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Abstract

We discuss a new procedure to search for point sources in Cosmic Microwave background maps; in particular, we aim at
controlling the so-called False Discovery Rate, which is defined as the expected value of false discoveries among pixels
which are labelled as contaminated by point sources. We exploit a procedure called STEM, which is based on the
following four steps: 1) needlet filtering of the observed CMB maps, to improve the signal to noise ratio; 2) selection of
candidate peaks, i.e., the local maxima of filtered maps; 3) computation of p-values for local maxima; 4) implementation
of the multiple testing procedure, by means of the so-called Benjamini-Hochberg method. Our procedures are also
implemented on the latest release of Planck CMB maps.

Keywords: False Discovery Rate, Multiple Testing, Point Source Detection, Needlets, Cosmic Microwave Background
2010 MSC: Primary 62M40; Secondary 62M30, 62M15, 60G60, 42C40

1. Introduction

In the last decades, observations and characterization
of Cosmic Microwave Background (CMB) temperature ani-
sotropy established the foundations for the ΛCDM concor-
dance model (see, e.g., BOOMERanG: MacTavish et al.
2006; WMAP: Hinshaw et al. 2013; Planck: Planck Col-
laboration XIII 2016). According to this scenario, the
Universe is described by a flat Euclidean geometry, with
cosmic structures originated by an almost scale-invariant
spectrum of adiabatic Gaussian primordial fluctuations,
and the cosmic energy density is in the form of barionic
matter (∼ 5%), cold Dark Matter (∼ 26.5%) and Dark
Energy (∼ 68.5%).

However, an accurate analysis of the CMB polariza-
tion pattern is required in order to break the degeneracy
among some parameters and to constrain critical aspects
of the Early Universe. CMB polarization is usually de-
composed into a gradient and a curl component, so-called
E and B modes, respectively (Kamionkowski et al., 1997).
E-modes have been widely detected (see, e.g., Kovac et al.,
2002; Planck Collaboration XI, 2016), while primordial B-
modes have escaped observation so far (BICEP2/Keck and
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Planck Collaborations, 2015). The detection of the B-
mode polarization represents nowadays the new frontier
of observational cosmology, as B-modes would provide an
ultimate confirmation to the existence of a stochastic pri-
mordial background of gravitational waves, as predicted
by inflationary models (Lyth and Riotto, 1999).

The primary concern in CMB observations is the pres-
ence of foreground contamination, due to both diffuse Galac-
tic emission (e.g. Planck Collaboration X 2016) and extra-
galactic (point) sources (e.g. Planck Collaboration XXVI
2016). In intensity, Galactic emission consists in a mixture
of many processes, such as free-free emission, anomalous
microwave emission eventually due to non-thermal (spin-
ning) dust and synchrotron emission at low frequency, and
thermal dust emission at high frequency. Extragalactic
sources, as well, have different astrophysical origin. In
particular, the two main classes of sources are radio galax-
ies and dusty galaxies that are present mainly at low and
high frequencies, respectively.

To disentangle the CMB signal from foreground con-
tamination, many approaches have been followed (Planck
Collaboration IV, 2018). The latest released Planck cleaned-
CMB maps have been produced by the SEVEM template
fitting technique, the NILC and SMICA non-parametric
procedures and the COMMANDER parametric method.
Despite the difference in their approaches, these methods
yield largely compatible output maps.

In this work we investigate the application of a new
general method for the localization of peaks on the sphere,
under isotropic Gaussian noise, to detect point sources out
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of CMB maps. On one hand, this identification may al-
low a better cleaning of the CMB maps from the source
contaminants; on the other hand, these sources are of as-
trophysical interest themselves. Here, we focus on inten-
sity CMB maps and leave the extension to polarization
to a forthcoming paper. Our method is based on the so-
called STEM procedure (see Cheng et al., 2016), which
consists of the following four steps: i) filtering the CMB
maps with (Mexican) needlets, in order to increase the
signal-to-noise ratio (see Marinucci et al., 2008); ii) detec-
tion of local maxima in the filtered maps; iii) computa-
tion of p-values for each of the local maxima; iv) imple-
mentation of the multiple testing scheme by applying the
so-called Benjamini-Hochberg (BH) procedure. The new
algorithm allows to effectively control the False Discovery
Rate, i.e. the expected number of false discoveries among
the critical points identified as point sources. We validate
our procedure on realistic simulations of CMB maps and,
then, apply the algorithm to the latest release of Planck
cleaned-CMB maps; in particular, we compare the perfor-
mance of the different component separation methods in
the removal of the extragalactic sources. We find some
candidate point sources in most of the maps; however, we
conclude that the inpainting procedure adopted for the
2018 release seems to have produced maps which are much
closer to being purely Gaussian, with a number of local
maxima largely consistent with theoretical predictions.

This paper is organized as follows: in Section 2 we pro-
vide a formal description of STEM procedure; in Section
3 we present the numerical implementation of the algo-
rithm and discuss about its performance on simulations; in
Section 4 we show our results from Planck cleaned-CMB
maps; finally, in Section 5 we draw our conclusions and
outline some future perspectives for the application of the
algorithm.

2. Methodology: The STEM Procedure and FDR
Control

The procedure that we shall exploit in this paper can
be viewed as an extension to the sphere of the STEM algo-
rithm, which was introduced in a 1-dimensional Euclidean
framework by Schwartzman et al. (2011); for the sphere,
the mathematical background for our proposal and some
theoretical results which we shall present below have been
discussed in Cheng et al. (2016).

