
The Apertif Monitor for Bursts Encountered in Real-time (AMBER) auto-tuning
optimization with genetic algorithms

K. Mikhailova,b,∗, A. Scloccoc

aAnton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
bASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo, The Netherlands

cNLeSC, Netherlands eScience Center, Science Park 140, 1098 XG Amsterdam, The Netherlands

Abstract

Real-time searches for faint radio pulses from unknown radio transients are computationally challenging. Detections become further
complicated due to continuously increasing technical capabilities of transient surveys: telescope sensitivity, searched area of the
sky, number of antennas or dishes, temporal and frequency resolution. The new Apertif transient survey on the Westerbork telescope
happens in real-time on GPUs by means of the single-pulse search pipeline AMBER (Sclocco, 2017). AMBER initially carries
out auto-tuning: it finds the most optimal configuration of user-controlled parameters per each of four pipeline kernels so that each
kernel performs its task as fast as possible. The pipeline uses a brute-force (BF) exhaustive search which in total takes 5 – 24 hours
to run depending on the processing cluster architecture. We apply more heuristic, biologically driven genetic algorithms (GAs)
to limit the exploration of the total parameter space, tune all four kernels together and reduce the tuning time to few hours. Our
results show that after only few hours of tuning, GAs always find similar or even better configurations for all kernels together than
the combination of single kernel configurations tuned by the BF approach. At the same time, by means of their genetic operators,
GAs converge into better solutions than those obtained by pure random searches. The explored multi-dimensional parameter space
is very complex and has multiple local optima as the evolution of randomly generated configurations does not always guarantee
global solution.

Keywords: pulsars: general, stars: neutron, astronomical instrumentation, methods and techniques, algorithms: genetic algorithms

1. Introduction

Various radio transient surveys constantly search for new
pulsars, rotating radio transients (RRATs, McLaughlin et al.,
2006), and fast radio bursts (FRBs, Lorimer et al., 2007; Petroff

et al., 2016), especially at less explored extragalactic distances
in dense environments. More such discoveries can help us bet-
ter classify transients and study intergalactic medium (IGM).
Even though distant radio transients are hard to localize, bet-
ter localization can more comprehensively explore Galactic
and extragalactic source populations in terms of stellar evolu-
tion and star formation that should depend on the type of host
galaxy.

New discoveries of single bursts with Parkes, UTMOST,
and ASKAP (Caleb et al., 2017; Bannister et al., 2017; Bhan-
dari et al., 2018) and one repeating source of bursts with
Arecibo (Spitler et al., 2016; Chatterjee et al., 2017) reveal new
properties of radio bursts. Searches for much fainter and more
distant bursts require more fine-grained searches and lead to
new processing challenges (Magro et al., 2011; Barsdell et al.,
2012; Sclocco et al., 2016). Just like standard pulsar searches,
transient lookups are performed in the two-dimensional, time-
frequency space for every unit of dispersion measure (DM,
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third dimension). Modern searches (see Table 1) are performed
in real-time to trigger multi-frequency follow-up. They also
require very high time sampling and frequency resolution to
better determine the burst structure. Growing data rates and
computational costs require larger supercomputers and search
pipelines based on graphics processing units (GPUs) rather than
central processing units (CPUs)1.

Transient surveys are also technically limited in their abil-
ity to detect new bursts. The number of antennas or dishes
in the survey relates to the corresponding amount and size of
beams they can produce. This determines how large the ob-
serving area of the sky would be. The system equivalent flux
density S sys = Tsys/G, where Tsys is a total system tempera-
ture and G is a system gain. Together with frequency band-
width ∆ν, number of polarizations npol, single-pulse threshold
and single-pulse width, this determines down to what extent
of radio transient brightness we can possibly search (radiome-
ter equation, Lorimer and Kramer, 2004). Finally, the tempo-
ral and frequency resolution of the instrument set the limits to
which the intrinsic structure of the pulse can be studied. Within
all such limitations, the data should be optimally distributed on
CPUs and GPUs for the signal processing: this includes de-

1Other options, such as FPGAs and ASICs, are also available. However,
FPGAs are very hard to program, and floating point performance is not compa-
rable with GPUs, whereas ASIC are expensive to design and produce.
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Table 1: Modern radio pulsar and transient surveys and their main characteristics. FoV is a survey field of view in square degrees, Nbeam is a number of facilitated
beams, tsamp is a sampling resolution in micro-seconds, npol is a number of polarizations, νcntr and ∆ν are central frequency and available bandwidth, both in
megahertz, Tsys/G and S 3 ms

min are system noise and minimum detectable flux density for a 10σ single-pulse threshold and 3 ms pulse width, both in Janskys.

