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Abstract

To study the quality of stellar spectra of the Large Sky Area Multi-Object Fiber
Spectroscopic Telescope (LAMOST) and the correctness of the corresponding
stellar parameters derived by the LASP (LAMOST Stellar Parameter Pipeline),
the outlier analysis method is applied to the archived AFGK stars in the fifth
data release (DR5) of LAMOST. The outlier factor is defined in order to sort
more than 3 million stellar spectra selected from the DR5 Stellar Parameter
catalog. We propose an improved Local Outlier Factor (LOF) method based on
Principal Component Analysis and Monte Carlo to enable the computation of
the LOF rankings for randomly picked sub-samples that are computed in parallel
by multiple computers, and finally to obtain the outlier ranking of each spec-
trum in the entire dataset. Totally 3,627 most outlier ranked spectra, around
one-thousandth of all spectra, are selected and clustered into 10 groups, and
the parameter density distribution of them conforms to the parameter distribu-
tion of LAMOST DR5, which suggests that in the whole parameter space the
probability of bad spectra is uniformly distributed. By cross-matching the 3,627
spectra with APOGEE, we obtain 122 common ones. The published parame-
ters calculated from LASP agree with APOGEE for the 122 spectra although
there are bad pixels or bad flux calibrations in them. On the other hand, some
outlier spectra show strong nebular contamination warning the corresponding
parameters should be carefully used. A catalog and a spectral atlas of all the
3,627 outliers can be found at the link http://paperdata.china-vo.org/LY_

paper/dr5Outlier/dr5Outlier_resource.zip.
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1. Introduction

With the increasing size and complexity of astronomical surveys, it is nec-
essary for astronomers to take advantage of the tools developed in the fields of
data science and machine learning(ML) for extracting and analysing information
from ongoing and future astronomical surveys [1]. Supervised ML algorithms
are usually used to detect or classify specified objects, and unsupervised ML
algorithms are often useful for seeking the internal relationship between high-
dimensional data and data clustering. Ball et al.(2010) provided a review of
data mining and machine learning in astronomy, with a conclusion that data
mining can be a powerful tool only if one carefully selects an appropriate algo-
rithm [2]. Meusinger et al.(2012) selected a sizeable sample of unusual quasars
using a method based on self-organizing maps and visual inspection of a huge
number of spectra [3]. Hu et al.(2020) applied the sparse PCA algorithm for
outlier detection according to the extracted variables and an optimal outlier
detection model was established in [4]. Logan et al.(2020) explored the use of
Random Forest and PCA as part of the pre-processing stage for feature selection
and dimensionality reduction to separate stars, galaxies and QSOs [5].

Multi-object spectroscopy such as The Large Sky Area Multi-Object Fibre
Spectroscopic Telescope (LAMOST) allows simultaneously observing hundreds
of thousands of celestial objects, and the big dataset generated provides us with
more opportunity to perform Galactic and extragalactic research. For exam-
ple, Wu et al.(2017) obtained precise ages of 6,940 red giant branch (RGB)
stars in the LAMOST-Kepler project ([6]; [7]; [8]). Ren et al.(2018) presented
the DR5 catalog of white dwarf-main sequence (WDMS) binaries from LAM-
OST [9]. Qian et al.(2019) detected spectroscopic binary or variable candidates
(SBVC) using the parameters released by LAMOST [10]. Liu et al.(2016) pro-
posed Fuzzy Large Margin and Minimum Ball Classification Model(FLM-MBC)
to accomplish the task of special celestial body exploration [11]. And Du et
al.(2016) developed a method combining a bipartite ranking model with boot-
strap aggregating techniques, and validated that the method is effective and less
time-consuming when searching for rare spectra in a large but unlabelled data
set [12]. Wang et al.(2016) proposed an outlier spectral data analysis method
using line index characteristics space, and experimental results demonstrated
that using line index as the characteristics value of spectrum one can quickly
perform the outlier data mining for high dimensional spectral data [13]. Wu et
al.(2019) proposed a method based on principal component analysis (PCA) and
the density peak approach to search special stellar spectra in low-S/N (signal to
noise ratio) stellar data [14]. Yang et al.(2020) designed a new lattice structure
named SVM-Lattice based of SVM (Support Vector Machine) and FCL (For-
mal Concept Lattice) that was applied in the recognition and evaluation of rare
spectra with double-peaked profiles [15].
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Although many valuable work has been done with LAMOST spectra and
parameters, the spectral specificity of these published parameters has not been
summarized. The scientific goal of this paper is to analyse the selected outlier
spectra and test the reliability of the released parameters corresponding to these
outlier spectra, so as to verify the applicability of LASP program.

