
Accepted Manuscript

The data processing pipeline for the Herschel-1 - HIFI Instrument

K. Edwards, R.F. Shipman, D. Kester, A. Lorenzani, M. Melchior

PII: S2213-1337(19)30006-X
DOI: https://doi.org/10.1016/j.ascom.2019.04.003
Reference: ASCOM 282

To appear in: Astronomy and Computing

Received date : 26 January 2019
Accepted date : 30 April 2019

Please cite this article as: K. Edwards, R.F. Shipman, D. Kester et al., The data processing pipeline
for the Herschel-2 - HIFI Instrument. Astronomy and Computing (2019),
https://doi.org/10.1016/j.ascom.2019.04.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.ascom.2019.04.003
Jordan Hale
The final publication is available at Elsevier via https://doi.org/10.1016/j.ascom.2019.04.003. © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/�



The Data Processing Pipeline for the Herschel1 - HIFI Instrument

K. Edwards

University of Waterloo, Waterloo, Canada

R.F. Shipman

SRON Netherlands Institute for Space Research, The Netherlands

D. Kester

SRON Netherlands Institute for Space Research, The Netherlands

A. Lorenzani

INAF Osservatorio Astrofisico di Arcetri, Florence, Italy

M. Melchior

Fachhochschule Nordwestschweiz, Switzerland

Abstract

The HIFI data processing pipeline was developed to systematically process diagnostic, calibration and astronomical observa-
tions taken with the HIFI science instrument as part of the Herschel mission. The HIFI pipeline processed data from all HIFI
observing modes within the Herschel automated processing environment, as well as, within an interactive environment. A common
software framework was developed to best support the use cases required by the instrument teams and by the general astronomers.
The HIFI pipeline was built on top of that and was designed with a high degree of modularity. This modular design provided
the necessary flexibility and extensibility to deal with the complexity of batch-processing eighteen different observing modes, to
support the astronomers in the interactive analysis and to cope with adjustments necessary to improve the pipeline and the quality
of the end-products. This approach to the software development and data processing effort was arrived at by coalescing the lessons
learned from similar research based projects with the understanding that a degree of foresight was required given the overall length
of the project. In this article, both the successes and challenges of the HIFI software development process are presented. To support
future similar projects and retain experience gained lessons learned are extracted.

Keywords: Methods: data analysis – Physical sciences and engineering: astronomy – Techniques: spectroscopic

1. Introduction

The Herschel Space Observatory [1] performed astronom-
ical observations in the far infra-red and sub-millimeter and
was comprised of three science instruments: the Heterodyne
Instrument for Far Infrared (HIFI) [2] , the Photodetector Array
Camera and Spectrometer (PACS) [3] and the Spectral and Pho-
tometric Imaging Receiver (SPIRE) [4]. The Herschel Space
Observatory was launched on May 14, 2009 from the Guiana
Space Centre in French Guiana. The telescope and instruments
ceased science operations on April 29, 2013 after the liquid he-
lium cryogen used to cool the instruments had been exhausted.

HIFI was a heterodyne spectrometer operating between 480
GHz to nearly 2 THz. The HIFI instrument hardware and result-
ing capabilities are described in [2]. Extensive online HIFI doc-
umentation can be found in the Herschel Explanatory Legacy

Library2 where a thorough overview of the HIFI instrument is
documented in the HIFI Handbook[5].

Over the course of the Herschel mission, the HIFI instru-
ment performed over 9100 scientific and calibration observa-
tions. All observations taken with the HIFI instrument (includ-
ing preflight test data) were passed through a series of stan-
dard processing steps which made up the HIFI data processing
pipeline [6]. The resulting observation products are publicly
available from the Herschel Science Archive3 (HSA).

The main requirements for the data processing software was
to correct for and remove instrumental artifacts in the observa-
tional data in an efficient and robust manner while generating
data products that could be used to answer fundamental astro-
physical questions. While this was the general aim of the data
processing software and the Herschel mission itself, in order

2https://www.cosmos.esa.int/web/herschel/legacy-documentation-hifi
3https://www.cosmos.esa.int/web/herschel/science-archive

Preprint submitted to Astronomy and Computation April 26, 2019



to achieve this goal, a comprehensive software framework was
required. The implementation of this goal was driven by the
collective experience of individuals from previous space mis-
sions as well as from other systems and software engineering
projects [7, 8, 9]. Accordingly, the development of the data
processing software for the overall mission was incorporated
into the planning of Herschel at a much earlier stage than had
been done in previous missions. The purpose of this article is
to describe the resulting software patterns, data structures and
tools developed for HIFI that resulted from the acquired knowl-
edge of how to best represent and analyze the HIFI instrument
data for scientific gains.

This article is structured as follows: Section 2 gives details
on the software development process for the Herschel mission
and how the software framework was designed to support three
very different instrument pipelines. Section 3 describes the data
and data structures used to organize the HIFI observational data
in an efficient manner. Section 4 focuses on the HIFI pipeline
and covers the full range of processing that was needed for HIFI
data from standard product generation to quality assessment.
Section 5 covers items of critical importance to the development
effort which require further reflection as well as lessons learned.
Our main conclusions are presented in section 6.

2. Herschel Common Software System (HCSS)

It was realized early on in the planning stages of the mission
that despite the differences in each science instrument, there
was quite a bit of common ground between the instruments and
the observatory with regards to the data processing software re-
quirements. The needs of instrument scientists, engineers and
astronomers also had to be supported over the different phases
of the mission. These common functional requirements ranged
from having numerics libraries, a pipeline processing environ-
ment and archive query functionality. In order to generate high-
quality data products and serve them through a common data
archive, sound software development procedures were neces-
sary to ensure production-ready reliable software. In an effort
to address these common requirements, the Herschel Common
Software System (HCSS)4 was envisioned [10, 11]. The HCSS
development was coordinated by observatory staff (ESA) de-
velopers. Instrument team developers were responsible for de-
veloping their own instrument specific software. Together, the
observatory and instrument developers were responsible for de-
veloping the common software infrastructure.

Management of the effort was important as the software de-
velopment was done in parallel with the hardware development
of the observatory and the instruments. The software tools were
of critical importance in order to test the hardware in the lab-
oratory before launch. Major portions of the data processing
infrastructure had to be completed before launch as the Her-
schel mission had a limited lifetime related to the liquid helium

4HCSS was a joint development by the Herschel Science Ground Segment
Consortium, consisting of ESA, the NASA Herschel Science Center, and the
HIFI, PACS and SPIRE consortia

supply. The software was needed in order to monitor the obser-
vatory and the instruments so as to not lose valuable observing
time.

The software development process for the Herschel mission
was lengthy and complex, spanning nearly two decades with
a distributed group of developers primarily across Europe and
North America. Early software design decisions made within
the software project had lasting, and long term consequences
for the success of the development project. One of the early
decisions taken was the selection of a set of software languages
to use for implementation, see section 2.2. Another was a fo-
cus on software testing to ensure the correctness, robustness
and consistency of the software which led to significant effort
being placed on the development of unit, system and later as-
tronomer acceptance testing, see section 2.3. The software de-
veloped for the Herschel mission followed the principles of an
agile software development project, including cross-functional
teams, continuous integration and iterative and incremental de-
velopment. All changes introduced into the development builds
were incremental in nature and were available to all users im-
mediately after compilation and the successful execution of the
unit tests. Breaking changes to the software were not permitted
and backwards compatibility was expected between each major
release along with deprecation warnings allowing developers
and users to make timely changes.

2.1. Data Processing Modes
Herschel data processing software was required to support

multiple modes of operation across the different mission phases.
The major modes of operation consisted of preflight (in-lab event
driven hardware testing), systematic (operations - batch pro-
cessing - multiple instruments), on-demand (HSA - public re-
processing requests) and interactive (data analysis). The sys-
tematic mode was encapsulated in a software framework re-
ferred to as the Standard Product Generation (SPG), see section
2.1.1.

During instrument level testing (ILT) in the initial phase
of the mission, data processing software tools were required
to process data generated from the pre-flight and flight hard-
ware. These analysis tools, referred to as Quick Look Analysis
(QLA) tools, were developed with a focus on being event driven
as the data was streamed from the instruments in real time. It
was necessary to have a (near) real-time overview of the instru-
ment behaviour as inputs were being varied during testing. It
was during the ILT phase of Herschel that many of the main
algorithms used in data processing pipelines for the specific in-
strument analysis and data calibration were defined, developed
and tested. These algorithms were encapsulated as tasks, see
section 2.1.2, and formed the basis of the instrument pipelines.
Re-using software developed in this phase, greatly enhanced the
reliability of those tools later in the operations phase.

In the operations phase of the mission the need for real-time
analysis diminished as ground communications with the obser-
vatory were limited. In operations, the observatory and instru-
ments were designed to autonomously collect data for about
eighteen hours a day. There was a nominal four hour period for
transmitting data back to Earth (downlink) with the remaining

2



two hours for uploading the next set of observing commands
(uplink). While the observatory and instruments were opera-
tional, the data processing pipeline needed to quickly process
the eighteen hours of data to ensure the instruments and obser-
vatory were performing as expected. Time was critical in this
phase as any issues found in the data could result in changes to
either instrument or satellite operations. Failure to quickly pro-
cess the observation data could result in lost observing days for
the flight hardware and lost time was very expensive as the Her-
schel mission had a limited lifetime. The resulting data prod-
ucts generated in this phase of the mission were added to the
HSA and were available to the instrument teams and observers
within twenty-four hours of downlinking the data from Her-
schel.

An on-demand processing option was provided by the HSA
allowing public users to reprocess existing observations using
the HSA computing infrastructure. This processing option al-
lowed users to reprocess observations with a new version of the
data processing software than what was used when the observa-
tion was originally processed. Bulk reprocessing of the entire
Herschel archive was done on a very limited basis.

Across all mission phases there was a need for sophisticated
interactive analysis (IA) tools to analyze the test and observa-
tional data in order to perform deep dives into observatory or
instrument issues. These tools provided a means for instrument
calibration scientists to improve the quality the data products
produced by the pipeline through data analysis and improved
calibration products. This software was provided to the as-
tronomers so they could use it to analyze their data. The soft-
ware was encapsulated in a tool called the Herschel Interactive
Processing Environment (HIPE) [12], see section 2.1.3.

