
ar
X

iv
:1

81
1.

06
37

3v
2

 [
as

tr
o-

ph
.E

P]
 2

9
D

ec
 2

01
8

Fast error–controlling MOID computation for confocal elliptic orbits

Roman V. Baluev

Saint Petersburg State University, Faculty of Mathematics and Mechanics, Universitetskij pr. 28, Petrodvorets, Saint Petersburg

198504, Russia

Central Astronomical Observatory at Pulkovo of the Russian Academy of Sciences, Pulkovskoje sh. 65/1, Saint Petersburg 196140,

Russia

Denis V. Mikryukov

Saint Petersburg State University, Faculty of Mathematics and Mechanics, Universitetskij pr. 28, Petrodvorets, Saint Petersburg

198504, Russia

Abstract

We present an algorithm to compute the minimum orbital intersection distance (MOID), or global minimum

of the distance between the points lying on two Keplerian ellipses. This is achieved by finding all stationary

points of the distance function, based on solving an algebraic polynomial equation of 16th degree. The al-

gorithm tracks numerical errors appearing on the way, and treats carefully nearly degenerate cases, including

practical cases with almost circular and almost coplanar orbits. Benchmarks confirm its high numeric relia-

bility and accuracy, and that regardless of its error–controlling overheads, this algorithm pretends to be one

of the fastest MOID computation methods available to date, so it may be useful in processing large catalogs.

Keywords: close encounters, near-Earth asteroids, NEOs, catalogs, computational methods

1. Introduction

The MOID parameter, or the minimum distance

between points on two Keplerian orbits, has an im-

portant value in various Solar System studies. It

measures the closeness of two trajectories in the R
3

space, and hence ascertains whether two bodies have

a risk to collide. For example, if MOID appeared be-

low the sum of radii of two bodies than such bodies

may avoid a collision only if they orbit in a mean-

motion resonance, or via a perturbating effect that

may increase the MOID to a safe level before the

bodies could actually collide. Otherwise, the bodies

will necessarily collide in some future.

Therefore, computing the MOID is very old task

with an application to Potentially Hazardous Objects

(PHOs) and Near-Earth Asteroids (NEAs).

Email address: r.baluev@spbu.ru (Roman V. Baluev)

This problem is investigated over decades al-

ready, see e.g. (Sitarski, 1968; Dybczyński et al.,

1986) and more recent works by Armellin et al.

(2010); Hedo et al. (2018).

The MOID is a minimum of some distance or

distance-like function ρ(u, u′) that depends on two

arguments, determining positions on two orbits. The

methods of finding the minima of ρ(u, u′) can be split

in several general cathegories, depending on the di-

mensionality of the optimization task to be solved.

This depends on how much work is pre-computed

analytically.

1. Global optimization in 2D. As an ultimately

simple example this includes e.g. the 2D brute-

force (exhaustive) search of ρ(u, u′) on a 2D

grid. Thanks to the existence of rigorous and

finite upper limits on the gradient of ρ(u, u′),

which appears to be a trigonometric polyno-

mial, we can always limit the finite difference

Preprint submitted to Astronomy and Computing January 1, 2019

http://arxiv.org/abs/1811.06373v2

∆ρ by ∆u max |ρ′u| and ∆u′max |ρ′u′ |. Thanks to

such error predictability, algorithms of the 2D

class appear the most reliable ones, because we

can always determine the MOID, along with

the orbital positions u and u′, to any desired ac-

curacy. An advanced method based on the 2D

global optimization of ρ, which includes high-

order Taylor models and interval arithmetics,

was presented by Armellin et al. (2010). Nev-

ertheless, even advanced methods of this type

cannot be fast due to the need of considering

2D domains.

2. 1D optimization. Here we eliminate u′ from

the numeric search by solving it from an ana-

lytic equation. The remaining orbital position

u is determined by numeric optimization of the

1D function ρ̃(u) = ρ(u, u′(u)). In general, this

is faster than 2D minimization, but the deriva-

tive of ρ̃(u) is no longer bounded, because

du′/du may turn infinite sometimes. Such

cases may appear even for very simple circu-

lar orbits. Therefore, in general this method

cannot provide a strict mathematical guaran-

tee of the desired numerical accuracy. How-

ever, it appears more reliable than the methods

of the next class. The SDG method discussed

by Hedo et al. (2018) basically belongs to this

class.

3. Methods of the 0D class, in which both u and

u′ are solved for rather than found by numeric

optimization. This includes the method by

Kholshevnikov and Vassiliev (1999b) and by

Gronchi (2002, 2005), because they do not ex-

plicitly deal with any numeric optimization at

all. The task is analytically reduced to solving

a nonlinear equation with respect to u and then

express u′ also analytically. Methods of this

class are ultimately fast but relatively vulner-

able to loosing roots due to numerical errors

(in nearly degenerate cases). This effect be-

comes important because the equation for u is

quite complicated and subject to round-off er-

rors. Also, this equation often have close (al-

most multiple) roots that are always difficult

for numeric processing.

Here we present an efficient numeric imple-

mentation of the algebraic approach presented by

Kholshevnikov and Vassiliev (1999b), similar to the

one presented by Gronchi (2002, 2005). This method

belongs to the fast 0D class. It is based on analytic

determination of all the critical points of the distance

function, |r− r′|2, augmented with an algebraic elim-

ination of one of the two positional variables. Math-

ematically, the problem is reduced to a single poly-

nomial equation of 16th degree with respect to one

of the eccentric anomalies.

Recently, Hedo et al. (2018) suggested a method

that does not rely on necessary determination of all

the stationary points for the distance. It basically

splits the problem in two tasks of 1D optimization,

so this method belongs to the 1D class. Neverthe-

less, it proved ∼ 20 per cent faster than the 0D

Gronchi algorithm, according to the benchmarks.

Though the performance differences appeared rel-

atively moderate, there were revealed occurences

when the Gronchi’s code suffered from numeric er-

rors, reporting a wrong value for the MOID. There-

fore, in this task the numeric reliability of the method

is no less important than just the computing speed.

Direct implementation of the methods by

Kholshevnikov and Vassiliev (1999b) and Gronchi

(2002) might be vulnerable, because finding roots

of a high-degree polynomial might be a numerical

challenge sometimes. When dealing with large as-

teroid catalogs, various almost-degenerate cases ap-

pear sometimes, if the equations to be solved contain

almost-double or almost-multiple roots. Such roots

are difficult to be estimated accurately, because they

are sensitive to numeric errors (even if there were

no errors in the input orbital elements). Moreover,

we have a risk of ambiguity: if the polynomial has

two or more very close real roots then numeric er-

rors may result in moving them to the complex plane

entirely, so that we may wrongly conclude that there

are no such real roots at all. Such effect of lost of

real roots may potentially result in overestimating the

MOID, i.e. it may appear that we lost exactly the so-

lution corresponding to the global minimum of the

distance. This issue can be solved by paying atten-

tion not only to the roots formally identified as real,

but also to all complex-valued roots that appear sus-

piciously close to the real axis. To define formally

what means ‘suspiciously close’ we need to estimate

2

numeric error attached to a given root, not just its

formal value.

In other words, our task assignes an increased

role to the numeric stability of the computation,

because errors are known to dramatically increase

when propagating through mathematical degenera-

cies. This motivated us to pay major attention to

error control when implementing the method by

Kholshevnikov and Vassiliev (1999b) in a numerical

algorithm.

The structure of the paper is as follows. In

Sect. 2, we give some mathematical framework that

our algorithm relies upon. Sect. 3 describes the nu-

meric algorithm itself. Sect. 4 contains some guide-

lines on how to select meaningful error tolerances

for our algorithm. Sect. 5 presents its performance

tests. In Sect. 6, we describe several auxiliary tools

included in our MOID library.

The C++ source code of our MOID li-

brary named distlink is available for download at

http://sourceforge.net/projects/distlink.