In order to quickly find outlier spectra in millions of spectral data, we use
the PCA method to first reduce the dimension of the spectra in LAMOST DR5
having released parameters. Generally, there will be information loss in the pro-
cess of data dimension reduction. We prove in the method verification before
the overall work that the combination of different parameters can be used to
control the information loss and achieve the best statistical effect. Then we use
random sampling and multi-machine parallel methods to calculate the LOF,
obtain the cumulative sum of the local outlier factors of each work target, to
simulate the outlier factor of each target in the overall data set. Finally, the
outlier spectrum is obtained based on the outlier factor. Our method is a com-
bination design framework formed by the fusion of existing tools, defining and
designing around tasks. After dimension reduction, random sampling, outlier
factor calculation in independent area, multi-machine parallel processing, and
the integration of overall outlier factors, we can realize the rapid big data outlier
detection process.

The paper is organized as follows: in Section 2, LAMOST DR5 spectra
that are used in our work are introduced. In Section 3, we describe the main
methods used for data dimension reduction and outlier detection and two parts
of feasibility verification. The main work of applying the outlier analysis method
to the archived AFGK stars in LAMOST DR5 is described in Section 4 and the
result analysis is explained in Section 5. In Section 6, we give the conclusion.

2. The LAMOST DR5 Observations

The Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST)
is a Chinese national scientific research facility operated by the National Astro-
nomical Observatories, Chinese Academy of Sciences. LAMOST is equipped
with 16 spectrographs, each of which is fed by 250 fibres. It has a specially
designed Schmidt telescope with 4,000 fibres in a field of view of 20deg 2 in the
sky [16]. LAMOST began a five-year regular survey in 2012 September, which
includes the LAMOST ExtraGAlactic Survey (LEGAS) and the LAMOST Ex-
periment for Galactic Understanding and Exploration (LEGUE) [17]. The main
goal of the LEGUE is to obtain spectra of stars covering 9-17.8 mag (r band)
in the Milky Way. As Luo et al.(2012) shows that the raw stellar spectra are
first processed by the LAMOST 2D pipeline, and then LAMOST 1D pipeline
performs the spectral type classification and radial velocity measurements [18].

The LAMOST DR5 database contains spectra obtained in the pilot survey
and the first-five-years regular survey, among which there are 8,171,443 stellar
spectra. Along with the spectra, six LAMOST catalogs have been published in
DR5 as well including a stellar parameter catalog [19]. The objects published in
the stellar parameter catalog are A-, F-, G-, K- type stars having S/N in g band
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larger than 6 in dark nights, and larger than 15 in bright night. The catalog
provides the basic atmospheric physical parameters like effective temperature,
surface gravity and metallicity. In our work, we use spectra with published
parameters in the stellar parameter catalog to search for abnormal spectra, and
to study the quality of stellar spectra and the correctness of the corresponding
stellar parameters derived by LASP.

3. Main Methods and Feasibility Verification

According to the high dimensional characteristics of spectral data, we need
tools to perform dimension reduction, and Principal Component Analysis (ab-
breviated as PCA) is one of the applicable tools. In order to judge the outlier
degree of the spectrum, we can use the Local Outlier Factor (abbreviated as
LOF) method. In addition, we need to reduce the amount of data through qual-
ity control and stochastic simulation methods. So we propose an improved LOF
method based on PCA and Monte Carlo method which named as ILOFPM. In
this section the three basic methods and our new method are introduced before
two kinds of feasibility verification.