In short, the algorithm can be summarized in the fol-
lowing four steps (STEM stands for Smoothing and TEst-
ing Multiple hypothesis):

• In the first step, the map is smoothed to enhance the
signal-to-noise ratio of possible sources, and (equiva-
lently) to get rid of as much Cosmic Variance as pos-
sible. The proper implementation of this smoothing
step is one of the most delicate parts of our algo-
rithm, and is achieved by means of the (Mexican)

needlet transform, which we shall describe exten-
sively in Subsection 2.1

• In the second step, candidate point sources are se-
lected by numerically computing local maxima of the
filtered maps. The algorithm to detect the maxima is
described in Subsection 2.2 and has been extensively
validated.

• The third step requires the computation of p-values
for each of the computed local maxima. Needless to
say, even for a purely Gaussian map the distribution
of local maxima is not Gaussian, and can be derived
analytically along the lines of Bardeen et al. (1985);
Cheng and Schwartzman (2015) and Cheng et al.
(2016) (see also Cammarota et al. (2016) for related
results in the case of single multipole fields/spherical
harmonic components). More remarkably, it can be
shown that in the high-frequency limit the sample
distribution on filtered maps converges to the the-
oretical expectation, thus making a principled sta-
tistical analysis doable. These results are discussed
below in Subsection 2.3.

• In the fourth and final step, the multiple testing
procedure is implemented. Here we are resorting
to the control of the False Discovery Rate, an ap-
proach which has become classical in the statisti-
cal community over the last decade or so (see Ben-
jamini and Hochberg, 1995, for the pioneering con-
tribution). Heuristically, the idea is to control the
proportion of detected point sources that can turn
out to be false, as opposed to the control of each of
them individually. The advantage of this joint ap-
proach to testing have been now very widely recog-
nized in the statistical/mathematical literature, but
their impact in Cosmology and Astrophysics has so
far been rather limited. The details of our meth-
ods, in particular the so-called Benjamini-Hochberg
procedure, are discussed below in Subsection 2.4.

In the subsections to follow, we describe in greater de-
tails each of the four steps in our algorithm.

2.1. (Mexican) Needlets Filtering

The first step in our procedure is the proper filtering of
CMB maps in order to enhance the signal-to-noise ratio.
Heuristically, point sources are clearly confined to small
scales / high frequencies, hence all the features related to
the smallest values of the multipoles ` should be considered
as “noise” and hence discarded. We are hence looking for
a high-pass filter with optimal characteristics.

Needlets are a form of spherical wavelets which were in-
troduced in Cosmology roughly one decade ago and have
hence been shown to enjoy a number of very important
features. Let us denote by j, j = 1, 2, ... a set of integer-
valued frequencies, and by P`(〈x, y〉) the family of Legen-
dre polynomials, which for x, y ∈ S2 satisfies the identity
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Figure 1: Transversal cut of a needlet function. In the x-axis, it
is represented the angular distance between the center of the given
needlet (ξ) and an arbitrary point x, in minutes. The amplitude of
the needlet is found on the y-axis. The width of the desired needlet
can be selected through the parameters j and B. In this work we
will fix B = 1.2 and use the values of j found in the image: 38, 39,
and 40.

2`+1
4π P`(〈x, y〉) =

∑`
m=−` Y`m(x)Y `m(y), where the bar de-

notes complex conjugation and Y`m, as usual, the standard
basis of spherical harmonics. The needlet filter is then de-
fined to be

ψj(x, ξ) :=
∑̀
m=−`

b(
`

Bj
)
2`+ 1

4π
P`〈x, ξ〉. (1)

An example of this needlet filter can be seen, repre-
sented in pixel space, in Fig.1, with a fixed value of B = 1.2
and j taking the values 38, 39, 40, as we will do throughout
this work.

Loosely speaking, the needlet filter is hence nothing
more than a weighted average of the usual Legendre poly-
nomial, the latter projecting a spherical map into its dis-
tinct multipole components `; the standard needlet con-
struction was introduced in mathematics by Narcowich
et al. (2006), and then in statistics/cosmology by Baldi
et al. (2009),Marinucci et al. (2008), Pietrobon et al. (2006).
The key ingredient in the construction is then the choice of
the weight function b(.), which allows the optimal trade-
off between localization properties in the real domain and
those in multipole space/frequency domain. In partic-
ular, in the standard needlet construction the function
b(.) is supposed to be infinitely differentiable, compactly
supported, and satisfying the partition of unity property,
which entails

∑
j b

2( `
Bj ) = 1; here B is a user-chosen

parameter, whose value will be discussed later (see also
Marinucci and Peccati, 2011). These properties ensure,
in particular, that each needlet component is finitely sup-
ported in multipole space, and hence very-well localized
in frequency space. More than that, it has been possible
to show (see Narcowich et al., 2006) that the needlet fil-

ter enjoys very good localization properties in real space,
the tail of the filter decaying “nearly-exponentially”, i.e.,
faster than any polynomial, as the frequency j increases;
more precisely, one has that, for all integers M there exists
a constant CM such that

ψ(x, ξ) ≤ CM ×B2j

(1 +Bj × d2
S(x, ξ))M

, (2)

where d2
S(x, ξ) is the usual geodesic distance on the sphere.

The needlet components are then given by

βj(ξ) :=

∫ 2

S

T (x)ψj(x, ξ)dx =
∑
`

b(
`

Bj
)a`mY`m(ξ), (3)

so that on one hand the filtered fields is only supported
on the multipoles where the function b(.) takes a non-zero
value, while on the other hand the value of the filtered field
at any given location ξ is only influenced by the points
nearby in the original map T (x). Filtered maps enjoy fur-
ther very useful (and rather remarkable) properties from
the statistical point of view; indeed, it can be shown that
for any two different locations in the sky x and y, the values
of βj(x) and βj(y) are asymptotically uncorrelated (and
hence independent, under Gaussianity, see Baldi et al.,
2009; Marinucci et al., 2008) as the frequency j diverges
to infinity. This property will play a crucial role in the
determination of the statistical properties of the STEM
algorithm.

