dust is taken

into account (neglecting the backreaction of dust on the

gas dynamics) the elaborated scheme yielded satisfactory

results on these test problems without strict limitations for

the time step used. In Stoyanovskaya et al. (2018); Ishiki

et al. (2017) the examples of schemes are given, which solve

this problem for grid methods in a medium consisting of a

mixture of gas and monodisperse dust.

Moreover, Laibe and Price (2011) have found, that

for the same test problems, treated with SPH method

(Monaghan and Kocharyan, 1995), obtaining solution with

an acceptable level of dissipation requires too small spa-
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tial resolution. More specifically, in the numerical model

(Laibe and Price, 2011) gas and dust were described by

separate groups of model particles (TFSPH). If the drag

coefficient between gas and dust is high enough, and the

dust concentration is elevated (that is ε ≈ 1), an adequate

accuracy is obtained only with the smoothing length h,

satisfying the condition

h < cststop. (3)

From (3) it follows that the smoothing length for the

simulation of micron size dust must be of the order of

10 km, while a typical size of the circumstellar disc is

1.5 × 1010 km. It is clear that such a spatial resolution

is nowadays beyond the capabilities of computation hard-

ware.

The solution for the mentioned problems for numerical

models, based on smoothed particles hydrodynamics, was

suggested in Laibe and Price (2014) with use of the transi-

tion towards a one-fluid model of the two-phase medium.

In this approach, the system of equation for the two-phase

gas and dust medium is formulated in the following vari-

ables: density of the carrier gas, dust to gas mass ratio,

barycentric velocity of the medium and relative velocity of

gas and solid particles. Therefore, instead of model parti-

cles of two types (gas and dust particles), model particles

of a gas-dust medium are considered which carry the prop-

erties of both phases.

On the other hand, the two-fluid approach has an ad-

vantage over single-fluid systems, if the drag force between

gas and dust are weak, so dust particle velocities can es-

sentially differ locally. In Lorén-Aguilar and Bate (2014,

2015); Booth et al. (2015) the authors developed an ap-

proximation within the two-fluid approach for considera-

tion of drag force (see Section 4 for details) and applied a

semi-analytical technique for the solution of the equation

of motion for dust and gas. As a result, the restrictions

for selection of the smoothing length (3) could be weak-

ened for the simulation of media with high dust concentra-

tion of small grains. Lorén-Aguilar and Bate (2014) have

found, that the obtained dissipation in their solutions for

a gas-dust medium is smaller compared to the scheme of

Monaghan and Kocharyan (1995). However, their dissipa-

tion exceeds the dissipation in a gas due to introduction

of artificial viscosity. Therefore, further development of

fast and exact methods for numerical simulation of gas

and dust media on the base of two-fluid smoothed particle

hydrodynamics still remains a topical challenge.

We note also that for a gas-dust medium with poly-

disperse dust a method for dynamical simulation MULTI-

GRAIN (Hutchison et al., 2018) was developed on the base

of one-fluid approach in SPH taking into account back-

reaction of dust on the gas velocity. Besides that, fast

method to compute polydisperse dust and gas velocities

was obtained in Stoyanovskaya et al. (2018) for grid-based

approach.

We underline that an important requirement for all

suggested algorithms is the possibility of their incorpora-

tion into already available supercomputer simulation mod-

els of gas discs without need for alterations in their core

methods of gas dynamics simulations. For example, this

requirement is violated, if the transition to the conserva-

tive form of equations is required. A scheme for equations

in a two-phase medium in a conservative form was devel-

oped by Miniati (2010).

3. Continuity and motion equations for the gas-

dust medium of the circumstellar disc

In the present paper we consider a polytropic model for

gaseous component of the disc. We assume that gas flow

is described by two-velocity model (e.g. Marble (1970);

Nigmatullin (1990)), where gas and dust exchange their

momentum. Thus the continuity and motion equations

for the dust and gaseous components have the following

form:
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∂ρg

∂t
+∇(ρgv) = 0,

∂v

∂t
+(v ·∇)v = −∇P

ρg
+g−K(v − u)

ρg
,

(4)
∂ρd

∂t
+∇(ρdu) = 0,

∂u

∂t
+ (u · ∇)u = g+

K(v − u)

ρd
, (5)

where ρg and ρd are volume densities of gas and dust, v

and u are velocities of gas and dust, P is the gas pressure,

g is the gravitational acceleration, K(v − u) is the drag

force between gas and dust. For the conditions of an cir-

cumstellar disc according to Laibe and Price (2012b); Wei-

denschilling (1977) the drag coefficient can assume various

forms depending on the ratio between the dust grain size

s and mean free path of a molecule in the gas λ. For most

parts of the disc (for detail estimations see, e.g. Stoy-

anovskaya et al. (2017b)) the Epstein drag mode of the

interaction between gas and dust takes place, where

K ≡ ρd

tstop
, (6)

and tstop is determined by (2). In this mode the drag force

is a linear function of the relative velocity of gas and a solid

body. Within the scope of the paper we consider only

this drag mode, leaving non-linear Stokes regimes (Wei-

denschilling, 1977) for further studies.

The equation (5) means, that the dynamics of the dust

component of the disc is described in terms of a continuous

medium with zero pressure and viscosity. The gas compo-

nent of the disc occupies the entire available space, and the

dust component has zero volume. This form of equation is

a particular case of the dynamical equations for a gas-dust

medium. In the other applications of the dynamics of gas

and dust medium, for example, in the reactor simulations

with pseudofluidized catalyst layer, the dust phase occu-

pies a finite volume (Monaghan and Kocharyan, 1995),

and the dust velocity is affected by the stress tensor in the

dust component (Xiong et al., 2011).

4. Computing drag force within TFSPH

In the system (4)-(5) the dust and gas are coupled via

the drag force, depending on the relative velocity between

gas and dust phases. If the velocities of dust and gas are

known in the same points of space (grid methods, one-

fluid smoothed particle hydrodynamics (Laibe and Price,

2014)), then the relative velocity in these points can be

determined uniquely. If gas and dust are modeled by dif-

ferent sets of particles, several methods are available for

the computing of the drag force between the phases.