3.1. basic method 1: PCA

PCA method is a mathematical dimension reduction method that uses or-
thogonal transformation to convert a series of linearly related variables into a
group of new linearly uncorrelated variables called principal components, so as
to use the new variables to show the characteristics of the data in a smaller
dimension. In the work of transformation the selection of new coordinate axes
from the original space is closely related to the data itself. Among them, the
first new axis is the direction having the largest variance in original data. The
second new axis is the plane having the maximum variance orthogonal to the
first axis. The third axis is the plane having the largest variance which orthog-
onal to the first two axes. We find that most of the variance is contained in the
former K axes, while the latter is almost zero. Therefore, we can retain these K
coordinates having the vast majority of variance, ignoring the rest of the axes.

PCA algorithm based on eigenvalue decomposition covariance matrix can be
explained as following:

1.Initialization of the original matrix Xm∗n.
2.Calculate the covariance matrix Cov(X) of original matrix Xm∗n.
3.Find out the eigenvalues and eigenvectors of covariance matrix Cov(X).
4.The eigenvalues are sorted from large to small, and the largest K among

them are selected. Then the corresponding K eigenvectors are used as row
vector to form the eigenvector matrix P .

5.The original data is transformed into a new space constructed by K eigen-
vectors, Y = PX.

Scikit-learn (sklearn for short)1 is an open source machine learning library

1https://scikit-learn.org/stable/

4



that supports supervised and unsupervised learning. It also provides various
tools for model fitting, data preprocessing, model selection and evaluation, and
many other utilities. In scikit-learn, PCA is implemented as a transformer
object that trains data and gets n component though its fit method, and can
be used on new data to project on these components. The object also provides
the amount of variance explained by each of the selected components. How
many principal components do we need to limit by parameter n components
(which means the minimum percentage threshold for the sum of the variances
of the main components) in the transformer object of PCA? And how does
the interpretable variance of each principal component (explained variance
ratio) affect our work? These questions remain to be answered.

3.2. basic method 2: LOF

Outlier detection is generally used for anomaly detection, and it can be
applied to describe the anomaly characteristics in spectral data. Traditionally
the outlier detection is known as unsupervised anomaly detection. The Local
Outlier Factor (LOF) method is a perfect tool for detect outlier in spectral data,
and can be traced back to [20]. Here some definitions related to LOF are given
as follows:

Definition1. d(p, o) means the distance between two objects p and o.
Definition2. k-distance means k-distance of an object p, and it is defined as

the d(p, o) between p and an object o ∈ D when the two criteria are held that
(i) d(p, o

′
) ≤ d(p, o) for at least k objects o

′ ∈ D { x 6= p } , (ii) d(p, o
′
) < d(p, o)

for at least k − 1 objects o
′ ∈ D { x 6= p }.

Definition3. Nk(p) means k-distance neighborhood of an object p, and it
contains every object having a distance from p not greater than the k-distance,
including k-distance.

Definition4. reach-distancek(p, o) means the kth reachability distance of
object o to p and it equals to max { k-distance(o),d(p, o) }.

Definition5. lrdk(p) means local reachability density of p, it is defined as

lrdk(p) = |Nk(p)|∑
o∈Nk(p)

reach−distencek(p,o)
.

Definition 6. LOFk(p) means local outlier factor, it can be calculated by the

formula: LOFk(p) =

∑
o∈Nk(p)

lrdk(o)

lrdk(p)

|Nk(p)| . This ratio usually be used to compare

with a threshold that can distinguish outliers and non-outliers, and the threshold
generally varies with different parameters defined in LOF calculation, with the
default value 1. If the ratio is smaller than the threshold, it means that the
density of p is higher than that of its neighbourhood points, then p is a dense
point; if the ratio is higher, the density of p is less than that of its neighbourhood
points, and p is more likely to be an abnormal point.