Parameter CHIME a UTMOST b SUPERB c ASKAP d ALERT e SKA-Low f SKA-Mid f

Status commissioning ongoing ongoing ongoing commissioning future future
FoV (deg2) 220 9 0.6 30 8.7 27 0.49

Nbeam 1024 352 13 288 2600 500 1500
tsamp (µs) 2.5 655.36 64 − 40.92 50 50

npol 2 1 4 2 2 4 4
νcntr (MHz) 600 835.5 1382 1400 1400 250 800
∆ν (MHz) 400 31.25 400 336 300 100 300

Nchan 1024 320 1024 336 1536 8192 4096
Tsys/G (Jy) 45 28.5 60 1800 70 2 × 10−5 7 × 10−6

S 3 ms
min (SP, Jy) 0.25 0.9 0.3 13.4 1.6 1.8 × 10−7 3.7 × 10−8

a Based on the CHIME system overview (The CHIME/FRB Collaboration et al., 2018)
b Based on the UTMOST system overview (Bailes et al., 2017; Caleb et al., 2017)
c Based on the SUPERB survey overview (Keane et al., 2018; Bhandari et al., 2018)
d Based on ASKAP survey description (Bannister et al., 2017)
e Based on Apertif Incoherent Search setup (Maan and van Leeuwen, 2017)
f Based on the updated SKA review (Dewdney, 2013; Braun, 2015; Levin et al., 2017)

dispersion (appropriate shift and integration of frequency chan-
nels that removes frequency dispersion), signal smoothing, and
signal-to-noise evaluation. One way to find configurations that
allow for fast data distribution and processing is to perform
auto-tuning. In this case every configuration gets tested in terms
of the best possible performance (fastest processing time in case
of radio transient surveys). In the end, the most optimal config-
uration that allows the fastest search gets chosen. Auto-tuning
is widely applied in computer science (Williams, 2008), but
has also seen applications in other domains such as computa-
tional finance (Grauer-Gray et al., 2013) or astronomy (Sclocco
et al., 2012). Auto-tuning for radio transient surveys also shows
promising results in terms of performance portability (Sclocco
et al., 2015).

The new real-time Apertif survey on the Westerbork (WSRT)
telescope (ALERT, the Apertif Lofar Exploration of the Radio
Transient Sky2) is now equiped with a new 160×GPU cluster
that achieves 1.3 Pflops of peak performance and a data rate
of 4 Tbit/s, and has 2 PBytes of available storage space (Maan
and van Leeuwen, 2017). Such computational capacity enables
deep searches up to 42 µs time and 0.195 MHz frequency reso-
lution, respectively. Apertif front-ends on 12 WSRT dishes pro-
duce more than 400 tied array beams that in total cover 8.7 deg2

of the sky, searched between 1100-1750 MHz with a tunable
bandwidth of 300 MHz. Commissioning data from a targeted
search toward FRB121102 already suggested a detection (Oost-
rum et al., 2017).

All hardware and software constraints require an optimized
distribution of processing resources on the cluster to allow for
the fastest real-time search: GPU threads and items, local mem-
ory re-use, loop transformations. Auto-tuning allows for an
automated search of these parameters. Although such tuning
is performed only once for a running survey, it should be in-
voked again in case the survey undergoes hardware changes

2http://alert.eu

(e.g. front-end or back-end upgrades) or the search pipeline
itself gets extended or improved (e.g. by adding new process-
ing steps). Besides, it should be easily portable to any other
survey pipelines.

Section 2 introduces the current search pipeline for ALERT
and its current auto-tuning. We introduce a more heuristic ap-
proach for auto-tuning with genetic algorithms in Section 3.
Section 4 shows achieved performance based on different algo-
rithm input parameters as well as comparison with the pure ran-
dom search. We discuss auto-tuning parameter space in terms
of complexity and degeneracy in Section 5 and draw our con-
clusions in Section 6.

2. AMBER auto-tuning

The real-time search for new single bursts on WSRT is
performed via the single-pulse search pipeline AMBER (The
Apertif Monitor for Bursts Encountered in Real-time3, Sclocco,
2017). The pipeline can be divided into four main operations
or kernels: a two-step de-dispersion4, de-dispersed time se-
ries downsampling (smoothing) and subsequent signal-to-noise
(S/N) computation. Before the search, each kernel of the
pipeline gets tuned to find its most optimal processing configu-
ration5.