2.1.1. Standard Product Generation
The Standard Product Generation (SPG) framework pro-

vided a common basis for the instrument specific pipelines to
be executed by the Herschel Science Centre. This framework
facilitated the aggregation of all the raw data taken by the obser-
vatory and any one of its science instruments to generate pro-
cessed and calibrated data products that were free of instrumen-
tation affects.

Figure 1 shows the processing flow of Herschel science data.
The SPG framework was composed of three main parts, a pre-
processing (data aggregation) phase, the main data processing
phase (observers pipeline), and a post-processing phase (quality
and archiving). The raw instrument data was stored in an object
database, the Herschel Object Database (HOD)5, with the sup-
porting instrument and observatory derived data being stored in
FITS files accessible through the Product Access Layer (PAL)
software [13].

A static initialization strategy was used to instantiate a set
of plugins for the pre and post processing phases of the data
processing pipeline. This allowed each science instrument to
have their own strategy for collecting the required data for their

5https://www.cosmos.esa.int/web/herschel/legacy-documentation-
observatory-level-3

pipeline and determining the quality and archival methods for
that data. This decoupled and encapsulated the implementation
details for these pre and post phases from the data processing
logic to ensure a robust and consistent data processing envi-
ronment. The benefit of the pre-processing step was that it pro-
vided observers with a self contained observation that had yet to
be processed. By downloading this pre-processed data product
from the archive, observers if desired, could adapt the data pro-
cessing algorithms (pipeline tasks) to meet their science goals
in an interactive manner. This flexibility also gave observers
choices in how they accessed their data (locally vs remotely).

2.1.2. Task package
The data processing Task software package provided a com-

mon interface between the observatory and the instruments for
encapsulating the instruments’ data processing algorithms. The
Task package was a core part of the software infrastructure pro-
vided to the instrument teams in order to build the software
algorithms needed for data reduction. The Task package was
designed to allow the instruments algorithms to be executed in
all modes of operation such as quick-look analysis, interactive
analysis or batch-pipeline processing.

The Task6 class encapsulated an algorithm and defined a
standard signature for the inputs and outputs of that algorithm.
With more than one thousand classes extending from the Task
class, it was the most used data structure in the HCSS. The exe-
cution model of the Task was invoked with the perform method
which effectively called the preamble, execute, and postamble
methods of the Task. The execution model was fully config-
urable, i.e. each of the three methods were delegated via a
strategy pattern [14] and were replaced according to the dif-
ferent needs of the different environments. This was done at
runtime and was completely transparent to both developers and
users7.

2.1.3. Herschel Interactive Processing Environment (HIPE)
HIPE8 [12] is a publicly available open source, multi-platform

stand-alone program providing access to all Herschel data pro-
cessing tools enabling users to reduce and analyze observa-
tional data from all three Herschel science instruments. HIPE
incorporated many processing toolboxes for analyzing/manipu-
lating spectra (spectrum toolbox, spectrum fitter, and spectrum
explorer), images (display toolbox) and spectral cubes (cube
analysis toolbox) among many other processing tools needed
by calibration scientists and useful to the general astronomical
community. This program provided an interactive environment
for developing, testing, debugging pipeline Task algorithms.

The HIPE program provided a powerful scripting editor and
command line console allowing for script execution within HIPE.
HIPE also provided user access to all data processing func-
tionality via a consistent user interface. Interactions with the
graphical elements of HIPE were automatically translated and

6http://herschel.esac.esa.int/hcss-doc-15.0/load/hcss drm/ia/task/doc/index.html
7http://herschel.esac.esa.int/hcss-doc-15.0/load/hcss drm/ia/doc/add/add.pdf
8https://www.cosmos.esa.int/web/herschel/hipe-download

3



Figure 1: Single observation data processing schematic

exported to the command line console in order that scripts could
be generated and workflows automated.

2.2. Software Implementation Languages

The Herschel mission selected the open source packages
of JavaTM and Jython as the common software implementation
languages for all data processing software. The benefits of this
were to reduce cost, to ensure that the software could easily be
reused across the instrument teams and that all developers were
developing in a common language. In addition, scripting sup-
port was provided in form of Jython - a JavaTM based interpreter
of Python 9 syntax. The scripting environment gave the benefit
of using an interpreted language for rapid implementation and
testing in the lab environment during instrument pre-flight val-
idation as well as interactive analysis. The synergies between
JavaTM and Jython allowed for easy access to methods imple-
mented in JavaTM, when used in the interactive Jython console
in HIPE. This gave non-developers (astronomers) an easier-to-
use interpreted software language in which to manipulate the
observational data and the more robust JavaTM based tools were
developed by the software engineers. By the use of JavaTM, the
developers were freed from the common software development
problems associated with FORTRAN, C and C++, namely the
memory management pitfalls and operating system dependen-
cies.

The selection of JavaTM and Jython in the late 1990s was a
departure from the astronomy community’s accepted standards
of Interactive Data Language (IDL R©) 10 for image processing
and CLASS 11 for heterodyne spectral processing. This resulted
in additional overhead with regards to developing and validat-
ing the data processing algorithms as well as documenting and
instructing users in how to use the provided functionality.

9Jython Home Page
10IDL Home Page
11GILDAS

2.3. Configuration Control

In the broadly distributed development team, it was impera-
tive to have tight configuration control over the software and to
test that any new software fit within the existing build. This was
accomplished via the Herschel Continuous Integration Build
(CIB) system. The CIB was an in-house cloud based build tool
that would monitor commits to the Concurrent Versions Sys-
tem (CVS). When new commits were made, the system would
checkout the new code, build it, and then execute all the depen-
dent unit tests. If during compilation or execution of the unit
tests, a failure was detected the build would be marked as failed
and the module containing the new code would be marked as
quarantined. The module would remain quarantined until a new
commit was made to that module which did not fail in the build
system.

Unit tests were written as part of the Herschel source code
development process. The open source JUnit framework was
selected to support the development and execution of all the
JavaTM unit tests. Jython unit testing was supported through
UnitTest but it was only used in a limited number of cases. The
unit test code coverage goal of all Herschel JavaTM based soft-
ware modules was eighty percent of the source code base. This
goal was not enforced by the system and could not be achieved
in all the modules - particularly, in modules that had been de-
veloped in the early years of the project before test coverage
goals were formulated.

In addition to unit testing, significant effort was placed on
system testing. The instruments’ pipeline was run on a daily
basis for a preselected set of observations, using the most re-
cent development stack maintained by the CIB system. The
system tests did not prevent bugs from entering the software
system, but they helped to identify when a side effect had been
introduced into the system. All the artifacts, including datasets,
logs and plots, generated by each test run of the pipeline were
retained for later reference and debugging purposes. This pro-
vided a historical record of how the instrument pipelines were
changing over time with daily granularity.

Astronomer acceptance testing was performed on develop-

4



ment builds before these were released to the Herschel user
community. The data processing and interactive tools were
tested to ensure they supported a set of predefined work flows
and that the results of these work flows were correct. As the
observatory and instruments software teams did not have ded-
icated software quality assurance (QA) staff, this testing was
done on a best effort basis. Much of this effort could have and
should have been automated.

2.4. Common Data Structures

A common set of data structures for all instruments was re-
quired in order to facilitate data persistence and the transfer of
data between processing sites and archives. These structures
ranged from very simple wrappers around satellite telemetry
to more complex structures such as spectra, images and spec-
tral cubes. All instrument software teams were allowed and
more importantly, encouraged to extend these data structures
enabling more instrument specific functionality. This made it
easier to develop a common set of pipeline and analysis tools
that manipulated observatory and instrument data in a standard
way for all users. In the following sections, we will give a short
description of the more important common data structures used
by HIFI and their extensions used in data processing.

2.4.1. Dataset
The Dataset was the primary data structure for bulk data

within the Herschel software system and was specified as a
JavaTM interface. The Dataset was a simple table with rows and
columns, where a column was a n-dimensional array of num-
bers in which the lowest dimension determined the number of
rows in the Dataset. In addition, the Dataset contained a map
with key-value pairs of meta data. These items included ele-
ments such as the name of the observer, Right Ascension (RA),
Declination (DEC), observation number, or other more specific
elements needed by the data processing pipeline like the num-
ber of legs/steps in a raster map.

The most common structures that implemented the Dataset
interface were,

• AbstractSpectrumDataset

The AbstractSpectrumDataset was an extension of Table-
Dataset - a concrete implementation of Dataset that al-
lowed only columns of the same length. The Abstract-
SpectrumDataset contained at least two columns: a flux
column that contained some measure of the intensity of
the spectrum, and a column that contained the frequency
or wavelength. Some optional but more common columns
were the weight column, containing weights on the fluxes
and the flag column which contained bit patterns (inte-
gers) that indicated various conditions applicable to the
data points, see section 2.5.1 on flags.

An AbstractSpectrumDataset would contain one or more
spectral segments, which provided a view on sub-sections
of the spectra (spectral segments) that allowed for easy
access and processing.

• Spectrum1d

A Spectrum1d was an AbstractSpectrumDataset where
the flux column was a 1-d column. It was the most sim-
ple variant of AbstractSpectrumDataset. In HIFI data
processing, the Spectrum1d data structure was not used
except for providing an exportable data structure for non
Herschel data analysis tools.

• Spectrum2d

A Spectrum2d was an AbstractSpectrumDataset where
the flux column had a 2-d structure. It was represented as
a set of measurements of a 1-d spectrum. This structure
was used extensively by HIFI, see section 3.1.

2.4.2. Product
A Product was a container that contained references to zero

or more Datasets plus history information and several required
meta data fields. The Product data structure implemented a lazy
loading mechanism for handling datasets, which was an impor-
tant feature for a number of Herschel tools (e.g. plotting). The
Product data structure became the primary structure for the se-
rialization of Herschel data into FITS files [12] . The Product
meta data were stored in the header of the FITS file. A Product
supported the concept of History, for auditing and data quality,
in order to keep track of the algorithms (tasks) acting on the
data contained within the Product.