For spectral data, we use the Local Outlier Factor as the outlier factor that
represents how unusual and rare a spectrum is compared with other spectra.
In detail, the scores obtained through LOF module in sklearn are used as key-
words for sorting our spectra. Based on experience, we use 35 as the value
of n neighbours in our work, and 10% as the contamination parameter (this
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parameter can help to set the proportion of outliers in the whole dataset) in
our main work. Using LOF method, researchers have found some spectra with
unusual continuum, some spectra having distinct characteristics like that of bi-
nary stars, emission stars, carbon stars and even some interesting spectra of
unknown type. For example, Tu et al.(2009) and Tu et al.(2010) applied a LOF
based outlier-detection algorithm to find out supernovae from the SDSS galaxy
spectra ([21]; [22]). Wei et al.(2013) proposed a novel outlier-mining method,
the Monte Carlo Local Outlier Factor (MCLOF), which was used to select out-
lier spectra from SDSS DR8, with a result of a total of 37,033 outlier spectra
[23].

3.3. basic method 3: MC

Monte Carlo (MC) method is a series algorithms that built on repeated ran-
dom sampling to resolve problems, which can be divided into two categories.
The problems in one category have intrinsic randomness and they can be simu-
lated randomly. The problems in another category can be resolved by estimating
characteristics of the whole sample using random sampling. We use Monte Carlo
method of random sampling to estimate the LOF values of every spectrum in
our dataset. In detail, we do the same operation repeatedly for all selections (we
randomly select a fixed scale portion of data at each time), that approximately
equivalent to operating in the whole dataset.

3.4. improved new method ILOFPM

We propose an Improved LOF based on PCA and MC (abbreviated as
ILOFPM) to obtain a kind of index to mark the degree of outlier for each
spectrum in our dataset and pick out the spectra that are highly outliers. The
ILOFPM method will be described in detail in the fourth section, and the special
steps of the ILOFPM algorithm are shown in Algorithm 1.

3.5. Feasibility Verification

Because of the diversity of spectral data outlier characteristics, we try to
carry out a variety of samples to verify the feasibility of the work. We verify the
feasibility of the work from two aspects of supervised learning and unsupervised
learning.

3.5.1. Means of Supervised Method

First we can prove our method by means of supervised method that utilize
the following information obtained by comparing the predicted labels with the
true labels. The information includes:
∗TP: true positive, a spectrum belonging to the outliers is classified as an

outlier.
∗TN: true negative, a spectrum not belonging to the outliers is classified as

a non-outlier.
∗FP: false positive, a spectrum not belonging to the outliers is classified as

an outlier.
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Algorithm 1 ILOFPM: Improved LOF based on PCA and MC

Input: A dataset containing above 3M spectra of high quality from LAMOST
DR5 with released parameters.
Output: Mean values of LOF for all spectra in the input dataset that can be
used as selection criteria for outlier spectra.
Begin:
1.Reduce the dimension of spectra in our input dataset using PCA method.
2.The following repetitive processes were performed on 17 computers in par-
allel:
repeat

3. For each script execution do
4. For every iteration during each script execution do
5. Random sampling to obtain a subsample.
6. Computing the values of LOF for every spectrum in the subsample.

7. Record the cumulative sum, subscript index and cumulative counts
of LOF values related to each item in the subsample.
8. Reclaiming the memory in time for helping the computers return to
idle state and get the temporary results.
9. Get the average values of LOF for spectra that have been selected in
this script execution.

until The average number of selections for all items in the dataset reaches
the threshold.
End
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∗FN: false negative, a spectrum belonging to the outliers is classified as a
non-outlier.