A classical method for the calculation of the drag force

within the smoothed particle hydrodynamics was intro-

duced by Monaghan and Kocharyan (1995), further re-

ferred to as MKD (Monaghan-Kocharyan Drag). This

method is based on the computing of the relative veloc-

ity between each pair of particles of gas and dust (Fig.1,

left panel) and is used in the fundamental and engineering

application of the two-fluid mechanics (Maddison et al.,

2004; Barrière-Fouchet et al., 2005; Gonzalez et al., 2017;

Xiong et al., 2011) and others.

The other method is based on the calculation of gas

density and velocity in the points where dust particles are

located (and vice versa) with the use of SPH interpola-

tion formulas. As a result, for every model particles all

parameters of the gas and dust medium are known (Fig.1,

central panel). Let us call this method IPSPH (InterPola-

tion SPH). It was used in Lorén-Aguilar and Bate (2014);

Booth et al. (2015); Rice et al. (2004).

We propose to use the concept of the Particle-in-Cell

method of simulation of gas-dust flows (Andrews and O’Rourke,

1996) for the computing of drag force. This concept is

based on the idea of splitting the whole computational

domain into nonoverlapping cells (a regular Cartesian or

cylindrical coordinate grid can be used, but this is not a

requirement) and calculating the averaged gas and dust

velocities and densities within each cell. Next, the drag

force affecting each particle can be calculated from the ve-

locity of this particle and volume averaged parameters of

the gas and dust medium (Fig.1, right panel). We will call

this method DIC (Drag-In-Cell).

In this article we compare MK and DIC methods from
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Figure 1: Principle of computing the drag force in two-fluid SPH: pair interaction of Monaghan-Kocharyan drag (MK, left panel), interpolation

(IPSPH, central panel) and averaging in Drag-in-Cell (DIC, right panel), νh is a radius of kernel support domain, e.g. for cubic spline kernel

(27) ν = 2. Dust particles are shown with small black circles, gas particles - with big blue circles. Dash lines indicate pairs in which drag

force term is computed, using values of gas and dust particle, and than averaged with SPH interpolation technique. Arrows from particle to

particle indicates interpolation of dust values into gaseous particle (and vice versa) before computing the local drag term.

the point of view of their feasibility for the simulation of

the coupled dynamics of gas and dust, interacting in the

Epstein drag mode. Since the circumstellar may contains

grains of varying sizes from 1 µm till few cm (upper bound-

ary is debatable), we will focus on the relation between the

method of drag force computing and the level of dissipa-

tion of the numerical schemes for media with arbitrary

(high or low) drag coefficients. The comparison of MKD

and IPSPH methods is given in Lorén-Aguilar and Bate

(2014).

5. Compared schemes

In this Section we specify the compared schemes for the

solution of the equation of motion for gas and dust (4)-(5)

in the SPH standard notation. Let n be the number of the

time step. Following the convention, given in Monaghan

and Kocharyan (1995), we shall use a, b as indices for gas

particles, and j, k as indices for dust particles. For exam-

ple, ρa,g, va, ra, Pa denote density, velocity, coordinate and

pressure of gas in the point with number a; ρj,d, uj , rj de-

note density, velocity and coordinates of the dust in the

point with number j.

5.1. Explicit Monaghan-Kocharyan (MK) scheme

The classical SPH approximation for the equations of

motion (4)-(5) for the gas-dust medium (Monaghan and

Kocharyan, 1995) is based on the MKD method. We have

implemented it in such a way, that the term, describing

drag, uses the values of velocities from the previous time

step:

dvna
dt

= −
∑
b

mg

(
Pb

(ρnb,g)2
+

Pa

(ρna,g)2
+ Πab

)
5a W

n
ab−

− σmd

∑
j

Kaj

ρna,gρ
n
j,d

(vna − unj , rja)

r2
ja + η2

rjaW
n
ja + ga, (7)

dunj
dt

= σmg

∑
a

Kaj

ρna,gρ
n
j,d

(vna − unj , rja)

r2
ja + η2

rjaW
n
ja + gj , (8)

Kaj =
ρnj,dρ

n
a,gc

n
a,s

snj ρ
n
j,s

, (9)

where rja = rj − ra, η is a clipping constant, η2 = 0.001h2

and σ is a factor, determined by the dimensionality of the

problem; for 1D problems σ = 1. Here Πab is the tensor

of artificial viscosity, Wn
ab = W (h, rab) is the smoothing

kernel.
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5.2. Novel SPH-IDIC scheme: implicit Drag-in-Cell

The second scheme is different from (7)-(8) only by

terms describing drag.

For each time moment let us split the whole computa-

tional domain into nonoverlapping cells, so that the union

of these sets coincides with the whole domain. Let a cer-

tain cell contains N gas particles of the same mass mg

and L dust particles with the same mass md, with N > 0,

L > 0. Let us introduce volume-averaged values of t∗stop

and ρ∗d (averaging performed by any arbitrary method),

and set

ε∗ =
mdL

mgN
, (10)

thus defining

K∗ =
ρ∗d
t∗stop

, ρ∗g =
ρ∗d
ε∗
. (11)

We assume, that in the computing of the drag force,

affecting the dust from the gas, the gas velocity is the

same within the whole cell and equal to v∗, but the dust

particles have different velocities (and vice versa). Besides

that, we shall calculate the drag coefficient and densities,

using calculated values from the previous time step, while

the relative velocity will be used from the next step. The

scheme thus has the following form:

dvna
dt

= −
∑
b

mb

(
Pb

(ρnb,g)2
+

Pa

(ρna,g)2
+ Πab

)
5a W

n
ab−

− K∗

ρ∗g
(vn+1

a − un+1
∗ ) + ga, (12)

dunj
dt

=
K∗

ρ∗d
(vn+1

∗ − un+1
j ) + gj , (13)

v∗ =

∑K
i=1 vi
N

, u∗ =

∑L
j=1 uj

L
. (14)

If the time derivative in (12)-(13) is approximated by

the first order finite difference, then a fast way for com-

puting of un+1, vn+1 can be proposed (see Appendix A).

