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Abstract

Astronomical data often suffer from noise and incompleteness. We extend the common mixtures-of-Gaussians density estimation
approach to account for situations with a known sample incompleteness by simultaneous imputation from the current model.
The method, called GMMis, generalizes existing Expectation-Maximization techniques for truncated data to arbitrary truncation
geometries and probabilistic rejection processes, as long as they can be specified and do not depend on the density itself. The method
accounts for independent multivariate normal measurement errors for each of the observed samples and recovers an estimate of the
error-free distribution from which both observed and unobserved samples are drawn. It can perform a separation of a mixtures-of-
Gaussian signal from a specified background distribution whose amplitude may be unknown. We compare GMMis to the standard
Gaussian mixture model for simple test cases with different types of incompleteness, and apply it to observational data from the
NASA Chandra X-ray telescope. The python code is released as an open-source package at https://github.com/pmelchior/
pyGMMis.
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1. Introduction

The Gaussian mixture model (GMM) is an important tool
for many data analysis tasks, usually employed to approximate
a potentially complex density distribution for which there is no
suitable parametric form, or to perform a clustering analysis. Its
importance is reflected in the wide range of applications and the
number of extensions it has received (e.g. McLachlan & Peel,
2000; Mengersen et al., 2011). In this work, we will employ
the Expectation-Maximization (EM) algorithm to account for
“incomplete” samples, i.e. a generalization of truncated sam-
ples where data from arbitrarily shaped regions of the feature
space have a specified probability of not being reported. Also
known as “sample selection bias”, it constitutes a long-standing
problem for robust inference of population statistics in many
scientific disciplines.

In observational astronomy, sample incompleteness occurs
frequently, caused e.g. by gaps between sensors or by prox-
imity to bright objects that render a portion of the observation
useless. As a milder form of incomplete data, long-running sur-
veys routinely encounter variations in how well the sky can be
observed, for instance when the transparency of the atmosphere
or the brightness of the moon changes. As a consequence, sur-
veys exhibit complicated completeness functions for the density
of observed samples and derived data products (e.g. Leistedt
et al., 2016).

Several approaches for dealing with truncated data within
the context of Gaussian mixtures have been presented. Given
a simple truncation boundary, one can analytically integrate the
Gaussian density distribution over the unobserved regions (e.g.
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Wolynetz, 1979; Lee & Scott, 2012, and references therein).
McLachlan & Jones (1988) and Cadez et al. (2002) developed a
method for binned data, which requires integration of the Gaus-
sian distribution within bins, and realized that any truncated
data can be thought to belong to one extra bin, for which the
moments of the GMM are already fully specified by the values
in the observed bins. Provided the binning is sufficiently fine,
this approach allows for arbitrarily shaped truncation bound-
aries at the cost of introducing, and integrating over, bins for
the entire observed region.

Our approach instead follows a proposal by Dempster et al.
(1977) that an estimate of the missing data be drawn from the
current model and the EM be run on the combined (observed
and estimated missing) data until convergence. This approach
does not require binning and provides flexibility and compu-
tational efficiency. The method we develop here is similar to
Multiple Imputation (Rubin, 1987) and Stochastic EM (Diebolt
& Ip, 1996) schemes for samples with missing features, and
we will draw from the terminology developed in that context
to clarify what kind of incompleteness our density-estimation
method can account for. While inspired by these earlier works,
our contribution enables the treatment of missing samples, not
just missing features, an extension that renders the GMM ap-
plicable to a wide range of observational cases. We also incor-
porate the ”Extreme Deconvolution” approach of Bovy et al.
(2011) to account for errors of the observed samples and clarify
the interplay between noise and missingness.

The outline of the paper is as follows: In Section 2 we de-
scribe the EM algorithm for GMM optimization, show how it
can accommodate noisy samples, and generalize it for incom-
plete and potentially noisy samples. We discuss several prac-
tical extensions of the algorithm in Section 3 and demonstrate
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the performance of the proposed algorithm on a variety of test
cases in Section 4. We present an example application with data
from the NASA Chandra X-ray telescope, exhibiting spatially
varying completeness and positional errors, in Section 5 and
conclude in Section 6.

The method is implemented in pure python, scalable to mil-
lions of samples and thousands of GMM components, and pub-
licly released at https://github.com/pmelchior/pyGMMis.

2. GMM from noisy, incomplete samples

For a general mixture model over a d-dimensional feature
space Rd, the probability density function (PDF) is

p(x | θ) =
1

Z(θ)

K∑
k=1

αk p(x | θk), (1)

with mixing weights that obey
∑

k αk = 1. The component
density functions p(x | θk) with parameters θk, the list of which
{θ1, θ2, . . . }we simply write as θ, are assumed to be normalized,
so that the overall normalization constant Z(θ) = 1 and can be
dropped. We will, for the sake of brevity, abbreviate p(x | θk)
as pk(x). For a GMM, pk is given by a multivariate normal
distribution function,

pk(x) = N(x | µk,Σk) ≡
exp

[
– 1

2 (x – µk)>Σ–1
k (x – µk)

]√
(2π)d det(Σk)

, (2)

the complete set of parameters per component is thus αk, µk,
and Σk. The corresponding mixture log-likelihood for noise-
free observations D = {xi} with i ∈ {1, . . . , N} given fixed pa-
rameters is

lnL(D | θ) ≡
N∑
i

ln
K∑
k

αkpk(xi). (3)

This form is also called uncategorized log-likelihood (Titter-
ington et al., 1985) because there is no information about which
component k generated sample i. We introduce the discrete in-
dicator S = (S1, . . . , SN) with Si = k if (and only if) xi is gener-
ated by component k. By rewriting αkpk(xi) = qikp(xi | α,µ,Σ)
with the conditional probability qik that xi is generated by com-
ponent k, i.e. qik ≡ Pr(Si = k | xi,α,µ,Σ), we can form the
complete-data log-likelihood

p(x, S | α,µ,Σ) = p(x | α,µ,Σ) +

N∑
i

K∑
k

ISi=k ln Pr(Si = k | xi,α,µ,Σ),
(4)

the sampling distribution of the complete data (x, S) given the
parameters of the model (α,µ,Σ). The second term of the RHS
describes the additional information from knowing the alloca-
tion S of samples to components (Frühwirth-Schnatter, 2006).