The filter that is actually going to be implemented is
indeed a modification of the original needlet idea, which
was introduced soon after by Geller and Mayeli (2009a,b)
and then in the statistical/cosmological literature by Lan
et al. (2008) , Mayeli (2010) and Scodeller et al. (2011).
The idea is simply to replace the compactly supported
function b(.) by means of the Gaussian-related weight

bp(
`

Bj
) =

1√
2π

(
`

Bj
)2pexp(−1

2
(
`

Bj
)2), (4)

where p is a parameter, that we have fixed at p = 1 in
what follows, see Fig. 2.

The properties are very much the same as for standard
needlets, however, in some sense Mexican needlets achieve
the optimal tradeoff between localization in real and har-
monic space. Indeed, their localization properties in the
real domain are even better than for standard needlets,
as their tails are Gaussian; in harmonic space they are no
longer compactly supported on a finite number of multi-
poles, but for all practical purposes their localization is
extremely good, as even in these domain the tails have
Gaussian decay.

2.2. Selection of Candidate Point Sources

Candidate point sources are selected by simply collect-
ing the local maxima in the filtered maps, i.e., the points

3
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Figure 2: Representation of the filter function b for a Mexican needlet
with B = 1.2 and j = 38, 39, 40. The value of j determines the
multipole region that the filtering will extract.

where the gradient is zero and the (covariant) Hessian ma-
trix is negative definite. We write G(βj) for the set of de-
tected peaks and M(βj) for their total number, that is to

say that a point x ∈ S2 belongs to G̃j if and only if

{x ∈ G(βj)} ⇔ {x : ∇βj(x) = 0 and ∇2βj(x) ≺ 0}, (5)

A ≺ 0 denoting a negative definite matrix.
In practice, candidate peaks are simply identified by

the routine Hotspot in HEALPix, see https://healpix.jpl.
nasa.gov/html/facilitiesnode8.htm.

2.3. Distribution of Local Maxima and p-values

The key technical step in our algorithm is based on the
possibility to evaluate the exact distribution of local max-
ima for the CMB maps, under the (null) assumption that
no point source is present. Computing the density of local
maxima, or equivalently the expected number of maxima
for a given Gaussian field, is a topic which has drawn a
lot of work in Cosmology, starting from the seminal paper
by Bardeen et al. Bardeen et al. (1985) in the eighties.
Under the circumstances of the present paper, the density
of these maxima can be shown to be given by (see Cheng
et al., 2016, and the references therein)

fj(x) =
2
√

3 + η2
j

2 + η2
j

√
3 + η2

j

[A+B + C] (6)

where we defined

A =
[
η2
j + κ2

j (x
2 − 1)

]
φ(x)Φ

 κjx√
2 + η2

j − κ2
j



B =
κj
√

(2 + η2
j − κ2

j )

2π
xe
−

(2+η2j )x
2

2(2+η2
j
−κ2

j
)

C =

√
2√

π(3 + η2
j − κ2

j )
e
−

(3+η2j )x
2

2(3+η2
j
−κ2

j
)

×Φ

 κjx√
(2 + η2

j − κ2
j )(3 + η2

j − κ2
j )

}.
The notation here requires some clarification. Indeed,

φ,Φ denote, respectively, the standard density and cumu-
lative distribution function for a Gaussian random vari-
able; on the other hand, κj and ηj are constants which
can be explicitly computed from the angular power spec-
trum of the original (unfiltered) CMB map; more precisely,
they are given by

ηj =

√
Γ′j(C`)√
Γ′′j (C`)

, κj =
Γ′j(C`)√
Γ′′j (C`)

, (7)

where

Γ′j(C`) :=
∑
`

2`+ 1

4π
bp(

`

Bj
)P ′`(1), (8)

Γ′′j (C`) :=
∑
`

2`+ 1

4π
bp(

`

Bj
)P ′′` (1), (9)

and the derivatives of Legendre polynomials evaluated at
1 are given by

P ′`(1) =
`(`+ 1)

2
and P ′′` (1) =

`(`− 1)(`+ 1)(`+ 2)

8
.

(10)
In the sequel, it should be kept in mind that all our

computations will be carried over components which have
been normalized to have unit variance.

Of course, once the density of local maxima is known,
it is immediate to compute the p-value of any one of them
taking value u (say), which is indeed given by

πj(u) :=

∫ ∞
u

fj(t)dt (11)

A further, more remarkable result was also established
in Cheng et al. (2016); it was indeed shown that at high
frequencies, the realized (observed) distributions of critical
points on CMB maps converges to the theoretical density
fj given above. In other words, even on a single realization
of CMB maps the observed distribution of local maxima
for large values of j is going to track closely the theo-
retical prediction, under the assumptions of Gaussianity
and isotropy. This result is grounded on the capacity of
needlet filtered maps to control Cosmic Variance, and it is
clearly the foundation for the statistical multiple testing
procedure which we shall describe in the next subsection;
see Fig. 5 later for numerical evidence supporting these
claims.
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Figure 3: Example of the Benjamini-Hochberg procedure for multiple
testing. In the x-axis, we have the rank i of the p-values, sorted from
lower (less likely) to higher (more likely). The value of the p-values
times the total number of maxima is plotted for each maximum as
blue points. This is an estimate of the number of maxima expected to
be at least as intense as a given point in a purely Gaussian CMB map.
The three colored lines represent the threshold for 3 different values
of α; the highest value still below the line determines the number of
points to be classified as candidate point sources. In dashed black
line, corresponding to α = 1, we have the expected behaviour for a
purely Gaussian map.