2. Mathematical setting

Consider two confocal elliptic orbits: E deter-

mined by the five geometric Keplerian elements

a, e, i,Ω, ω, and E′ determined analogously by the

same variables with a stroke. Our final task is to

find the minimum of the distance |r− r′| between two

points lying on the corresponding orbits, and the or-

bital positions u, u′ where this minimum is attained

(here u stands for the eccentric anomaly). According

to Kholshevnikov and Vassiliev (1999b), this prob-

lem is reduced to solving for the roots of a trigono-

metric polynomial g(u) of minimum possible alge-

braic degree 16 (trigonometric degree 8). It is ex-

pressed in the following form:

g(u) = K2(A2 − C2)(B2 −C2)+

+ 2KC
[

NA(A2 − C2) + MB(B2 −C2)
]

−
− (A2 + B2)

[

N2(A2 −C2) + M2(B2 − C2)−
− 2NMAB

]

, (1)

where

A = PS ′ sin u − S S ′ cos u,

B = PP′ sin u − S P′ cos u,

C = e′B − αe sin u(1 − e cos u),

M = PP′ cos u + S P′ sin u + αe′ − PP′e,

N = PS ′e − S S ′ sin u − PS ′ cos u,

K = α′e′2, (2)

and α = a/a′, α′ = a′/a. The quantities PP′, PS ′,

S P′, S S ′ represent pairwise scalar products of the

vectors P and S:

P = { cosω cosΩ − cos i sinω sinΩ,

cosω sinΩ + cos i sinω cosΩ,

sin i sinω },
S = Q

√
1 − e2,

Q = { − sinω cosΩ − cos i cosω sinΩ,

− sinω sinΩ + cos i cosω cosΩ,

sin i cosω }, (3)

with analogous definitions for P′ and S′.

When all the roots of g(u) are found, for each u

we can determine the second position u′ from

cos u′ =
BC + mA

√
D

A2 + B2
, sin u′ =

AC − mB
√

D

A2 + B2
,

(4)

where

D = A2 + B2 −C2, m = ±1. (5)

The sign of m should be chosen to satisfy

M sin u′ + N cos u′ = K sin u′ cos u′, (6)

so there is only a single value of u′ that corresponds

to a particular solution for u.

Finally, after both the orbital positions u and u′

were determined, the squared distance between these

points is |r − r′|2 = 2aa′ρ(u, u′), where

ρ(u, u′) =
α + α′

2
+
αe2 + α′e′2

4
− PP′ee′+

+ (PP′e′ − αe) cos u + S P′e′ sin u+

+ (PP′e − α′e′) cos u′ + PS ′e sin u′−
− PP′ cos u cos u′ − PS ′ cos u sin u′−
− S P′ sin u cos u′ − S S ′ sin u sin u′+

+
αe2

4
cos 2u +

α′e′2

4
cos 2u′. (7)

3

Therefore, our general computation scheme

should look as follows: (i) find all real roots of g(u);

(ii) for each solution of u determine its corresponding

u′; (iii) for each such pair u, u′ compute ρ(u, u′); and

(iv) among these values of ρ select the minimum one.

This will give us the required MOID estimate. As we

can see, the most difficult step is finding all real roots

of the trigonometric polynomial g(u), while the rest

of the work is rather straightforward.

This trigonometric polynomial can be rewritten

in one of the two standard forms:

g(u) = a0 + 2

N
∑

k=1

(ak cos ku + bk sin ku) =

N
∑

k=−N

cke
iku,

(8)

where N = 8. The coefficients ak, bk, and c±k =

ak ∓ ibk can be expressed as functions of the quanti-

ties PP′, PS ′, S P′, S S ′, and α, e, e′. Most of such

explicit formulae would be too huge and thus imprac-

tical, but nonetheless we computed an explicit form

for the coefficient c8:

c8 = c∗−8 =

(

αe2

16

)2

M1M2M3M4,

M1 = PP′ − S S ′ − ee′ − i(S P′ + PS ′),

M2 = PP′ − S S ′ + ee′ − i(S P′ + PS ′),

M3 = PP′ + S S ′ − ee′ − i(S P′ − PS ′),

M4 = PP′ + S S ′ + ee′ − i(S P′ − PS ′). (9)

Here the asterisk means complex conjugation.

The number of real roots of g(u) cannot

be smaller than 4 (Kholshevnikov and Vassiliev,

1999b). Also, this number is necessarily even,

since g(u) is continuous and periodic. But the up-

per limit on the number of real roots is uncertain.

In any case, it cannot exceed 16, the algebraic de-

gree of g(u), but numerical simulations performed by

Kholshevnikov and Vassiliev (1999b) never revealed

more than 12 real roots. Here we reproduce their

empirical upper limit: based on a test computation of

∼ 108 orbit pairs from the Main Belt (see Sect. 5),

we obtained approximately one 12-root occurence

per ∼ 4 × 106 orbit pairs1. No cases with 14 or 16

1This is actually an upper limit on that rate, because our al-

gorithm may intentionally count some complex roots with small

roots were met.2

Since the number of real roots of g(u) is highly

variable and a priori unknown, certain difficulties ap-

pear when dealing with g(u) in the real space. In

practice g(u) often becomes close to being degen-

erate, e.g. in the case of almost circular or almost

coplanar orbits, which is frequent for asteroids and

typical for major planets in the Solar System. In such

cases, real roots of g(u) combine in close pairs or

even close quadruples. The graph of g(u) passes then

close to the abscissa near such roots. This means

that numeric computing errors affect such nearly-

multiple roots considerably, implying increased un-

certainties. Moreover, we might be even uncertain

about the very existence of some roots: does the

graph of g(u) really intersects the abscissa or it passes

slightly away, just nearly touching it? In practice

this question may become non-trivial due to numeri-

cal errors, that might appear important because g(u)

is mathematically complicated. Therefore, treating

g(u) only in the real space might result in loosing its

roots due to numeric errors.

But loosing real roots of g(u) would potentially

mean to vulnerably overestimate the MOID, because

there is a risk that the minimum distance |r− r′| occa-

sionally corresponds to a lost root. Then it might be

more safe to overestimate the number of real roots of

g(u), i.e. we should also test “almost-real” complex

roots that correspond to a near-touching behaviour of

g(u), even if it does not apparently intersect the ab-

scissa. This would imply some computational over-

heads and additional CPU time sacrificed for the al-

gorithmic reliability and numeric stability. Also, this

would mean to treat g(u) in the complex plane and

find all its complex roots, rather than just the real

ones. As such, we need to swap to complex nota-

tions.

By making the substitution z = eiu or w = e−iu,

we can transform g(u) to an algebraic polynomial of

imaginary part as real ones. This estimate is sensitive to the se-

lected floating-point precision and to subtle details that affect

overall numeric accuracy of the algorithm. It may even be pos-

sible that all these potential 12-root occurences contain only 10

real roots.
2We had one 14-root occurence using the standard double

precision, but this case appeared to have only 12 real roots with

long double arithmetic.

4

degree 16:

g(u) =

N
∑

k=−N

ckz
k = P(z)wN = Q(w)zN . (10)

So, the task of finding roots of g(u) becomes equiv-

alent to solving P(z) = 0 or Q(w) = 0.3 Among all

these complex roots we must select those that within

numeric errors lie on the unit circle |z| = |w| = 1.

Since all ak and bk are real, the complex coeffi-

cients satisfy the property ck = c∗−k
. Hence, roots of

P(z) obey the following rule: if z = reiϕ is such a root

then 1/z∗ = r−1eiϕ is also a root of P. Therefore, the

entire set of these roots includes three families: (i)

roots on the unit circle |z| = 1 that correspond to real

u, (ii) roots outside of this circle, |z| > 1, and (iii)

roots inside the unit circle, |z| < 1. The roots with

|z| , 1 are split into pairs of mutually inverse values

that have |z| < 1 and |z| > 1.

3. Numerical algorithm

3.1. Determining the polynomial coefficients and

their uncertainty

First of all, we must represent the polynomial

g(u) in its canonical form (8). For that, we need to

compute the coefficients ck. The explicit formulae

for ck are too complicated and impractical, except for

the case k = ±8 given in (9). Instead of direct com-

putation of ck, we determine them by means of the

discrete Fourier transform (DFT hereafter):

ck =
1

2N + 1

2N
∑

m=0

g(um) eikum , um =
2πm

2N + 1
. (11)

Here, g(um) are computed by using the relatively

compact formula (1). Regardless of the use of DFT,

this approach appears computationally faster than

computing all ck directly. We do not even use FFT

algorithms for that, because of too small number of

coefficients N = 8. For so small N, the FFT tech-

nique did not give us any remarkable speed advan-

tage in comparison with the direct application of the

DFT (11).

3Since u can take only real values, we always have z , 0

and w , 0.

However, the DFT can likely accumulate some

rounding errors. The accuracy of so-determined ck

can be roughly estimated by comparing the DFT esti-

mate of c±8 with its explicit representation (9), which

is still mathematically simple. We may assume

that numerical errors inferred by the formula (9) are

negligible, and that all the difference between (11)

and (9) is solely explained by the DFT errors.