2.1. Standard EM algorithm
As the indicator S is not known or directly observable, we

need to estimate it by classifying each observation. With Bayes’
rule, and dropping the conditional dependence on the full set
of model parameters (α,µ,Σ) in all terms, the classification is
given by

Pr(Si = k | xi) =
Pr(X = xi | Si = k) Pr(Si = k)∑K
j Pr(X = xi | Si = j) Pr(Si = j)

. (5)

With it one can re-estimate the parameters of the model from
the weighted moments of x given the estimate of S. That is
the central idea of the EM procedure, which first estimates the
classification (the E-step) and then updates the model parame-
ters (the M-step). Assuming flat prior distributions Pr(Si = k)
and using the definition of qik from above, we get

E-step: qik ←
αkpk(xi)∑
j αjpj(xi)

M-step: αk ←
1
N

∑
i

qik ≡
1
N

qk

µk ←
1
qk

∑
i

qikxi

Σk ←
1
qk

∑
i

qik
[
(µk – xi)(µk – xi)>

]
.

(6)

Dempster et al. (1977), later corrected by Wu (1983), showed
that repeated iterations of these two steps monotonically con-
verge to a local maximum of L.

2.2. EM algorithm with noisy samples
Observed data often exhibit measurement uncertainties, which

we assume to be additive and Gaussian:

yi ≡ xi + ei, (7)

where ei ∼ N(0, Si). We want to emphasize that we do not
assume that errors are identically distributed, only that they are
independent, Gaussian, and that their covariance matrices are
known. Bovy et al. (2011) derived an extended EM algorithm
that maximizes the likelihood of the noise-free density p(x)
from noisy samples yi. The key insight is that one can marginal-
ize over the unknown values xi and still obtain a GMM. With
Tik ≡ Σk + Si the EM procedure amounts to

E-step: qik ←
αkpk(yi | µk, Tik)∑

j αjpj(yi | µj, Tij)

bik ← µk + ΣkT–1
ik (yi – µk)

Bik ← Σk – ΣkT–1
ik Σk

M-step: αk ←
1
N

∑
i

qik ≡
1
N

qk

µk ←
1
qk

∑
i

qikbik

Σk ←
1
qk

∑
i

qik
[
(µk – bik)(µk – bik)> + Bik

]
,

(8)
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By including measurement uncertainties in the definition of qik,
the M-step is almost unchanged: the role of xi, which is not
directly observable, is played by bik, and the covariances get
extra contributions Bik. All of those modifications vanish when
Si → 0. The resulting EM algorithm still converges monotoni-
cally to a local maximum of L.

2.3. EM algorithm with incomplete samples

We will now account for sample incompleteness, by which
we mean the following: the probability of a sample x being
observed at all is determined by a completeness function, Ω(x) :
Rd → [0, 1], which means that in any regionR ⊂ Rd the density
of observed samples can systematically deviate from the true
density in that region. Formally,

po(x | θ, Ω) =
1

Z(θ, Ω)
Ω(x) p(x | θ), (9)

with
Z(θ, Ω) ≡

∫
dx Ω(x) p(x | θ). (10)

The corresponding log-likelihood is

lnLo(D | θ, Ω) =

N∑
i

ln po(xi | θ, Ω). (11)

Such a situation may arise if a measurement device is incapable
of recording samples from R, so that Ω(x) = 0 ∀x ∈ R. This
is the typical situation of truncated samples. A softer version is
given by Ω(x) < 1, which occurs when observations suffer from
under-reporting.1

Before we adapt the EM algorithm to incorporate Ω, it is in-
structive to clarify how our concept of completeness relates to
the terminology of “missingness” introduced by Rubin (1976)
for missing features. In Appendix A we argue that the situa-
tion we find here is equivalent to “missing at random” (MAR),
which allows for an arbitrary dependence of Ω on x. This in-
cludes Ω(x) = const., a case called “missing completely at ran-
dom” (MCAR), which is irrelevant for density estimation be-
cause it is cancelled from Equation 9. Thus, MCAR data have
the same expectation value of p(x) as completely observed data,
the estimate is merely constrained by fewer samples.

On the other hand, the data are not allowed to conform to
the most general case called “missing not at random” (MNAR),
which would arise from a relation between the missing data and
the density itself, Ω(x) → Ω (x, p(x)) (see e.g. Schafer & Gra-
ham, 2002). A generalization, which cannot use the factoriza-
tion po(x) ∝ Ω(x) p(x) of Equation 9, goes beyond the scope of
this work.

As the form of the likelihood function L under MAR is un-
changed up to a normalization constant, the E-step remains un-
changed as well, and all corrections appear in the M-step. Lee

1Without a loss in generality, we will assume that over-reporting has been
properly corrected, so that Ω(x) ≤ 1, e.g. by Ω(x) → Ω(x)

/
maxx{Ω(x)}. We

implicitly assume that there are not false positives in the data.

& Scott (2012) demonstrated that the effects of simple trunca-
tion of a GMM can be addressed by computing the zeroth, first,
and second moments of each Gaussian component when trun-
cated in the same way as the data, which requires the analytic
integration of pk within the observed bounds. Essentially, the
update equations for µk and Σk get a correction term from the
difference between the current-iteration parameters and their
truncated values. As we seek the ability to employ arbitrary
completeness functions, with complex spatial shapes and prob-
abilistic rejection, the analytical integration becomes cumber-
some, so we prefer approaches that draw samples from Ω.

2.3.1. Stochastic EM
We adapt the Stochastic EM (Diebolt & Ip, 1996) concept

of augmenting missing data features by drawing imputing sam-
ples from the current model. In our case, entire samples can be
unobserved, as opposed to some of their features being miss-
ing. We thus need apply the selection process described by Ω

and keep the rejected samples, i.e. we perform reverse rejection
sampling with the current GMM as the proposal distribution.

In detail, we draw S samples from the GMM and split them
into those that we would have observed O and those that would
be missingM. The combined distribution has, by construction,
the distribution Ω(x) p(x) + (1 – Ω(x)) p(x) = p(x), for which
the previous EM equations (Equation 6 for the noise-free case,
and Equation 8 for the noisy case) naturally hold.

If we adjust S, so that |O| is consistent with N (the number
of actually observed samples in D), we can replace O with D,
and S becomes the current estimate of the number of samples
our data set would have had without rejection by Ω. Equation 6
is extended thusly:

E-step: qik ←
αkpk(xi)∑
j αjpj(xi)

∀i ∈ {D,M}

M-step: αk ←
1

N + |M|

(∑
i∈D

qik +
∑
i∈M

qik

)
≡

1
N′

qk

µk ←
1
qk

(∑
i∈D

qikxi +
∑
i∈M

qikxi

)

Σk ←
1
qk

(∑
i∈D

qik
[
(µk – xi)(µk – xi)>

]
+

∑
i∈M

qik
[
(µk – xi)(µk – xi)>

] )
.