The metrics that we use in the supervised method are precision and recall:
Precision is proportion of correct positive predictions in all positive predic-

tions. In astronomy it is common to refer to precision as purity:
Precision= TP

TP+FP
Recall is proportion of truly positive predictions in all truly positive. In

astronomy it is common to refer to recall as completeness:
Recall= TP

TP+FN
The verification process of supervised learning method is as follows: We

select 30,792 spectra with S/N in g band greater than 50 and spectral type F5
in LAMOST DR5 and name this sample set as S1. There are 336 spectra in S1
selected as outliers having different spectral anomalies manually, and the ratio
of the outlier spectrum to the non-outlier spectrum is 0.011. We interpolate
all spectra in set S1 at every 1Å in the wavelength range of 3900 - 8900Å,
then all of the flux are standardized in a unified way and the normalization
formula is: fi = fi∑N

j=1
f2
i

. The numerator represents the flux value of each

interpolation sampling point, and the denominator is the sum of the squares
of the flux values of all sampling points in a spectrum. We set the parameter
contamination of LOF to 0.01, i.e. we select 1% of the spectrum as outliers
to verify the feasibility of the LOF method, and the parameter n neighbors is
set to 35 based on experience. We use Euclidean distances for near-neighbor
judgment between spectral data, so we set the parameter metric to ‘euclidean’.
The spectra selected as outliers using LOF generally have the properties such
as the flux values of some spectra suddenly change to 0 or abnormal values at a
certain wavelength point or a range of wavelengths, or some spectra have errors
or abnormal values at the splicing part of red end and blue end, which result in
the spectra appearing more different from those of the ordinary spectral type
F5. Through running LOF method on spectra in set S1, we get the recall 0.914
and the precision 1.0 which means that the LOF method can help distinguish
between outlier and non-outlier.

3.5.2. Means of Unsupervised Method

There is such a fact that we have no outlier labels or non-outlier labels for our
whole sample in hand. In addition there are many types of spectral data such
as A, F, G and K in the sample, and the number and morphology of different
types of spectra are diverse, so the unsupervised method is more suitable for
our work. We prove it from the following steps:

The first step, we select the same spectra of stars of spectral type F5 and
select other 382 spectra of quasars whose S/N in g band are greater than 10 in
LAMOST DR5, which make up our sample set S2. The spectra of quasars are
obviously different from that of stars of spectral type F5 in terms of spectral
energy distribution, spectra features like absorption lines and emission lines, so
they make up the most outlier part in S2. We experiment with S2 and compare
the outliers obtained by LOF after dimension reduction of different parame-
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ters, with the main purpose to determine the parameter n components of PCA
method in the case of diversity of the outliers. We run the same interpolation
and normalization processes for all spectra in set S2 like in S1. First, the LOF
method is used to calculate the outlier spectra directly for S2 with the same
parameter settings to S1 such as n neighbours, contamination and metric.
Second, we use PCA method to reduce the dimension of spectral data in S2
(by different n components 0.999, 0.99, 0.98, 0.97, 0.96, 0.95, 0.9 and 0.8) be-
fore we calculate the outliers. We can use n components to specify the number
of dimensions that are degraded to, when n components is an integer greater
than or equal to 1. The PCA method automatically determines the number of
dimensions, when n components is a decimal float between 0 and 1. The ratio
of the outliers obtained through PCA and LOF method to the outliers directly
obtained through LOF is shown in Figure 1 attaching the corresponding time
consumption in case of the parameters mentioned above. The horizontal axis
represents the current parameter n components, among which, number 1 repre-
sents the result of outlier obtained directly without using dimension reduction
method, and the parameter change from 0.999 to 0.8 is the minimum percentage
threshold of the sum of the variances for the components. The right vertical axis
shows all the results found after dimension reduction under different parame-
ters, presented as a percentage of the first result got directly without reduction,
and the values are displayed as orange dot in the figure. The left vertical axis
represents the time consumption of various processes, displayed as blue dots.
From Figure 1 we can conclude that different combinations of main components
affect the number of results and it can be seen that the results obtained by 0.98
has the advantage of larger number. What’s more, we get the following numbers
of main components corresponding to different n components: 990, 161, 72, 44,
32, 24, 8, 2, and the corresponding time consumption are: 305, 60 ,33 ,24 , 20,
18, 14, 13 (the unit of time is seconds). So we decide to use 0.98 as the value of
n components for PCA in the following work.