Moreover, we can compute the DFT (11) for any

N > 8. In such a case, all the coefficients ck for

|k| > 8 must turn zero. However, due to numeric

errors their DFT estimate may occur non-zero, and

in such a case the magnitude of this ck can be used as

a rough error assessment.

Based on this consideration, we adopted the fol-

lowing formulae to estimate the average error in ck:

ε2 =

|c8 − c′8|2 +
N

∑

k=9

|c′k|2

/

(N − 7). (12)

Here, c8 is determined from (9), while c′
k

are DFT

estimations from (11). The formula (12) represents a

statistical estimation that treats numerical errors in ck

as random quantities. It is based on the assumption

that errors in different ck are statistically independent

(uncorrelated) and have the same variance. In such a

case, ε2 provides an estimate of that variance.

In our algorithm, we set N = 10, thus computing

the DFT from 21 points um. In practical computation

we always obtained ε not far from the machine pre-

cision, except for rare cases. We additionally notice

that the error estimation (12) also includes, to a cer-

tain extent at least, the numeric error appeared when

computing the values of g(um) by formula (1), not

just the DFT errors inferred by (11).

3.2. Root-finding in the complex plane

When all ck are determined, along with their

probable numerical error, we can determine all com-

plex roots of P(z). This is done via Newtonian itera-

tions and obeys the following numeric scheme:

1. Initial approximations for the first 8 roots are

selected in a specific optimized manner as de-

tailed below.

2. Initial approximation for each next root zk

is chosen according to the prediction z
(0)

k
=

1/z∗
k−1

, where zk−1 is the final estimation of the

5

previous root. Thanks to such a choice, the al-

gorithm will always extract a paired complex

root zk = 1/z∗
k−1

immediately after zk−1. The

Newtonian iterations for zk converge in this

case very quickly (in two iterations or so). This

does not work, if zk−1 belongs to the family

|z| = 1 (such roots do not combine into inverse

pairs), or if zk−1 turns out to be that second root

in the pair. Then such a starting approximation

would be equal to either zk−1 or zk−2, so the next

extracted root zk will likely appear close to one

of these.

3. Each root is refined by Newtonian iterations (i)

until some least required relative accuracy δmax

is achieved, and then (ii) until we reach the de-

sired target relative accuracy δmin or, at least,

the maximum possible machine accuracy, if

δmin is unreachable. On the first phase, we it-

erate until the last Newtonian step |dn| falls be-

low δmax|z|. The iterations are restarted from

a different starting point, if they are trapped

in an infinite loop at this phase (this is the

known curse of the Newton method). On the

second phase, the stopping criterion relies on

the last and pre-last Newtonian steps, |dn| and

|dn−1|. The iterations are continued either until

|dn| < δmin|z|, or until the relative step change,

γn = (|dn−1|2 − |dn|2)/|dn|2, drops below the ma-

chine epsilon ǫ. The latter criterion is moti-

vated as follows. In the middle of iterations,

whenever numeric round-off errors are not sig-

nificant yet, the parameter γn should remain

large positive, since each |dn| is much smaller

than |dn−1|. But in the end either γn → 0, if

iterations get finally stuck at almost the same

numeric value near the root, or γn occasionally

attains negative values, if the iterations start to

randomly jump about the root due to numeric

errors. A good practical assumption for the ac-

curacy parameters might be δmax ∼
√
ǫ and

δmin = 0 or about ǫ.

4. Whenever we have an accurate estimate of

a root zk, this root is eliminated from P(z)

through dividing it by (z − zk) via the Horner

scheme. The remaining polynomial has a re-

duced degree. For the sake of numerical sta-

bility, we either extract the multiplier (z − zk)

from P(z), if |zk| > 1, or (w−wk) from Q(w), if

|zk| < 1.

5. The roots are extracted in such a way until we

receive a quadratic polynomial in P(z). Its two

remaining roots are then obtained analytically.

The order, in which the roots are extracted, is im-

portant. If we extract ‘easy’ roots first, we spend lit-

tle Newtonian iterations with a high-degree P. Also,

such ‘easy’ roots should likely be far from degen-

eracies and hence be numerically accurate. There-

fore, they should not introduce big numeric errors

when the Horner scheme is applied. The ‘difficult’

roots that require big number of Newtonian iterations

should better be extracted later, when the degree of

P is reduced. If we act in an opposite manner, i.e.

extract ‘difficult’ roots first, these difficult roots will

inevitably increase numeric errors. After applying

the Horner scheme, these increased errors are trans-

ferred to the coefficients ck, reducing the accuracy of

all the remaining roots. Also, bad roots always re-

quire larger number of Newtonian iterations, which

become even more expensive at the beginning, when

the degree of P is still large and its computation is

more slow.

After some tests we decided that the best way

is to extract in the very beginning extreme complex

roots: |z| ≪ 1 and their inversions |z| ≫ 1. Such

roots are determined quickly and accurately, and the

Horner scheme is very stable for them. Since in

practical computations we always revealed at least

4 complex roots, we try to extract these four roots

in the beginning. The starting approximation for the

first root, z
(0)

1
, is always set to zero. This will likely

give us the root with smallest |z1|. The next root, z2,

is started from z
(0)

2
= 1/z∗1 and will be determined al-

most immediately. It will be the largest one. Initial

approximations for the next too roots, z3 and z4, are

set from our usual rule, z
(0)

k
= 1/z∗

k−1
. Thanks to this,

we obtain yet another smallest root as z3, and yet an-

other largest root as z4.

After these four extreme complex roots are re-

moved from P, we try to extract the four guaranteed

roots that lie on the unit circle. We select their initial

approximations to be such that u is located at the or-

bital nodes or ±90◦ from them. This is motivated by

the practical observation that the MOID is usually at-

6

tained near the orbital nodal line, see Sect. 6. Thanks

to such a choice, these four roots are determined in a

smaller number of Newtonian iterations.

The ninth root is iterated starting from z
(0)

9
= 0

again, and for the rest of roots we follow the general

rule z
(0)

k
= 1/z∗

k−1
. Thanks to such a choice, the al-

gorithm tries to extract the remaining roots starting

far from the unit circle |z| = 1, approaching it in the

end. Therefore, the most numerically difficult cases,

which are usually located at |z| = 1, are processed

last, when the degree of P is already reduced in a

numerically safe manner.

Using this optimized sequence we managed to

reduce the average number of Newtonian iterations

from 7–8 per root to 5–6 per root, according to our

benchmark test case (Sect. 5). Also, this allowed to

further increase the overall numeric accuracy of the

roots and numeric stability of the results, because

highly accurate roots are extracted first and roots

with poor accuracy did not affect them.

3.3. Estimating roots uncertainty and roots selection

When all complex roots of P(z) are obtained, we

need to select those roots that satisfy |z| = 1 and thus

correspond to real values of u. However, in practice

the equation |z| = 1 will never be satisfied exactly,

due to numerical errors. We need to apply some cri-

terion to decide whether a particular |zk| is close to

unit, within some admissible numeric errors, or not.

We approximate the relative error of the root zk

by the following formula:

ε2
z =

1

|zk|2

|d|2 +
ε2
P
|D|2

. (13)

Its explanation is as follows.

Firstly, d is the smaller (in absolute value) of the

roots of a quadratic polynomial that approximates

P(z) near zk:

P′′(zk)

2
d2 + P′(zk)d + P(zk) = 0,

d =
−P′ +D
P′′ , D = ±

√
P′2 − 2PP′′. (14)

Thus, the first term in (13), or |d|, approximates the

residual error of zk still remained after Newtonian it-

erations. It is zero if P(zk) = 0 precisely. Here we

use the initial polynomial P of 16th degree, not the

one obtained after dividing it by any of z − zk. For

practical purposes, d should be calculated using a nu-

merically stabilized formula that avoids subtraction

of close numbers whenever P ≈ 0. For example, we

can use

d =
−2P
P′ +D , (15)

selecting such sign of D that maximizes the denom-

inator |P′ +D|.
But just |d| is not enough to characterize the un-

certainty of zk in full. In fact, most of this uncer-

tainty comes from the numerical errors appearing

in P(z) through ck. Inaccurate computation of P(z)

leads to errors in the estimated root zk. Using the

quadratic approximation (14), the sensitivity of zk

with respect to varying P is expressed by the deriva-

tive ∂d/∂P = −1/D. Hence, the second error term

in (13) appears, εP/|D|, where εP represents the error

estimate of P(z):

ε2
P = ε

2

16
∑

n=0

|zk|2n, (16)

where ε given in (12).