A Context was a special type of Product that could hold
references to other Products and Contexts. This allowed for
the construction of arbitrary complex nested Product structures.
The MapContext and ListContext directly extended the Context
class.

The following are a list of some of the more widely used
Herschel Products:

• ObservationContext

The ObservationContext was the main container that en-
capsulated all the data contained in a single Herschel ob-
servation. It contained all the measured and derived data
needed by the data pipelines to process an observation as
well as the output of the data processing pipeline. For
HIFI the data processing outputs were organized as the
level 0 (section 4.2), level 0.5 (section 4.3), level 1 and 2
(section 4.4) and level 2.5 (section 4.5) products.

• AuxiliaryContext

The Herschel auxiliary data tree was a data structure that
contained all the spacecraft specific data needed by the
pipelines to process an observation. The observatory point-
ing Product and the Spacecraft/Instrument Alignment Ma-
trices (SIAM) were examples of auxiliary products that
were needed by the pipeline to properly associate the mo-
tion of the observatory and instrument with the generated
observational data. Further details regarding the contents
of the Herschel auxiliary products can be found online in

5



the Herschel Explanatory Legacy Library12.

• SimpleImage

The SimpleImage was the container used to collect the
final result for mapping observations without a spectral
resolution. It contained a World Coordinate System (WCS)
and one or more two dimensional arrays that represented
typically observed or processed fluxes, wave, weights and
flags of the region of the sky observed.

• SpectralSimpleCube

The SpectralSimpleCube extended SimpleImage and was
the container used to collect the final results for spec-
tral map observations. It contained a WCS and one or
more three dimensional arrays that represented typically
observed or processed fluxes, wave, weights and flags.
The first two axes represented the RA and DEC coordi-
nates along the observed sky positions, while the third
axis represented a spectral axis.

• SimpleSpectrum

This was the container used to store the final HIFI results
for point mode observations. SimpleSpectrum was Prod-
uct that encapsulated a Spectrum1d dataset. It was a data
structure more commonly used outside of the Herschel
software environment and was used to make it easier to
use Herschel data with non-Herschel tools.

2.5. Common Software Libraries

The HCSS included a large set of common software tools
which were required by the instrument teams to process their
data. These tools evolved over time as the phase of the mis-
sion changed and were adapted by each instrument to meet their
needs. The calibration and science data generated and returned
by each instrument was unique to that instrument. However,
whenever possible common software elements were shared be-
tween each instrument and the observatory so as to not dupli-
cate effort such as,

• Numerics: An arithmetic toolbox which provided N di-
mensional array definitions, functions and procedures to
operate on these arrays

• Product access layer: Tools to read/write products lo-
cally from disk or a database and interact with HSA

• Plotting libraries: Tools and plotting functionality to
display column data.

The spectrum flagging and arithmetic libraries were used
extensively by the HIFI pipeline and are described below in
more detail.

12https://www.cosmos.esa.int/web/herschel/legacy-documentation-
observatory

2.5.1. Data flagging/masking
Each data point within an observation had a data flag asso-

ciated with it. These flags were 32-bit integers, where each bit
indicated the presence or absence of some predefined condition.
These flags could indicate bad pixels, saturation or the possible
presence of a spur as an example. Some flags were considered
severe and as such the associated data points were excluded in
any subsequent calculations, other flags were merely warnings
for the user. Additionally, row flags were associated with con-
ditions required for a valid complete measurement and again
some row flags were considered severe and others were only a
warning for the users.

2.5.2. Arithmetic operations on spectra
Spectrum arithmetics toolbox was at the core of HIFI pipeline,

see section 4. The spectral arithmetic operations (addition, sub-
traction, multiplication, division) were applied on complete spec-
tral components. The spectrum arithmetics toolbox was a li-
brary that was not only provided for arithmetic manipulations
on the flux values of spectra but could also be configured to
incorporate consistent operations on weights (noise) and flags
and adjustments of suitable meta data. For example, flags were
propagated to the resulting spectra by preserving the informa-
tion specified per data point.

The spectral arithmetics operations were designed to work
with Herschel spectra, in particular, with any data structures
that implemented the SpectrumContainer interface such as Spec-
trum2d. Accordingly, the spectrum arithmetics toolbox oper-
ated on data of all three instruments.

The following operations were provided by the toolbox:

• Basic arithmetic operations: Add, Subtract, Multiply,
Divide. The basic arithmetic operators (‘+’, ‘-’, ‘*’, ‘/’)
were overloaded in Jython. When writing Jython scripts
or when implementing tasks in Jython, two spectrum con-
tainers (spectra1, spectra2) could be added simply by writ-
ing

result = spectra1 + spectra2 (1)

The result contained the point-wise added point spectra
found in both of the input containers. For exploiting more
advanced configuration possibilities, the instances of the
underlying classes needed to be used. As an example, the
operations could be restricted to a subset of the spectra.

• Spectrum manipulation tools: Select, Extract, Replace,
Stitch. The select allowed to efficiently filter spectrum
containers based on any characteristics defined for the
point spectra. With the extract, the spectra were cut to
a suitable size (defined in the wavescale - e.g. frequency
range or number of frequency bins). The replace allowed
for a combined cut and paste and the stitch provided a
powerful tool to combine spectra possibly overlapping or
even defined at different frequency scales.

• Further operations: Average, Smooth, Resample, Con-
vertWavescale. The average computed a simple arith-
metic mean or the weighted average of multiple spectra

6



per frequency bin. With the smooth, the spectra could be
smoothed along the frequency axis with several smooth-
ing kernels. Resample allowed the spectra to be resam-
pled to any not necessarily uniformly spaced frequency
grid. In the HIFI pipeline, this was used extensively be-
fore steps that combined spectra. The convertWavescale
was used to transform the data between different physical
units of the wave scale (frequency, wavelength, wavenum-
ber).

3. HIFI Instrument Data

The HIFI instrument consisted of two independent spec-
trometers, the acusto-optical Wide Band Spectrometer (WBS),
and the High Resolution Spectrometer (HRS) autocorrelator.
The data generated by these spectrometers were in the form of
data packets called Telemetry. In the pre-flight phase of the mis-
sion the data generated by these spectrometers were streamed
directly to the database in the laboratory, however during the
operational phase of the mission, the data packets were trans-
mitted to the ground station and stored as plain text files. The
Telemetry packets came in two varieties, housekeeping (HK)
packets and science packets. There are a series of hardware to
software interface documents describing the structure of these
data packets with the most important ones being, [15] and [16].
For the HIFI instrument the data packet structure is described
in [17].

All packets, science and HK, contained a building block id
(BBid), a unique number which indicated the purpose of the
packet. The BBid numbers were used by the pipeline to de-
termine how a particular set of data should be processed in the
pipeline.

HK and science data were generated on-board the observa-
tory and instrument and were sent to the ground station by two
asynchronous processes. To enable the association of the HK
and science packets for data processing, a unique counter was
introduced into the data frame packets to mark the relevant HK
packets. HK packets contained information about the health
of the observatory and the instruments as well as information
relevant for interpreting the science data.

The science data packets were assembled into Dataframes
in the pre-processing phase of the pipeline, see section 4.2. The
Dataframes represented the channel readouts for one measure-
ment of either the WBS or HRS spectrometer and one for each
polarization. The science packets were required to be trans-
mitted by the instrument and received by the ground station in
sorted order. Each of the science packets contained a sequence
number to check for missing packets. Missing and/or corrupted
packets occurred in some limited occasions and the data pro-
cessing pipelines identified and flagged these Dataframes as bad
so that they were ignored in the subsequent processing steps,
see section 4.6. Dataframes with the same BBid were collated
into a single HifiSpectrumDataset.

3.1. HIFI Data Structures
The HIFI data structures were extended from the data struc-

tures defined in section 2.4.1. The use of common HCSS data

structures made it easier to process HIFI data in a standard way
and enabled HIFI users to use the Herschel developed software
tools with their data. The following data structures were the
most common structures used by the HIFI pipeline.

• HifiSpectrumDataset

A HifiSpectrumDataset (HSD) was extended from the
Spectrum2d and specialized for the HIFI instrument. Each
row in the HSD contained information about one HIFI
Dataframe for an observation. The HSD contained a large
number of additional data columns needed by HIFI pipeline.
A HSD was constructed for all subsequent measurements
of the HIFI WBS/HRS that shared the same BBid. The
BBids were used to distinguish parts of an observation
which had the same function (e.g. wavelength calibra-
tion, dark current measurement, on source, off source,
etc.). A single HIFI observation could contain thousands
of HifiSpectrumDatasets depending on the type and length
of the observation.

• HifiTimelineProduct

A HifiTimelineProduct (HTP) was an extension of the
Product class and was designed to contain zero or more
HifiSpectrumDatasets and a SummaryTable. The datasets
were grouped into boxes of datasets within the HTP adding
another layer of abstraction. When the HTP was origi-
nally designed and implemented each HSD was wrapped
as a single Product and therefore a single FITS file. To
avoid the proliferation of a large number of small FITS
files with an according drawback on I/O performance,
groups of a configurable number of HSD’s (by default
100) were packed into boxes - each box was stored in a
single FITS file.

• SummaryTable

A SummaryTable was a small table contained within the
HTP that summarized the contents of an HTP, see figure
2. There was one row in this table for every HSD con-
tained in the HTP. This table contained some key items
needed for a quick survey of the observation, namely
the type of HSD along with its identifying Bbid number
(this column really should have been called bbType as the
Bbid is actually a combination of the building block type,
which is shown in the column, and building block exe-
cution order number or bbNumber). The column isLine
was used to indicate a science data block and whether
it was on-source (true) or on reference (false). Other
columns included isHrs (data from the HRS), isWbs (data
from the WBS), the fullName of the instrument command
that created the data, the start position in the sequence
of Dataframes and the length of Dataframes in that se-
quence.

Similar SummaryTables can be found alongside the PACS
and SPIRE main data products.