In the next Section we describe the test problems to

be used for comparison of the approaches (7)-(8) and (12)-

(13).

6. Test 1. Dusty Wave - sound waves in a two-

phase isothermal medium

6.1. Problem statement. Reference solution

For an isothermal medium the system of equation (4)-

(5) takes the following form:

∂ρg

∂t
+
∂(ρgv)

∂x
= 0,

∂ρd

∂t
+
∂(ρdu)

∂x
= 0, (15)

ρg(
∂v

∂t
+ v

∂v

∂x
) = −c2s

∂ρg

∂x
−K(v − u), (16)

ρd(
∂u

∂t
+ u

∂u

∂x
) = K(v − u). (17)

The steady solution of the system (15)-(17) is given by

the functions

ρg(x) = ρ̃g = const, ρd(x) = ρ̃g = const, v(x) = 0,

u(x) = 0. (18)

Consider the solution to the system (15)-(17) on the in-

terval x ∈ [0, 1] with positive sound speed, setting periodic

conditions by x for the solutions on the left border:

ρg|x=0 = ρg|x=1, ρd|x=0 = ρd|x=1, v|x=0 = v|x=1,

u|x=0 = u|x=1, (19)

and initial data as small perturbations of stationary den-

sity and velocity (18):

ρg|t=0 = ρ̃g +A sin(kx), ρd|t=0 = ρ̃d +A sin(kx), (20)

v|t=0 = A sin(kx), u|t=0 = A sin(kx). (21)

Here k is wave number, defining the integer number of

sine waves of density and velocity on the interval [0, 1], A

is the perturbation amplitude. In the vicinity of (18) the

linearized system (15)-(17) for perturbations has the form:

∂(δρg)

∂t
+ ρ̃g

∂v

∂x
= 0,

∂(δρd)

∂t
+ ρ̃d

∂u

∂x
= 0, (22)

ρ̃g
∂v

∂t
= −c2s

∂(δρg)

∂x
−K(v − u), (23)
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ρ̃d
∂u

∂t
= K(v − u). (24)

The reference solution of the linearized system (22)-

(24) is given in Laibe and Price (2011), who also shared

the code for generation of this solution, which we used

here.

For simplicity, in what follows we shall refer to the

reference solution of the linearized system (22)-(24) as the

analytical solution of DustyWave problem.

The linearized system (22)-(24) has an analytical so-

lution for dusty gas mixtures with both small dust grains

(strong drag) and large bodies (weak drag). This key fea-

ture of the problem allows it to be used for assessment of

the applicability of the method for simulation of a solid

phase with arbitrary size of particles.

6.2. Numerical algorithm, boundary and initial conditions

The continuity equations for dust and gas are approx-

imated in a standard way within SPH:

ρna,g = mg

∑
b

Wn
ab, (25)

ρni,d = mj

∑
i

Wn
ij . (26)

Most of test runs are done with cubic spline kernel, that

is classical for SPH and used in astrophysical (e.g.Barrière-

Fouchet et al. (2005); Gonzalez et al. (2017)) and industrial

(e.g.Xiong et al. (2011)) simulations:

Wn
ab =W (|rna − rnb |, h) =

=Wn(q) =
2

3h


1− 3

2q
2 + 3

4q
3, if 0 ≤ q ≤ 1,

1

4
(2− q)3, if 1 ≤ q ≤ 2,

0, otherwise;

(27)

where q =
|rna − rnb |

h
.

However, recent works by Laibe and Price (2012a);

Lorén-Aguilar and Bate (2014) underlined that quintic

kernel increases the accuracy of drag terms computing.

For this reason in Section 8.4 we compared cubic spline

and quintic kernel results. We used quintic kernel

Wn(q) =

=
σ

h



(3ξ − q)5 − 6(2ξ − q)5 + 15(1ξ − q)5, if 0 ≤ q < ξ,

(3ξ − q)5 − 6(2ξ − q)5, if ξ ≤ q < 2ξ,

(3ξ − q)5, if 2ξ ≤ q < 3ξ,

0, otherwise;

(28)

with radius of support domain h (ξ =
1

3
, σ =

35

40
) (Dehnen

and Aly, 2012) and 3h (ξ = 1, σ =
1

120
)(Price, 2012).

In the spatial points, occupied by gas particles, the

pressure is calculated as Pa = c2sρa,g. The artificial viscos-

ity is not introduced in this test problem, that is Πab = 0.

The time integration of the equations of motion (7)-(8),

(12)-(13) is performed with an explicit first order approx-

imation scheme. The time step is determined from the

Courant condition:

τ <
h · CFL

max(cs, u, v)
, (29)

where CFL is the Courant parameter.

The initial distributions of gas and dust velocities are

set as u0 = v0 = A sin(2πx), gas density ρg,0 = A sin(2πx)+

1, dust density ρd,0 = A sin(2πx) + ε. Following param-

eters were used in the calculations: A = 10−4, cs = 1,

ε = 1.

To obtain the density on the interval [0, l], which is per-

turbed around the constant value ρ̃ by the valueA sin(2πx),

that is ρ0(x) = ρ̃+A sin(2πx), we used the recurrent pro-

cedure of the model particles placement. The first particle

is placed into the origin of the coordinates x1 = 0, and

the coordinate of the next particle is calculated from the

relation

xi+∆xi∫
xi

ρ0dx =
ρ̃l

Nph
,
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where Nph is the number of model gas or dust particles.

After all xi are determined, each particle is shifted to the

right by a value ∆xi.

In the initial time moment the particles are located

within the interval [0,1], and the coordinates of gas and

dust particles coincide. To ensure the periodic boundary

conditions (19) for each time step, the particles from the

interval were cloned with placement them at a distance,

equal to the length of the interval, to the left and to the

right.