The quadratic approximation (14) is related to the

iterative Muller method that takes into account the

second derivative of P. We needed to take into ac-

countP′′ because in practice the real roots of g(u) are

often combined into close pairs, triggering a close-

to-degenerate behaviour with small |P′(z)|. In such

a case the linear (Newtonian) approximation of P(z)

yields too pessimistic error estimate for zk. The use

of the quadratic approximation (14) instead allows

us to adequately treat such cases with nearly double

roots.

However, even with (14) it is still difficult to treat

the cases in which the roots combine in close quadru-

ples. Then P′′(zk) becomes small too, along with

P′(zk) and P(zk). The error estimate (13) becomes

too pessimistic again. Such cases are very rare, but

still exist. They may need to be processed with an

alternative computation method (see Sect. 6).

In the error estimate (13), we neglect numerical

errors of P′(zk) and of P′′(zk), assuming that these

quantities do not vanish in general and thus always

keep a satisfactory relative accuracy (this is typically

true even for almost double paired roots).

7

We use the following numeric criterion to iden-

tify roots lying on the unit circle:

∆z =

∣

∣

∣log |z|
∣

∣

∣

νεz

≤ 3. (17)

Here, ν is an auxiliary scaling parameter controlling

the tolerance of the threshold. Normally, it should

be set to unit and its meaning is to heuristically cor-

rect the estimated εz in case if there are hints that this

error estimation is systematically wrong. The thresh-

old 3 is supposed to mean the so-called three-sigma

rule. It was selected well above the unit in order to

increase the safety of roots selection and hence the

reliability of the entire algorithm.

After selecting all the roots zk that lie close

enough to the unit circle, we may determine the

corresponding eccentric anomaly uk = arg zk, then

its corresponding u′
k

from (4) and ρk = ρ(uk, u
′
k
)

from (7). The minimum among all computed ρk

yields us the required MOID estimate.

In general, the discriminant D in (4) is non-

negative if u is a root of g(u), but this can

be violated in some special degenerate cases

(Baluyev and Kholshevnikov, 2005). Formally, neg-

ative D means that MOID cannot be attained at the

given orbital position u, even if g(u) = 0. This is

quite legal, meaning that some roots of g(u) may

be parasitic, i.e. corresponding to a critical point of

ρ(u, u′) for some complex u′ (even if u is real). How-

ever, D may also turn negative due to numeric errors

perturbing almost-zero D > 0. We could distinguish

such cases based on some uncertainty estimate of D,

but in practice it appears easier to process all them

just forcing D = 0. In the first case (if D is nega-

tive indeed), this would imply just a negligible com-

putation overhead because of unnecessary testing of

an additional ρk that cannot be a MOID. But in the

second case (if D appeared negative due to numeric

errors) we avoid loosing a potential MOID candidate

ρk.

3.4. Refining the MOID by 2D iterations

Now we have quite a good approximation for the

MOID and for the corresponding positions in u and

u′. However, their accuracy is typically 1-2 signif-

icant digits worse than the machine precision (even

if we iterated the roots zk to the machine precision).

The loss of numeric precision appears in multiple

places: in rather complicated formulae like (1), in (4)

if D appeared small, in the DFT computation (11),

and so on. As a result, whenever working in the

standard double precision, we may receive average

numeric errors of ∼ 10−14 instead of the relevant ma-

chine epsilon ∼ 10−16. Although this average accu-

racy is pretty good for the most practical needs, in

poorly-conditioned cases the errors may increase fur-

ther. But fortunately, the results can be easily refined

to the machine precision ∼ 10−16 at the cost of negli-

gible overheads.

This can be achieved by applying the 2D New-

ton iteration scheme to the function ρ(u, u′). Let us

decompose it into the Taylor series:

ρ(u, u′) = ρ0 + g · d + 1

2
dT

Hd + . . . (18)

Here, g is the gradient and H is the Hessian matrix

of ρ, considered at the current point (u, u′), while d is

the 2D step in the plane (u, u′). We need to find such

d where the gradient of (18) vanishes:

∇ρ = g + Hd + . . . = 0, (19)

therefore the necessary 2D step is

d = −H
−1 g. (20)

To compute ρ, g, and H, we do not rely on the

formula (7), because it is poorly suited for practical

numeric computations. It may generate a precision

loss due to the subtraction of large numbers. Such

a precision loss appears when MOID is small com-

pared to a and a′.

The derivatives of ρ can be computed using the

following formulae, obtained by direct differentia-

tion:

ρ =
(r − r′)2

2aa′
, gu =

(r − r′)ru

2aa′
, gu′ = −

(r − r′)r′u′

2aa′
,

Huu =
(r − r′)ruu + r2

u

2aa′
, Hu′u′ =

(r − r′)r′u′u′ + r′u′
2

2aa′
,

Huu′ = −
rur′u′

2aa′
, ru =

dr

du
, r′u′ =

dr′

du′
.

(21)

8

In fact, the effect of the precision loss is present

in (21) too, due to the difference r−r′, but formula (7)

would exacerbate it further, because it hiddenly in-

volves subtraction of squares of the quantities.

Now, according to Baluyev and Kholshevnikov

(2005), the radius-vector r on a Keplerian elliptic or-

bit is
r

a
= P(cos u − e) + S sin u, (22)

with a similar expression for r′. The corresponding

derivatives with respect to u and u′ are obvious.

The stopping criterion for the 2D iterations (20)

is similar to the one used in the Newton-Raphson

scheme for the roots zk. It applies the tolerance pa-

rameter δmin to |d|. The iterations are therefore con-

tinued either until this accuracy δmin is reached by

the angular variables u and u′, or until we reach the

maximum possible numeric precision, so that further

iterations unable to increase it. The other control pa-

rameter δmax is not used here.

In practice it appears enough to make just one

or two refining iterations (20) to reach almost the

machine accuracy in ρ. In rare almost-degenerate

cases we may need n = 3 iterations or more, but the

fraction of such occurences is small and quickly de-

creases for larger n.

3.5. Estimating uncertainties of the MOID and of its

orbital positions

The numeric errors in u and u′ come from three

sources: the floating-point ‘storage’ errors, the resid-

ual errors appearing due to inaccurate fit of the condi-

tion ∇ρ = 0, and the numeric errors appearing when

computing g. Each of these error components trans-

fers to ρ.

The first error part in u, u′ can be roughly approx-

imated as

σ
(1)

u,u′ = πνǫ, (23)

assuming that ν is our universal error scaling factor.

Since the gradient g is negligible near the MOID,

the Taylor decomposition (18) implies the following

error in ρ:

∆ρ ≃ 1

2
dT

Hd, (24)

where d has the meaning of the 2D numeric error in

u, u′. From (23), we know only the typical length of

d, but the direction of this vector can be arbitrary.

Then we can use the Rayleigh inequality

|dT
Hd| ≤ |λmax|d2, (25)

where λmax is the maximum (in absolute value)

eigenvalue of H. Since the size of H is only 2 × 2,

it can be computed directly:

|λmax| =
∣

∣

∣

∣

∣

Huu + Hu′u′

2

∣

∣

∣

∣

∣

+

√

(

Huu − Hu′u′

2

)2

+ H2
uu′ .

(26)

So, the indicative uncertainty in ρ coming from this

error source is

σ(1)
ρ ≃

|λmax|
2

(

σ(1)
u

)2
. (27)

The second error part in u, u′ can be derived

from (20), substituting the residual gradient g that

appears after the last refining iteration:

σ
(2)
u

σ
(2)

u′

= −H
−1
rsd grsd. (28)

From (18), this will imply the following error in ρ:

σ(2)
ρ ≃

1

2
gT

rsdH
−1
rsd grsd. (29)

The third error source comes from possible

round-off errors in g, which may perturbate the com-

puted position of the local minimum of ρ via (20).

Let us assume that the numeric uncertainty of g is

σg, which has the meaning of a typical length of the

computed vector g at the strict (algebraic) stationary

point of ρ, where g must vanish. Then from (20) one

may derive that

|d| ≤ |g|
|λmin|

, (30)

where the λmin is the minimum eigenvalue of H:

1

|λmin|
=
|λmax|
| det H| . (31)

Hence, the corresponding uncertainty in u, u′ is esti-

mated by

σ
(3)

u,u′ ≃
|λmax|
| det H|σg, (32)

9

The corresponding uncertainty for ρ can be ex-

pressed using (29), but now g is basically an un-

known random vector of average length ∼ σg. We

can again apply the Rayleigh inequality to obtain

σ(3)
ρ ≃

|λmax|
2

σ2
g

| det H| . (33)

The quantityσg appears more complicated and is de-

rived below.