(12)

Because of the linearity of the equations, the correction terms
for the moments can be computed fromMmissing samples and
added to the ones we compute for D. The normalization con-
stant Z can be obtained from the imputation sample by Monte
Carlo integration,

Z(θ, Ω) ≈
1
S

∑
x∈{D,M}

Ω(x), (13)

of which only the contribution fromM has to be determined in
each iteration. In case of a binary Ω, Z ≈ N

S .
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This approach, which we will call GMMis, in which at each
iteration we draw and augment the observed data with imputa-
tion samples, is summarized in Algorithm 1. It is guaranteed
to maximize the complete-data log-likelihood and converges to
a stationary distribution for the parameters (α,µ,Σ) (Diebolt &
Ip, 1996; Nielsen, 2000). To the best of our knowledge, this
is the first time that a GMM approach has been made robust
against not just truncation but the generalized form of incom-
plete sampling.

This method is efficient where p(x) (1 – Ω(x)) is large; cor-
rection for weakly expressed components are more difficult to
attain because M is drawn globally from the entire GMM, as
opposed to being drawn from each component individually. A
minor limitation is that when Ω is large for a component, the
values of theM-sums in the M-step equations are not well de-
termined, however their impact on the result is also minor be-
cause that component is mostly observed.

In comparison with an analytic evaluation of the PDF in the
unobserved regions, this approach is flexible and efficient, does
not require numerical integrations of the component distribu-
tions, but, due to its stochastic nature, suffers from sample vari-
ance in the correction terms becauseM has finite size. As with
all Stochastic EM approaches, it generates sequences ofLo that
are not guaranteed to monotonically increase in every step. To
reduce the stochastic contribution to Lo, we can average the
correction terms fromM over multiple draws of size S, so that
the corrections become more precise and Lo-sequences closer
to monotonic. We found that averaging over ≈ 10 imputation
samples results in sample variances that are small compared to
the increase of the observed likelihood.

2.3.2. Incompleteness and Noise
Besides speed and flexibility, GMMis retains the ability to

deal with noisy samples. By adding noise to the imputation
samples M, we can evaluate qik, bik, and Bik for i ∈ M and
modify Equation 8 analogously to Equation 12:

E-step: qik ←
αkpk(yi | µk, Tik)∑

j αjpj(yi | µj, Tij)
∀i ∈ {D,M}

bik ← µk + ΣkT–1
ik (yi – µk) ∀i ∈ {D,M}

Bik ← Σk – ΣkT–1
ik Σk ∀i ∈ {D,M}

M-step: αk ←
1

N + |M|

(∑
i∈D

qik +
∑
i∈M

qik

)
≡

1
N′

qk

µk ←
1
qk

(∑
i∈D

qikbik +
∑
i∈M

qikbik

)

Σk ←
1
qk

(∑
i∈D

qik
[
(µk – bik)(µk – bik)>

]
+

∑
i∈M

qik
[
(µk – bik)(µk – bik)>

] )
.

(14)

As before, the corrections fromM have the same form as, and
are added to, the moments calculated for D. But to do so, we
have to define Tik = Σk + Si for the missing samples, which

Algorithm 1 GMMis

A GMM is fit to observed samples D = {xi}i=1,...,N , accounting for a
specified sample completeness Ω by drawing imputation samples M
from the current-iteration GMM and accepting those with a rate 1 – Ω.
For noisy observations with covariances {Si}, GMMis requires an error
model S(x) for the entire data region.

1: procedure GMMis({xi}, Ω(x), tol, [{Si}, S(x)])
2: for t = 1, 2, . . . do
3: Zt ← {zi ∼ p(x | αt,µt,Σt)}i=1,...,St

4: Rt ← {ri ∼ U(0, 1)}i=1,...,St

5: Mt ← {zi : ri < 1 – Ω(zi)}i=1,...,St

6: if St – |Mt | � Poisson(N) then
7: St ← St(St – |Mt |)/N
8: go to Line 3
9: if {xi} noise-free then

10: qt+1 ← Equation 12 (E-step)
11: αt+1,µt+1,Σt+1 ← Equation 12 (M-step)
12: else
13: St

z ← {S(zi)}zi∈Mit

14: Mt ← {z′i ∼ N(zi, St
zi

)}zi∈Mit

15: qt+1, bt+1, Bt+1 ← Equation 14 (E-step)
16: αt+1,µt+1,Σt+1 ← Equation 14 (M-step)
17: lnLt+1

o ← Equation 11 & Equation 13
18: if | lnLt+1

o – lnLt
o| < tol · lnLt

o then break

which we lack observed uncertainties. These uncertainties may
be known even in unobserved regions. If not, we need to make
a guess of S(x) in the unobserved region, e.g. from the mean or
a smooth interpolator of the observed Si.

We must stress that not assuming errors forM would result
in it having too large a weight in the likelihood. In the E-step,
samples from M would be evaluated without noise, while the
observed samples have a broadened likelihood under noise. As
a result, the EM algorithm would become dominated by miss-
ing samples and yield density estimates that are unduly shifted
towards regions of low Ω. On the other hand, we do not have
to exactly match the uncertainties ofM to those of D because
they only enter as sums in the M-step. Matching the average
errors of the samples associated with each component, instead
of each individual sample, is therefore sufficient to estimate the
parameters of all components.

We finally note that adding noise and applying Ω do not
commute; in either order, GMMis requires only that M can be
created such that it completes the data with an estimate of the
unobserved portion.

3. Practical considerations

3.1. Initialization

The EM algorithm only guarantees convergence to a local
maximum of the likelihood. With the large number of free pa-
rameters of the GMM (1 + d + d(d + 1)/2 for each of K com-
ponents), a suitable initialization is critical. Several initializa-
tion schemes have been proposed (e.g. Biernacki et al., 2003;
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Blömer & Bujna, 2013). For a completely observed data set, we
adopt the simplest strategy, namely drawing the means at ran-
dom from the data. In detail, given a user-defined length scale
s, for each component k we draw i at random from {1, . . . , N}
and ∆xi ∼ N(~0, s2I), and set

αk = 1/K

µk = xi + ∆xi

Σk = s2I,

(15)

which naturally follows the distribution of the data on scales
larger than s. To prevent strong initial localization, s should
be chosen to exceed the typical clustering scale of the data, but
small enough that multiple components do not strongly overlap.