If not otherwise specified, the calculations use an equal

number of gas and dust particles Ntotal = 2 × 600, a

constant smoothing length h = 0.01 and the time step

τ = 0.001, ensuring CFL = 0.1.

7. Test 2. Dustyshock - shock tube problem for

gas and dust medium

7.1. Problem statement. Reference solution

In this Section we consider the shock tube problem as

a classical test for gas dynamics solvers, which is often ref-

erenced as Sod test (Sod, 1978). The modification of this

problem is also often used for testing computation schemes

for two-phase media, for example, Laibe and Price (2012a);

Saito et al. (2003). The one-dimensional equations for con-

servation of mass, momentum and energy in the gas-dust

medium have the following form in the notations of Section

3:

∂ρg

∂t
+
∂(ρgv)

∂x
= 0,

∂ρd

∂t
+
∂(ρdu)

∂x
= 0, (30)

ρg(
∂v

∂t
+ v

∂v

∂x
) = −∂P

∂x
−K(v − u), (31)

ρd(
∂u

∂t
+ u

∂u

∂x
) = K(v − u), (32)

ρg(
∂e

∂t
+ v

∂e

∂x
) = −P ∂v

∂x
, (33)

where e is the internal energy (temperature) of the gas,

related in the following way with its pressure:

P = ρge(γ − 1). (34)

For the system (30)-(33) the flow conditions are set on

the boundaries of the interval. Zero initial velocities, gas

pressure jump, and density jumps for gas and dust are im-

posed at the initial time moment. If a solid phase is absent

in the gas, then the analytical solution of the problem is

known for the whole range of parameters. The reference

solution for the gas-dust medium is known for the steady

case, that is for time moments t > tstop under the condi-

tion, that tstop max(cs, u, v)� l, where l is the linear size

of the computational domain. This solution is obtained

from the solution for gas dynamics by replacement of the

sound speed in the gas with the sound speed in the gas-

dust medium (e.g., Laibe and Price (2012a)):

c∗s = cs(1 +
ρd

ρg
)−1/2. (35)

We shall consider the case, when the drag term in the

r.h.s. of (31) essentially exceeds the term with the pressure

gradient. This allows to exclude the quadratic term (u −

v)2 from consideration in the equation (33), since it is of

the second order of smallness with respect to (u− v).

7.2. Numerical algorithm, boundary and initial conditions

The continuity conditions are approximated with equa-

tions (25)-(26), the kernel is chosen in the form (27), as in

the case of the DustyWave problem.

The SPH approximation of the energy equation with

artificial viscosity are taken in the form:

dena
dt

=
mgPa

(ρng,a)2

∑
b

(vna−vnb )∇aW
n
ab+

mg

2

∑
b

Πab(v
n
a−vnb )∇aW

n
ab,

(36)

where

Πab =


−αcabµab + βµ2

ab

ρab
, if vabrab < 0,

0, if vabrab > 0,

(37)
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µab =
hvabrab
r2
ab + ν2

, vab = va − vb, rab = ra − rb,

ρab =
1

2
(ρa + ρb), cab =

1

2
(ca + cb) and c =

√
γP

ρ
.

We have used standard parameters of the artificial vis-

cosity α = 1, β = 2, ν = 0.1h (Monaghan, 1992).

The time integration of the equations of motion (7)-(8),

(12)-(13) and energy (36) is performed with an explicit first

order approximation scheme.

As initial data we set the values for the left and right

domains at zero time:

[ρl, Pl, vl, el] = [1, 1, 0, 2.5],

[ρr, Pr, vr, er] = [0.125, 0.1, 0, 2],

γl = γr = 7/5.

The initial dust to gas mass ratio is set ε = 1. If not

otherwise specified, 990 gas and 990 dust particles is used:

Ntotal = 2× 990. In the initial time moment 880 particles

are homogeneously distributed on the interval [−0.5, 0],

and 110 particles - on the interval [0, 0.5]. Dust particles

are placed in the same points as gas particles.

To mimic the boundary conditions, 450 immobile parti-

cles are placed outside the interval [-0.5,0.5] (Morris et al.,

1997), which ensure a close to zero pressure gradient and

zero density drops at the ends of the interval.

If not otherwise specified, the calculations use a con-

stant smoothing length h = 0.01 and time step τ = 0.001,

satisfying the Courant condition with CFL = 0.1.

8. Results and discussion

In this Section we compare the numerical solutions,

obtained from MK and SPH-IDIC methods for different

values of drag coefficient (from weak to stiff drag).

For the cases when reference solution of the problem is

available, we quantify the scheme error using L2 norm:

L2 =

[
1

Nref

(
Nref∑
i=1

(fi − fexact)
2

f2
max

)]1/2

, (38)

where fmax - maximum of reference solution on compu-

tational domain, fexact is the reference solution for the

i-th point, Nref - number of reference solution points. We

compute fi in reference solution points, using standard

SPH interpolation fi = m
∑
j

fj
ρj
Wij (where j - number of

SPH particle). We note however, that reference solution is

not exact analytical solution, but its approximation with

unknown error, so the obtained from (38) value is useful

approximation of scheme error.

For the implementation of the SPH-IDIC scheme the

expressions from Appendix A were used. To calculate

the drag force, the whole computational domain is split

into equal sections with length hcell. If not otherwise

specified, hcell = h. For each cell, ρ∗d was calculated as

ρ∗d =

∑L
j=1 ρd

L
, t∗stop =

ρ∗d
K

. The MK scheme was imple-

mented with a constant drag coefficient K.

The results presented in this Section were obtained

from running our developed codes, written is C language.

To download the codes please use the links

https://bitbucket.org/astrosolvers/dustywave/downloads/,

https://bitbucket.org/astrosolvers/dustyshock/downloads/

(available for public access) or clone the correspond-

ing git repositories. The codes were developed to test the

features of different schemes on one-dimensional problems,

however, it were not specially optimized by performance.