The parallel framework of choice for the accelerators is
OpenCL, because it is vendor independent. In this regard GPU
threads are referred as work-items, and GPU blocks of related
threads are referred as work-groups. In AMBER, OpenCL ker-
nels operate in three dimensional grids, but the pipeline uses

3https://github.com/AA-ALERT/AMBER/
4For a single DM, the frequency channels are first united into subbands

such that the radio pulse signal first gets de-dispersed along subbands (step one,
subband de-dispersion), and then within each subband (step two, intra-subband
de-dispersion).

5https://github.com/AA-ALERT/AMBER_setup/tree/ARTS_
tender
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Table 2: Fixed survey parameters and their values for ARTS0 GPUs.
Parameter Description Value for ARTS0

DEVICE_PADDING Size of the cache line of OpenCL device (bytes) 128*

DEVICE_THREADS Number of simultaneously running OpenCL work-items 32*

MIN_THREADS Minimum number of OpenCL work-items 8
MAX_THREADS Maximum number of OpenCL work-items 1024*

MAX_ITEMS Maximum number of variables which the automated code is allowed to use 255*

LOCAL Use of OpenCL local memory "-local"
MAX_ITEMS_DIM0 Maximum number of OpenCL work-items in time dimension 64
MAX_ITEMS_DIM1 Maximum number of OpenCL work-items in DM dimension 32

MAX_DIM0 Maximum number of OpenCL work-groups in time dimension 1024
MAX_DIM1 Maximum number of OpenCL work-groups in DM dimension 128

MAX_UNROLL Maximum loop unrolling 32
INPUT_BITS Processing data rate (bits per sample) 8
SUBBANDS Number of frequency subbands 32

SUBBANDING_DMS Number of DM subbands 2048
SUBBANDING_DM_FIRST Initial DM of the first subband (pc/cc) 0.0
SUBBANDING_DM_STEP Subband DM step (pc/cc) 2.4

DMS Number of DMs within each subband 24
DM_FIRST Initial DM within the first subband (pc/cc) 0.0
DM_STEP DM step (SUBBANDING_DM_STEP / DMs) (pc/cc) 0.1
BEAMS Number of compound beams 1

SYNTHESIZED_BEAMS Number of synthesized beams 1
MIN_FREQ Minimum observing frequency (MHz) 1290
CHANNELS Number of frequency channels 1536

CHANNEL_BANDWIDTH Frequential resolution (MHz) 0.1953125
SAMPLES Number of samples 25600
BATCHES Number of samples per chunk of data 10

SAMPLING_TIME Time resolution (µs) 0.00004096
DOWNSAMPLING Downsampling factors 10 . . . 3200
NRSAMPLES Downsampled number of samples SAMPLES / DOWNSAMPLING

* NVIDIA GeForce GTX Titan X (Maxwell generation) characteristics

only two dimensions, time and DM. These two dimensions
limit the amount of available parallelism on both work-groups
and work-items. The pipeline configuration is based on survey
constraints and processing capabilities (see Table 2) as well as
8 different types of user-controlled parameters6 (see Table 3)
that altogether define a single computational configuration for
a specific many-core accelerator7.

All user-controlled tuning parameters need to be gener-
ated within the corresponding boundary conditions. For de-
dispersion kernels, AMBER may or may not utilize local mem-
ory (localMem) and loop unrolling (unroll) to speed up the
computations. The latter also scales with the number of chan-
nels distributed over the frequency subbands as this gives the
amount of parallelism during the frequency channels summa-
tion. The number of time samples and DMs that each GPU
has to correct for (nrSamplesPerThread, nrDMsPerThread,
nrSamplesPerBlock, nrDMsPerBlock) are constrained by
the overall number of time samples and DMs / subbanding DMs
in the search space. Similarly, smoothing (S/N evaluation) ker-
nels are computationally limited by the total (downsampled)
number of time samples in the observations.

6Previous pipeline version additionally had one more parameter
splitSeconds responsible for manipulation between different kernels.

7Other input files contain downsampling factors, GPU cache line size, and
frequency channels that need to be zapped due to terrestrial radio frequency
interference (RFI) contamination.