In the case of incomplete samples, we initially make the as-
sumption that it was complete, i.e. Ω = 1, fit a GMM to the
observed distribution, and use that fit to initialize the run with
a specified Ω , 1. While this approach will obviously fail if
a component is entirely located in a region with Ω = 0, we
found that an initial guess based on the observed distribution
much more quickly converges than the random initialization de-
scribed above. To aid the exploration of the regions with Ω < 1,
we leave the components means unchanged but multiply the co-
variances by a factor > 1. If that factor is chosen too small, the
EM algorithm will not be able to pick up the correction terms∑

i∈M qik etc. in Equation 12 before re-converging to the previ-
ous, observed-sample location. In turn, if the factor is chosen
too large, the convergence is slowed down. We therefore rec-
ommend a factor of 2 – 4, i.e. increasing the linear size of each
component by 50 – 100%, as a compromise that works well in
practice.

3.2. Split-and-merge operations

With a large number of free parameters, the EM algorithm
can easily get trapped in local maxima of L. For clustered data,
this behavior leads to GMM components being placed across
several clusters or a single cluster being shared by multiple
components. In the latter case, the weight αk tends to zero for
at least one of those components.

To improve the performance of the GMM, Ueda et al. (2000)
devised criteria to decide whether a component should be merged
with another or be split into two. Performing both of these op-
erations at the same time amounts to altering three distinct com-
ponents with the total number of components being conserved.
We follow this approach, with two alterations we found to per-
form better for all cases with d = 2, 3 we investigated.

Ueda et al. (2000) proposed to merge the components k and
l that maximize

Jmerge(k, l) = Q>k Ql, (16)

with Q>k = (q1k, . . . , qNk), i.e. the components whose posterior
cluster assignment p(k | x) are most similar across the entire
data set. This works well in practice as long as there are no
“empty” components, which do unfortunately arise in multi-
modal situations if more components are locally available than
are needed to explain the data. Because qik → 0 when αk → 0,
the merge criterion above will not seek to merge such empty

components even though they are obviously excellent choices
to be merged. We therefore replace Qk → Qk

/
αk, which means

that we seek to merge components whose pk(x) is most similar
for the entire data set.

For the split criterion, we found that the one suggested by
Ueda et al. (2000), based on the Kullback-Leibler divergence,
is unduly affected by outliers and often leads to split candi-
dates that do not improve the likelihood. Instead, we took guid-
ance from a proposal of Zhang et al. (2003) on how to best
re-initialize the two new components that result from a split,
namely to separate their means along the semi-major axis of
the ellipsoid described by the pre-split Σ. With this intuition it
is natural to identify split candidates according to their largest
eigenvalue λ1 of Σ. When searching for the component k =

argmaxk{λk,1}, we assume it is strongly elongated because it
seeks to describe two clusters at once. The main failure mode
of that split criterion is again related to (almost) empty compo-
nents. Their parameters, in particular Σk, are only poorly deter-
mined. Some of them are erroneously large and would thus be
identified as split candidates, while they constitute much better
merge candidates. We thus propose to identify split candidates
by selecting k as the one that maximizes

Jsplit(k) = αkλk,1. (17)

While the original split criterion of Ueda et al. (2000) will seek
to eliminate any deviation of the local density from its approx-
imation by a Gaussian-shaped component and is therefore gen-
erally applicable, our criterion appears to perform better for
identifying a prominent failure mode for unconstrained GMMs:
components that merge two clusters. As the split is only ac-
cepted if it leads to an overall increase in the likelihood, it
does not lead to increased fragmentation from penalizing the
largest components. Following Zhang et al. (2003), we then
replace the means of two newly split components l and m as
µl,m = µk ±

1
2 EV1(Σk), i.e. along the primary eigenvector of the

covariance matrix.
When dealing with incomplete data, we have not found split-

and-merge operations to be problematic. They are most useful
when enabled during the initialization run as described in Sec-
tion 3.1, which will then not be plagued by strong failure modes
of the EM algorithm. As a result, the imputation samples M
will be more reliable, and the full algorithm will converge faster
than without split-and-merge operations.

3.3. Minimum covariance regularization

One problem of the objective function L is that it becomes
unbounded if µk = yi for any k and i because Σk → 0. Bovy
et al. (2011) presented a regularization scheme to set a lower
bound for every component volume. In its simplest version it
assumes the form of a d-dimensional sphere with variance w,
which modifies the last update equation in Equation 8 according
to

Σk ←
1

qk + 1

∑
i

qik
[
(µk – bik)(µk – bik)> + Bik

]
+ wI

 .

(18)
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In principle, the value of w is entirely arbitrary, but we choose
to provide a more intuitive setting and associate it with a mini-
mum scale ω in feature space, below which the model does not
possess explanatory power, i.e. we want det(Σk) ≥ ω2d. For a
constant regularization term, we need to adopt a typical value
of qk, for which we use its mean over all components, q̄k = N

K .
We can thus set w = ω2( N

K + 1). This choice does not provide
an exact lower bound for each component as we determine the
regularization term from the average value of qk, which leads to
stronger regularization for components with small αk. We con-
sider this an advantage in noisy situations, where the parameters
of weakly expressed components can be hard to determine.

We note, however, that the form of the regularization in
Equation 18 prefers features in the data to be of approximately
equal size, otherwise the penalty term can dominate for small
features while being ineffective for large features.

3.4. Fitting for a background distribution

In many situations, observed data comprise anomalous sam-
ples that appear unclustered, i.e. unrelated to the features of in-
terest, and rather originate from a more uniform “background”
distribution. One solution within the context of GMMs would
be to add another component with very large variance and to fit
for its amplitude only. We prefer to introduce a specific back-
ground distribution over the relevant region R of feature space,
e.g. the most conventional form of a uniform background

pbg(x) =


[∫
R

dx
]–1

= const. x ∈ R
0 x < R.

(19)

If the amplitude of the background component ν is unknown,
one can introduce a two-level mixture model for the combined
density distribution (e.g. Frühwirth-Schnatter, 2006, their sec-
tion 7.2.4),

p(x | α,µ,Σ, ν) = (1 – ν)
K∑

k=1

αk pk(x) + νpbg(x), (20)

but we prefer keeping the model strictly linear in the amplitudes
and put the component and background amplitudes on equal
footing:

p(x | α,µ,Σ, ν) =

K∑
k=1

αk pk(x) + νpbg(x). (21)

In this form,
∑

k αk = 1 – ν. To determine the amplitude ν we
require another indicator variable qibg to denote if a sample xi
belongs to the background. Analogous to qik in Equation 6 it is
given by the posterior of xi under the background model, which
leads to these E-step equations

qik ←
αkpk(xi)∑

k αkpk(xi) + νpbg(xi)

qibg ←
νpbg(xi)∑

k αkpk(xi) + νpbg(xi)
.