8.1. Comparison of schemes on problems with weak and

moderate drag

Primarily, we compared the results obtained with the

MK and SPH-IDIC schemes under the same spatial resolu-

tion, when tstop is comparable to or much greater than the

dynamical time scale of the problem. In Fig.2 we present

the analytical and numerical solutions to the DustyWave

problem at the time moment t = 0.5 for K = 0.005 (top

panels) and K = 0.5 (bottom panels). Left panels present

the dust velocity, right panels are for gas velocity. In both

cases the numerical solution is close to the analytic one. In

the mode with practically no coupling between the gas and

10



Figure 2: Solution of the DustyWave problem for the time moment t = 0.5. Comparison of MK and SPH-IDIC scheme results for weak and

moderate drag. Top panels: K = 0.005, bottom panels: K = 0.5. Left panels present the dust velocity, right panels are for gas velocity. Total

number of particles, involved in the computation: Ntotal = 2 × 600, CFL = 0.1, cubic kernel (27) M4 is implemented.
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Table 1: L2 error of dust velocity for DUSTYWAVE problem results

from Fig. 2 with weak and moderate drag. As with data plotted

on Fig. 2 cubic kernel is implemented, Ntotal = 2 × 600 particles

involved in the computation.

K=0.005 K=0.5

h = 0.01
τ = 0.001 MK 0.000636 0.012058

τ = 0.001 IDIC 0.000653 0.001237

h = 0.025
τ = 0.0025 MK 0.002829 0.024018

τ = 0.0025 IDIC 0.002954 0.004631

dust (K = 0.005), the dust velocity at t = 0.5 is close to

the initial value. Moreover the perturbation in the gas has

shifted to the right with the sound speed cs, (rather than

c∗s from (35)), and its amplitude increased. For a moderate

drag K = 0.5 compared to the weak drag with K = 0.005,

wave damping occurred for dust velocities, which follows

from the disperse relation from Laibe and Price (2012a)

and coincides with the results of Laibe and Price (2011).

To quantify the accuracy of the DustyWave results in

Tab.1 we provide numerical solution error for dust velocity,

that was found using L2 norm (38). Inspection of Tab. 1

reveals that in the case of weak drag K = 0.005 MK and

IDIC schemes provides accurate results (better than 1 %)

with almost similar solution error. For this case the error

demonstrates the second order dependence on h. However,

for the case of moderate drag K = 0.5 the solution error

for IDIC scheme is much less than for MK. Moreover, error

for IDIC scheme demonstrates second order dependence on

h, while for MKD scheme it is only first order dependent.

In Fig.3 the numerical solution for the DustyShock

problem with K = 5 is given. The reference solution for

this case of a moderate drag is not available. Both schemes

yield similar results for gas and dust velocities, gas density,

internal energy and pressure. Moreover, the obtained nu-

merical solutions qualitatively coincide with the solution

obtained by Laibe and Price (2011) (see Fig.11 in their pa-

per). However, in the vicinity of the contact discontinuity,

the MK scheme reproduces a more smoothed dust density

compared to the SPH-IDIC scheme.

Therefore, for the considered values of drag coefficient

(weak and moderate drag) the smoothing length satisfies

the condition (3), and the time step, chosen from the

Courant condition (29) satisfies the condition (1). The

Fig.2 and Fig.3 show, that the results obtained with both

schemes, with similar numerical resolution, are compara-

ble in accuracy.

8.2. Comparison of schemes on problems with stiff drag

At the second stage, we compare the numerical solu-

tions obtained with the MK and SPH-IDIC schemes under

the same spatial resolution, when tstop is much less then

dynamical time of the problem. Four left panels of the

Fig.4 show the analytical and numerical solution to the

DustyWave problem at K = 500 for the time moment

t = 0.5. Top panels show dust velocity, bottom panels -

gas velocity. It can be seen, that in a mixture with stiff

drag, velocities of gas and dust coincide by both phase

and amplitude. Left panels show the calculation results

with a fixed step τ = 0.001 at different smoothing lengths.

The bigger is the smoothing length, the stronger is the

dissipation of the velocities. The comparison of Fig.2 and

Fig.4 shows, that the level of dissipation depends on the

drag parameters. Thus, at h = 0.025 and K ≤ 0.5 it is

not noticeable, however, for the same h and K = 500 it

has a pronounced manifestation. The central panels show

the results for such calculation with increased number of

particles Ntotal = 6000 and decreased smoothing length

h = 0.001. Now enhanced spatial resolution satisfies (3).

Obviously, the computation with such an enhanced reso-

lution is free of the dissipation of gas and dust velocities.

The similar effect occurs for the numerical solution of

the DustyShock problem as well. Four left panels in Fig.5

present the numerical solution of the DustyShock problem

for the time moment t = 0.2 for stiff drag with K = 500.

In this case, tstop = 0.002 � t, therefore to estimate the
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Figure 3: Solution of the DustyShock problem for the time t = 0.2. Comparison of MK and SPH-IDIC scheme results at moderate drag

(K = 5). Upper panels: densities and velocities for gas and dust, lower panels: gas energy and pressure. Total number of particles, involved

in the computation Ntotal = 2 × 990, h = 0.01, τ = 0.001, cubic kernel (27) M4 is implemented.

accuracy of the numerical solution, we can use a reference

solution with c∗s for a gas-dust medium (35). Two left pan-

els show the numerical solution with h = 0.01, violating

the condition (3). It is seen, that for both dust velocity

and gas density an over-dissipation is observed. As can be

noted from the bottom left panel, the scale of dissipation

for the solution exceeds 10 times the smoothing length h.

We note that for the shock tube problem in gas with the

same values h and τ such a dissipation is not observed (see

Fig.6 and Section 8.3). When the smoothing length was

decreased to h = 0.001 (the number of model particles was

increased 10 times), the dissipation disappeared.

Right panels of Fig.5 show the results of the solution of

the same problem with the SPH-IDIC scheme. The step h

is selected to be the same, as for the calculations with MK

on the left panels of Fig.5, it is seen, that for stiff drag,

under similar spatial resolution, the results of the SPH-

IDIC scheme essentially differ from those within the MK

scheme. An over-dissipation, observed in the MK scheme,

is absent in the calculations according to the SPH-IDIC

scheme, however, a weak nonmonotonicity in the dust ve-

locity appears.