2.4. The Multiple Testing Procedure

As a multiple testing procedure in step (4) we apply
the Benjamini-Hochberg (BH) procedure Benjamini and
Hochberg (1995). This procedure is now very popular
among statisticians; in this paper it is implemented di-
rectly as follows. Recall that we write G(βj) for the set
of detected peaks and M(βj) for their total number; let
us arrange their p-values in increasing order and we fix a
significance level α ∈ (0, 1) whose role will be made clearer
below.

Now let k be the largest index for which the ith smallest
p-value is less than iα/M(βj); then the null hypothesis
that there is no point source at a given local maximum
location x ∈ G(βj) is rejected if

pj(x) <
kα

M(βj)
, (12)

where we assume without loss of generality that at least a
peak is detected in the map (otherwise the test is clearly
unnecessary). In words, the procedure can be explained as
follows: we draw a line starting from the origin with slope
α, and on the same plot we represent in ascending order
the p-values corresponding to the detected peaks: local
maxima are considered significant (and hence identified
with point sources) if and only they are small enough to
fall below the line. The procedure is illustrated in Fig. 3.

This procedure has a multiple flavour in an obvious
sense: for any local maxima, not only its value is consid-
ered, but also its ranking in the full map (a single source at

3σ, say, may not be significant in a map with million pix-
els, but one thousand such maxima have definitely another
meaning). More rigorously, this procedure guarantees con-
trol of the so called False Discovery Rate, which is defined
as the expected number of false discoveries out of the criti-
cal points which are identified as point sources (see Cheng
et al. (2016) for more discussion and details):

FDRj = 〈Wj

Sj
〉, (13)

where SJ ,Wj denote, respectively, the number of local
maxima which are identified as sources and those for which
this identification is actually wrong, and 〈.〉 is as usual the
ensemble expected value. Under some standard assump-
tions, it is indeed possible to show that the STEM algo-
rithm that we introduced on one hand allows to control
the False Discovery Rate by the user chosen parameter α,
in the high-frequency limit; i.e.,

limj→∞FDRj ≤ α; (14)

moreover, in a suitable sense the procedure has statistical
power growing to unity at the largest scales, i.e., it is able
to recover a proportion growing to 100% of the existing
sources. These results are clearly of a theoretical nature,
but as we shall show in the Sections to follow they do pro-
vide a very good guidance on the actual performance of the
STEM procedure under realistic experimental conditions
and on Planck 2018 data.

3. Numerical Implementation and Simulations

The algorithm described in the previous section has
been implemented on Planck-like simulations including point
sources, as described below.

3.1. Implementation

We implement the algorithm by creating a software
on Python 3.5, exploiting in particular numpy (Oliphant,
2006) and scipy (Jones et al., 2001). We use astropy

(The Astropy Collaboration, 2018) to import FITS images
as the ones provided by the Planck Collaboration, and
HEALPix (Gorski et al., 2005) to deal with full-sky spheri-
cal images, as this is the standard adopted by the Planck
Collaboration. The needlet treatment and multiple test-
ing algorithm explained in the previous section has been
programmed entirely by us. Finally, we use pandas (McK-
inney, 2010) and Matplotlib (Hunter, 2007) to analyze
the results.

The software is structured into three parts: i) The
main algorithm, which takes a CMB map and extract a
list of points believed to be point sources, according to the
STEM Procedure explained in Section 2; ii) The simula-
tions, which create a number of possible CMB realizations
and introduces artificial point sources according to specifi-
cations, in order to test the algorithm; and iii) The Planck

5



Figure 4: Comparison between a CMB temperature map (on the
left) and the β-map resulting of filtering this map with a needlet
B = 1.2, j = 39 (on the right). The field of view for both images
corresponds to 5◦ × 5◦.

maps analysis, which helps to perform the study of the
maps provided by the Planck Collaboration.

Here we explain the main steps of our implementation
for each of these parts.

3.1.1. Implementation of the Main Algorithm

We follow the four steps described in Section 2: filtering
the map, selecting candidates, computing their p-values,
and applying the multiple testing procedure.

We start by filtering the input CMB map; this is done
in harmonic space, using Eq. 3. First, we extract the
spherical harmonics coefficients α`m using the map2alm

routine on HEALPix. Then, these quantities are multiplied
by the filter b

(
`
Bj

)
of the corresponding Mexican needlet

with fixed parameters B and j: of course, this filtering
factor depends on ` but not m (needlets are isotropic);
this procedure is significantly more efficient than filter-
ing in pixel space. The result is then used to reconstruct
the now-filtered map βj(ξ) with the alm2map routine on
HEALPix. In Fig. 4 we can see an example of a CMB map
before and after the needlet filtering in a 5′×5′ patch of the
sky; of course, the small scale clumps in the temperature
map are enhanced in the β-map, especially at the scale
corresponding to the selected needlet (around ∼ 10′′).

Once the filtered map βj(ξ) is computed, we extract
its local maxima. This is done with the hotspot routine
in HEALPix, which checks the intensity of the neighboring
pixels for every pixel in the map (both the location and the
intensity of the maxima are delivered). At this point, the
maxima distribution can be compared with the theoretical
distribution fj(x).

At this stage, the p-value is computed for each maxi-
mum, following Eq. 11; for each maximum of intensity x,
we integrate fj(x) numerically from x to infinity, obtaining
the p-value pj(x). However, we are treating tens of thou-
sands of points in each map, and the values of the intensity
are similar for a large number of them, so performing this

integration for every point is highly inefficient. Instead,
we take the highest and lowest values for the intensity and
integrate in this interval with a small step of ∆x = 0.05;
the error in this procedure is lower than the error in the
numerical integration, which is ∆p

p < 10−4. Additionally,
we set the p-value to exactly 0 for extremely high values
(x > 37.5σ), in order to avoid computational problems.
In the maps we are considering, these intensities corre-
spond to actual p-values lower than 10−300: these values
are safely negligible in this context, as they are always
reported as point sources.