7



Figure 2: Level 0 HifiTimelineProduct summary table for the WBS horizontal
polarization

3.2. HIFI Calibration Data
The HIFI instrument calibration was contained in the HIFI

calibration tree. In this product resided all the measured and
derived instrument specific data needed by the HIFI pipeline to
process an observation. At the top level, the calibration tree was
a map that could contain both additional maps (calibration tree
nodes) or a concrete calibration object. This structure allowed
calibration objects to be organized in logical groups associated
with their use in the HIFI pipeline. A calibration object was a
Product that contained one or more tables and associated meta
data about those tables, see section 2.4.1 on data structures.

The calibration tree was equipped with a versioning mech-
anism and the pipeline could be configured to access specific
versions. In the course of the mission, several versions were re-
leased by the calibration scientists which incorporated the most
recent knowledge about the instrument. This mechanism pro-
vided full traceability and reproducibility by providing the ver-
sion of both the software and of the calibration tree which was
of particular importance when publishing results.

During the pre-processing stage of the HIFI pipeline, see
section 2.1.1, the observation context was populated with the
configured version of the calibration tree (by default the lat-
est version). This was accomplished by a dedicated plugin
(CalPlugin) that directly plugged into the SPG framework. The
CalPlugin would not only select the correct version of the cali-
bration tree to be attached to an observation, it would also mod-
ify the structure of the tree depending on the observation. The
observation-associated-calibration tree only contained informa-
tion relevant to that observation. This tailoring of the calibra-
tion data limited the total observation data size, hence reducing
the download time of an observation from the archive. This
type of customization was unique to the design of the HIFI cal-
ibration tree. A view of the HIFI calibration tree root node can
be seen in figure 3.

For each production release version of the calibration tree
there was a matching developer release. The developer release
was a type of staging area for testing new versions of calibration
objects. This allowed for easy testing and modification of the
objects in the tree. The history of the all the changes made to
the developer branch of the tree was not retained, only changes

Figure 3: HIFI Calibration Tree, Spurs Calibration Product - Version 15. This
image is divided into three sections with the top section showing the meta data
associated with calibration product, the lower left section showing a hierar-
chical view of the calibration tree and the lower right section showing a table
containing data about a particular calibration product, in this case, a Spurs table
identifying the frequency, width and type of spurs found.

published to the production branch were persisted. Once a de-
veloper release was deemed ready for production it was pub-
lished, receiving a version number in the master root node and
could no longer be modified.

The calibration tree framework consisted of a set of basic
generic instrument independent objects and operations. The
following section is a description of those objects extended and
used by HIFI.

3.2.1. HIFI Calibration Tree Object Types
The HIFI calibration tree had three basic data structures

which allow it to store any type of HIFI instrument calibration
data. The first was the basic HifiCalibrationProduct. The basic
calibration product implemented the HistoryIdentifiable inter-
face which allowed the pipeline to identify that a given cal-
ibration product had been applied to the data. Next was the
HifiListContext which represented a time series of calibration
objects. This type of object was important when different cal-
ibration values needed to be applied to observational data de-
pending on when the observation was taken (early vs late mis-
sion). Finally, the HifiMapContext represented a HashMap of
calibration objects. This type of calibration object was useful
when one needed to specify a particular correction for a single
observation or group of observations. These types of correc-
tions were typically applied to observations where a hardware
malfunction occurred or in the case of the electrical standing
wave corrections [18], as each correction was unique to the ob-
servation which it applied.

When updating or adding a new calibration object to the
HIFI calibration tree there were contractual obligations to fulfill
before the system would allow the changes to be applied to the
developer branch of the tree. This was to protect the integrity
of the tree ensuring consistency across updates and to allow for
proper logging and versioning when a particular object was ap-

8



plied to the observational data. Each calibration object had a
set of mandatory meta data that had to be specified in order to
properly identify it within the system. A set of predicate rules
were applied to ensure that only correctly formatted calibration
objects were added to the tree. These included items like ver-
sion number, name, description, applicable start and end dates.
The calibration framework had methods that allowed individual
products to be fetched using this information. This was particu-
larly helpful for the pipeline tasks ensuring that it could quickly
and easily find the correct object to apply to the observation
data during processing. This also allowed the pre-processing
CalPlugin to assemble a unique calibration tree for a given ob-
servation ensuring a light weight structure.

3.2.2. Calibration objects in an HIFI ObservationContext
Figure 4 shows a representation of the HIFI calibration tree

connected with an observation as seen within HIPE. The top
panel provides general information about the observation (name,
observed date, position, etc.). The lower left-hand panel shows
the observation context tabs with the calibration tab opened.
The lower right panel shows the calibration data: for this case
the pipeline-out/Baseline/WBS-H calibration data. The calibra-
tion attached to each observation contained three main branches,
downlink, uplink and pipeline-out.

• The downlink branch represented calibration data that
were applied to the science data. The downlink cali-
bration data had been independently measured or derived
from several calibration observations and were not nec-
essarily based on any one observation, e.g. load coupling
coefficients or sideband ratio [6].

• The uplink branch contains calibration data that was used
to tell the HIFI instrument how to perform a particular
observation, e.g the amount of time to observe at a par-
ticular location or the expected signal noise from the re-
sulting observation [5]. Many of these parameters were
determined at the planning stage of the original observa-
tion request.

• The pipeline-out branch contains calibration data that had
been generated by the pipeline during observation pro-
cessing, e.g the system noise temperature (Tsys). These
data were useful in determining other statistics about the
observation as part of further data analysis.

3.3. Trend Analysis Products

In order to assess the behaviour of the instrument over time,
parameters were collected within every observation and com-
bined with data from other observations to form a set of trend
data over the entire mission. The trend analysis data containers
were used by HIFI calibration scientists to check various as-
pects of the observation and the data processing results. Some
of the data objects contained in the trend section could be com-
bined with other similar data objects from other HIFI observa-
tions to construct trend plots to monitor instrument performance

Figure 4: HIFI observation with the calibration tree as seen in HIPE. The lower
left panel, Data, shows the observation with the calibration tree. The lower right
panel, with plot, represents the data highlighted in the Data panel as viewed in
the spectrum viewer. The spectra shown can be (de-)selected via the lower right
sub-panel.

over time. This was done with the data contained in the Tsys
data container, as an example.

Each pipeline processing Task could generate and save data
to the TrendAnalysisContext. A TrendAnalysis data object was
simply a generic MapContext that could contain any type of
Herschel data product. The data containers present in the HIFI
TrendAnalysisContext are briefly described below:

• Frequency trend of WBS

The frequency response of the CCDs in the WBS instru-
ment was computed during each observation through pe-
riodic artificial spectra (COMB) with a series of stable
frequencies at 100 MHz steps. Detailed information of
each COMB line and their fit results were stored inside
the Quality level0 5 product, useful for calibration scien-
tists in order to determine if an error had occurred during
a specific fit in the data reduction of an observation.

• FPU housekeeping trend

The FpuTrendProduct contained tables with HK parame-
ters from the Focal Plane Unit (FPU) as a function of time
for an observation. These parameters and some of their
combinations were monitored against specified thresh-
olds and when those constraints were violated quality
flags were raised. The DoHkCheckTask allowed calibra-
tion scientists to include additional HK parameters for
monitoring without requiring pipeline software changes.
Utility methods were included to help the calibration sci-
entists choose which HK parameters to monitor and set
which quality flags needed be raised when out-of-limit
conditions occurred.

• LOU housekeeping trend

The LoTrendProduct contained HK parameters from the
Local Oscillator Unit (LOU). Both the FpuTrendProduct

9



and the LoTrendProduct content were used in the level 0
pipeline in order to flag possible out-of-limits on specific
HK parameters. When this occurred, a dedicated quality
flag would be raised and added to the quality product.

• TMpageContext

The TMpageContext contained diagnostic tables for ev-
ery local oscillator (LO) tuning that was performed dur-
ing the observation. This information was mostly of in-
terest for instrument scientists, and offered a selection of
LOU HK parameters during predefined steps of the tun-
ing process, at time intervals finer than the sampling rate
offered for the periodic HK compiled in the FpuTrend-
Product or the LoTrendProduct contexts.

• Spur table (WBS only)

The SpurTable was a table of spurious signals detected
in the cold load spectra used for the intensity calibration
of the spectra. A spurious signal could be created by an
impure local oscillator signal and would appear as a data
spike over several channels.

At the end of the level 0.5 pipeline, spurs were identi-
fied when the signal in raw counts was above the satu-
ration level of 800 counts (pre-bandpass calibration) and
appeared in the data as a Gaussian-like feature. A region
1.5 times broader than the width of the spur was flagged.
This saturation level could be adjusted by the user. De-
pending on the saturation level, the channels were flagged
indicating that data were corrupted in a given range and
that the algorithm could not determine a good fit to a
Gaussian profile.

• StatisticsContext

The StatisticsContext contained a series of tables with
computation of the first momentum of the observed spec-
tra (mean and standard deviation) as well as the median.
It was provided for each spectrometer, in each subband
of the given spectrometer, and for the datasets at level 1
and level 2. Only saturated pixels are excluded from the
computation.

The StatisticsContext was used to identify whether the
observation resulted in the predicted signal to noise as
given by HSPOT during the planning of the observation
[6].

• Tsys Context

The TsysContext contained the TsysTrendTable per back-
end and per subband, and provided the LO frequency, the
central intermediate frequency (IF), the observation time,
(nominal) resolution for the backend, the double-side-
band system noise temperature and associated standard
deviation computed from the hot/cold load datasets.

4. HIFI Data Processing Software

The HIFI data processing software was built using the SPG
and Task frameworks, see sections 2.1.1 and 2.1.2. The over-

all HIFI pipeline was designed following a top down approach
with the goal of being able to process all HIFI instrument data
using a simple interface for all users. Along with providing a
simple interface to users, the pipeline needed to be highly cus-
tomizable in order to support a multitude of use cases while
allowing for change as the HIFI instrument became better un-
derstood.

The HIFI pipeline could process any HIFI observation with
a single command and one or more configuration parameters
supplied by the user to the Jython interpreter. The simplest
form of this command required only the observation identifier
(obsid) parameter, obs = hifiPipeline(obsid=12345678). When
executing this command, the observation context was fetched
from HSA and the execution of the pipeline was performed
locally. Additionally, similar commands could be applied to
process any pre-flight observations, calibration observations or
manually commanded observations.