Before the real-time search, the pipeline undergoes brute-
force (BF) auto-tuning to optimize each kernel by going
through all possible configurations of tunable parameters from
the single kernel parameter space. An average run of the BF
tuning takes from 5 to 24 hours depending on the processing
cluster architecture. At Westerbork, AMBER runs on the ARTS
GPU Cluster (van Leeuwen, 2014). For our tests, we only used
the initial node of that cluster, ARTS0, powered by NVIDIA
GeForce GTX Titan X GPUs. On a single such GPU, the BF
tuning takes about 10 hours. The runtime of the whole pipeline
(all kernels) on the randomly generated test data8 with the tuned
configuration lasts about TBF ' 5.5 sec.

The complete sampling has several drawbacks:

• The BF tuning does not tune all kernels at once as it takes
too much time, even on a large parallel system (see Sec-
tion 5);

• As the BF tuning is applied to each kernel separately, it
does not consider dependencies between kernels which
may lead to a global optimal configuration for the whole
pipeline.

In this paper we test the idea that more heuristic genetic al-
gorithms can find a good enough global configuration for all

8The data amount depends on the number of processed batches. In our
experiments, we used 10 batches, each of 1.024 sec, so the observation time is
10.24 sec.
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Table 3: Types of user-controlled tuning parameters and their boundary conditions.
Parameter p Description Boundary conditions

localMem Utilization of local memory to allow for data re-use between computations p = 0 (no re-use); p = 1 (total re-use)

unroll Loop unrolling to optimize code execution by means of its reorganization
p = 1 . . . MAX_UNROLL;

CHANNELS
SUBBANDS ÷ p (step 1 de-dispersion), SUBBANDS ÷ p (step 2 de-dispersion)

nrSamplesPerThread № samples per work-item
p = 1 . . . MAX_ITEMS_DIM0;

SAMPLES ÷ p (both steps of de-dispersion)

nrDMsPerThread №DMs per work-item
p = 1 . . . MAX_ITEMS_DIM1;

SUBBANDING_DMs ÷ p (step 1 de-dispersion), DMs ÷ p (step 2 de-dispersion)

nrSamplesPerThread × nrDMsPerThread < MAX_ITEMS is regulated by the maximum number of registers on a GPU card

nrSamplesPerBlock № samples per work-group
p = 1 . . . MAX_DIM0;

SAMPLES
nrSamplesPerThread ÷ p (both steps of de-dispersion)

nrDMsPerBlock №DMs per work-group
p = 1 . . . MAX_DIM1;

SUBBANDING_DMs
nrDMsPerThread ÷ p (step 1 de-dispersion), DMs

nrDMsPerThread ÷ p (step 2 de-dispersion)

nrSamplesPerBlock × nrDMsPerBlock < MAX_THREADS is regulated by the maximum number of OpenCL work-items

nrItemsD0 № items to process per work-item
p = 1 . . . MAX_ITEMS;

NRSAMPLES ÷ p (time series downsampling); also SAMPLES ÷ p (S/N calculation)

nrThreadsD0 №work-items in a work-group
p = 1 . . . MAX_THREADS;

NRSAMPLES
nrItemsD0 ÷ p (time series downsampling); also SAMPLES

nrItemsD0 ÷ p (S/N calculation)

kernels together in less time. Although the end configuration
may not be the overall global optimum (see Section 5), it will
still be nearly as good or even better than the combination of
best configurations per kernel after BF tuning. Additionally, it
will almost always be better than the best configuration after a
pure random search. The idea and overview of the GA algo-
rithm is given in the following section.

3. The genetic algorithm

The idea of genetic algorithms (GAs) dates back to Charles
Darwin’s idea of biological evolution that only the fittest
individuals should survive and produce more adapted off-
spring (Holland, 1975). Most applications for GAs are in search
and optimization (Goldberg, 1989). There are also a number of
GA applications in astronomy, from spectral analysis and cos-
mology to telescope scheduling (Charbonneau, 1995; Metcalfe
et al., 2000; Mokiem et al., 2005; Liesenborgs et al., 2006),
but also in searches for pulsars and gravitational waves (Lazio,
1997; Petiteau et al., 2013).

3.1. Main genetic operators
The working element of every GA is a chromosome or an in-

dividual – a set of tunable (usually binary) parameters known as
genes. The idea of GA is to evolve chromosomes and improve
their scores guided by a fitness function. A typical GA contains
five main genetic operators: initialization, selection, crossover,
mutation, and replacement (see Fig. 1).