(22)

The M-step for the background amplitude is

ν←
1
N

∑
i

qibg, (23)

while the M-step of the GMM components remains unchanged.
If the samples are noisy, the previous equations in this sec-

tion hold, but we need to marginalize over the positions of the
unobserved noise-free samples (Bovy et al., 2011) and modify
the background distribution as

pbg(yi | Si) =

∫
dx pbg(x)N(yi | x, Si), (24)

which is equivalent to the change to the GMM qik in Equation 8
compared to the noise-free case in Equation 6. For the uniform
background distribution the marginalization amounts to the ze-
roth moment of the truncated multivariate normal distribution
(e.g. Manjunath & Wilhelm, 2012).

One could think that sample incompleteness does not affect
the inference of the background component because any infor-
mation how Ω(x) acts on samples drawn from pbg is already
entirely contained in Ω(x) itself.2 The problem with this notion
is that we do not know the relative amplitudes of signal and
background in the unobserved regions, which will vary because
the signal does. For consistent results, we therefore create the
imputation sampleM by drawing from the GMM and the back-
ground model according to the current-iteration value of ν, and
proceed as in Section 2.3.

We caution that the introduction of a background compo-
nent leads to additional uncertainties and a higher-dimensional
parameter space. In particular, during the first iterations of the
EM algorithm, the parameters of the GMM often only provide
rather poor description of the data, so that many samples will
have higher probability under the background model, resulting
in few samples left to fit for the GMM parameters in the next
iteration. This failure mode highlights the importance of a suit-
able initialization when working with a background model, es-
pecially when its intensity becomes dominant. To this end, we
found in our tests that the k-means initialization from Blömer &
Bujna (2013, their Algorithm 1) performed more robustly than
the random initialization of Equation 15.

3.5. Averaging estimators
Even with well-chosen initial values and split-and-merge

operations, any single GMM will get trapped in local maxima
of the likelihood. We therefore advocate, for two reasons, to
average several GMMs fit to the same data, a technique also
known as ensemble learning.

First, ensemble estimators typically outperform even the
best single estimator. In particular, Smyth & Wolpert (1999)
built an improved estimator by employing the “stacking” method
proposed by Wolpert (1992), which uses the cross-validation re-
sult to determine non-negative weights for each model (see also

2The presence of a non-vanishing background intensity can therefore in
principle be used to estimate Ω(x). However, for this work we require Ω to
be known a priori.
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Breiman, 1996). In the context of GMMs, it is useful to realize
that a mixture of mixture models is still a mixture model, there-
fore no conceptual changes have to be made when evaluating
the estimator.

Second, stacked GMMs reduce the need to determine the
optimal number of components K. The main concern when de-
termining K is that if set too high, the resulting GMM overfits
the data, following spurious features that increase the variance
in the prediction, while if set too low, the model does not cap-
ture essential features of the data, leading to a large prediction
bias. As this topic has been extensively discussed elsewhere,
we will not address it here. We do note, however, that stacking
exhibits better trade-offs between bias and variance than single-
model selection or uniform averaging, rendering stacked GMM
particularly robust against overfitting (Smyth & Wolpert, 1999).
Even more so, combining GMMs with different K, or different
covariance constraints, can provide a natural framework to de-
scribe data with a variety of spatial scales.

A decision if and how single-run GMMs are to be averaged
will depend on the characteristics of the data at hand. In this
work, we will only use single-run results to allow the reader
to evaluate the performance of GMMis rather than that of the
averaging scheme.

4. Experiments

4.1. A toy example

We first perform a simple test with no model misspecifica-
tion, i.e. we draw the original sample from a GMM with K = 3.
In Figure 1, we show that sample as red circles. We then add
a noticeable amount of Gaussian noise (blue contours) and im-
pose a purely geometric completeness Ω(x), whose boundaries
are given by a box and a circle (dotted curves), resulting in the
test sample (blue squares). With this test case we demonstrate
how the EM algorithm reacts to noise and a non-trivial com-
pleteness. The standard EM algorithm (top-center panel) does
what one needed to expect, namely to describe the observed
sample as is. It clearly prefers the region inside of the bound-
aries and thereby misestimates amplitudes, locations, and co-
variances of the components affected by Ω.

With the noise-deconvolution approach of Bovy et al. (2011),
summarized in Equation 8, one can attempt to recover the noise-
free distribution. However, in this case (shown in the top-right
panel of Figure 1 the resulting shrinkage of the components is
detrimental to the overall likelihood because the model is now
even more confined to the observed region, reducing its abil-
ity to also describe samples beyond that. In essence, the model
is biased as before but more confident in its correctness as the
noise contribution has been removed. We generically find it
to be true that noticeable incompleteness will need to be ad-
dressed first, and only then can one properly deconvolve from
the noise, as we demonstrate with the progressive improvement
in the next two tests.

When the sample incompleteness from Ω is correctly spec-
ified and considered via Equation 12, GMMis recovers compo-
nent centers, orientations, and amplitudes much better (bottom-

left panel), however the covariances remain inflated as the pres-
ence of noise is not yet corrected for. This level of model
fidelity could have been achieved with analytical integration
(Wolynetz, 1979; Lee & Scott, 2012) or sample binning (McLach-
lan & Jones, 1988; Cadez et al., 2002), but here none of those
operations were necessary. In addition, neither of the aforemen-
tioned approaches can account for incompleteness and noise.

In the bottom-center panel, we use the full algorithm, i.e.
the noise deconvolution of Equation 8 applied to both the O and
M samples in Equation 12, resulting in the highest likelihood
of the three variants, with just ∆ lnL = –0.151 compared to red
sample drawn from the true underlying PDF.

By running the full algorithm (with Ω and noise treatment)
ten times, we can investigate the spread associated with the
given data set under the admittedly restrictive assumption of
a GMM with K = 3. The bottom-right panel of Figure 1, whose
contours have the same stretch as those of the previous pan-
els, shows that there are considerable differences between runs,
mostly associated with the Ω-boundaries. Also, the compo-
nents from different runs emphasize the importance of differ-
ent apparent sub-clusters. This behavior is caused by the added
noise, which obscures the presence of small-scale features. As
we attempt to infer the noise-free PDF from noisy samples, the
models will amplify small-scale density fluctuations. Because
of such spurious sub-clusters or, more generally, local minima
of the likelihood, we advocate the use of more sophisticated
averaging schemes, as outlined in Section 3.5.