The absence of over-dissipation in the SPH-IDIC scheme

also follows from the right panels of Fig.4, where the nu-

merical solutions to the DustyWave problem with the smooth-

ing length h = 0.01 and h = 0.025 are shown. Comparing

left and right panels of Fig.4 we see, that at h = 0.025

the wave amplitude from the MK scheme is 30% less, than

the reference value. Meanwhile, the error within the SPH-

IDIC scheme does not exceed several percents. We un-

derline also, that the numerical solution at h = 0.025 was

obtained with τ > tstop due to the use of implicit drag

approximation in SPH-IDIC.

Thus, we conclude, that for all tests the numerical

solutions obtained with the MK scheme yield an over-

dissipation for mixtures with high dust concentration and
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Figure 4: Solution of the DustyWave problem for the time moment t = 0.5. Comparison of the MK and SPH-IDIC scheme results for stiff

drag K = 500, ε = 1, cubic kernel is used. Top panels show dust velocity, bottom panels - gas velocity. Two left panels show the MK scheme

with h = 0.01, violating the condition (3), central panels correspond to h = 0.001, satisfying the condition (3). Two right panels show the

SPH-IDIC scheme with h = 0.01, violating the condition (3). Left and right panels – 2 × 600 SPH particles is used, center panels – 2 × 6000

particles is used.

stiff coupling between the gas and the dust. This coin-

cides with the results of Laibe and Price (2011) (see Fig. 8

and Fig. 12 of their article) and Lorén-Aguilar and Bate

(2014). On the other hand, the SPH-IDIC scheme is free

from that over-dissipation when similar spatial resolution

is used.

8.3. Dustyshock in gas and dust mixture with extremely

stiff drag, notes on cell size and smoothing length re-

lations

In Section 8.2 we have shown, that for mixtures with

high dust concentration and stiff drag the accuracy of

the solution by the MK scheme depends crucially on the

smoothing length. Therein, the design of the method al-

lows for use of different smoothing lengths for the approx-

imation of the pressure gradient and drag force in (7)-(8).

Besides that, Laibe and Price (2012a) proposed to use dif-

ferent kernels in the calculation of the pressure and drag

forces. In particular, they achieved an increase in accuracy

of the method, taking a quintic or double-humped kernel

for the drag force (Fulk and Quinn, 1996).

The design of the SPH-IDIC method also allows for

different values of the smoothing length and typical cell

size hcell, in which the drag is calculated. Varying h and

hcell in the SPH-IDIC scheme we revealed, that for mixture

with high dust concentration and stiff drag, the quality of

the numerical solution depends on the ratio between the

smoothing length and cell size. For one-dimensional test

problems, considered in this paper, we have found, that

an optimal smoothness is achieved for hcell = 0.5h.

Fig.6 shows the numerical and analytical solution for

the DustyShock problem at a time moment t = 0.2 for

the gas-dust medium with extremely stiff drag K = 5000,

thus tstop = 0.0002, and high dust concentration. The

numerical solution is obtained from the SPH-IDIC scheme

with time step τ � tstop, besides that, hcell = 0.5h. It is

seen, that at h = 0.01, N = 990 the numerical solution

for the shock and rarefaction waves in the gas medium is

close to the analytical one, the dissipation is manifested

only weakly (for comparison, see two left panels in Fig.5).

However, in the vicinity of the contact discontinuity, both
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Figure 5: Solution of the DustyShock problem for the time t = 0.2. Comparison of the MK and SPH-IDIC schemes at tstop = 0.002, K = 500,

ε = 1. Top panels show gas density, bottom panels - dust velocity. Two left panels show the MK scheme with h, violating the condition (3),

central panels correspond to h, satisfying the condition (3). Two right panels show the SPH-IDIC scheme with h, violating the condition (3).

On the left panels h = 0.01, τ = 10−3, 2 × 990 SPH particles, on the central panels h = 0.001, τ = 10−4, 2 × 9900 SPH particles, on the right

panels h = 0.001, τ = 10−3, 2 × 990 SPH particles.

internal energy and pressure drops occur. The accuracy of

the internal energy reproduction is about 10%.

A numerical drop in the internal energy (and hence - a

pressure drop as a consequence) on the contact discontinu-

ity is a feature of the Smoothed particles hydrodynamics

in combination with the first order approximation scheme

by time (see, e.g. Cha and Whitworth (2003), Figs. 11-14

there). To minimize the method biases for the discontin-

uous solutions several modifications of SPH are developed

(see e.g. Cha and Whitworth (2003)). In the paper we

just ensured, that the SPH-IDIC method for a gas-dust

medium does not increase the error of the solution around

the contact discontinuity. To this end we compared the nu-

merical and analytical solution of the shock tube problem

in a gas with given above initial data and parameters. The

results are visualized on four bottom panels of Fig.6. On

the bottom left panel of Fig.6 it is seen, that the internal

energy drop is the same for gas and gas-dust medium.

Moreover, the dissipation for the wave fronts in the gas-

dust medium with high dust concentration and stiff drag

is manifested weaker compared to the gas medium. The

dissipation of wave fronts in gas is a consequence of the

introduction of the artificial viscosity into the equations of

gas motion. However, the artificial viscosity is not included

into the equations for dust. As a result of high drag in

a medium with high dust concentration, the gas velocity

appears to be close to the dust velocity, which decreases

the dissipation.