The fourth error source in ρ appears when apply-

ing the first formula of (21). If MOID is small then

the relative error in ρ increases due to the precision

loss, appearing because of the subtraction of close

vectors r and r′. If these vectors have relative ‘stor-

age’ errors about νǫ then their absolute numeric er-

rors are σr ∼ νǫr and σr′ ∼ νǫr′. Hence, the inferred

cumulative uncertainty of the difference is about their

quadrature sum:

σr−r′ ≃ νǫ
√

r2 + r′2. (34)

Let us compute the inferred uncertainty in ρ using

the so-called delta method. Since 2aa′ρ = (r − r′)2

then the error ∆ρ appearing due to a small perturba-

tion ∆r−r′ is

2aa′∆ρ = 2(r − r′)∆r−r′ + ∆
2
r−r′ . (35)

By replacing the terms above with their uncertain-

ties or with absolute values of vectors, and assuming

that different terms are always added in the worst-

case fashion, the final error component in ρ may be

estimated as follows:

σ(4)
ρ ≃ 2ρ

σr−r′√
2aa′

+
σ2

r−r′

2aa′
. (36)

Notice that we cannot in general neglect the last term

in (36), because it may appear significant if ρ is

small.

Now we can also estimate the numeric un-

certainty of g by computing its finite difference

from (21), analogously to ∆ρ:

2aa′∆g ≃
(

∆r−r′ ru + (r − r′)∆ru

∆r−r′ r
′
u′ + (r − r′)∆r′

u′

)

. (37)

By applying the same approach as for ∆ρ, we may

obtain the following for the uncertainties in g:

2aa′
(

σgu

σgu′

)

≃

σr−r′ru + ρ
√

2aa′σru

σr−r′r
′
u′ + ρ

√
2aa′σr′

u′

. (38)

Sinceσ2
g = σ

2
gu
+σ2

gu′
, andσru

∼ νǫru, and using (34),

one can obtain

σg ≃
νǫ

2aa′

(

|r − r′| +
√

r2 + r′2
)

√

r2
u + r′

u′
2. (39)

But now we can clearly see that the term |r − r′| is
either small or of the same order as

√
r2 + r′2, so to

simplify the formula we can simply neglect it and

leave only the latter term. We therefore put:

σg ≃
νǫ

2aa′

√
r2 + r′2

√

r2
u + r′

u′
2. (40)

This should be substituted to the formula (33) above.

Finally, summing up all four error components in

ρ yields the cumulative uncertainty

σρ ∼ σ(1)
ρ + σ

(2)
ρ + σ

(3)
ρ + σ

(4)
ρ . (41)

Of course, some of these error terms may often

become negligible, but it is difficult to predict in

advance which terms would dominate in this sum.

Since either term may appear large in certain condi-

tions, we need to preserve all of them for the sake of

reliability.

After that, an indicative uncertainty for the

MOID =
√

2aa′ρ is approximated by using the delta

method as

σMOID ∼
aa′σρ

MOID
. (42)

This formula is valid only if ρ is not close to zero

(compared to σρ). Otherwise, the MOID uncertainty

is

σMOID ∼
√

2aa′σρ. (43)

The two latter formulae can be combined into a sin-

gle approximate one:

σMOID ∼
aa′σρ

√

MOID2 + aa′σρ/2

. (44)

3.6. Self-testing numerical reliability

Finally, our algorithm includes a self-diagnostic

test that verifies the following post-conditions:

1. All roots that passed (17) must comply with

the requested least accuracy: νεz < δmax.

10

2. The minimum of ∆z among all the roots that

failed (17) must exceed 10, meaning that there

is no other suspicious root candidates. That

is, the families |z| = 1 and |z| , 1 must be

separated by a clear gap.

3. The number of roots that passed (17) must be

even and greater than four (necessary algebraic

conditions following from the theory).

4. After the 2D refining, the Hessian Hrsd is

strictly positive-definite, so we indeed are at a

local minimum (rather than maximum or sad-

dle point).

5. On the 2D refining stage, the total cumulative

change in u satisfies the condition |∆u| < δmax.

In some part this condition duplicates (i), en-

suring the initial approximation of the corre-

sponding root did not appear to have inaccept-

able accuracy. But it also ensures that the 2D

refining did not switch us to a completely dif-

ferent root of g(u) (another stationary point of

ρ). We pay no attention to u′ here, because it is

always derived from u using (4), so its numeric

error, even if large, is not indicative regarding

the selection of a correct root of g(u).

If some of these conditions are broken, the algorithm

sets a warning flag. Receiving such a signal, the re-

sults should be considered unreliable. In practice this

is a very seldom case (see next section), but still pos-

sible. Then the following sequence can be done to

verify the results: (i) run the same algorithm on the

same orbits E and E′, but swap them with each other;

(ii) if failed again, run the same algorithm using the

long double precision instead of double; (iii) run the

long double computation on swapped orbits; (iv) if

everything failed, invoke an alternative MOID algo-

rithm, e.g. the one from Sect. 6.

We notice that since the task is solved asym-

metrically, the algorithm may yield slightly dif-

ferent results when computing MOID(E,E′) and

MOID(E′,E). If the orbital configuration does not

imply degeneracies, both computations should offer

the same MOID value, within the reported uncertain-

ties. If they differ unacceptably, this can serve as an

additional indicator that something went wrong.

However, this notice does not apply to the es-

timated MOID uncertainty. This uncertainty can

appear different when computing MOID(E,E′) and

MOID(E′,E), because the polynomials g(u) and

g(u′) may have (and usually do have) different alge-

braic properties. In fact, if the goal is accuracy rather

than speed, one may always compute the MOID in

the both directions, E → E′ and E′ → E, selecting

the value offering better accuracy.

4. On the choice of error tolerances

The algorithm involves three main parameters re-

lated to the error control: δmin, δmax, and ν.

The primary error tolerance is δmin. It controls the

resulting accuracy of the roots zk, and of the eccen-

tric anomalies u, u′, but not of the MOID itself and

not even of the adimensional function ρ. By setting

δmin to a larger or smaller value we may obtain less

or more accurate result (in terms of u, u′). We can set

δmin = 0, meaning to seek maximum precision possi-

ble with the hardware (though this probably requires

to use the long double arithmetic, see below).

The auxiliary error tolerance δmax does not ac-

tually control the accuracy of the results. Setting a

smaller δmax won’t result in a more numerically ac-

curate MOID estimate. This parameter has two as-

pects: (i) it is used in the root-finding part to control

the initial ‘burn-in’ stage of the Newton scheme and

(ii) it is used as an indicative threshold to separate

numerically ‘reliable’ cases from ‘unreliable’ ones.

Therefore, the common sense requires that δmax

must be greater (preferably, significantly greater)

than δmin. Forcing δmax too small may result in the

following undesired effects. First, the Newton root-

finding scheme may drastically slow down, because

its ‘burn-in’ stage does not expect that it may reach

the machine precision and may otherwise iterate the

roots until the internal iteration limit. The output pre-

cision would then be worse than δmax anyway. Sec-

ondly, too small δmax may trigger an unnecessary in-

crease of the number of the unreliability warnings.

Concerning the unreliability warnings, the prac-

tical value of δmax can be selected based on the obser-

vational uncertainty of orbital elements (relative un-

certainty in terms of a, a′ or absolute one in terms of

the angular elements). This input uncertainty is typi-

cally considerably larger than the machine precision.

With so-selected δmax, the warning flag would indi-

11

cate that the numeric accuracy of zk might be worse

than the errors inferred by input observational uncer-

tainties. Then the intermediate (inferred by zk) nu-

meric uncertainty of u and u′ may appear larger than

what we can trigger by varying the orbital elements

within their error boxes. In this case the warning is

physically reasonable. But if the numeric uncertainty

always remains below the observational one then sig-

naling any warning does not make sense.

In any case, it does not make sense to set δmax

too much below the physical sizes of the objects (rel-

ative to ∼ max(a, a′)). For the Main Belt, this is

∼ 10−11 AU corresponding to the smallest known as-

teroids of ∼ 1 m in size.

If the uncertainty of orbital elements is unknown

or irrelevant than the good choice of δmax is
√
δmin,

which follows from the properties of the Newton-

Raphson method. In such a case, for each root zk

we need to make just one or two iterations after the

‘burn-in’ part of the Newton scheme. This is because

the number of accurate digits is roughly doubled af-

ter each Newtonian iteration. For example, if the ac-

curacy of
√
ǫ has been reached, on the next iteration

we will likely have ǫ.

As to the last control parameter, ν, it may be

used to manually scale up all the error assessments.