4.2. Limits of applicability
We want to investigate, in a more difficult, highly multi-

modal situation, how strongly incomplete the sampling can be
for the proposed method to still yield reasonable density esti-
mates. We therefore set up a new test case in which we place
K = 50 GMM components randomly in the d = 3 unit cube.
Covariances are chosen such that the overlap between the com-
ponents is not excessive; weights are drawn from a symmetric
Dirichlet distribution with concentration parameter of unity. We
impose a probabilistic completeness function p(Ω | x) = 1 – x1,
i.e. a linear ramp from fully observed to fully missing along one
of the coordinate axes. The purpose of this setup is to allow all
combinations of component weight αk and completeness Ω. We
draw N=10,000 samples from the model, apply Ω, and record
the size of samples Nk drawn from each component k as well
as the mean Ωk experienced by those samples, so that we know
the observed sample size NOk = NkΩk. No noise is added to the
samples. An example cube is shown in Figure 2.

We then fit the test data with another GMM with the same
K = 50, resulting in best-fit parameters θ̃, and repeat the pro-
cess 10 times. As diagnostic, we directly compare the densities
ρ(x) by splitting the cube into 503 cells and counting the input
samples that fall into the cell covering x. We do the same for
the predicted density ρ̃(x) by drawing N samples from the fit.
As we know the expectation value of Ω at the location of each
cell, we can compute the fractional bias in the predicted density(
ρ̃(x) – ρ(x)

)/
ρ(x) as a function of Ω (Figure 3). The standard

EM algorithm provides a reliable estimate of the observed den-
sity, in other words: the bias is equal to Ω. The reason for
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Truth
logL = –3.962

σ

Standard EM
logL = –4.676

Standard EM & noise deconvolution
logL = –4.967

GMMis
logL = –4.232

GMMis & noise deconvolution
logL = –4.113

Dispersion

Figure 1: Test case for the EM algorithm with noisy and incomplete samples. Top left: True density distribution (contours in arcsinh stretch), a derived sample with
N = 400 (red open circles, whose average logL under the respective models is given in the top-left corner of each panel), and the test sample (blue squares) after
adding Gaussian noise (whose 1,2,3 σ contours are shown in the bottom-right corner) and rejecting all points outside of the box or inside the circle (dashed curves).
Top center: Result of the standard EM algorithm (Equation 6). Top right: Result of the standard EM algorithm with noise deconvolution (Equation 8). Bottom
left: Result of the proposed EM algorithm GMMis (Equation 12), assuming noise-free samples. Bottom center: Result of GMMis, accounting the noise of the O and
M samples. Bottom right: Standard deviation of the predicted p(x) from 10 runs of GMMis as in the bottom-center panel. Markers, if present, and completeness
boundaries are identical in all plots.

positive bias for Ω > 1
2 lies in the normalization of the density

estimator: as we drew the same number of samples N from the
model as where given as input data, any underestimation of the
density must be compensated elsewhere.

In the same test, GMMis shows a noticeably reduced sensi-
tivity to Ω, but the resulting density estimate is still biased. This
test demonstrates that there must be conditions under which the
proposed algorithm fails. It is obvious that we cannot expect
GMMis, or any other density estimator, to infer the properties
or even existence of a cluster that is entirely unobserved, i.e.
NOk = 0. Even for less extreme cases, Figure 3 shows that
GMMis struggles with samples from regions with low Ω, over-
compensating where Ω is large.

To determine limits of applicability, we evaluate how well
the input samples from each component are described by the
fit. We compute the association fraction ηk of the input sam-
ple from component k that falls within “1 σ” of any compo-
nent of the fit, which, for d > 1, is more precisely expressed
as {i : (xi – µ̃k)>Σ̃k(xi – µ̃k) ≤ χ2

d(0.683) for any k}, where χ2
d

is the quantile function of the chi-squared distribution with d

degrees of freedom. For a component of the test data whose
samples are perfectly fit (i.e. fit by the component from which
they are generated), the association fraction should on average
be ηk = 68.3%. If ηk is higher, either the associated component
of the fit is too extended or the test samples are associated with
multiple components. If ηk is lower, the fit has effectively ig-
nored some samples from input component k. In Figure 4 we
plot ηk as a function of the effective weight NOk

/
NO of com-

ponent k given the observed data, while the size of the marker
encodes the initial weight αk = Nk

/
N, and the color encodes

Ωk. It is apparent that components of the test data with large αk
or Ωk are generally well-described by the fit. For Ωk ≈ 0, the
fit will miss a large fraction of the original sample irrespective
of αk, but there are also a few well-observed but low-α compo-
nents that are largely being ignored by the fit. There is also an
increased tendency of fitting multiple nearby input clusters with
one larger component, which leads to artificially large ηk at low
NOk

/
NO. Without formal proof, we seek a criterion to identify

components that are too poorly observed to yield a reasonable
fit. By performing the test described above with different val-
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Figure 2: Example test data generated from K = 50 clusters in the d = 3 unit
cube. The completeness Ω is probabilistic, decreasing linearly from unity (left
side of the cube) to zero (right side). Observed samples are shown in blue,
missing samples in red.

ues of N, K, component volumes, and Dirichlet concentration
parameter, we found

NOk
NO

=
NkΩk∑
k NkΩk

'
1
K

(25)

to perform well (shown as vertical dotted line in Figure 4). This
qualitatively agrees with findings of e.g. Naim & Gildea (2012)
that the best GMM fits with an EM algorithm are achieved when
all components have approximately equal weights, in particular
when they overlap. It also implies that GMMis has to success-
fully fit the observed distribution first to be able to generate
meaningful imputation samplesM that account and correct for
Ω. If the first step is flawed, the second one will be, too.

This two-step picture is confirmed when we remove from
the test data all components that would have violated Equa-
tion 25, in other words, the test data now only comprises clus-
ters that remain salient despite Ω. In this case, the algorithm
can detect all present clusters and correct for the sample incom-
pleteness. Accordingly, the GMMis density estimates are now
largely unbiased (dash-dotted red line in Figure 3). We empha-
size that this shortcoming is not caused by an incorrect form
of the likelihood, rather by the economy of the EM algorithm
to converge to the nearest likelihood maximum, which favors
the most prominent clusters in the observed sample. If, on the
other hand, the parameters of all but one component were fixed
at their true values and there were only one component left to
fit, this component could experience incompleteness in excess
of Equation 25 and still be fit with a fidelity commensurate to
its number of samples Nk.