8.4. Kernel and accuracy comparison

To study the influence of kernels on the accuracy of re-

sults, we compared the solutions of DustyWave and DustyShock

problems for the case of stiff drag K = 500 and high dust

concentration ε = 1 obtained with cubic spline, quintic-h

and quintic-3h kernels. For both problems standard num-

bers of SPH particles are used, values for τ and h are given

in Tabs. 2,3. The results are shown on Fig.7. Visual exam-

ination of right panel of Fig.7 indicates, that the wider is

the kernel support domain, the more dissipation of solution

is obtained with MK scheme. This tendency is in agree-

ment with results of e.g. Laibe and Price (2012a). The
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Figure 6: Solution of the DustyShock problem by the SPH-IDIC scheme for the time moment t = 0.2 with extremely stiff drag (K = 5000)

and high concentration of dust in the mixture ε = 1. Total number of particles, involved in the computation Ntotal = 2 × 990, h = 0.01,

τ = 0.001. Red and green lines show the solution of the shock tube problem in gas with Ngas = 990 and the same h and τ .
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Table 2: Scheme error calculated for dust velocity with L2 norm

for DUSTYSHOCK problem with stiff drag K = 500 and high dust

concentration ε = 1. M4 is the cubic spline kernel, M6 is the quintic

kernel. Ntotal = 2 × 990 SPH particles.

M4-2h M6-h M6-3h

h = 0.01
τ = 0.0001 MK 0.138 0.074 0.156

τ = 0.001 IDIC 0.051 0.063 0.049

h = 0.025
τ = 0.00025 MK 0.235 0.143 0.270

τ = 0.0025 IDIC 0.094 0.116 0.092

Table 3: Scheme error calculated for dust velocity with L2 norm

for DUSTYWAVE problem with stiff drag K = 500 and high dust

concentration ε = 1. M4 is the cubic spline kernel, M6 is the quintic

kernel. Ntotal = 2 × 600 SPH particles.

M4-2h M6-h M6-3h

h = 0.01
τ = 0.001 MK 0.039 0.005 0.059

τ = 0.001 IDIC 0.002 0.006 0.002

h = 0.025
τ = 0.001 MK 0.217 0.041 0.296

τ = 0.0025 IDIC 0.004 0.040 0.003

left panel of Fig.7 demonstrates that IDIC scheme signifi-

cantly decreases the level of dissipation when wide kernels

(cubic spline and quintic-3h) are implemented. As it fol-

lows form Tab.2 transition from MKD to IDIC way of drag

force computing makes the scheme error 3 times smaller

for quintic-3h kernel and only 30 % smaller for quintic-h

kernel. Moreover, the same tendency in more exagger-

ated form can be seen from Tab.3: DustyWave solution

becomes 30-100 times more accurate when IDIC scheme is

implemented for quintic-3h kernel, and doesn’t change for

quintic-h kernel.

Moreover, one can see from Tab.2,3 that synergy of

wide kernel with IDIC way of drag term computing pro-

vides more accurate results than just implementation of

narrow kernel for MK scheme on both test problems.

8.5. Discussion of the results

8.5.1. Conservative properties of compared numerical schemes

In this Section we consider the principal differences in

the properties of the involved schemes, which, to our opin-

ion, result in essentially different level of dissipation at stiff

drag. We suppose, that this difference consists in the con-

servative properties of the used numerical schemes, which

is related to the law of momentum conservation as one of

the principal conservation laws for physical quantities.

First, we shall show, that for the system (4)-(5) the

law of the momentum conservation is valid locally for an

arbitrary Eulerian volume. Assuming, that

ag = −∇P
ρg

+ g, ad = g, (39)

from (4)-(5) we obtain the system for u and v

∂v

∂t
= ag − ε

v − u
tstop

,
∂u

∂t
= ad +

v − u
tstop

. (40)

If ag = 0, ad = 0 and ε = const, which corresponds to a

limiting value of tstop = 0, it follows from (40), that

∂

∂t
(v + εu) = 0. (41)

Evidently, if (41) is valid for an arbitrary Eulerian vol-

ume, it is valid for the whole domain.

In the MK scheme the calculation of the drag force is

performed on the base of a pairwise symmetric interaction

of gas and dust particles. The formulas are designed to

ensure that the momentum is exactly conserved for the

whole computational domain in the numerical solution,

that is

mg

∑
a

[
dva
dt

]
drag

+md

∑
j

[
duj
dt

]
drag

= 0, (42)

where the summation by a and j is performed for all par-

ticles. It is evident, that (42) is a discrete analog of (41), if

the whole domain is taken as a volume in (41). However,

this does not imply the fulfillment of the condition (42) for

an arbitrarily selected volume.

In the SPH-IDIC scheme the drag is calculated using

particle allocation into Eulerian volumes or cells. For each
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Figure 7: Numerical and reference solution of DustyShock problem with stiff drag K = 500 and high dust concentration ε = 1. Standard

numerical parameters Ntotal = 2 × 990, h = 0.01, τ = 0.1 are used. Dust velocity in time moment t = 0.2 is plotted. Results with kernels of

different support domain radius is given for MKD (right panel) and IDIC scheme (left panel).

of the selected cell the fulfillment of (42) with summation

over all particles in this cell takes place. Indeed, if we set[
dvi
dt

]
drag

= ε∗
u∗ − vi
t∗stop

,

[
duj
dt

]
drag

=
uj − v∗
t∗stop

, (43)

then

N∑
i=1

[
dvi
dt

]
drag

=
ε∗

t∗stop

(
Nu∗ −

N∑
i=1

vi

)
=
ε∗N

t∗stop

(u∗ − v∗) ,

(44)
L∑

j=1

[
duj
dt

]
drag

=
1

t∗stop

 L∑
j=1

uj − Lv∗

 =
L

t∗stop

(u∗ − v∗).

(45)

From (10),(44) and (45) the validity of (42) for the con-

sidered cells follows directly.

The obtained results point at the fact, that a scheme,

where the momentum conservation law is ensured locally,

not only globally, is free from the over-dissipation of the

numerical solutions in the tests considered here.

8.5.2. Semi-implicit approximation of the drag force and

requirements to the time step

On the base of MK, IPSPH and DIC approaches it is

possible to approximate the drag terms in (4)-(5) in both

explicit and semi-implicit ways. Under semi-implicit ap-

proximation, the drag coefficient and gas and dust densi-

ties are taken from the previous time step, and velocities

are taken from the next time step. The semi-implicit ap-

proximation allows to remove the strict condition (1) to

be imposed on the step τ in explicit schemes.