The HIFI pipeline processed an observation in a series of
steps (represented as tasks) and those steps were grouped into a
series of levels (see Appendix A of [6] for flow diagrams). The
HIFI pipeline contained the following processing levels,

• Level 0: The pre-processing phase of the pipeline where
all the necessary inputs were collected.

• Level 0.5: Removing instrumental artifacts associated
with the WBS and HRS spectrometers.

• Levels 1 & 2: Removing observational artifacts associ-
ated with the different observing modes and applying the
calibration.

• Level 2.5: Performing higher level processing tasks which
were observing mode specific.

At the top level HifiPipelineTask invoked a series of sub-
pipelines representing the data processing level and taking the
raw observation data to any configured processing level. Each
sub-pipeline at a given processing level was composed of many
tasks, each one representing an algorithm that performed an im-
portant transformation on the observational data. The sub-level
pipelines were implemented as Jython tasks allowing them to
be configurable by the users whereas the HifiPipelineTask and
most of the tasks invoked by the sub-level pipelines were im-
plemented in JavaTM.

4.1. HIFI Pipeline: Configuration and user interaction
The main operation mode of the HIFI pipeline was to run in

a standard hands-off fashion within the SPG framework where
no interactions were possible. The pipeline had an interactive
mode for the users as well. The main requirements of the users
on the HIFI pipeline were,

• Users must be able to change the order in which the sub-
level pipeline steps were invoked without having to re-
compile the code and generate new builds. The different
processing levels were considered fixed.

• Users must be able to replace or modify individual pipeline
steps (tasks).

10



• Users must be able to customize the pipeline from the
command line or a graphical user interface (GUI) and that
the graphical approach should generate a fully functional
script that could be directly substituted for any GUI in-
teraction.

These requirements were achieved by structuring the HIFI
Pipeline code in the following way,

• The sub-level pipelines were implemented as Jython tasks
and invoked a suitable sequence of data processing steps
that represented the data flow within the pipeline. The
customizability was achieved by allowing the user to re-
place the sub-level pipelines with a customized Jython
script where the sequence of pipeline steps could be mod-
ified, single processing steps replaced, or parameters passed
to the steps modified. The Jython interpreter could be
used to parse and execute the pipeline script.

• Custom processing steps (tasks) could be provided in form
of Jython or JavaTM tasks. Typically, they were imple-
mented in JavaTM, however during development and for
rapid prototyping or for prototyping by instrument scien-
tists, Jython implementations of many of the tasks were
created. Each Task had its own GUI where inputs to the
Task could be modified.

• The HifiPipelineTask provided a GUI that collected the
input parameters of all of the lower level Task GUIs into
a single panel. The GUI for the pipeline did not allow for
a full customization at all the pipeline levels - such as for
changing the sequence of tasks, however it did support
the modification of the parameters passed to the process-
ing steps. The level 2.5 processing level supported the
adding and removal of tasks as well as their reordering
within the sub-level pipeline itself. When a Task was ex-
ecuted via the GUI, the Task returned an output of all the
input parameters to the Task allowing users to generate
fully functional scripts.

4.2. Level 0

The main goal of the level 0 pipeline was to prepare a con-
sistent and complete HifiTimelineProduct - actually, one for
each spectrometer and polarization - ready to be processed in
the subsequent pipeline levels. This required a detailed knowl-
edge about how the data frames and the source packets were
generated by the instrument, see section 3. In addition, satellite
pointing information was added and some sanity checks were
applied to flag any occurrences where instrument house keep-
ing parameters fell outside of specifications.

This part of the HIFI pipeline was different from the other
pipeline levels in that the possibility to customize this pipeline
was limited. The level 0 pipeline could be re-processed for in-
stance with different auxiliary or calibration data (e.g. pointing
correction), however the Task parameters themselves could not
be changed.

All the tasks included in the level 0 pipeline could be ac-
cessed within HIPE. The expert user could retrieve the HifiTime-
lineProduct from level 0, apply the desired tasks with the cho-
sen parameters and then reinsert the HifiTimelineProduct back
into ObservationContext in order to update level 0 data product,
if needed.

4.3. Level 0.5

The second data processing level reached by the HIFI pipeline
was called level 0.5. The component pipelines that made up this
level were strictly related to the spectrometer data to be pro-
cessed. There were two independent pipelines that formed the
basis of the level 0.5 pipeline. A pipeline for the Wide Band
Spectrometer (WBS) and a pipeline for the High Resolution
Spectrometer (HRS). In reality there were actually four spec-
trometers when taking into account the horizontal and vertical
polarizations of the signal, therefore after executing the level
0.5 pipeline four unique HifiTimelineProducts were created.

These pipelines were designed to produce data products that
were equivalent in data structure and calibration so that data
from either spectrometer could be processed in a standard way
when executing the level 1 pipeline. These pipelines removed
most of the instrument specifics from the data to achieve data
compatibility. The HifiPipelineTask decided which spectrom-
eter pipeline to use based on the meta data contained in the
level 0 HifiTimelineProduct. Likewise, each polarization had
its own calibration table and again the HIFI pipeline would de-
cide which calibration table to use based on the meta data.

The tasks in WBS and HRS component pipelines had a
fixed order for all observations. The user interaction with these
pipelines when doing interactive analysis with HIPE was lim-
ited. In principle, user interaction was possible by adopting the
same generic mechanisms described in section 4.2, however it
was rarely applied. To save disk space and reduce download
time, the HifiPipelineTask could be configured to remove the
level 0.5 data after successfully completing the level 1 pipeline.
By default, this option was activated.

4.4. Levels 1 and 2

The purpose of the level 1 pipeline was to flux calibrate the
HIFI data using the internal load measurements and to subtract
the background by combing observations from different posi-
tions on sky (on/off target, source/ref positions). Additionally,
the frequency scale was corrected for the motion of the space-
craft and was transformed into a frequency scale consistent with
the Local Standard of Rest (LSR) reference frame (for fixed tar-
gets) or to the reference frame of the moving targets (for solar
system objects).

In the level 2 pipeline, the intensity calibration was finalized
by applying the antenna temperature and sideband correction
to bring the wave scale to the true physical frequencies. The
resulting spectra were averaged where applicable - i.e. where
the spectra refer to the same position (or object in case of solar
system objects) on sky and the same frequency scale.

While in the level 0.5 pipeline the instrument specific arti-
facts were eliminated, in the level 1 and level 2 pipelines the

11



observing mode specific details were considered. Eighteen dif-
ferent observing modes were designed to efficiently resolve the
spectral signal [6]. The observing modes correspond to differ-
ent schemes for switching between the source position and suit-
able reference positions on sky or on the telescope or between
different frequencies. These schemes lead to different patterns
in the sequences of data frames collected during an observation.
The complexity in the level 1 and level 2 pipelines was mostly
related to dealing with reducing these patterns by combining
them into intensity and frequency calibrated spectra.

4.4.1. Managing the Complexity Introduced by the Variety of
Observing Modes

The HIFI instrument allowed observers to plan their obser-
vations against a set of astronomical observing mode templates
(AOTs)[6, 19]. These AOTs fell into three main categories,
Single Point Mode, Spectral Mapping Mode and Spectral Scan
Mode. Each of these categories contained several templates for
an overall total of eighteen different AOTs or observing modes.

For each observing mode, specific pipeline processing logic
was applied, therefore conceptually each observing mode came
with its own pipeline. Instead of implementing a dedicated
pipeline for each observing mode, the work flow logic of all
observing modes was mapped to a single pipeline, with a few
observing mode specific switches in the Jython scripts that de-
fined the pipeline work flow. In addition, the tasks of the level
1 and 2 pipelines could be configured by loading AOT specific
configuration objects containing a set of input parameters for
each Task. This observing mode specific pipeline configura-
tion was loaded as the first step of the level 1 and 2 pipeline.
This configuration was found in either XML files shipped with
code as the first step in the pipeline script (for automated batch
processing) or from the GUI when running the pipeline in an
interactive mode.

In principle, the behaviour of these pipelines could be changed
by simply modifying a XML file - which was rarely done. This
design allowed for better code re-use and avoided code du-
plication. Specifically, we did not have to maintain separate
pipelines for each observing mode and dedicated pipeline scripts.
On the opposite side, the design did not easily support adding
new observing modes with completely different work flows.
Since the available observing modes were fixed and given by
the design of the HIFI instrument, this software design was
judged as reasonable and sufficiently flexible.

4.4.2. Main Functional Blocks
For a detailed description of the various data reduction steps

applied in level 1 and 2 parts of the pipeline please refer to [6].
We have just summarized the main functional blocks to point
out a few additional details below,

(a) Sanity Checks: At the beginning of the level 1 pipeline,
several data sanity checks were conducted. The data had
to be checked whether it complied with the expected struc-
ture of the observing mode such as whether housekeeping
data assigned to the data frames (such as buffer, chopper
position, LO frequency) followed the expected patterns

(checkDataStructure, checkFreqGrid, checkPhases). In
cases where inconsistencies were identified, dedicated qual-
ity flags were raised and added to the observation context.

(b) Intensity Calibration at level 1: The information in-
cluded in the data frames in form of flux counts were
transformed to a physical intensity scale attributed to the
signal from the observed object. All the spectra were
divided by a bandpass that was constructed from data
frames observed from hot/cold sources mounted on the
telescope. This resulted in transforming the spectra from
simple flux counts to a physical intensity (temperature)
scale (mkFluxHotCold, doFluxHotCold). Depending on
the observing mode, suitable subtraction schemes were
applied to remove a dark sky reference signal. In this
way, the part of the signal that could be attributed to the
original source of interest would be isolated (doRefSub-
tract, mkOffSmooth and doOffSmooth).

(c) Velocity Correction: The frequency scale was adjusted
for the motion of the spacecraft. For solar system ob-
jects, the frequencies were transformed to the rest frame
of the object - in all other cases, the frequencies were
transformed to the LSR frame.

(d) Intensity Calibration at level 2: Further processing steps
were applied for finalizing the intensity calibration: a
sideband gain correction was applied and the spectra were
brought to the antenna temperature scale (mkSidebandGain,
doSidebandGain, doAntennaTemp).