The individuals are first initialized (usually at random) and
acquire their respective fitness functions. Based on the fitness
scores, a number of fittest individuals get selected for further
evolution. The selection is typically done either via roulette-
wheel scheme (based on cumulative probability of fitness func-
tions) or tournament scheme (based on the fittest winner from a
limited pool of individuals).

The pair of selected individuals then produces an offspring
through mixing their genes among each other. Such operation

Initialization

Fitness function

Selection

Crossover

Mutation

Best individual

Stop?

No

Yes

Figure 1: Typical block diagram of a genetic algorithm. After initializing popu-
lation of individuals, we evaluate fitness functions of each individual and check
the stopping criteria. We either finish or make individual selection based on its
fitness value. Next, we apply crossover and mutation to selected individuals,
re-evaluate their fitness functions and check the stopping criteria again. Once
we satisfy the criteria, we end up with the best individual from the evolved
population. Otherwise we replace old individuals by new ones and continue
evolution further.

is known as crossover. The most used option to cross genes is a
one-point crossover where the genes before the crossing point
remain the same, but the rest of the genes gets swapped with
that from another individual. Depending on the type of genes
and the task, other crossover options such as multi-point or uni-
form crossover are possible (see Umbarkar and Sheth, 2015, for
a review).

Next, offspring individuals may also undergo mutation when
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one or more genes happen to randomly change their val-
ues (e.g., Soni, 2014). This is done primarily to avoid premature
convergence into a local optimum and better explore parameter
space.

Finally, the new population replaces the old one with pos-
sible preservation of fittest parent individuals. After that the
evolution starts again until the population obtains sufficient fit-
ness function or the evolution reaches its limit in time or in the
number of generations. The size of the individuals population
Npop as well as the rates of crossover Pcross and mutation pmut
are tunable parameters of the GA algorithm.

3.2. GA auto-tuning
The main advantages of the GA approach compared to BF

tuning or random search during AMBER auto-tuning optimiza-
tion are:

• The BF algorithm tunes each kernel separately, whereas
GA tunes the whole pipeline and thus considers interac-
tions between the kernels. As a result, GA can find a better
solution for all kernels together in less time.

• Unlike random search, GA does a guided search for bet-
ter parameters while still trying to explore the rest of the
parameter space by means of mutation operator.

In our GA implementation9, every individual is a set of free
parameters (see Table 3) that altogether control all four kernels
of the pipeline. Only localMem gene has a binary representa-
tion and switches between ‘0’ and ‘1’, other genes are powers
of two for simplicity, and to preserve bit alignment on GPUs.

We first generate arrays of possible values for every gene
based on boundary conditions and dependencies (see Sec-
tion 2). Next, all four kernels of Npop individuals obtain genes
initialized with random values from those arrays. After that
we evaluate individuals fitness functions as the run times of the
whole pipeline, which includes a combination of all four ker-
nels. We then apply tournament selection by creating a pool of
randomly selected individuals Npool (some fraction of the total
population Npop) such that the individual with the best fitness
wins and gets chosen from such pool. We do selection Npop
times.

Next we group selected individuals in pairs for the subse-
quent crossover. We make sure there are minimal or no identi-
cal individuals in pairs as this leads to no new offspring. After
that we apply crossover for each kernel with probability pcross to
create an offspring population of individuals with interchanged
genes. The size of offspring population is the same as the size
of their parents Npop. We test two types of crossover: one-point
crossover and uniform crossover with a coin toss probability
(see Fig. 2). The gene exchange happens only if the offspring
genes also satisfy required boundary conditions.

Some kernels of each offspring individual then also undergo
mutation with probability pmut; one or multiple genes in these

9The code is available on GitHub: https://github.com/MixKlim/GA_
AMBER

23 % 57 % 88 % 19 %

a) b)

Figure 2: Two types of crossover that we test in our GA: a) one-point crossover;
only the genes (coloured squares) after the red dashed line get exchanged
among two individuals. The line crossing point is chosen at random; b) uni-
form crossover with a coin toss probability; the exchange of genes between two
individuals happens only if the randomly generated probability associated with
these genes exceeds 50%.

kernels get randomly changed from an array of its possible val-
ues. For kernels that include downsampling (smoothing and
S/N kernels), a number of genes get randomly chosen for muta-
tion, one per downsampling factor. We make sure the new gene
value is different from the old one unless it is prohibited by the
boundary conditions. After mutation all offspring individuals
get their fitness functions re-evaluated.