For the MK methods the implementation algorithms

for semi-implicit computing of the drag force are described

in Monaghan and Kocharyan (1995); Barrière-Fouchet et al.

(2005); Laibe and Price (2012b). Neither of them is a di-

rect scheme, that is they require converging iterations, and

the convergence rate of a particular method depends on

the parameters of the drag force. The IPSPH approach

ensures the implementation of an implicit scheme with as

a direct algorithm with fixed number of arithmetic opera-

tions (see Lorén-Aguilar and Bate (2014) for details). In

Appendix A we have shown, that the DIC approach al-

lows to obtain a direct and fast implementation for the

semi-implicit approximation of drag force, if the first or-

der method with respect to time is used, and the system

is considered to be in the Epstein mode.

A summary of computational approaches for the drag

force is given in Table 4.
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Table 4: Characteristics of drag force calculation methods

Computation method Ensures the fulfillment Preserves Lagrangian Allows for direct

for the drag force of the local nature of SPH implementation of

momentum conservation law semi-implicit drag

MK - + -

IPSPH - + +

DIC + - +

9. Conclusion

The article considers the novel Lagrange-Eulerian SPH-

IDIC method for the calculation of the dynamics of gas

and dust mixture on the base of two-fluid smoothed par-

ticle hydrodynamics (TFSPH). Comparing to previously

developed TFSPH methods SPH-IDIC scheme doesn’t re-

quire spatial resolution condition h < cststop for accurate

computing of mixtures with high dust concentration and

small grains, which is essential for protoplanetary disc sim-

ulations. Below we outlined the idea of SPH-IDIC and our

main results.

Within TFSPH, gas and dust phases are simulated

with two separate sets of particles. We considered the dust

to be monodisperse, that is containing only grains with

one typical size. In SPH-IDIC, the pressure force is cal-

culated via a standard SPH approximation. To calculate

the drag force, the particles are allocated into nonoverlap-

ping densely spaced volume cells. For each cell, averaged

parameters of the gas-dust mixture are calculated. Drag

forces, acting on every gas or dust particle, is calculated

with use of the individual velocity of a particle and aver-

aged by volume cell characteristics of the gas-dust mixture.

The method is designed so, that for the case of linear de-

pendence of the drag force on the relative velocity (i.e.

Epstein drag mode) following requirements are met:

(1) it is ensured, that for every local volume the mo-

mentum, lost by the gas due to drag force, will be equal

to the momentum, gained by the dust subsystem due to

drag force,

(2) implicit drag is implemented in a computationally

fast way.

We have compared the suggested SPH-IDIC method

with an explicit method of Monaghan and Kocharyan (1995),

which is classical for TFSPH approaches. We have shown,

that both methods yield similar results for media with

high dust concentration and weak drag (large grains). We

have also shown, that for mixtures with high dust con-

centration and stiff drag (small grains), resolution condi-

tion h < cststop is crucial to avoid numerical overdissipa-

tion for Monaghan and Kocharyan (1995) scheme but is

not required for SPH-IDIC scheme. Moreover, SPH-IDIC

scheme decreases the level of dissipation due to artificial

viscosity in shock simulations.

Therefore, the SPH-IDIC method can be considered

as a promising tool for the simulation of the dynamics of

gas-dust mixture with arbitrary dust concentration and

arbitrary sizes of dust grains. The following steps are con-

sidered as prospective directions for future research efforts:

(1) determining the accuracy of numerical solutions de-

pending on the partitioning of the domain into cells, and

number of gas and dust particles in a cell.

(2) testing the method on two-dimensional and three-

dimensional problems, determining the most efficient al-
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gorithm for partitioning of the computational domain into

cells,

(3) studying the ways of extension of the approach to

polydisperse dust media.

Acknowledgements

This work was supported by the Boreskov Institute of

Catalysis. The authors are grateful to anonymous referee

for constructive and useful comments.

Appendix A. Implementation of the SPH-IDIC scheme

with first order approximation of time

Let us denote

Ψn
a = −

∑
b

mb

(
Pn
b

(ρnb,g)2
+

Pn
a

(ρna,g)2
+ Πab

)
5a Wab.

Performing the summation in the equation (12) by a

and dividing the result by the number of gas particles N

in a cell, we obtain the equation for v∗:

vn+1
∗ − vn∗

τ
= Ψn

∗ − εn∗
vn+1
∗ − un+1

∗
tn,∗stop

, (A.1)

where Ψn
∗ =

1

N

N∑
i=1

Ψn
a .

Similarly for u∗:

un+1
∗ − un∗

τ
=
vn+1
∗ − un+1

∗
tn,∗stop

. (A.2)

It is convenient to express the solution for (A.1)-(A.2) us-

ing the substitution

xn+1 = vn+1
∗ − un+1

∗ , xn = vn∗ − un∗ ,

yn+1 = vn+1
∗ + εn∗u

n+1
∗ , yn = vn∗ + εn∗u

n
∗ , (A.3)

which results in the following:

xn+1 − xn

τ
= Ψn

∗ − xn+1(
εn∗ + 1

tn,∗stop

),
yn+1 − yn

τ
= Ψn

∗ ,

(A.4)

(
1

τ
+
εn∗ + 1

tn,∗stop

)
xn+1 =

xn

τ
+ Ψn

∗ , yn+1 = yn + τΨn
∗ ,

(A.5)

then

vn+1
∗ =

yn+1 + εn∗x
n+1

1 + εn∗
, un+1

∗ =
yn+1 − xn+1

1 + εn∗
. (A.6)

Determine from (12)-(13) the values vn+1
a , un+1

j :(
1

τ
+

εn∗
tn,∗stop

)
vn+1
a =

vna
τ

+
εn∗
tn,∗stop

un+1
∗ + Ψn

∗ + ga,(
1

τ
+

1

tn,∗stop

)
un+1
j =

unj
τ

+
1

tn,∗stop

vn+1
∗ + gj . (A.7)
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