5. Application to Chandra X-ray data

To demonstrate the capabilities of GMMis, we analyze the
distribution of X-ray photons of the nearby galaxy NGC 4636,

0.0 0.2 0.4 0.6 0.8 1.0
Ω

–1.0

–0.5

0.0

0.5

1.0

(ρ̃
–
ρ

)/
ρ

uncorre
cte

d Ω

perfect correction

Standard EM

GMMis

GMMis, No
k /No > 1/K

Figure 3: Relative bias of the density estimator as function of completeness Ω.
The density is calculated by generating N = 10, 000 samples from the fit and
binning them into 503 cells within the unit cube: for the standard EM algorithm
(blue) which does not correct for incomplete samples; for GMMis (solid red);
for GMMis after removing all poorly observed components from the input data
that do not obey Equation 25 (red dash-dotted).

observed with the Advanced CCD Imaging Spectrometer (ACIS)
aboard the Chandra telescope. These data were retrieved from
the Chandra public archive, and consist of two individual 75 ks
pointings (Observation Identification Numbers 3926 and 4415).
Basic data processing was carried out following the procedure
described in Goulding et al. (2016). Briefly, we used the Chan-
dra X-ray Center pipeline software packages available in ciao
v4.7 to apply the latest detector calibration files, and remove
the standard pixel randomization, streak events, bad pixels, and
cosmic rays. Photon catalogs (referred to as “events files”) were
screened using a typical grade set (grade = 0, 2, 3, 4, 6), and
cleaned of 3σ background flares. Finally, aspect histograms
were constructed and convolved with the ACIS-I chip map, us-
ing the ciao tool mkexpmap, to generate the observation specific
exposure time maps.

In the top-left panel of Figure 5 we show a histogram of ≈
150,000 photons in the energy range E ∼ 0.5 – 2 keV, covering
an area with a side-length of about 0.3 degrees. Two features
of the observation are obvious. First, there are small gaps be-
tween the four CCDs of ACIS-I, where the ability to record
photons is strongly reduced. In detail, ACIS additionally suf-
fers from minor and well-known sensitivity degradations in dif-
ferent parts of the CCD (top-right panel of Figure 5). Second,
besides the galaxy, there is an essentially uniform particle back-
ground, as well as additional smaller objects (“point sources”).
These point sources are a mixture of X-ray binary systems that
are intrinsic to NGC 4636 and distant, rapidly growing super-
massive black holes unrelated to the target galaxy. We mask the
point sources with small circular apertures (shown as red dots),
a step that is commonly done in the analysis of X-ray data.

As a further complication, the photon positions are not known
exactly as they have been convolved with the instrument Point-
spread function (PSF), which for this ACIS-I has a shape that
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Figure 4: Associated fraction ηk of input samples to fit components as function
of the effective weight in the observed data. Marker sizes denote weights αk
in the input data, colors refers to the average completeness Ωk experienced by
input components k. Both NOk and Ωk are known exactly from the test setup.
The horizontal dashed line shows the perfect outcome of 68.3% of the samples
found within the “1σ region” of an output component; the vertical dashed line
shows the criterion Equation 25 for likely unrecoverable components.

is very well approximated by a circular Gaussian3 with a width
that varies from 0.4 arcsec in the inner region of ACIS-I to 15
arcsec at the perimeter.

Our new method is ideally suited to directly analyze the
photon event files. We can account for chip gaps, field edges,
sensitivity variations, and point-source masks with the basic
GMMis algorithm from Section 2.3. By recognizing that con-
volution with the PSF is formally identical to additive mea-
surement noise, we can employ the deconvolution method from
Section 2.2 to build a generative model of the underlying, noise-
free distribution of X-ray photons, while simultaneously fitting
for the X-ray background as described in Section 3.4. In con-
trast, a more traditional image analysis typically entails smooth-
ing, which does not correctly account for any form of sample
incompleteness, and a single deconvolution step, which does
not incorporate the spatial variation of the PSF width.

The bottom-left panel of Figure 5 demonstrates the princi-
ple of operations. By drawing samples from the current state of
the model, which comprised the GMM and the uniform back-
ground, convolving them with the spatially varying PSF, and
selecting them according to Ω, we get a sample to augment
the observed data. Combining this imputation sample and the
point-source masked data, we get a representation of the in-
ternal state of the model, in other words: its estimate how the
data would look like if Ω = 1. In each iteration these aug-
mented data enter Equation 14 to determine the best-fit model
of the extended emission of the galaxy without point sources
(bottom-right panel).

We initialize the GMM with K = 60 components with means
distributed according to a bivariate Gaussian, whose width s

3See the Chandra Proposers’ Observatory Guide, http://cxc.harvard.
edu/proposer/POG/

was determined by fitting the galaxy with K = 1 first. Be-
cause the scene exhibits features of different scales, we set the
component covariances to Σk = 4–ls2 I with l = 0, . . . , 5, and
10 components at each level l. This tailored initialization is
necessary despite the GMM’s ability to adjust to arbitrary con-
figurations because the rate of convergence is very slow for the
weakly expressed features we are particularly interested in. The
background amplitude ν was allowed to vary between 0.2 and
0.5, with ν = 0.396 being the best-fit value, in other words
about 40% of the photons over the unobscured region shown in
Figure 5 originate from the background.

The GMM is capable of faithfully describing large and small-
scale features in the data: a bright, apparently bimodal central
region, most likely arising due to the presence of an accret-
ing supermassive black hole; an extended halo of low-intensity
emission from diffuse, 105 – 107 Kelvin hot gas with a notice-
able skewness towards the lower right corner; and the location
and intensity of several shock fronts caused by buoyantly ris-
ing pockets of plasma that were likely inflated during previous
outbursts of the central supermassive black hole. However, be-
cause of the complexity of the model with K = 60, it is not
guaranteed that particular features, e.g. shock fronts, are fit by
a single component. This association could be made more clear
if the analysis operated on a three-dimensional feature space of
photon positions and energies, a study we leave for the future.

Because this is a demonstration of the capabilities of the
method, we have not performed e.g. cross-validation tests to
determine the optimal K. The model is the result of a single run
with a number of components that appeared visually reasonable
to capture the key features of the data. Its χ2 per degree of
freedom over an area where the galaxy dominates the emission
is at least 1.34,4 indicating that a larger number of components
may be necessary to capture all significant features.