The last step is to apply the Benjamini-Hochberg pro-
cedure to identify the possible point sources among the
maxima population. In order to do that, we proceed as
described in Section 2.4: first we sort the p-values from
lowest (less likely) to highest (more likely); and then we
extract the highest p-value that satisfies Eq. 12. This rou-
tine can be implemented for any value of the confidence
parameter α ∈ (0, 1), see Fig. 3.

3.1.2. Implementation of the simulations

We are now in the position to generate a number of re-
alizations of the CMB and a set of artificial point sources,
according to the input parameters; after applying the STEM
algorithm, our routine calculates the true and false detec-
tions obtained by the algorithm.

More precisely, we generate an angular power spectrum
C` from the Planck cosmological parameters, using CAMB

(see Lewis, 2011). We use this angular power spectrum to
generate a series of compatible CMB maps; we choose to
use the same resolution of the Planck maps, nside = 2048.
According to the HEALPix standard, the total number of
pixels is 12 · nside2: the maps are then convolved with
a Gaussian profile of fwhm = 5′, similar to the nominal
resolution of Planck data.

A population of artificial point sources is then intro-
duced. In order to do that, a blank map of higher reso-
lution is created (nside = 4096) and a set of pixels are
selected at random; the intensities of these points are se-
lected in such a way that this population follows a uniform
distribution between the chosen limits. Hence, these arti-
ficial point sources are convolved with the same Gaussian
profile as used for the map and added to the different CMB
realizations.

The main algorithm is then run on each map to obtain
the list of points selected as point sources. We will claim
that a detection is successful if it is less than ρ = 3 pixels
away from the artificial source that had been injected into
the map, as in Cheng et al. (2016). We find that increasing
this tolerance to any reasonable extent does not have a
significant impact on the results, while of course excluding
this tolerance factor decreases the number of detections.

The values chosen for the parameters and the results
of these simulations will be explained in Section 3.2.

6



3.1.3. Implementation for the Planck data

The last part of our numerical implementation con-
cerns a pipeline that loads the target maps (in this case
Planck CMB observations), applies the algorithm, and
gather the most important results (which we present in
the tables below). First, we extract some information con-
cerning each map: number of pixels, map-making algo-
rithm (and its version), and whether it is the inpainted
version provided by Planck or not. Then, the user can
choose a set of values for the parameters of the main algo-
rithm: in particular, the needlet parameters B and j, and
the confidence level α.

After the main algorithm is implemented on each map,
the procedure checks the location of the selected point
sources; in order to do that, it uses the two confidence
masks provided by the Planck Collaboration. The first
one is the common confidence mask, obtained through the
combination of the masks for the individual algorithms;
it covers around ∼ 22% of the sky. The second is the
inpainting mask, covering the areas with apparent con-
tamination that are to be inpainted to obtain realistic
maps; it covers around ∼ 2% of the sky (see Section 4.2
in Planck Collaboration IV (2018) for more information
about the masks). In our implementation, the number
of point sources detected inside and outside each mask is
reported; the Planck Catalogue of point sources is also ex-
plored to count how many of the detections in each region
are matched by known sources.

We then produce a pandas table with the results; for
every map we can find the information about the param-
eters of the algorithm and the number of sources reported
(total number, number inside each mask and number in
the catalogues).

3.2. Numerical Validation

Let us now describe quickly our validating simulations.
In the case of Mexican needlets, the only free parameter to
be chosen is Bj , see Eq. 4; in particular, we select B = 1.2
at frequencies j = 38, 39, 40, meaning multipole regions
around Bj ≈ 1020, 1225, 1470. Selecting lower multipoles
(larger scales) makes the point source detection less ef-
ficient, while selecting higher multipoles (smaller scales)
makes the algorithm more sensitive to noise and pixeliza-
tion effects.

We start by generating 200 CMB realizations and ob-
serving that the maxima population follows the theoretical
distribution from Eq. 6, as it can be seen in Fig. 5. We
note that the residual is not exactly 0, but it presents a
characteristic pattern, possibly due to pixelization effects.
However the case may be, the maximum of the residual
is less than 0.01; this is aligned with the result by Cheng
et al. (2016), which showed that at high frequency, the
maxima distribution of CMB maps converge to the theo-
retical prediction.

Using again the sample of 200 CMB realizations, the
algorithm is applied to them with different values of the
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Figure 5: Maxima distribution of filtered CMB maps. On the top,
the comparison between the observed distribution (mean of 200 real-
izations), in continuous black line; and the theoretical prediction
from Eq. 6, in dashed red line. On the bottom, the residual:
measured − predicted. Both cases include the regions where the
68% and the 90% of the maps lay.

α Maps with Total number
candidates of candidates

0.05 15 /200 17
0.01 7 /200 7
0.002 1 /200 1

Table 1: Point sources obtained for a total run of 200 CMB maps
without added artificial sources. As expected, very few candidates
are reported and the number increases with α.

confidence parameter α = 0.05, 0.01, 0.002. Since no ar-
tificial source is added, we expect a very low amount of
reported point sources.

The number of point sources reported can be seen in
Table 1. In general, the number of detections that are
reported will increase as α increases. As expected, this
number is 0 in most of the maps: even for the “high”
value of α = 0.05, only 7.5% of the maps report any point
source (and only one map reports more than one point).
We select α = 0.01 as our working standard; however, all
the calculations are carried for the three different values
since this part of the computation is very efficient.