Then the second step, we will verify the influence of each principal compo-
nents of PCA on the outlier result. In the spectra of LAMOST DR5 which
have released parameter such as temperature, gravity and metallicity, we get a
prepared sample dataset PD (see 4.2.1 for details) and we use the three selec-
tion criteria which are explained in 4.2.1. And from the sample dataset PD we
select the top 20,000 spectra as a new spectra dataset named S3 to verify the
influence of different principal components of PCA on outlier detection. The
distribution of spectral type for S3 is shown in Figure 2. For dataset S3, we
carry out interpolation and standardization operations on each spectrum in the
same way we do for S1 and S2. By setting the parameter n components to
0.98, we run the fit function on dataset S3 to get the PCA model together with
12 principal components (see 4.2.2 for details) and the corresponding variance
contribution rate. In order to check the influence of each principal component
on the outlier detection, we use the variance contribution rates as the weights to
restrict the principal components and the outlier indices are calculated through
LOF method according to different weight setting strategies. Firstly, the weight
of the first principal component is set to 0, and the weights of other positions
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Figure 1: The ratios of the outliers obtained through PCA and LOF to the outliers directly
obtained through LOF without PCA, together with the corresponding time consumption.

are set to corresponding variance contribution rates, then the outlier spectra are
obtained through LOF method for this operation. Secondly, the weights of the
first and the second principal components are set to 0, and the other weights
of other positions are set to corresponding variance contribution rates, then we
get the outliers for the second operation. Such operations go on. Finally, only
the last weight is set to corresponding variance contribution rate and all the
others are set to 0, and we get the outliers for the last operation. So 11 different
variance weighted LOF calculations are performed totally, and 11 common parts
are obtained by comparing the outliers calculated by 11 variance weighted LOF
method with the outliers directly calculated by LOF without weight. Then 11
ratios are obtained by taking the number of the unweighted outliers as the de-
nominator and the number of the 11 common parts as the numerator, as shown
in Figure 3. On the horizontal axis, 0 to 10 indicate the weights setting strate-
gies of the first to the eleventh principal components. For example, 0 indicates
that the weight of the first principal component is set to 0. Number 1 indicates
that the weights of the first and the second principal components are set to
0 ...... and 10 represents the weights from the first to the eleventh principal
components are all set to 0 (only the last component position is left, which
getting the corresponding variance contribution rate as the weight). Values on
the vertical axis show the ratios of common parts of the outliers obtained under
weight setting strategies and the outliers obtained without weight setting. It
can be seen from the figure that most of the ratios of common parts are more
than 90%, and when only one principal component is left, the ratio drops to
about 89%. It shows that the influence of PCA method on the original data
in the direction of the obtained principal components is gradually reduced, but
the importance of these 12 principal components in our spectra data processing
can not be ignored. So we will use all the 12 principal components in our main
work.

Through the verification of dataset S1, S2 and S3, we can get the conclusion
that it is feasible to use PCA method to reduce the dimension of spectral data
and obtain the outlier spectra using LOF method on the dimension reduced
spectral data.
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Figure 2: The distribution of spetral type for all spectra in dataset S3 which be used to
train the PCA model in order to get the pricipal components and the corresponding variance
contribution rates.

Figure 3: 11 common parts are obtained by comparing the outliers calculated by 11 variance
weighted LOF method with the outliers directly calculated by LOF without weight. The
figure shows 11 ratios that are obtained by taking the number of the unweighted outliers as
the denominator and the number of the 11 common parts as the numerator.
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4. Application of our method in LAMOST DR5

In this section, we will introduce our main work of applying the outlier
analysis method to the archived AFGK stars in LAMOST DR5, in order to study
the quality of LAMOST stellar spectra and the correctness of the corresponding
stellar parameters derived by the LASP (these parameters include: T eff , log
g, [Fe/H], radial velocities (RV)) ([24]; [25]). The outlier factor is defined in
order to rank more than 3 million stellar spectra selecting from the DR5 Stellar
Parameter catalog. Our method is computed in parallel by multiple computers,
and we obtain the ranking of each spectrum in the entire dataset. Then the top
10% of the spectra with the high outlier are used to decide a LOF cut and we
get an outlier spectra dataset for further research.