6. Summary and conclusions

We describe a novel extension of the EM algorithm to per-
form density estimation with Gaussian mixture models in situ-
ations where the data exhibits a known incompleteness Ω. The
type of incompleteness may be described by a sharp boundary,
a case that is usually denoted as “truncated data”, or by an arbi-
trary probabilistic function Ω(x), as long as the mechanism that
causes the incompleteness is independent of the density (miss-
ing at random).

The key difference of the method described here to the situ-
ation that is often—and somewhat ambiguously—called “miss-
ing data” is that the latter refers to data, for which some features
of any data sample may be absent. In contrast, we deal with en-
tire samples being potentially absent, caused by the systematic
limitation to observe the entire feature space or all of its relevant
regions.

4For the estimate of the degrees of freedom we assumed that no parameters
are learned from the data, yielding an upper bound on the dof. If all parameters
were linearly independent, which is not an appropriate assumption for GMMs,
the dof would be reduced by 3%.
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Data Completeness

Data + Imputation Model

Figure 5: Application to X-ray data. Top left: Histogram of the locations of photons in the energy range 0.5–2 keV for an observation of the galaxy NGC 4636
with the ACIS-I instrument of the Chandra X-ray telescope. Top right: Completeness Ω(x) for ACIS-I, determined by the location of its four CCDs and detector
sensitivity variations; point source masks (red circles, sizes true to scale), where we reject data and explicitly set Ω = 0, have been added for the purpose of this
analysis. Bottom left: ACIS-I data augmented with the imputation sample drawn from the final models of the GMM and the background. Bottom right: Final GMM
with K = 60 of the extended emission of the galaxy, after rejecting point sources, removing the background, and reconvolving to match the observation. The images
are aligned such that North is up and East is left; all panels are shown in logarithmic stretch.

Our solution is based on drawing imputation samples from
the current state of the GMM, and to recompute the model pa-
rameters in the M-step using both observed and missing sam-
ples. This technique is applicable to any generative model that
is fit with an EM algorithm, as demonstrated with the signal–
background model of Section 3.4. Its advantage is the flexi-

bility to efficiently adjust to any incompleteness Ω(x) because
one avoids the analytic integration of the predicted density over
the incomplete regions. Instead, we draw test samples from the
current model, retain those that would not have been observed
under Ω, and obtain non-zero contributions to the moments of
those components that extend into incompletely observed re-
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gions. If the model is suitable to describe the data-generating
process, adding those moments to the ones obtained from the
observed samples results in parameter estimates consistent with
those for completely observed data.

We detail practical refinements of the algorithm, regard-
ing its initialization, split-and-merge operations, and simulta-
neously fitting for a uniform background. We also recommend
averaging GMMs from independent runs to smooth out the de-
pendence of the EM algorithm on the starting position to esti-
mate the uncertainty of the estimators.

In simplified tests we demonstrate that the algorithm

1. recovers an estimate of the underlying density in pres-
ence of complex incompleteness functions,

2. correctly accounts for incompleteness and additive noise
if the imputation samples describe the noisy unobserved
data,

3. can only partially correct for incompleteness if the too
many of the original samples have not been observed.

The last finding is central to the applicability of the method.
Constraining complex GMMs with finite amounts of samples
becomes even more challenging with non-neglibible incomplete-
ness. Correcting for the latter requires being able to perform
the former reasonably well, otherwise the imputation samples
do not describe the true unobserved samples. In absence of an
analytical estimate of the fidelity of GMMs from the EM al-
gorithm, we provide a best-effort estimate for the limits of the
algorithm in Equation 25.

We demonstrate the usefulness of the algorithm with exam-
ple data from the NASA X-ray telescope Chandra, where the
incompleteness stems from gaps between the chips of the ACIS
instrument. We directly estimate the extended emission of the
galaxy NGC 4636 from the location of photon hits, while ac-
counting for the window-frame configuration of the detector;
a spatially varying point-spread function; and a uniform X-ray
background.

The presented method provides an efficient and flexible tool
to estimate the density of a process that is affected by moder-
ate levels of incompleteness of the MAR type. As such situa-
tions may arise in many areas of the physical and social sci-
ences, we believe this contribution to be of general use and
have therefore made our python implementation available at
https://github.com/pmelchior/pyGMMis.

Appendix A. Missingness for density estimation

To understand what form the likelihood assumes when some
samples are not observed, we need to determine how observed
and missing samples are related. For this purpose Rubin (1976)
introduced the missingness mechanism R that determines which
part of the complete data Y is observed (Yo) or missing (Ym).
The relation between R and Yo or Ym gives rise to three distinct
types of missingness:

p(R | Y) =


p(R) missing completely at random (MCAR)
p(R | Yo) missing at random (MAR)
p(R | Yo, Ym) missing not at random (MNAR)

Under MCAR, the missingness mechanism does not depend on
the data at all; in turn, the data do not reveal properties of R.
The key distinction between MAR and MNAR is whether R
depends only on observed or also on missing features.

For the problem of density estimation with incomplete sam-
ples x, it is not immediately obvious what Yo and Ym corre-
spond to. We take guidance from the close relation between
density estimation and function approximation by positive lin-
ear operators (e.g. Ciesielsky, 1991). We therefore take X to be
the entire feature space Rd and Y = R the co-domain of a scalar
function p : X → Y, namely the PDF p(x). The data then span
(X, Y) = Rd+1, and R determines at what locations x a value
y ∈ Y is recorded.

In Section 2.3, we introduced the completeness function
Ω(·), which is equivalent to p(R | ·). Only a spatially uniform
completeness function fulfills the MCAR condition, but is irrel-
evant for density estimation as the resulting probability density
function is simply a renormalized version of the true PDF. If
Ω only depends on x, the MAR condition applies because X
is by construction completely observed (only values of Y may
be missing). Technically, MAR still holds if Ω depends on x
and the density p(x′) at some other observed position x′ , x,
for instance when the observed samples “shadow” some oth-
ers. For the sake of brevity, we have not listed this case in
Section 2.3. Only if samples are missing because of their own
value of y = p(x), or because of their relation to other miss-
ing values p(x′), we have MNAR. This can happen e.g. when
an experimental device is locally invalidated by saturation or if
samples are only recorded if their local abundance exceeds a
certain threshold. An investigation under which conditions the
proposed approach can account for MNAR cases is beyond the
scope of this paper.
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