So far in our tests we did not find practical reasons

to set it to something different from ν = 1. But

whenever necessary, it can be used to disentangle

the value δmax used by the Newtonian root-finding

scheme from the threshold used in the error control

part. Since ν scales all the error estimates up, its ef-

fect is equivalent to reducing the error threshold from

δmax to δmax/ν, but the Newton scheme is always us-

ing δmax and ignores the scale factor ν.

Summarizing, it appears that in the general case

it is reasonable to set δmin about the machine epsilon,

δmax ∼
√
δmin, and to select such ν that δmax/ν is about

the physically justified MOID uncertainty (relative to

∼ max(a, a′)).

5. Practical validation and performance bench-

marks

We tested our algorithm on the first 10000 num-

bered asteroids from the Main Belt, implying ∼ 108

orbit pairs. The orbital elements were taken from the

catalog astorb.dat of the Lowell observatory.4

Our algorithm succeeded nearly always. When

using the standard double floating-point arithmetic,

the self-test conditions listed above were failed only

once per 25000 orbit pairs. In case of such a warn-

ing the first attempt was to rerun the same algo-

rithm interchanging the orbits E and E′. Since

the method treats orbits asymmetrically, this usually

helps. Double-warnings occured in our test once per

2.5 × 106 orbit pairs.

We note that if the algorithms returns a bad self-

diagnostic flag, this does not yet mean that it failed

to compute the MOID and the result is necessarily

wrong or just absent. One of the reasons for a warn-

ing is that some root zk (not even necessarily related

to the global minimum) is worse than the required

least accuracy δmax. But worse does not mean neces-

sarily useless. This just means that the result needs

an attention and probably needs a more detailed in-

vestigation using different other methods to confirm

or refine the results. Occurences when the resulting

MOID appears entirely wrong and has inacceptable

accuracy, represent only a small fraction of all those

cases when the warning was reported.

We also tested the Gronchi FORTRAN code in

the same setting. We found only two orbit pairs for

which it failed with a error and no-result, and swap-

ping the orbits did not help. A single-fail case, when

the first attempt to compute MOID failed, but swap-

ping the orbits did help, occured once per ∼ 3 × 105

MOID computations. For the majority of orbit pairs

this algorithm gave some numeric MOID value at

least, but in itself this does guarantees that all these

values are accurate.

We provide a comparison of our new algorithm

with the Gronchi code in Fig. 1. We compute the

differences of the Gronchi MOID minus the MOID

obtained by our new algorithm in two settings. In the

first case, we run both algorithms for each orbit pair

twice, to compute MOID(E,E′) and MOID(E′,E).

With the Gronchi code, we select the minimum

MOID between the two, and for our new code we se-

lect the best-accuracy MOID. If Gronchi algorithm

failed with no-result in one of the two runs, the cor-

4See url ftp://ftp.lowell.edu/pub/elgb/astorb.html.

12

ftp://ftp.lowell.edu/pub/elgb/astorb.html

 0

 5x10-5

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

 0 5x106 1x107 1.5x107 2x107 2.5x107 3x107 3.5x107 4x107 4.5x107 5x107

M
O

ID
 d

iff
er

en
ce

 (
G

ro
nc

hi
 -

 d
is

tli
nk

)

pair number

selecting the best of MOID(E,E’) and MOID(E’,E)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5x106 1x107 1.5x107 2x107 2.5x107 3x107 3.5x107 4x107 4.5x107 5x107

M
O

ID
 d

iff
er

en
ce

 (
G

ro
nc

hi
 -

 d
is

tli
nk

)

pair number

using single MOID(E,E’)

Figure 1: The difference between MOID values computed by

the Gronchi’s code and by our new algorithm (labelled as dis-

tlink). Top: comparing results improved by orbits interchang-

ing and selecting the best MOID of the two. Bottom: using

only a single MOID value for comparison. To reduce the figure

file size, we removed from the both graphs all differences below

10−13 AU in absolute magnitude. In these conditions, no points

were revealed below the abscissa, i.e. distlink always provided

smaller MOID value than the Gronchi’s code. See text for a

detailed explanation.

responding MOID value was ignored, and only the

other one was used. If both values of the MOID ob-

tained by Gronchi’s algorithm were failed, this orbit

pair itself was ignored. Additionally, if our new al-

gorithm reported a warning, we either ignored this

MOID in favour of the other value, or invoked the

fallback algorithm from Sect. 6, if that second MOID

estimate appeared unreliable too. The MOID differ-

ence between the Gronchi code and new algorithm

was then plotted in the top panel of Fig. 1. In the

Figure 2: Distribution of the estimated uncertaintiesσMOID ver-

sus an empiric error measure |MOID(E,E′) −MOID(E′,E)|, for

the test case of 108 orbital pairs (see text). The inclined line la-

bels the main diagonal (abscissa equals ordinate). All simulated

dots falled below this line. The computations were done in the

double floating-point arithmetic, AMD FX configuration.

second setting, we plainly performed just a single

MOID computation for each orbit pair without or-

bit interchange, either using the Gronchi code or our

new algorithm. Orbit pairs for which Gronchi code

failed or our algorithm reported a warning, were ig-

nored and removed. The corresponding MOID dif-

ference is plotted in the bottom panel of Fig. 1.

We may see that there are multiple occurences

when Gronchi code obtained clearly overestimated

MOID value (i.e., it missed the true global mini-

mum). But all the cases, in which Gronchi algorithm

produced smaller MOID than our library, correspond

to the MOID difference of ∼ 10−13 AU at most, with

∼ 10−16 AU in average. So all these occurences look

like some remaining round-off errors (possibly even

in the Gronchi code rather than in distlink). There-

fore, we did not find an occurence in which distlink

would yield clearly wrong MOID value without set-

ting the unreliability flag.

In Fig. 2 we compare the quadrature

sum of the reported MOID uncertainties,

13

σMOID =

√

σ2
MOID(E,E′) + σ

2
MOID(E′,E)

, with the

difference |MOID(E,E′) −MOID(E′,E)| that can be

deemed as an empiric estimate of the actual MOID

error. We may conclude that our algorithm provides

rather safe and realistic assessment of numeric

errors, intentionally a bit pessimistic. We did not

met a case with the empiric error exceeding the

predicted uncertainty.

From Fig. 3 one can see that we spend, in aver-

age, about n = 5 − 6 Newtonian iterations per each

root. One way how we may further increse the speed

of computation is to reduce this number. However,

this number is already quite small, so there is no

much room to significantly reduce it. On the refin-

ing stage the algorithm usually performs just one or

two 2D Newtonian iterations in the plane (u, u′). The

fraction of occurences when three or more refining it-

erations are made is very small and further decreases

quickly. The maximum number of refining iterations

made in this test was 7.

In Table 1, we present our performance bench-

marks for this test application. They were done for

the following hardware: (i) Intel Core i7-6700K at

4.0 GHz, (ii) Supermicro server with Intel Xeon CPU

E5-2630 at 2.4 GHz, and (iii) AMD 990FX chipset

with AMD FX-9590 CPU at 4.4 GHz. The second

configuration is rather similar to one of those used

by Hedo et al. (2018).

We used either 80-bit long double floating-point

arithmetic or the 64-bit double one, and requested

the desired accuracy of 2ǫ: δmin ∼ 2.2 × 10−19 or

δmin ∼ 4.4 × 10−16, respectively. We did not use

δmin = 0, because in the double case many CPUs

hiddenly perform much of the local computation in

long double precision instead of the requested dou-

ble. Newtonian iterations are then continued to this

undesiredly increased level of precision, if δmin = 0,

thus introducing an unnecessary minor slowdown.

The least required accuracy δmax was set to
√
ǫ in

all of the tests.

All the code was compiled with GCC (ei-

ther g++ or gfortran) and optimized for the

local CPU architecture (-O3 -march=native

-mfpmath=sse). The Gronchi primary computing

subroutine compute critical points shift()

was called from our C++ program natively, i.e.

without any intermediary file IO wrapping that

would be necessary if we used the main program

CP comp.x from the Gronchi package.

To accurately measure the time spent purely in-

side just the MOID computation, and not on the file

IO or other algorithmic decorations around it, we al-

ways performed three independent runs on the test

catalog: (i) an ‘empty’ run without any calls to any

MOID algorithm, only iteration over the catalog; (ii)

computation of all MOIDs using the algorithm of this

paper, without writing results to a file; (iii) same for

the Gronchi algorithm. The time differences (ii)-(i)

or (iii)-(i) gave us the CPU time spent only inside

the MOID computation. We never included the CPU

time spent in the kernel mode. We assume this sys-

tem time likely refers to some memory pages ma-

nipulation or other similar CPU activity that appears

when the program iteratively accesses data from a

big catalog. In any case, this system time would be

just a minor addition to the result (∼ 1− 2 per cent at

most).