3.2.1. Sensitivity of the algorithm

In order to test the detection power of the algorithm,
we introduce a total of 200 artificial point sources in the
simulated maps; they are produced with a peak intensity
between 0 and 7σ, were σ is the standard deviation of
the convolved maps (calculated from the theoretical angu-
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Figure 6: Sensitivity of the algorithm. In the x-axis, we have the
intensity of the point sources, referred to the CMB temperature maps
before filtering, in units of its standard deviation. In the y-axis, we
have the number of detection of the maxima in each bin. In green,
we have the artificial sources; 10 sources have been introduced in
each bin, between 0 and 7σ. In blue, we have the true detections:
number of artificial sources correctly detected. In orange, we have
the false detections: reported candidates that do not correspond to
any artificial source. For both true and false detection, we plot the
average and the confidence regions which include 70 and 90% of the
maps. The intensity for the artificial sources is the one with which
they were generated, the one for the false detections is measured on
the map. The algorithm has been applied 200 times, with 200 sources
at a time, a needlet filter of B = 1.2 and j = 39, and α = 0.01.

lar power spectrum). We are interested in knowing down
to what intensity the algorithm is able to recover most
point sources: this will be the lower limit on the intensity
for which we expect to be complete in the detection. Of
course, we are also interested in the number and intensities
of false detections.

The results of the simulations for α = 0.01, B = 1.2,
and j = 39 can be seen in Fig. 6, which provides the
number of sources, the correct and the false detections;
the intensity of the maxima is measured with respect to
the CMB temperature map before the needlet filtering, in
units of its standard deviation σ. It can be seen that the
algorithm detects essentially every artificial source over 4σ
and more than half over 3σ; additionally, the number of
false detections is very small and almost negligible over
2σ.

Of course, a lower value of α = 0.002 implies a higher
value of intensity for which almost all signals are detected
(around 4.5σ); on the other hand, the number of false de-
tections is reduced to negligible values. Likewise, a higher
α = 0.05 entails that almost all sources above 3σ are cor-
rectly detected, but there is a significant population of
false detections. This effect can be seen in Fig. 8.

The previous results are reported with the intensity
referring to the CMB temperature map, before the filtering
is applied. Since the detection occurs on the filtered maps
β, it is interesting to see the intensity of the point sources
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Figure 7: Sensitivity of the algorithm on the filtered CMB maps
(β-maps). In the x-axis, we have the intensity of the point sources,
measured directly on the filtered CMB maps. In the y-axis, we have
the number of point sources. Detections that correspond to artificial
point sources are plotted in blue, while detections that do not, are
represented in orange. Artificial point sources that are not detected
are represented in red. The average and the confidence regions are
plotted, where 70 and 90% of the maps lay. As before, the algorithm
has been applied 200 times, with 200 sources at a time, a needlet
filter of B = 1.2 and j = 39, and α = 0.01.

after filtering; this is given in Fig. 7. The first difference
is a clear enhancement of the signal: while point sources
are generated with intensities between 0 and 7σCMB , the
intensity of these points in the β-maps is up to 15σβ .

Another difference is the noisy profile of the detections;
this is because the intensity here is measured on the filtered
map after adding CMB, instead of the intensity of the
artificial point source by itself.

This plot is obtained for α = 0.05; lower values imply
that a small part of the lower end of the graph is dismissed
(the lower cut for the intensity increases): at α = 0.002,
the lowest intensity is around 6σβ . As we saw before, this
will significantly reduce the false detections but will also
reduce the faintest end of the true detections.

3.2.2. Noise and masking

In the previous sections we have not considered the
effects of noise and masking. We are going to explain their
effects in this section.

One of the advantages of needlet filtering is that it fo-
cuses only on the contribution of a band-limited multipole
region; noise contributes more importantly at high `, so we
can minimize its effect by choosing lower values for `: these
scales can be chosen large enough to be still suitable to de-
tect point sources. In Fig. 10, we can see the contribution
of the noise and the signal to the angular power spectrum
C`, which is plotted together with the shape of the needlet
filter b for the working values B = 1.2, j = 38, 39, 40. It
can be seen that the needlet filtering will reflect only the
scales where the noise contribution is less relevant.
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Figure 8: Same as Fig. 6, with different values for the confidence
parameter. On the top, α = 0.002; on the bottom, α = 0.05. Higher
values include less confident detections, which increases the sensitiv-
ity of the algorithm but produces a higher number of false detections.
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Figure 9: Same as Fig. 7, with different values for the confident
parameter. On the top, α = 0.002; on the bottom, α = 0.05. As
before, increasing α means that the algorithm successfully detects
fainter point sources (blue), but includes more false positives (or-
ange).
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needlets used in this work: B = 1.2 and j = 38, 39, 40. As ex-
pected, low multipoles region is dominated by signal, while high
multipoles are dominated by noise. The needlet scales are chosen in
order to reflect the highest possible multipoles while staying in the
signal-dominated region.

We also test this result with simulations, adding a
strong noise component to the maps before applying the
algorithm. As expected, we do not observe any significant
difference in the set of reported point sources.

On the other hand, we have the effects of masking, i.e.,
setting to 0 the pixels of areas considered to be contam-
inated by the Galaxy or known point sources. We recall
that one of the main advantages of using needlets is their
extremely good localization properties; therefore, we may
expect that masking would remove the areas with known
contamination, while not affecting the algorithm on the
rest on the map. There is, however, some technical diffi-
culties that may arise: since masking a region makes its
value equal to 0, some masked sources in cold (negative)
regions can still appear as very intense point sources; addi-
tionally, in some cases masking generates artificial detec-
tions near the border of the masked area. We avoid these
technical problems by using the masks only to check the
location of the detections (i.e., inside or outside the con-
fidence masks); we do not mask the map before applying
the algorithm.