(e) Uniformly Gridded Sideband Frequency Scale: The
frequency scale was converted to the sideband frequency
scale and the frequencies were resampled to a uniform
frequency grid (frequencyConverter, mkFrequencyGrid,
doFrequencyGrid).

(f) Average: The spectra with a common underlying fre-
quency range were averaged (doAvg).

The application of all these pipeline steps resulted in level 1
spectra (including the corrections described in [a-c]) and level
2 spectra ([d-f]) along with extra generated calibration, quality,
trend and statistics products on the distribution of the spectra
found in the HifiTimelineProduct. All data products generated
were linked to the ObservationContext. In cases where incon-
sistencies were identified, dedicated quality flags were raised
and added to the ObservationContext as well.

4.5. Level 2.5
The Level 2.5 pipeline was the final step in the HIFI data

processing pipeline. This step processed the level 2 HifiTime-
lineProducts into their final state and like the level 1 and 2
pipelines depended on the observing mode of the observation.
In the case of point mode observations, the final result from the
pipeline was a single spectrum from the average of all the ob-
served spectra. For mapping modes this was a spectral cube and
for spectral survey modes this was a single deconvolved spec-
trum, see section 2.4.2. All of these products required further

12



astronomer interaction from this point on in order to produce
higher quality scientific results and were not easily automated
with further pipeline steps. The level 2.5 pipeline was con-
structed as a best effort for automated processing, however bet-
ter results could be achieved. As an example observational data
could be improved with baseline subtraction which required
interactive help from astronomers before being applied to the
spectra. Whenever possible, expert-user generated interaction
was automated in the pipeline such as flagging spurs and other
bad data in spectral scans. This information was accordingly
added to the calibration tree and applied by the pipeline during
bulk reprocessing.

This last level of data processing required more flexibility,
configuring and ordering of the tasks in the pipeline. In addi-
tion, some of the tasks combined data products from different
spectrometers and polarizations which was outside the scope of
the standard pipeline steps. Finally, the key information about
the observation was summarized including an estimate for the
root mean square (RMS) of the data.

As this was the last level of the pipeline processing, there
was value in summarizing the information contained in the ob-
servation to support more complex IA scenarios. The greater
level of user interactions with observational data at this level
of the pipeline required advanced Task GUIs in order to better
manipulate the data. The values displayed in the Task GUIs
needed to be set to the default values, possibly dynamically de-
termined from the data. Some complexity arose due to Task
parameters that were interdependent, (e.g. changing the beam
values in the DoGriddingTask required changing the xFilterPa-
rameters and yFilterParameters values). Figure 5, shows the
user interface for the DoGriddingTask. In this example, there
were many parameters which could be adjusted, but not all of
these were independent and the interface needed make sure that
all parameters were self consistent (as well as provide a com-
mand line script, see section 2.1.3).

4.5.1. Collecting summary information
At the end of each pipeline level specific information about

an observation was collected from the generated data products
and provided to the user in the form of meta data, the most
important information was collected and presented at the main
ObservationContext level. Some summary parameters were an
aggregation of parameters contained in the sub-product levels
while others were calculated as a further pipeline step.

• UpdateObsMetaTask was executed at the end of each pipeline
level. This task promoted specific sub-product informa-
tion to the meta data of the ObservationContext. As this
task was a simple aggregation of information, it was hid-
den from the end user and not included in the pipeline
algorithm Jython scripts.

• MkRmsTask was developed to compute a measure of RMS
of the observational noise and used this value as a quality
indicator of the observation. The observed RMS value
was compared directly to the predicted noise that had
been calculated when planning the observation using the

Herschel Observation Planning Tool. As such, the com-
parison provided a measure of the success of the obser-
vation.

Before computing the RMS measure, the spectra were
prepared by transforming them to the main beam temper-
ature scale and for frequency switch modes, by folding
the spectra [5]. The task computed the RMS after iden-
tifying spectral features to avoid, subtracting a baseline,
and smoothing the spectra to a targeted resolution [5].
The task was applied to each spectrometer as well after
combining spectrometer polarizations. For the mapping
modes, the RMS was calculated per pointing position.

4.6. Post pipeline processing - Images and data quality

The last stage of the pipeline created an overview and an
assessment of the observation. The overview was in the form
of thumbnail images displaying the results of the observation
and the assessment was in the form of a final quality consolida-
tion of all quality information calculated during earlier pipeline
steps.

The browse products and images provided a visual repre-
sentation of the observation. These were generated in the HIFI
pipeline post processing plugin called the BrowsePlugin. This
image was displayed with the observation when searching the
HSA User Interface (HUI) for observations to download. They
provided a quick-look into the quality of the observation. This
image could reveal issues such as baseline ripples that indi-
cated the need for further corrections using interactive process-
ing tools. The browse product was the basis for generating the
browse image. There were three styles of browse images which
could be generated by the plugin and these corresponded to the
three main types of observing modes namely, Point, Mapping
and Spectral Scan Mode.

The QualityContext was a data structure that contained all
the generated quality information produced by the HIFI pipeline.
The data structure was added by the QualityPlugin during the
post-processing phase to the ObservationContext. The Quality-
Plugin would scan the entire processed observation, checking
all the flags (a special type of meta data) raised from the ex-
ecuted pipeline tasks and summarized this information in the
final QualityContext. Additionally, important information was
collected from each quality container present at every level of
the pipeline. These containers were a by-product of the data
processing pipelines at each level.

The possible flags were specified in a dedicated class and
the QualityPlugin could identify and add them to the quality
context. Utility classes were used to combine similar flags raised
in different parts of the pipeline to create a suitable and compact
overview on the issues found when processing an observation.

5. Discussion

The process of software development is shaped by the indi-
viduals within a project and the nature of the project. Many of
the key individuals that influenced the early planning and de-
sign phase of the HCSS and the HIFI instrument pipeline were

13



Figure 5: DoGriddingTask user interface (UI) including console output of the executed command. The top right panel displays the variables in HIPE. The variables
highlighted in blue were created by executing the DoGriddingTask. The left panel displays the UI for the DoGriddingTask with several fields automatically generated
when the HifiTimelineProduct, htp1, was dragged from the variables section and dropped on the DoGriddingTask UI. The bottom right panel shows the command
line console with the red section showing the command that was generated when the DoGriddingTask was executed.

involved in previous satellite missions. They took their expe-
riences, both good and bad, into this project with the goal of
learning from those past experiences and improving the soft-
ware developed for the Herschel mission. These lessons are
summarized below as they shaped the software development
process for the observatory and instrument teams.

• Smooth transition
Contrary to earlier missions the Herschel software sys-
tems were designed and implemented in such a way that
all mission phases used the same software for instrument
commanding and data processing. This meant that the
concepts for full operations had to be designed very early
in the mission timeline even if the implementation would
occur much later. This made it possible to process the
data obtained during hardware testing with the same soft-
ware to be used during operations. This was called the
smooth transition between testing and flight. This en-
abled the systems engineers to discover and solve com-

plex hardware-software interaction problems much ear-
lier than in previous missions. The users (such as in-
strument and calibration scientists) on one hand benefited
from a uniform commanding and data analysis environ-
ment, but on the other hand had to cope with immature
code at times.

• Interactive pipeline
The Herschel mission required an automated pipeline to
process all observations in a hands-free manner. The
instrument groups, responsible for the contents of the
pipeline, needed to interactively modify the pipeline. This
led to the concept of modes of operation for the pipeline
as discussed in section 2.1. The pipeline processing was
cut into small pieces, each one doing some well-defined
part of the data reduction procedure. This gave flexibility
to the instrument groups while supporting the needs of
the Herschel mission.

It was hoped that much of the interactive analysis frame-

14



work developed for Herschel data processing (e.g. HIPE)
would be used in future projects. A considerable amount
of effort developing and refining the HIPE user interface
was centred on this belief, however without a proper plan
in place to make this a reality meant that HIPE was a
Herschel-only development.

• Long lifetime
Projects like Herschel have an exceptionally long life-
time. This project was started in the late 1990’s and
continued through 2017 at the end of post operations.
Choices made at the beginning of the project had long
lasting consequences. Many of the software tools used to
support development at the beginning of the mission were
very different at the end of the mission. Software devel-
opers started using Emacs or vi to write code and at the
end of the mission were using Eclipse. Although git be-
came available as a version control system during the the
Hershel mission, the project continued to use CVS as the
code repository and never migrated to git. The project de-
veloped an in-house build agent instead of using Jenkins
and a custom bug tracking system before eventually mi-
grating to Jira R©. The project’s choice to continue using
CVS and our in-house build agent of instead upgrading
had to be balanced against the disruption to the project
versus the expected benefits.

Many of the choices for software development tools served
the project’s needs well however a very small number
of choices made resulted in additional unexpected over-
head. This was particularly true of the choice to use a
commercial object-oriented database to store the raw ob-
servational data. The original desire to have a strong con-
nection between the observatory / instrument command-
ing data and the raw observational data lead to the deci-
sion to use a single object database. Object databases are
better suited to applications where one needs to navigate
through a complex series of objects (observatory / instru-
ment commanding), however for observational telemetry
we simply needed to make many queries based on the
telemetry criteria. The observational telemetry is writ-
ten once and accessed by many readers and this is better
suited to an open source relational database system.

• Platform independent and open source
Another consequence of the long lifetime was that hard-
ware changes were inevitable. At the beginning of the
project, SunTM workstations and WindowsTM machines
were widely used, this subsequently changed to Linux
boxes and at the end of the project many people were
working on MacbooksTM. Though this particular succes-
sion of platforms could not be foreseen at the start of the
mission, a succession of some kind was to be expected.
The choice of using the open source platform indepen-
dent software JavaTM (combined later with Jython as in-
teractive interface) above C++ was beneficial. It should
be noted that choosing the JavaTM software language it-
self was risky at the time as it was only a couple of years

older than the Herschel mission. On the other hand, the
choice of JavaTM implied a huge investment into basic
numeric libraries and in the development of astronomy
processing code.

Many of the issues relating to hardware and operating
systems at the beginning of the mission have since been
solved today with the advent of virtual machines and con-
tainerized environments allowing developers to develop
for a given reference platform but run on almost any host
operating system.