The reader may notice that the hardware can gen-

erate huge performance differences, not necessarily

owing to just the CPU frequency. Moreover, even

the performance on the same AMD machine dif-

fers drastically between the double and long double

tests. This puzzling difference appears mainly due

to slow 80-bit floating-point arithmetic on AMD, not

because of e.g. different number of Newtonian itera-

tions per root (which appeared almost the same in all

our tests, 5–6 iterations per root).

We conclude that our algorithm looks quite com-

petitive and probably even outperforming the bench-

marks obtained by Hedo et al. (2018) for their set of

tested algorithms (60–80 µs per orbit pair on a Super-

micro/Xeon hardware). They used double precision

rather than long double one.

Therefore, our algorithm possibly pretends to be

the fastest one available to date, or at least it belongs

to the family of the fastest ones. In the majority of

cases it yields considerably more accurate and reli-

able results, usually close to the machine precision,

and its accuracy may seriously degrade only in ex-

traordinary rare nearly degenerate cases, which are

objectively hard to process.

14

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 4 5 6 7 8 9 10

F
ra

ct
io

n
of

 o
cc

ur
en

ce
s

(n
or

m
al

iz
ed

 h
is

to
gr

am
)

Number of Newtonian iterations per root

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 2 4 6 8 10 12
F

ra
ct

io
n

of
 o

cc
ur

en
ce

s
(n

or
m

al
iz

ed
 h

is
to

gr
am

)

Number of Newtonian 2D iterations

Figure 3: Histogram for the number of Newtonian iterations spent per root (left) and of 2D Newtonian iterations made on the final

refine stage (right). The histograms were normalized by the bin width, so they actually render the probability density function for

the quantity labelled in the abscissa. The computations were done in the double floating-point arithmetic, AMD FX configuration.

Table 1: Performance tests on the first 10000 asteroids from the Main Belt: average CPU time per MOID.

Hardware double arithmetic long double arithmetic

distlink Gronchi code distlink Gronchi code

(fast alg.) (fast alg.)

Intel Core i7 24 µs 36 µs 77 µs NA

Supermicro & Xeon 31 µs 61 µs 100 µs NA

AMD FX 44 µs 70 µs 357 µs NA

6. Additional tools

Our main algorithm based on determining the

roots of g(u) is fast but might become vulnerable in

the rare cases of lost roots. Whenever it signals a

warning, alternative algorithms should be used, trad-

ing computing speed for better numeric resistance

with respect to degeneracies.

In addition to the basic 0D method based on g(u)

root-finding, our library implements a “fallback” al-

gorithm of the 1D type, based on the brute force-like

minimization of ρ̃(u). This method is numerically

reliable thanks to its simplicity, and its slow speed

is not a big disadvantage, because it needs to be run

only if the basic fast method failed. In our bench-

marking test it appeared ∼ 6 times or ∼ 4 times

slower than our fast algorithm or the Gronchi code,

respectively. But this is likely sensitive to its input

parameters.

First of all, the algorithm scans only a restricted

range in the u variable, discarding the values where

the MOID cannot be attained. The requied u range

is determined as follows. Using e.g. formulae from

(Kholshevnikov and Vassiliev, 1999a), compute the

minimum internodal distance dΩ. Since MOID is

usually attained near the orbital nodes, this quantity

and its corresponding orbital positions already pro-

vide rather good approximation to the MOID. Then

consider two planes parallel to the orbit E′, and sep-

15

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6

fr
ac

tio
n

of
 o

cc
ur

en
ce

s
(n

or
m

al
iz

ed
 h

is
to

gr
am

)

range length in u or u’ [rad]

Figure 4: The distribution density of the reduced angular range

in u, as obatined for ∼ 108 asteroid pairs.

arated from it by ±dΩ. We need to scan only those

pieces of orbit E that lie between these planes, i.e. lie

within ±dΩ band from the E′ plane. The points on E
outside of this set are necessarily more distant from E
than dΩ, so the MOID cannot be attained there. This

trick often reduces the u range dramatically. This

optimization was inspired by the discussion given in

(Hedo et al., 2018). The detailed formulae for the re-

duced range of u are given in Appendix A.

Moreover, this algorithm automatically selects

the optimal orbits order (E,E′) or (E′,E) to have a

smaller angular range to scan. In the case if the cu-

mulative ranges appear equal (e.g. if we occasion-

ally have the full-circle [0, 2π] in both cases) then

the user-supplied order is preserved.

The efficiency of this approach is demonstrated

in Fig. 4, where we plot the distribution density for

the total range length obtained, as computed for our

test case of 104 × 104 asteroid pairs. The fraction of

the cases in which this range could not be reduced at

all (remained at [0, 2π]) is only ∼ 2%, and in the ma-

jority of occurences it could be reduced to something

well below 1 rad. The efficiency of the reduction in-

creases if MOID is small. Then the total scan range

may be reduced to just a few degrees.

The minimization of ρ̃(u) is based on subsequent

sectioning of the initial angular range for u. The

user can set an arbitrary sequence of integer num-

bers n1, n2, n3, . . . , np that define how many segments

are considered at different stages. The initial angular

range is partitioned into n1 equal segments separated

by the equidistant nodes uk, and the node with a min-

imum ρ̃(uk) is determined. We note that the input pa-

rameter n1 is always interpreted as if it corresponded

to the entire [0, 2π] range, even if the actual scan

range is reduced as described above. The segment

length on the first step is normally set to h1 = 2π/n1

regardless of the scan range, unless this scan range

is itself smaller than h1. On the second stage, the

segment [uk−1, uk+1] surrounding the minimum uk is

considered. It is sectioned into n2 equal segments,

and the node corresponding to the minimum ρ̃(uk)

is determined again. On the third stage, the segment

[uk−1, uk+1] is sectioned into n3 smaller segments, and

so on. On the kth stage, the length of the segment

between subsequent nodes is reduced by the factor

2/nk, so only nk ≥ 3 are meaningful. Starting from

the stage number p, the segments are always parti-

tioned into np subsegments, until the global mini-

mum of ρ̃(u) is located with a desired accuracy in

u and ρ. It is recommended to set n1 large enough,

e.g. ∼ 1000, in order to sample the objective func-

tion with its potentially intricate variations densely

enough, whereas the last np can be set to 4, meaning

the bisection.

We notice that this method was not designed for

a standalone use. It was not even supposed to be ei-

ther more reliable or more accurate in general than

our primary fast method. It was supposed to pro-

vide just yet another alternative in rare special cases

when the primary method did not appear convinc-

ingly reliable. Its practical reliability depends on the

input parameters very much: too small n1 may lead

to frequent loosing of local minima in ρ̃(u), if they

are narrow. Hence we may miss the correct global

minimum sometimes. But this effect can be always

suppressed by selecting a larger n1. In our tests,

with n1 = 1000 this algorithm generated one wrong

MOID per ∼ 3000 trials, so it is not recommended

for a general sole use. This could be improved by

implementing an adaptive sampling in the u variable,

e.g. depending on the derivative |ρ̃′|, but we did not

plan to go that far with this method. We note that

narrow local minima of ρ are, informally speaking,

in some sense antagonistic to almost-multiple crit-

ical points, so this fallback algorithm is vulnerable

to rather different conditions than our primary fast

16

method. Therefore it can serve as a good comple-

ment to the latter.

Also, we include in the library several fast tools

that may appear useful whenever we need to actu-

ally compute the MOID only for those object that are

close to an orbital intersection. These tools may help

to eliminate most of the orbit pairs from the process-

ing. The first one represents an obvious pericenter–

apocenter test: MOID ≥ a(1 − e) − a′(1 + e′), and

MOID ≥ a′(1 − e′)− a(1 + e). If any of these quanti-

ties appeared positive and above some upper thresh-

old MOIDmax then surely MOID > MOIDmax, and

one may immediately discard such orbital pair from

the detailed analysis.

Our library also includes functions for comput-

ing the so-called linking coefficients introduced by

Kholshevnikov and Vassiliev (1999a). The linking

coefficients are functions of two orbits that have the

dimension of squared distance, like |r− r′|2 = 2aa′ρ,

and they are invariable with respect to rotations in

R
3. Kholshevnikov and Vassiliev (1999a) introduced

three linking coefficients that should be selected de-

pending on whether the orbits are (nearly) coplanar

or not. See all the necessary formulae and discussion

in that work.