In the end, we replace parent individuals by their offspring.
We rank parent and offspring individuals by their fitness val-
ues and select the best performing half of each group. In this
case we preserve the fittest parent individuals and have a new
population of the same size Npop for the next generation.

4. Performance results

Since we are interested in testing how much faster GA tuning
finds a solution nearly as good as BF tuning, we run our genetic
evolution for as long as it takes BF to explore and tune every
single kernel, i.e. Trun ' 10 hrs for ARTS0. To evaluate fitness
values we run AMBER with each individual configuration on
the uniformly distributed noise with injected single pulse signal
and obtain a set of execution times Texec. Although the total run-
time Ttotal = Tdata + Texec also includes time spent on test data
generation Tdata, we do not take that time into account while
evaluating the individual’s fitness function. Nevertheless, some
configurations can result in a very slow run of the pipeline or
even its breakdown, mostly due to inappropriate memory allo-
cation. To avoid such configurations, we limit the AMBER total
runtime Ttotal to 3 min. Such empirical time limit was chosen
to cover half-minute fluctuations from test data generation and
most typical pipeline executions, but also penalize inefficient
runs. For the tournament selection, the size of the tournament
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pool Npool was set to be 20% of Npop to avoid multiple selections
of only several dominant individuals.

In our tests we used Npop = 20 individual configurations to
balance between slow fitness function evaluation and sufficient
number of generations. Unless being tested, crossover and mu-
tation were applied with pcross = 0.8 and pmut = 0.1, some-
what generally accepted average rates in the literature (see Patil
and Pawar, 2015, for a review). We also recorded configura-
tions with the best fitness value after each generation. We then
tracked the best fitness value in the population over all genera-
tions along with the computational time spent per generation.

We did several 10 hr test runs based on different population
size, probabilities of crossover and mutation, type of crossover
operator, and pure random search. For each run and for ev-
ery population generation, we plot the ratio between the best
obtained execution time over the runtime found by BF tuning
Texec/TBF. The algorithm performance plots for every afore-
mentioned parameter are shown in Fig. 3; each data point is
based on a single test run, since the algorithm includes a ran-
dom component. The gradual fitness improvement, however,
does not change with different runs (in other words, the evolu-
tion does not diverge).

In case of changing mutation rate (Fig. 3(a)), more frequent
mutation leads to a more complete exploration of the total pa-
rameter space. Still, even when individuals always happen to
mutate during their evolution (pmut = 1, best exploration), it
may take much longer time compared to BF runtime to signifi-
cantly improve the best configuration in population, mostly due
to high complexity of the parameter space we have to explore
(see Section 5) and prolonged fitness evaluations.

In case of changing crossover rate (Fig. 3(b)), more frequent
crossover generally leads to a better mixing between individu-
als and therefore more rapid population evolution. Depending
on how good the best configuration gets after random initializa-
tion, higher crossover rates result in higher evolutionary slopes.
Extremely high rates (pcross = 1, all individuals get updated and
then mutated) do not necessarily lead to the best fitness at the
end of GA evolution, but greatly reduce its value after initial-
ization.

The more individuals we initialize, the more time we spend
on generating arrays of possible values for each gene based on
boundary conditions (see Section 2, 3). This is illustrated in
Fig. 3(c), where we test GA performance relative to the popu-
lation size. As a result, GAs with larger populations undergo
less iterations within Trun and are thus less likely to converge
into good solutions. On the other hand, larger populations can
better sample total parameter space during initialization, which
can still result in a good fit (see also Appendix A).

Fig. 3(d) shows tests based on different types of crossover
operator, single-point and toss-flip (see also Fig. 2). Although
toss-flip crossover implies more gene exchanges than single-
point crossover, this does not reflect on the overall convergence
of the best fit. We also test pure random search option where we
do not use genetic operators but randomly initialize new popu-
lations until we reach Trun. In this case there is no interaction
between individuals or evolution of their population. Again,
initialization takes more time than evolution, therefore we end

up with less amount of runs before we reach BF time limit.
Also, we do not track best individual configurations during Trun
and thus can have penalties in fitness functions for certain ran-
dom search runs. Nevertheless, we may sometimes get rela-
tively good fits straight from the initialization but those are rare
due to the complexity of the total parameter space (see Sec-
tion 5).