4. Results on Planck 2018 Maps

In this section we apply the algorithm to the temper-
ature maps extracted by the four algorithms of the last
Planck data release: COMMANDER, SMICA, SEVEM,
and NILC. All the maps are processed at their native res-
olution of nside = 2048. We analyze the 2015 and 2018
data releases (see Planck Collaboration IX, 2016; Planck
Collaboration IV, 2018); for the latter, we apply the algo-
rithm both in the inpainted and not inpainted cases. These

maps are expected to be very close outside the confidence
masks, but the results will be different since the algorithm
considers the maxima population as a whole in the entire
map. Using inpainting is a way to exclude the bright and
known sources from this analysis.

The algorithm is applied with the same parameters as
before: B = 1.2, j = 38, 39, 40, and confidence parameter
α = 0.05, 0.01, 0.002. Several results are stored for each
map: first, the total number of detections reported (their
location and intensity are also stored but will not be shown
here for brevity’s sake). We then calculate the amount of
the detections outside the inpainting mask (98% of the
sky) and outside the common confidence mask (78% of
the sky). Lastly, we check how many detections match the
Planck catalogues of point sources, both in the total map
and outside the common confidence mask; these catalogues
are reported for each frequency, while here we check all the
frequencies at the same time.

The catalogues are checked separately for the 80% con-
fident detection (PCCS catalogues), for where confidence
can not be determined (PCCS excluded catalogues), and
for both together. We note that some sources may be
present in both catalogues for different frequencies, espe-
cially for the lower frequencies LFI bands, where there is
only one catalogue per band.

The file containing the complete table with all the re-
sults can be found in http://javiercarron.com/publications.
This table consists of 144 rows and 18 columns, including
the location and intensity of every point reported by the
algorithm and, therefore, is too large to be reproduced in
this article. In Table 2 we can see a part of these results
for j = 39 and α = 0.01, on which we are going to focus.

We note that the algorithm reports a significant num-
ber of detections for most of the maps. Some of them
are sources already present in the Planck catalogues that,
apparently, could not be completely removed for the final
maps. However, a fraction of them are sources that are
not intense enough to be present in these catalogues.

Before analyzing the results for the different algorithms,
we are going to focus on the similarities and the general
behavior of the algorithm. The effect of the frequency fil-
tered (j) and the confidence parameter α is similar for all
maps. We can see an example of this effect for the not-
inpainted 2018 SMICA map in Table 3.

A lower value of j = 38 (` ∼ 1020) means filtering the
map with wider needlets; this means that the signal will
be more diluted, making it more difficult to detect sources
but more robust against noise. On the other hand, a higher
value of j = 40 (` ∼ 1470) means filtering with narrower
needlets, which are similar in size to the point sources;
this makes this value more sensitive to point sources but
also more vulnerable to noise. This explains the observed
result: the number of detections grow with j.

Similarly, the number of detections also grows with the
confidence parameter α. As explained before, a higher
value of α means that the confidence required to report
a detection is lower; therefore, more detections will be re-
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Map version inpainted detections mask C mask I cat cat C
commander 2.01 False 55 0 2 53 0
commander 3.00 False 6335 37 717 2927 11
commander 3.00 True 70 1 12 8 0
nilc 2.01 False 1222 6 10 753 1
nilc 3.00 False 1240 8 15 755 1
nilc 3.00 True 0 0 0 0 0
sevem 2.01 False 7064 39 690 4056 13
sevem 3.00 False 5894 31 261 3424 10
sevem 3.00 True 3 0 1 0 0
smica 2.01 False 558 2 10 69 0
smica 3.00 False 318 2 16 197 0
smica 3.00 True 11 1 3 7 0

Table 2: Part of the results table. Here, the three versions for the four algorithms have been filtered with a needlet B = 1.2 and j = 39.
Also, α is fixed to 0.01. The columns are as follows. Map: algorithm used to extract the cleaned temperature map. Version: data release
used, 2.01 corresponding to 2015 and 3.00 to 2018. Detections: number of candidates reported. Mask C: number of candidates outside the
common confidence mask (78% of the sky). Mask I: number of candidates outside the inpainting mask (98% of the sky). Cat: number of
candidates present in a catalogue. Cat C: number of candidates outside the common confidence mask that are present in a catalogue.

Map version inpainted j alpha detections mask C mask I
smica 3.00 False 38 0.01 169 1 6
smica 3.00 False 39 0.01 318 2 16
smica 3.00 False 40 0.01 744 5 79
smica 3.00 False 39 0.002 268 1 8
smica 3.00 False 39 0.01 318 2 16
smica 3.00 False 39 0.05 403 11 49

Table 3: Example of the behaviour of the results with j and α for the not-inpainted SMICA maps from the last data release. On the top,
varying j with fixed α. On the bottom, varying α with fixed j.

ported. With these values for α we are able to detect a
significant number of point sources introducing a low count
of false detection, as explored with simulations in Section
3.2.

4.1. Comparison between the different algorithms

We are now going to analyze the differences between
the results for the different algorithms used to extract the
CMB temperature map; we are also going to discuss the
version (data release of the map and whether it is inpainted
or not). We use the results for the parameters j = 39 and
α = 0.01 as the standard, but other choices lead to similar
trends.

SEVEM maps present the highest amount of point
sources for the 2015 version (7064). This number is re-
duced for the 2018 version of the map, with 5894 detec-
tions. In these two cases the Galactic component is strong
and produces a large number of detections in the Galactic
plane; indeed, only a small number of them (39 and 31, re-
spectively) are detected outside the confidence mask. As
mentioned before, we also analyze the inpainted map in
order to limit the influence of the Galactic contamination;
in this case, the overwhelming majority of the detections
are removed, only 3 remaining. None of these detections is
outside of the confidence mask: this means that the max-
ima population of the SEVEM inpainted map is compat-

ible with the purely Gaussian case outside the confidence
mask.