4.1. Data sample and spectral processing

In this study, we download spectra in LAMOST DR5 which have released
parameters such as temperature, gravity and metallicity, and our whole dataset
has 5,349,401 independent spectra noted as dataset AD. And the spectra in
dataset AD belongs to the A,F,G and K type star catalog of LAMOST DR5
as mentioned in 2. The spectra of LAMOST have a wavelength range of 3650-
9000Å and a resolution power R ∼ 1800. According to LAMOST DR5 release
document, the value of flag “ormask” equalling 0 represents the corresponding
sampling point in a spectrum having good quality. And we only select spectra
that there are more than 2

3 good quality sampling points of the total in each
spectrum. After cutting the spectral data in dataset AD with the criteria we
obtain 3,134,236 spectra of high quality with released parameters from LAM-
OST DR5, that is the spectral dataset for our main work. Next we remove the
sampling points not belong in the wavelength range between 3900Å and 8900Å
in each spectrum, and all the spectra are interpolated to 3900-8900Å to obtain
the corresponding flux with step of 1Å. And then all of the flux are standard-
ized in a unified way and the normalization formula used is: fi = fi∑N

j=1
f2
i

as

3.5. We have verified the feasibility of PCA and LOF method in the above part
3.5. So we use the PCA method to reduce the dimension of spectral data from
LAMOST and the outlier indices are calculated by LOF method for outlier de-
tection, with the aim to analyse the particularity of the outlier spectra and the
reliability of their parameters more comprehensively.

4.2. Data Dimensional Reduction

As explained in 3.1, scikit-learn provides various tools supporting supervised
and unsupervised learning, and PCA2 is one effective data dimension reduction
tool. For our dataset in LAMOST DR5, we first select 26,197 spectra from the
whole dataset for PCA tool, second the fit method is run to get the PCA model
and n principal components, then we apply the obtained model to the overall

2https://scikit-learn.org/stable/modules/decomposition.html
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Figure 4: The left figure is the distribution of three main parameters, temperature, log gravity
and metallicity of the whole dataset in LAMOST DR5 which has 5,349,401 independent
spectra. And the right one is distribution of three main parameters of the randomly selected
sample dataset PD containing 26,197 spectra used for training PCA, and this figure shows
similar distribution as the whole dataset of the left figure.

dataset, that is, all the spectra are projected to the principal components, and
the dimensionality reduction is completed.

4.2.1. Prepare for PCA

In the part of preparing for PCA, we tentatively select 30,000 spectra from
our dataset AD randomly, and carry on the selection criteria for these spectra
including three steps as following:

(1) The mean S/N of each spectrum must be not less than 30.

(2) The selected spectra must have no negative flux value.

(3) There are more than 2
3 good quality sampling points of the total in each

spectrum.

After screening through the three selection criteria we get 26,197 spectra com-
posing a sample dataset which named as PD. After normalization of the flux
we get prepared for data reduction process of PCA method. The distribu-
tions of three main parameters, temperature, log gravity and metallicity of the
whole dataset of LAMOST DR5 and of the selected sample PD are explained
in Figure 4. The two figures show that they have similar distribution on the
three parameters, which proves that the data sample we selected is an effective
representative of the overall data sample. Figure 5 shows the distribution of log
gravity vs temperature (called Hertzsprung-Russell diagram, short for HRD) of
the selected sample, and the distribution locations of our selected spectra in
the HR diagram shows that the sample includes the spectra of stars of various
evolution stages, which proves the validity of the sample again.

4.2.2. Process of PCA

In the step for our spectral dimension reduction, the prepared spectra got in
the first step are used to train PCA model. As we explain in 3.5 that both the
time consumption and the ratio of outliers have good statistical performance
when parameter is set to 0.98. So by setting the n components to 0.98, we run
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Figure 5: HRD for the selected sample dataset PD shows the distribution of log gravity
vs temperature of the selected spectra. We can see from it that the selected sample dataset
includes spectra of stars of various evolution stages.