• Software evolution
The software developed within the project will need to
evolve over the lifetime of the project, even the best de-
signed software systems will still experience change. The
HCSS software framework served the instrument teams
well over the mission lifetime, but the instrument teams
had to be prepared for change and have resources avail-
able to adapt to these changes. This was difficult to man-
age at times as the project tended to have the view that
once a particular feature was code complete, the soft-
ware would function as expected without change until
the end of the mission. Upgrading the software refer-
ence platforms, JavaTM and Jython was necessary for op-
erating system compatibility and security reasons. This
was particular difficult in the case of Jython as these up-
grades had a tendency to break existing code, requiring
additional refactoring and testing. Whenever the system
was not allowed to change, due to time or resource con-
straints, more effort was inevitably required by the users
of the system. The lesson to draw from this is to plan
for and accept that change is a normal part of iterative
software development.

• Target audience
The target audience or end-user of the software changed
progressively over the lifetime of the Herschel mission.
In preflight, the HCSS software supported the instrument
engineers and calibration scientists. In this phase, the
instrument engineers could directly communicate their
requirements and issues with the software development
team. This process was efficient in resolving issues and
providing the needed capabilities. After launch, a whole
new group of users began to use the software, namely the
broader astronomical community. The communication
between the software development team and this broader
group of users was not as seamless as with the instrument
scientists. It is important to recognize when the target
audience for the software has changed and the additional
requirements the new audience brings to the project.

• Software development practices
The Herschel project was a collaboration of independent
institutes across Asia, Europe and North America. It was
hard to enforce code quality standards on contributions
across packages with multiple independent institutes pro-
viding contributions. HIFI software development team

15



found that increasing the frequency of in-person work-
ing sessions (co-locations) where the developers met in
a single location for upwards of three weeks every four
months helped to mitigate the effects of the distributed
team and the varied skill level of the developers. Imple-
menting additional processes including paired program-
ming and code reviews would have helped to increase the
quality of the code and better train developers just joining
a project. These investments can be expensive initially,
however over the lifetime of the project, they will reduce
maintenance costs by minimizing time wasted checking
and fixing coding bugs.

The public release of the Herschel software was largely
time based. The project would select some date in the fu-
ture and then schedule development work around a par-
ticular release date. Software release candidates were
branched from the main development track and bug fixes
were applied to the release branch until all critical issues
were resolved. Software testing was performed by staff

astronomers to ensure that the results generated by the
software were correct and the software supported the nec-
essary work-flows required to process and analyze the
observational data. The development builds were pub-
licly available although they were only intended for use
by the developers and the instrument staff scientists. The
reduction in the amount of time between the development
and release of new features or bug fixes is important to
increase usefulness and acceptance of the software. The
DevOps model of software development and deployment
encapsulates this practice.

• Research based software projects
Research based software development projects, space sci-
ence in this case, are different than developing software
for commercial purposes. It is not always clear or com-
pletely understood what is needed at the onset and many
prototypes are likely to be developed to test behaviour be-
fore the overall design is finalized. This occurred within
the HIFI instrument team leading to more prototype like
code being used as production code at times, with the unit
and system testing code being written later in the project.
When the target audience changes occur in these cases, it
is important to stay focused on delivering a quality prod-
uct with proper software testing support in order to min-
imize the transition costs and increase the acceptance of
the product by the new audience.

Given the specialized nature of the problem space, it is
important to have a combination of astronomers, system
engineers and software engineers working in close prox-
imity to each other to produce the best possible outcome
for the project. Institutes participating in projects like
these need to recognize that developing software requires
a significant amount of resources to be done properly.

6. Conclusions

The HIFI pipeline was designed to fit into a common soft-
ware infrastructure and to be executed in four distinct modes
(e.g., lab, interactive, systematic and on-demand). The soft-
ware development process was supported by a set of tools and
processes to ensure the goals of building a robust and efficient
pipeline were accomplished. The software build and test en-
vironment was developed to help monitor the changes to the
pipeline and quickly identify undesired changes so that issues
could be resolved efficiently.

The main accomplishment of the HIFI pipeline was creat-
ing a single pipeline for all HIFI observations regardless of the
observing mode and type of observation taken by the instru-
ment. By using a single pipeline for all modes code duplication
was reduced ensuring consistency across generated data prod-
ucts. With the customizable pipeline, HIFI was able to support
robust interactive data analysis work-flows with a small amount
of additional complexity in the pipeline software.

The HIFI pipeline software, supporting auxiliary and cali-
bration data products were the end result of accomplishing the
goal of providing high quality observational data products to
the scientific community. The result of this work is a set of
data products contained in the HSA that have been used to do
ground breaking research resulting a large number of published
scientific papers in multiple refereed scientific journals. As of
4 January 2019, 4403 out of 8571 HIFI observations have ap-
peared in refereed journals. Given the long lead time and du-
ration of the Herschel/HIFI project many of the initial develop-
ments have been superseded in the software industry, however
the general approach remains pertinent even today. The con-
tent of this article should serve as a lessons-learned for future
projects that are considering developing their own data process-
ing software infrastructure.

Acknowledgements

HIFI was designed and built by a consortium of institutes
and university departments from across Europe, Canada and the
United States under the leadership of SRON Netherlands Insti-
tute for Space Research, Groningen, The Netherlands, and with
major contributions from Germany, France and the US. Con-
sortium members are: Canada: CSA, University of Waterloo;
France: CESR, LAB, LERMA, IRAM; Germany: KOSMA,
MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF,
Osservatorio Astrofisico di Arcetri-INAF; Netherlands: SRON,
TUD; Poland: CAMK, CBK; Spain: Observatorio Astron Na-
cional (IGN), Centro de Astrobiologia (CSIC-INTA). Sweden:
Chalmers University of Technology - MC2, RSS & GARD; On-
sala Space Observatory; Swedish National Space Board, Stock-
holm University - Stockholm Observatory; Switzerland: ETH
Zurich, FHNW; USA: Caltech, JPL, NHSC.

References

[1] G. L. Pilbratt, J. R. Riedinger, T. Passvogel, G. Crone, D. Doyle,
U. Gageur, A. M. Heras, C. Jewell, L. Metcalfe, S. Ott, M. Schmidt,

16



Herschel Space Observatory. An ESA facility for far-infrared and submil-
limetre astronomy, Astronomy & Astrophysics518 (2010) L1. arXiv:

1005.5331, doi:10.1051/0004-6361/201014759.
[2] T. de Graauw, F. P. Helmich, T. G. Phillips, J. Stutzki, E. Caux,

N. D. Whyborn, P. Dieleman, P. R. Roelfsema, H. Aarts, R. Assendorp,
R. Bachiller, W. Baechtold, A. Barcia, D. A. Beintema, V. Belitsky, A. O.
Benz, R. Bieber, A. Boogert, C. Borys, B. Bumble, P. Caı̈s, M. Caris,
P. Cerulli-Irelli, G. Chattopadhyay, S. Cherednichenko, M. Ciechanow-
icz, O. Coeur-Joly, C. Comito, A. Cros, A. de Jonge, G. de Lange,
B. Delforges, Y. Delorme, T. den Boggende, J.-M. Desbat, C. Diez-
González, A. M. di Giorgio, L. Dubbeldam, K. Edwards, M. Eggens,
N. Erickson, J. Evers, M. Fich, T. Finn, B. Franke, T. Gaier, C. Gal,
J. R. Gao, J.-D. Gallego, S. Gauffre, J. J. Gill, S. Glenz, H. Golstein,
H. Goulooze, T. Gunsing, R. Güsten, P. Hartogh, W. A. Hatch, R. Hig-
gins, E. C. Honingh, R. Huisman, B. D. Jackson, H. Jacobs, K. Jacobs,
C. Jarchow, H. Javadi, W. Jellema, M. Justen, A. Karpov, C. Kasemann,
J. Kawamura, G. Keizer, D. Kester, T. M. Klapwijk, T. Klein, E. Kollberg,
J. Kooi, P.-P. Kooiman, B. Kopf, M. Krause, J.-M. Krieg, C. Kramer,
B. Kruizenga, T. Kuhn, W. Laauwen, R. Lai, B. Larsson, H. G. Leduc,
C. Leinz, R. H. Lin, R. Liseau, G. S. Liu, A. Loose, I. López-Fernandez,
S. Lord, W. Luinge, A. Marston, J. Martı́n-Pintado, A. Maestrini, F. W.
Maiwald, C. McCoey, I. Mehdi, A. Megej, M. Melchior, L. Meinsma,
H. Merkel, M. Michalska, C. Monstein, D. Moratschke, P. Morris,
H. Muller, J. A. Murphy, A. Naber, E. Natale, W. Nowosielski, F. Nuz-
zolo, M. Olberg, M. Olbrich, R. Orfei, P. Orleanski, V. Ossenkopf, T. Pea-
cock, J. C. Pearson, I. Peron, S. Phillip-May, L. Piazzo, P. Planesas,
M. Rataj, L. Ravera, C. Risacher, M. Salez, L. A. Samoska, P. Sara-
ceno, R. Schieder, E. Schlecht, F. Schlöder, F. Schmülling, M. Schultz,
K. Schuster, O. Siebertz, H. Smit, R. Szczerba, R. Shipman, E. Stein-
metz, J. A. Stern, M. Stokroos, R. Teipen, D. Teyssier, T. Tils, N. Trappe,
C. van Baaren, B.-J. van Leeuwen, H. van de Stadt, H. Visser, K. J. Wilde-
man, C. K. Wafelbakker, J. S. Ward, P. Wesselius, W. Wild, S. Wulff, H.-
J. Wunsch, X. Tielens, P. Zaal, H. Zirath, J. Zmuidzinas, F. Zwart, The
Herschel-Heterodyne Instrument for the Far-Infrared (HIFI), Astronomy
& Astrophysics518 (2010) L6. doi:10.1051/0004-6361/201014698.

