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Abstract. We present a technique to automatically minimise the re-computation
when a data processing program is iteratively changed, or added to, as is often the
case in exploratory data analysis in radio astronomy. A typical example is flagging
and calibration of demanding or unusual observations where visual inspection suggests
improvement to the processing strategy. The technique is based on memoization and
referentially transparent tasks. We describe a prototype implementation for the CASA
data reduction package. This technique improves the efficiency of data analysis while
reducing the possibility for user error and improving the reproducibility of the final
result.

1. Introduction

Notwithstanding the notable successes in automating the reduction and analysis of data
from radio telescopes, the traditional astronomer-driven data reduction is still common.
This typically takes the form of exploratory, iterative, data reduction where visual in-
spection of intermediate or final data products is used to adjust, or add to, the data
processing program. Each adjustment is typically small and impacts only a subset of
the processing as a whole; however in current systems there is no way automatically re-
run only this subset. Instead the user has the choice to either re-run the whole program,
which can take minutes, hours or even days; or to manually do the sub-selection of the
part of the program which needs to be re-run and risk introducing errors.

The situation can be easily be improved as we show below, by thin wrappers
around existing data reduction software systems and applying techniques used in other
parts of software engineering. We expect the benefits will be the greatest during tele-
scope commissioning, during which the automated pipelines are being developed, and
to particularly demanding observations where careful inspection of flagging, calibra-
tion, CLEANing and uv-weighting may be needed.

2. Objective

The use case we consider is an astronomer who is repeatedly running a data reduction
processing job with some change to the processing logic between each run. The primary
objective is that, without any intervention from the astronomer, only the processing
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steps whose results could have changed (because either their parameters or their input
data changed) are re-executed between the runs. We assume the processing logic is
captured in a ‘script’ and the above implies astronomer does not need to edit the script
in anyway to select steps which are to be executed – instead the script as a whole is
submitted for every execution.

The rationale for this objective is to, at the same time, improve the efficiency of
data analysis (both in term of the computing time and the time of the astronomers doing
the analysis) while reducing the possibility of errors that is opened by astronomers
manually sub-selecting parts of the script to be run. By only having a single script
whose logic is incrementally improved we expect reproducibility and understandability
will be improved.

Second objective is that the syntax and semantics of the scripts are as similar as
possible to what astronomers are familiar with. In the field of radio astronomy at least
this means Python, or Python-like syntax and semantics. The rationale for this is to
maximise of the uptake of this software – very few would be willing to learn a new
paradigm of computing.

Third objective is modularity of the scripts. The rationale is that if first the first
objective is met, modularity will be both easier and more desirable.

3. Approach
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Figure 1. Classification of techniques for minimising computation for all combi-
nations of changing program and data scenarios. The primary scenario we consider
here is in shaded box with bold text – input data are fixed and the program is chang-
ing.

In the scenario we consider the input data are known and unchanging – they are
the raw data recorded by the telescope – while the data processing program is evolving
between processing runs. This scenario can be contrasted with one where the program
does not change but some of the input data changes between runs: the classic exam-
ple of this is the make program which minimises the re-compilation/re-linking when a
subset of source code files changes. Another scenario considered in a previous work
(Small et al. 2015) is where the input data are unknown, i.e., the minimal set of re-
computation needs to be determined without reference to a particular input data. The
possible scenarios are classified in Fig 1.
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The approach we adopt is to have referentially transparent tasks at the user level
and use memoization. A referentially transparent task is a task whose call can always
be replaced by its return values. The important implications for astronomy are that
tasks can not have observable side effects other then their return values and that tasks
can not modify in-place any of their input variables. So for example, a task to calibrate
a dataset must return a new calibrated dataset rather than modifying the dataset it has
been passed. The downside of such tasks is that a processing job will require more disk
storage space; we describe below how we ameliorate this.

Memoization (Michie 1968; Abelson et al. 1996) is the technique of tabling the
results of task invocations against their inputs. In astronomy this means tabling the
results against both the input astronomical data and any adjustable processing parame-
ters. The technique is commonly used in functional programming languages or when a
functional sub-set of a language is used. A well known example is Pacrat parsing (Ford
2002). The downside of memoization is the storage space required for keeping the re-
sults, which we limit with an eviction strategy described below. Another downside in
the general case is the high cost of look up for extremely fine grained tasks but this is
unlikely to apply to typical astronomical processing scripts and their tasks.

The approach we adopt parallels that put forward in other fields in software engi-
neering. The most direct inspiration was the Ciel dataflow execution engine (Murray
et al. 2011). A more generally familiar system is the ccache program used to min-
imise recompilation when the Makefiles as well as the source code files are changing
in a large compiled-language system. Another inspiration was the NiX (Dolstra 2006)
system, which applies the methodology to building a whole Linux distribution rather
than a single program. From NiX we take the idea of using the filesystem as a database
keyed by the hash of the processing requested from each task.

4. Design & Implementation

In this work we concentrate on the CASA system (McMullin et al. 2007), probably
the widest-used software package in radio astronomy. A similar approach can easily
be applied to ParselTongue (Kettenis et al. 2006) as we showed earlier (Small et al.
2015). The strategy we adopt is to wrap existing CASA interface to make it referentially
transparent and to replace the use of user-defined filenames with variables representing
files. We then apply memoization to this new interface, storing the tabling key as the
filename of the value. Values are evicted according the Least-Recently-Used (LRU)
strategy.

Users interact with CASA predominately via “tasks”, a mostly functional Python-
based interface where input and output data are always files on disk. CASA tasks
however often modify their input datasets. We make all such tasks referentially trans-
parent by copying the input dataset before the task is invoked and using this copy as the
output value of the task.

Since some tasks only modify a small part of the input dataset, this copy approach
can be inefficient on traditional filesystems. For this reason we use OpenZFS (on Linux)
which has the Copy-On-Write architecture (BTRFS also supports this feature). This
means that a copy of a file (i.e., not just a link to) will not cause any copying of the
on-disk blocks until those specific blocks have been changed for the first time. In the
present case this means that when a task modifies its input dataset, only the blocks it
modifies will actually use disk space.
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In normal usage, CASA users specify the files which contain inputs and outputs
of tasks directly by their concrete filenames. Multiple approaches can be used to apply
memoization in this situation. One approach is to hash the input datafiles and use hashes
for tabling; another is to infer the dataflow (see Small et al. 2015, for a description).
The approach we adopt is use variables instead of direct filenames, and to ensure the
actual filenames are the string representations of the hash the task call that was used to
generate their contents. This approach has two advantages: no hashing of file contents
is needed (a potentially expensive operation) as long as raw input data have stable
filenames and are never modified in-place (the normal situation in radio-astronomy);
and, the resulting code structure is much easier to modularise since the file variables
are lexically scoped in the same way as the other variables. By contrast, direct use of
filenames is equivalent to a single global namespace for file variables.

Memoized values are checked for eviction before every call into a task. The trigger
is the free disk space on the filesystem used to store the values, i.e., values will be
evicted if the free space is less than a certain critical value. The criterion used is the last-
access time stamp of the files. This implements the least-recently-used cache eviction
scheme. When a task checks for the existence of a memoized value, it updates the
last-access time even if the value is not read (i.e., the descendant task has also been
memoized) – this is done in order to reduce the chance of early eviction of roots of
long, deep dataflows.

Further information and source code is available at http://www.mrao.cam.ac.
uk/~bn204/sw/recipe.
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