All plots show that the GA evolution can be generally de-
scribed by a rapid drop of fitness value at the early evolu-
tion stage (subject of initialization and selection) and its much
slower improvement at the later evolution stage (subject of
crossover and mutation). Thus, we can already find a reason-
ably good configuration of 1.5 − 2 × TBF after 2 − 5 hours of
GA evolution. We also see that within Trun GA almost always
converges into a better solution for the whole pipeline than BF
tuning for each kernel. Again, this is because GA fitness func-
tion is guided by the overall performance of the whole pipeline,
whereas BF optimizes each kernel separately. None of the GA
parameters drastically change the gradual fitness improvement
and its proximity to the best BF solution. The later evolution of
the search parameters happens very slow and is also quite inde-
pendent of the population size. As the algorithm converges to
one of the local, good configurations after initialization or dur-
ing very first generations, it can still improve them later through
crossover or even find the best, global configuration through
mutation.

5. Discussion

The main downside of every fitting algorithm is that after
finding a local, degenerate solution, it is very unlikely to im-
prove and converge into a much better, global fit. Our GA per-
formance tests show that the parameter space we are trying to
fit is very complex and possesses many local configurations that
give almost identically good but not necessarily the best perfor-
mance. To check the variety of parameter configurations that
GA converges to, we build up histograms for best individual’s
genes evolved in populations of three different sizes: Npop = 20,
30, and 50 (see Appendix A). The diversity in explored param-
eter ranges as well as histogram shapes shows that we obtain
multiple degenerate solutions at the end of each GA evolution.
Therefore, it takes more time than Trun for one single run of
GA evolution to cover all good configurations and determine
the best among them.

To test the algorithm convergence, we measure the coeffi-
cient of variation cv = σ/µ among different configurations at
the end of every algorithm run; σ is the standard deviation of
the given parameter and µ is its mean value in a set of end
configurations. We then average cv over multiple algorithm
runs. The gaps in parameter ranges caused by boundary con-
ditions do not affect cv as both µ and σ get affected but balance
each other in a ratio. Higher cv shows more diversity in indi-
vidual genes, whereas the algorithm convergence requires low
cv. Fig. 4 shows averaged coefficients of variation among 20
configurations after 30 GA and random search executions. We
see that GA shows strong parameter convergence compared to
memoryless random search, and thus results in smaller cv. Most
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Figure 3: Different tests on algorithm convergence with (3(a)) changing mutation rate; (3(b)) changing crossover rate; (3(c)) changing population size; (3(d))
changing type of crossover (single-point, toss-coin) and performing pure random search. The last two runs of the random search got overall bad or penalized fitness
values that appear higher and are therefore not visible on the plot.

diversity happens in smoothing and S/N kernels since with mul-
tiple downsampling factors, these kernels have more freedom to
get their parameters changed. However, de-dispersion kernels
represent the highest pipeline workload. As a result, both one-
step and two-step de-dispersion contribute in a greater degree
to the execution time10, and are thus most crucial for tuning.
We do not treat the variation of the binary parameter localMem
as it has a near-zero mean and is thus very sensitive to small
diversities in various configurations.

To better see how well GA tunes the pipeline compared to
BF search, we estimate the volume of the tuneable parameter
space. Despite the fact we only have 8 different types of free
parameters (Table 3), their number grows and thereby expands
total parameter space as we consider multiple de-dispersion and

1030 − 70% of Texec based on an average runtime for 20 configurations.

donwsampling steps. Each de-dispersion kernel has six free
parameters, whereas two other kernels, signal smoothing and
S/N evaluation, have 2 free parameters for every downsampling
factor. Given 9 downsampling factors for Apertif and taking
additional S/N evaluation for a non-downsampled signal into
account, we have in total 2×6 + 9×2 + 10×2 = 50 free param-
eters. As we initialize individual genes from arrays of possi-
ble values determined by boundary conditions, we can estimate
how many possible values each individual gene can have. Since
user-controlled parameter ranges are independent between dif-
ferent pipeline kernels, we get up to 2×1015 possible configura-
tions. Sampling that many configurations for the whole pipeline
with a 3 min runtime limit would require 1.9 × 108 years, im-
possible even with a large parallel system.