NILC maps present a lower amount of detections over-
all: 1222 and 1240 for the 2015 and 2018 versions, re-
spectively: again, only a very small part (6 and 8) are
outside the confidence mask. More interesting here is the
case of the inpainted map: this is the only case where the
algorithm does not report any detection, not even inside
the masks. Once the strongest point sources are removed
through inpainting, the maxima population of the NILC
map is perfectly compatible with the Gaussian case.

SMICA maps present the lowest number of detections:
558 and 318 for the 2015 and 2018 versions, respectively.
Of these detections, only 2 are outside the confidence mask
in both cases. The inpainted SMICA map present 11 de-
tections, a higher quantity that the previous algorithms;
of these, only one of them is located outside the confidence
mask. This source can be seen in Fig. 11.

COMMANDER maps present the highest number of
detections in the 2018 version (6335), although it was the
lowest for the 2015 version (55). This is probably due to
the fact that, in the last version, this is the only algorithm
that does not preprocess the frequency maps to remove
possible point sources. This produces a more robust pro-
cedure in exchange of a higher level of contamination. In-
deed, if we look at the inpainted map, where most of these
points are removed a posteriori, the number of detections
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Figure 11: Point source detected by the algorithm in the SMICA map. This point is located at galactic longitude l = 103◦18′ and galactic
latitude b = −27◦17′. The signal to noise ratio at the center is 3.01 in the CMB map and 5.84 in the filtered map. It has also been reported
in the COMMANDER map, where it has a signal to noise ratio at the center of 2.94 in the CMB map and 5.69 in the filtered map. The
image corresponds to a 3◦ × 3◦ patch of the sky.

is reduced to 70, only 1 of them located outside the confi-
dence mask. This point is the same that was reported in
the SMICA map, which can be seen in Fig. 11.

In general, we observe that the inpainting procedures
have worked extremely efficiently, and all four algorithms
seem basically without or with very few spurious maxima
(i.e., undetected point sources) after inpainting has been
implemented.

4.2. Reported point sources

We will close this section by studying the point sources
detected by the algorithm. It is interesting to know the
intensities of the detections: on the filtered (β) maps, they
have a signal of at least 5.4σβ . The signal of these points
before filtering, directly on the CMB maps, can be seen in
Fig. 12; there is not a clear cut on the intensity, since the
filtering is able to exploit their shape in order to boost the
detecting power.

As we mentioned before, there is a point source outside
of the confident mask that has been reported by the algo-
rithm both in the SMICA and COMMANDER maps (see
Fig. 11; it also corresponds to the green point in Fig. 12).
It can be observed that its shape and intensity are similar
to the ones expected from an astrophysical point source.
This point is located at galactic longitude l = 103◦18′

and galactic latitude b = −27◦17′ and, as the majority of
the detections, we have to note that this point does not
correspond to a source present in the Planck Catalogues
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Figure 12: Signal of the detections reported by the algorithm of the
impainted maps, measured on the (unfiltered) CMB maps, for each
of the four methods. In green, we have the detections outside the
confidence masks; in blue, detections outside the inpainting mask
but inside the common confidence mask; and in salmon, detections
within the inpainting mask.
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Figure 13: Region of the sky where the point source is detected, in
infrared (2MASS). The width of the image is 16′, while a pixel from
Planck is around 1.7′ wide. The center of the Planck pixel where the
maximum is detected is marked with a cyan cross.

of point sources. Identifying this possible source is not
straightforward, but looking at this region in an infrared
survey such as 2MASS (see Skrutskie et al., 2006), we find
a bright triplet of point sources within the pixel where the
maximum is detected, as it can be seen in 13.

5. Conclusions

We have implemented the STEM algorithm to extract
candidates point sources from a map, controlling the False
Discovery Rate. In order to do that, we have written a
code from scratch in Python 3, trying to make our pipeline
as flexible as possible, accepting a wide variety of parame-
ters as input. The code could be used to analyze maps even
outside the CMB framework. We have extensively tested
the code on CMB simulations, generated using HEALPix
and CAMB; we have then the ability to control the propor-
tion of False Detections and the power of the algorithm:
we recover most of the sources at intensities higher than 3
to 4 times the standard deviation of the map. Using simu-
lations again, we have tested the effect of noise and masks.
We have concluded that the effect of noise is largely negli-
gible, while masks can introduce some false maxima near
the boundary.

We have run the algorithm on a set of foreground cleaned
Planck CMB maps, including second and final data release
(2015 and 2018, respectively, see i.e., Planck Collaboration
IX 2016; Planck Collaboration IV 2018). For the final data
release, we have included both inpainted and not inpainted
maps (in all cases we focused on temperature anisotropy
maps.) We have observed that the inpainting procedure
adopted for the 2018 release seems to have produced maps
which are much closer to being purely Gaussian, with a
number of local maxima largely consistent with theoret-
ical predictions. This was not necessarily the case with
some of the earlier releases.

In this paper, we have only focuses on CMB tempera-
ture maps. However, these techniques can be readily ap-
plied to any kind of spherical map that we suspect to be
contaminated by point sources. In particular, we plan to
apply this algorithm to polarization maps, both for the E
and B modes. Likewise, this algorithm could be eventu-
ally applied to frequency maps, before they are combined
to obtain the temperature (or polarization) maps. In this
case, we have the additional problem of diffuse Galactic
radiation contaminating the background, plus all the pop-
ulation of physical point sources. Our aim is also to ap-
ply the algorithm to different frequency bands and then
combine the results to improve sensitivity; indeed, in this
paper we did not make any use of the spectral information
of the CMB observations.

Finally, we plan to make the code publicly available for
the whole scientific community. These and other issues are
the objects of ongoing work.
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