[3] A. Poglitsch, C. Waelkens, N. Geis, H. Feuchtgruber, B. Vandenbuss-
che, L. Rodriguez, O. Krause, E. Renotte, C. van Hoof, P. Sara-
ceno, J. Cepa, F. Kerschbaum, P. Agnèse, B. Ali, B. Altieri, P. An-
dreani, J.-L. Augueres, Z. Balog, L. Barl, O. H. Bauer, N. Belbachir,
M. Benedettini, N. Billot, O. Boulade, H. Bischof, J. Blommaert, E. Cal-
lut, C. Cara, R. Cerulli, D. Cesarsky, A. Contursi, Y. Creten, W. De
Meester, V. Doublier, E. Doumayrou, L. Duband, K. Exter, R. Genzel,
J.-M. Gillis, U. Grözinger, T. Henning, J. Herreros, R. Huygen, M. In-
guscio, G. Jakob, C. Jamar, C. Jean, J. de Jong, R. Katterloher, C. Kiss,
U. Klaas, D. Lemke, D. Lutz, S. Madden, B. Marquet, J. Martignac,
A. Mazy, P. Merken, F. Montfort, L. Morbidelli, T. Müller, M. Niel-
bock, K. Okumura, R. Orfei, R. Ottensamer, S. Pezzuto, P. Popesso,
J. Putzeys, S. Regibo, V. Reveret, P. Royer, M. Sauvage, J. Schreiber,
J. Stegmaier, D. Schmitt, J. Schubert, E. Sturm, M. Thiel, G. Tofani,
R. Vavrek, M. Wetzstein, E. Wieprecht, E. Wiezorrek, The Photodetector
Array Camera and Spectrometer (PACS) on the Herschel Space Obser-
vatory, Astronomy & Astrophysics518 (2010) L2. arXiv:1005.1487,
doi:10.1051/0004-6361/201014535.

[4] M. J. Griffin, A. Abergel, A. Abreu, P. A. R. Ade, P. André, J.-L. Au-
gueres, T. Babbedge, Y. Bae, T. Baillie, J.-P. Baluteau, M. J. Barlow,
G. Bendo, D. Benielli, J. J. Bock, P. Bonhomme, D. Brisbin, C. Brockley-
Blatt, M. Caldwell, C. Cara, N. Castro-Rodriguez, R. Cerulli, P. Cha-
nial, S. Chen, E. Clark, D. L. Clements, L. Clerc, J. Coker, D. Com-
munal, L. Conversi, P. Cox, D. Crumb, C. Cunningham, F. Daly, G. R.
Davis, P. de Antoni, J. Delderfield, N. Devin, A. di Giorgio, I. Didschuns,
K. Dohlen, M. Donati, A. Dowell, C. D. Dowell, L. Duband, L. Dumaye,
R. J. Emery, M. Ferlet, D. Ferrand, J. Fontignie, M. Fox, A. Frances-
chini, M. Frerking, T. Fulton, J. Garcia, R. Gastaud, W. K. Gear, J. Glenn,
A. Goizel, D. K. Griffin, T. Grundy, S. Guest, L. Guillemet, P. C. Har-
grave, M. Harwit, P. Hastings, E. Hatziminaoglou, M. Herman, B. Hinde,
V. Hristov, M. Huang, P. Imhof, K. J. Isaak, U. Israelsson, R. J. Ivison,
D. Jennings, B. Kiernan, K. J. King, A. E. Lange, W. Latter, G. Laurent,
P. Laurent, S. J. Leeks, E. Lellouch, L. Levenson, B. Li, J. Li, J. Lilien-
thal, T. Lim, S. J. Liu, N. Lu, S. Madden, G. Mainetti, P. Marliani,
D. McKay, K. Mercier, S. Molinari, H. Morris, H. Moseley, J. Mulder,
M. Mur, D. A. Naylor, H. Nguyen, B. O’Halloran, S. Oliver, G. Olof-

sson, H.-G. Olofsson, R. Orfei, M. J. Page, I. Pain, P. Panuzzo, A. Pa-
pageorgiou, G. Parks, P. Parr-Burman, A. Pearce, C. Pearson, I. Pérez-
Fournon, F. Pinsard, G. Pisano, J. Podosek, M. Pohlen, E. T. Polehamp-
ton, D. Pouliquen, D. Rigopoulou, D. Rizzo, I. G. Roseboom, H. Rous-
sel, M. Rowan-Robinson, B. Rownd, P. Saraceno, M. Sauvage, R. Sav-
age, G. Savini, E. Sawyer, C. Scharmberg, D. Schmitt, N. Schneider,
B. Schulz, A. Schwartz, R. Shafer, D. L. Shupe, B. Sibthorpe, S. Sid-
her, A. Smith, A. J. Smith, D. Smith, L. Spencer, B. Stobie, R. Sudiwala,
K. Sukhatme, C. Surace, J. A. Stevens, B. M. Swinyard, M. Trichas,
T. Tourette, H. Triou, S. Tseng, C. Tucker, A. Turner, M. Vaccari,
I. Valtchanov, L. Vigroux, E. Virique, G. Voellmer, H. Walker, R. Ward,
T. Waskett, M. Weilert, R. Wesson, G. J. White, N. Whitehouse, C. D.
Wilson, B. Winter, A. L. Woodcraft, G. S. Wright, C. K. Xu, A. Zav-
agno, M. Zemcov, L. Zhang, E. Zonca, The Herschel-SPIRE instrument
and its in-flight performance, Astronomy & Astrophysics518 (2010) L3.
arXiv:1005.5123, doi:10.1051/0004-6361/201014519.

[5] D. Teyssier, I. Avruch, S. Beaulieu, J. Braine, A. Marston, P. Morris,
M. Olberg, M. Rengel, R. Shipman, HIFI Handbook (2017).
URL http://www.cosmos.esa.int/web/herschel/

legacy-documentation-hifi

[6] R. F. Shipman, S. F. Beaulieu, D. Teyssier, P. Morris, M. Ren-
gel, C. McCoey, K. Edwards, D. Kester, A. Lorenzani, O. Coeur-
Joly, M. Melchior, J. Xie, E. Sanchez, P. Zaal, I. Avruch, C. Borys,
J. Braine, C. Comito, B. Delforge, F. Herpin, A. Hoac, W. Kwon, S. D.
Lord, A. Marston, M. Mueller, M. Olberg, V. Ossenkopf, E. Puga,
M. Akyilmaz-Yabaci, Data processing pipeline for Herschel HIFI, As-
tronomy & Astrophysics608 (2017) A49. arXiv:1709.04327, doi:
10.1051/0004-6361/201731385.

[7] K. Leech, D. Kester, R. Shipman, D. Beintema, H. Feuchtgruber,
A. Heras, R. Huygen, F. Lahuis, D. Lutz, P. Morris, P. Roelfsema,
A. Salama, S. Schaeidt, E. Valentijn, B. Vandenbussche, E. Wieprecht,
T. de Graauw, The ISO Handbook, Volume V - SWS - The Short Wave-
length Spectrometer, 2003.

[8] F. Lahuis, H. Feuchtgruber, H. Golstein, D. Kester, W. Luinge, R. F. Ship-
man, E. Wieprecht, SWS Signal Capture: from Flux to Signal, in: L. Met-
calfe, A. Salama, S. B. Peschke, M. F. Kessler (Eds.), The Calibration
Legacy of the ISO Mission, Vol. 481 of ESA Special Publication, 2003,
p. 387.

[9] E. Wieprecht, B. Vandenbussche, D. Boxhoorn, D. J. M. Kester, F. Lahuis,
O. H. Bauer, D. A. Beintema, H. Feuchtgruber, A. M. Heras, R. Huygen,
D. Kunze, K. Leech, R. Lorente, D. Lutz, P. W. Morris, P. Roelfsema,
A. Salama, R. F. Shipman, E. Sturm, N. Sym, E. Valentijn, E. Wiezor-
rek, The ISO SWS Data Analysis Software Systems, in: L. Metcalfe,
A. Salama, S. B. Peschke, M. F. Kessler (Eds.), The Calibration Legacy
of the ISO Mission, Vol. 481 of ESA Special Publication, 2003, p. 285.

[10] O. H. Bauer, P. Estaria, K. J. King, G. L. Pilbratt, A. Robson, P. R. Roelf-
sema, H. Schaap, FIRST ground segment and science operations concept,
in: J. Quinn (Ed.), Observatory Operations to Optimize Scientific Return,
Vol. 3349 of Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, 1998, pp. 312–318.

[11] J. Riedinger, ESA Bulletin 139, 14 (2009).
[12] S. Ott, The Herschel Data Processing System - HIPE and Pipelines -

Up and Running Since the Start of the Mission, in: Y. Mizumoto, K.-I.
Morita, M. Ohishi (Eds.), Astronomical Data Analysis Software and Sys-
tems XIX, Vol. 434 of Astronomical Society of the Pacific Conference
Series, 2010, p. 139. arXiv:1011.1209.

[13] B. Li, S. Guest, M. Haung, P. Balm, H. Siddiqui, J. Bakker, J. C. Segovia,
J. Saiz, K. Edwards, PAL: An Object Oriented Data Access Layer for Her-
schel Data Processing, in: P. Ballester, D. Egret, N. P. F. Lorente (Eds.),
Astronomical Data Analysis Software and Systems XXI, Vol. 461 of As-
tronomical Society of the Pacific Conference Series, 2012, p. 651.

[14] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software, Addison Wesley, 1994.

[15] S. Thurey, Packet Structure-Interface Control Document Herschel/Planck
Project (2003).

[16] S. Veillat, Herschel Science Ground Segment to Instruments ICD FIRST-
FSC-DOC-0200 issue 1.0 (2001).

[17] L. Dubbeldam, HIFI Telemetry Packet Structure ICD issue 1.11 (2009).
URL https://www.cosmos.esa.int/documents/12133/

996743/HIFI+Telemetry+Packet+Structure+ICD+document/

a520fcab-dbb2-446c-9c6c-ded7a8c95715

17



[18] D. Kester, I. Avruch, D. Teyssier, Correction of electric standing waves,
Bayesian Inference and Maximum Entropy Methods in Science and
Engineering 1636 (2014) 62–67. doi:10.1063/1.4903711.
URL http://herschel.esac.esa.int/twiki/pub/Public/

HifiDocsEditableTable/ESWCorrection.pdf

[19] V. Ossenkopf, The hifi intensity calibration framework, Tech. Rep. 442,
ALMA Memo Series (2003).

18