For our goals it might be important that at least

one of these linking coefficients, l1 = d1d2, can

be used as an upper limit on the MOID. It repre-

sents a signed product of two internodal distances

from (A.6), so the squared MOID can never be larger

than |l1|. This allows us to limit the MOID from an-

other side, contrary to the pericenter-apocenter test.

Moreover, based on l1 we introduce yet another link-

ing coefficient defined as

l′1 = min (|d1|, |d2|)2 sign l1. (45)

This modified l1 provides even tighter upper limit on

the squared MOID, but still preserves the sign that

indicates the orbital linkage in the same way as l1

did.

It is important for us that all linking coefficients

are computed very quickly in comparison to any

MOID algorithm, because they are expressed by sim-

ple elementary formulae.

The linking coefficients were named so because

their original purpose was to indicate whether two or-

bits are topologically linked like two rings in a chain,

or not. The intermediate case between these two is

an intersection, when the linking coefficient vanishes

together with the MOID. Therefore, these indicators

can be potentially used as computationally cheap sur-

rogates of the MOID. But in addition to measuring

the closeness of two orbits to an intersection, linking

coefficients carry information about their topologi-

cal configuration. Also, these quantities can be used

to track the time evolution of the mutual topology of

perturbed non-Keplerian orbits, for example to locate

the moment of their intersection without computing

the MOID.

7. Further development and plans

Yet another possible way to extend

our library is to implement the method by

Baluyev and Kholshevnikov (2005) for computing

the MOID between general confocal unperturbed

orbits, including hyperbolic and parabolic ones.

This task can be also reduced to finding real roots of

a polynomial similar to P(z).

In a future work we plan to provide statistical re-

sults of applying this algorithm to the Main Belt as-

teroids, also including the comparison of the MOID

with linking coefficients and other indicators of or-

bital closeness.

Acknowledgements

This work was supported by the Russian Science

Foundation grant no. 18-12-00050. We express grati-

tude to the anonymous reviewers for the fruitful com-

ments and useful suggestions on the manuscript.

Appendix A. Reducing the scan range for the ec-

centric anomaly

Let us introduce R′ = P′×Q′, which is a unit vec-

tor orthogonal to the orbital plane of E′. The vectors

P′, Q′, R′ form an orthonormal basis in R
3. Then

from (22) let us compute the dot-product

(r − r′)R′ = aPR′(cos u − e) + aS R′ sin u, (A.1)

which represents a projection of the distance vector

r−r′ on the basis vector R′. Note that the dot-product

17

r′R′ is always zero. Now, we need this distance pro-

jection to be within ±dΩ from zero, because other-

wise the absolute distance can be only larger than dΩ.

This yields two inequality constraints

ePR′ − dΩ

a
≤ PR′ cos u + S R′ sin u ≤ ePR′ +

dΩ

a
,

(A.2)

implying an elementary trigonometric equation that

can be solved via arcsines.

The final set of computing formulae can be ex-

pressed as follows. Let us introduce the vector

W = R × R′, W = |W| = sin I, (A.3)

which is directed to the ascending node of E′ assum-

ing reference E. The angle I is the mutual inclination

between the orbits. Then determine the angle θ from

cos θ = (PW)/W, sin θ = (QW)/W. (A.4)

It represents the true anomaly on E, where that as-

cending node is located. Basically, θ is the an-

gle between P and W, counted positive in the

direction of Q. The location on the other or-

bit θ′ can be determined in a similar way. Ex-

plicit formula for the scalar product PW is given in

(Kholshevnikov and Vassiliev, 1999a) via orbital el-

ements, though we prefer to multiply the vectors di-

rectly, using the following expression for W:

W = { cos i sin i′ cosΩ′ − sin i cos i′ cosΩ,

cos i sin i′ sinΩ′ − sin i cos i′ sinΩ,

sin i sin i′ sin(Ω′ − Ω) }.
(A.5)

After that let us compute

d1 =
p

1 + e cos θ
− p′

1 + e′ cos θ′
,

d2 =
p

1 − e cos θ
− p′

1 − e′ cos θ′
,

dΩ = min(|d1|, |d2|), (A.6)

where p and p′ are orbital parameters, p = a(1 − e2).

Now, the inequalities (A.2) may be simplified if

we decompose the vectors W and R′ in the basis

{P,Q, R}:

W = {PW, QW, RW = 0 },
R′ = {PR′, QR′, RR′ = cos I }. (A.7)

Writing down the orthogonality condition between

W and R′ and the norm of R′ in these coordinates,

we have

WR′ = PW PR′ + QW QR′ = 0,

R′2 = 1 =⇒ PR′2 + QR′2 = W2. (A.8)

Therefore, we may set PR′ = ∓W sin θ and QR′ =

±W cos θ in (A.2), and the sign choice is not impor-

tant here.

Finally, let us define the quantity k ≥ 0 and the

angle ϕ from

A2 = 1 − e2 cos2 θ, k =
dΩ

aWA
,

sinϕ =
sin θ

A
, cosϕ =

√
1 − e2

cos θ

A
, (A.9)

and (A.2) becomes

e sinϕ − k ≤ sin(ϕ − u) ≤ e sinϕ + k. (A.10)

In general, we have three types of solution for u.

1. If |e sinϕ| < |1− k| and k < 1 then we have two

small segments for u near the nodes, defined as

[ϕ−arcsin(e sinϕ+k), ϕ−arcsin(e sinϕ−k)] and

[ϕ+π+arcsin(e sinϕ−k), ϕ+π+arcsin(e sinϕ+

k)];

2. If |e sinϕ| < |1 − k| and k ≥ 1 then we have the

entire circular range [0, 2π] for u.

3. If |e sinϕ| ≥ |1 − k| then there is just one

big segment for u that covers angles roughly

from one node to another, defined as either

[ϕ+arcsin(e sinϕ−k), ϕ+π−arcsin(e sinϕ−k)],

if sinϕ > 0, or [ϕ − arcsin(e sinϕ + k), ϕ + π +

arcsin(e sinϕ + k)], if sinϕ < 0;

In practice, the first type of occurence is the most

frequent one, so the speed improvement is dramatic.

Notice that for W → 0 (coplanar orbits) the angle

θ formally becomes undefined, but this is not im-

portant because then k → ∞ and we just obtain the

full-circle range [0, 2π] for u. So the degenerate case

W ≈ 0 is not a big numeric issue in practice.

References

Armellin, R., di Lizia, P., Berz, M., Makino, K., 2010. Comput-

ing the critical points of the distance function between two

Keplerian orbits via rigorous global optimization. Celest.

Mech. Dyn. Astron. 107, 377–395.

18

Baluyev, R.V., Kholshevnikov, K.V., 2005. Distance between

two arbitrary unperturbed orbits. Celest. Mech. Dyn. Astron.

91, 287–300.

Dybczyński, P.A., Jopek, T.J., Serafin, R.A., 1986. On the min-

imum distance between two Keplerian orbits with a common

focus. Celest. Mech. 38, 345–356.

Gronchi, G.F., 2002. On the stationary points of the squared

distance between two ellipses with a common focus. SIAM

J. Sci. Comput. 24, 61–80.

Gronchi, G.F., 2005. An algebraic method to compute the crit-

ical points of the distance function between two Keplerian

orbits. Celest. Mech. Dyn. Astron. 93, 295–329.

Hedo, J.M., Ruı́z, M., Peláez, J., 2018. On the minimum orbital

intersection distance computation: a new effective method.

MNRAS 479, 3288–3299.

Kholshevnikov, K., Vassiliev, N., 1999a. On linking coefficient

of two Keplerian orbits. Celest. Mech. Dyn. Astron. 75, 67–

74.

Kholshevnikov, K., Vassiliev, N., 1999b. On the distance func-

tion between two Keplerian elliptic orbits. Celest. Mech.

Dyn. Astron. 75, 75–83.

Sitarski, G., 1968. Approaches of the parabolic comets to the

outer planets. Acta Astronomica 18, 171–195.

19

	1 Introduction
	2 Mathematical setting
	3 Numerical algorithm
	3.1 Determining the polynomial coefficients and their uncertainty
	3.2 Root-finding in the complex plane
	3.3 Estimating roots uncertainty and roots selection
	3.4 Refining the MOID by 2D iterations
	3.5 Estimating uncertainties of the MOID and of its orbital positions
	3.6 Self-testing numerical reliability

	4 On the choice of error tolerances
	5 Practical validation and performance benchmarks
	6 Additional tools
	7 Further development and plans
	Appendix A Reducing the scan range for the eccentric anomaly