It is also hard to predict a global optimal configuration
for a pipeline without knowing the landscape of such high-
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Figure 4: Bar histogram of coefficients of variation cv among Npop = 20 indi-
vidual configurations averaged over 30 GA and random searches. GA search
has overall smaller cv than random search as it utilizes genetic memory which
gives parameter convergence. nrThreads and nrItems get high cv since they
have more freedom to change due to multiple downsampling factors. The co-
efficient of binary localMem variation is not present as it approaches infinite
values once there is only a small variation in different configurations.

dimensional parameter space. Nevertheless, even though dif-
ferent genes from various best individuals do not resemble each
other, it is the combination of all genes that determines individ-
ual fitness function, or the performance of the whole pipeline.
Thus, if we are determined to get a reasonably good configu-
ration in few hours, finding one local solution and evolving it
is enough to reach a better overall performance than applying
a much deeper and longer BF search for each kernel. Our tests
show that for ARTS0 a combination of random search at the
beginning and evolution later can in 2−5 hours get just as good
or even better configuration than what BF approach can obtain
in 10 hours.

This also raises the question whether a complete random
draw of configurations from the complete parameter space
(pure random search) would do just fine. The histogram of
best fitness values based on GA evolution and complete ran-
dom search is given in Fig. 5. We see that on average GA finds
better solution than just a random search, although the latter
can sometimes overtake due to “lucky shots”. However, as in
every random process, there is no time certainty on how long
we might have to wait before a reasonably good individual gets
initialized. In GAs there is a constant fitness improvement that
constraints the expected waiting time to 2− 5 hours for ARTS0
instead of 10. Furthermore, good random picks should in gen-
eral be rare as the total parameter space is very large-scale and
hard to fit without any evolution.

6. Conclusions

Real-time single pulse searches are computationally inten-
sive. Multiple factors play key role in how deep and fast
searches can be made: total field of view and sensitivity in the

3 4 5 6 7 8 9 10
Execution time (sec)

0

1

2

3

4

#
B

es
t

co
nfi

gu
ra

ti
on

s

Genetic search
Random search

Figure 5: Histogram of best fitness values after 35 GA and random searches.
Although random initialization may sometimes reach good fits, GAs generally
evolve their individuals to much better overall performance. In general, it takes
more time to initialize new individuals within boundary conditions rather than
evolve already good solutions that are a priori within such conditions.

survey, memory bandwidth and data rate of the beamformer,
computational performance and versatility of the backend. We
need sophisticated pipelines to speed the data processing up.

Before the actual processing, the transient search pipeline
AMBER finds the most optimal configuration of user-
controlled parameters for every pipeline kernel so that each ker-
nel can perform at its fastest. This gets achieved via brute-force
exploration of every kernel parameter space and takes many
hours of processing depending on a survey setup. Besides, this
does not take any dependencies between kernels into account
and therefore does not tune the pipeline as a whole. Such tun-
ing strategy does not allow the pipeline to be quickly retuned in
case the pipeline gets modified or upgraded.

Our search strategy based on genetic algorithms shows that
with GAs we can always obtain a nearly as good or even better
configuration for the whole pipeline in less amount of time, i.e.
2 − 5 hours for ARTS0. The better the configuration gets ob-
tained during the random initialization, the faster the GA con-
verges into an already good fit. Apart from that, strong selection
together with frequent crossovers and casual mutations will al-
ways handle badly initialized population and still lead to a good
fit in the end. Such strategy can be easily ported to more sensi-
tive pipelines and surveys.

Heuristic algorithms are a perfect tool to quickly obtain a lo-
cal solution that can be nearly as good, or even better, than BF
tuning of each kernel. For multidimensional parameter spaces
in radio astronomy and other domains (bioinformatics, cryp-
tography), heuristics is by far the easiest way to find reasonably
good solution in a short period of time and with limited compu-
tational resources.
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Appendix A. Evolutionary histograms for the best individ-
uals in populations of different sizes

Figures A.1, A.2, A.3 represent histograms for the best in-
dividual genes (user-controlled parameters) values during their
evolution in population with A.1) 20 individuals; A.2) 30 in-
dividuals; A.3) 50 individuals. All tests were performed un-
der pcross = 0.8, pmut = 0.1 and single-point crossover. In this
case we do not distinguish between different de-dispersion steps
or downsampling factors. The diversity in explored parameter
ranges and their quantities relates to the diversity of degenerate

end solutions. Parameter histograms for larger populations are
more scarce – as GAs with larger populations need more time
to initialize individuals, less time is spent on evolution of the
best individual and exploration of its better genes.
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Figure A.1: Genetic evolution with Npop = 20 individuals.
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Figure A.2: Genetic evolution with Npop = 30 individuals.
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Figure A.3: Genetic evolution with Npop = 50 individuals.
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