Figure 6: The 12 principal components obtained after training the 26,197 spectra in the
selected sample dataset to get PCA model, all of which will be used to reduce the dimension
of the spectra in LAMOST DR5.

the fit method to get the PCA model and in this process we get 12 principal
components. This number is smaller than the number of principal components
obtained in the verification section of the first part of 3.5, because that the data
objects used to train the PCA model are different in the two parts. Also in
the second part of 3.5 we explain that the importance of all these 12 principal
components in our spectra data processing can not be ignored. Thus we use
the 12 principal components to retain the characteristics that best reflect the
individual differences of the spectra, thus we reduce the dimension of our data
from several thousand to 12. The 12 principal components obtained are shown
in Figure 6. As mentioned above, we carry out quality control process by cut-
ting the spectral data in dataset AD commended in 4.1 and we get 3,134,236
normalized spectra with released parameters from LAMOST DR5. Next we
apply the obtained PCA model to these spectra and transform them into 12 di-
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mensions. Thus we get our dimension reduced dataset named as set RD which
contains 3,134,236 items. In the following part, we will pick out outlier spectra
from dataset RD.

4.3. Outlier selecting using LOF

In this part we will select outlier spectra with abnormal characteristic from
the dataset RD using LOF method.

4.3.1. Local Outlier Factor

As we explain in 3.5, the LOF method can be applied to describe the ab-
normally of a spectrum in spectral data and we prove that it is credible to
use LOF method in spectra for outlier detection. When using LOF method, a
threshold is critical for generating the outlier factor based on a certain distance
definition. And the threshold be controlled by the contamination parameter,
through which we can set the proportion of outliers in our whole dataset. In
detail, we use Local Outlier Factor method (or LOF) from sklearn 3 to pick out
outliers in our dataset. For preliminary outlier analysis, we try to pick out the
top 10 percent with the highest outlier score in dataset RD, that means we set
the contamination a value 0.1.

Next we will introduce the process of ILOFPM (Improved LOF based on
PCA and MC ).

4.3.2. Process of ILOFPM

In 4.2 we have got our reduced dataset RD through quality controlling cut
and PCA execution. Another method, Monte Carlo, is used to achieve multiple
random sampling, simulating the case of overall data participating in operation.
For our dimension reduced dataset RD from LAMOST DR5, we use random
sampling to obtain a sub sample with size 90,000 each time. We calculate the
values of LOF in one sub sample, and store the values for every sample along
with its index belonging to the total reduced dataset RD. The third item
we need to store is the count number for every index. During the process of
repeating these operations on the same computer, if one index appears first
time, we store the count value 1 and the result of outlier factor for it, and when
one index appears twice or more time, we add the corresponding count numbers
and get the sum value of outlier factor for each index. After 10 repetitions of
execution, we get temporary results to save and finish the program to make
the machine return to idle state. We script the 10 repetitions and execute
them repeatedly on one machine each time. The reason to end a program after
running a script is to enable the computer to reclaim memory in time and
return to idle state, so it can maintain the same high efficiency when running
the script program again. Even though the method of repeatedly executing
the LOF to save temporary results and ending the program in time can make

3https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.
LocalOutlierFactor.html
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Figure 7: Distribution of the average number of selection for the reduced dataset and all the
selection numbers are greater than 900 and less than 1,140.

the program execute smoothly in script form, the time consumption on one
machine is too much and can not meet our work needs. So we come up with
another way to help speed up, that is to use multiple machines to take out
the script process at the same time, thus we can achieve our goal faster. We
use another 16 machines copying script files to them, and execute scripts 200
times on each machine manually, so we make 17 machines perform random
sampling of LOF process at the same time. When the script execution process
on the other 16 machines is over, we terminate the script execution on the
first machine. The script on the first machine has run 350 times successfully
and gets the corresponding intermediate result of 350 times. Thus the average
number of selection for every one in dataset RD can be derived from formula
(200 ∗ 10 ∗ 16 + 350 ∗ 10) ∗ 90000/3134236, and the result is about 1,019. We
obtain the mean outlier factor of every spectra in set RD using all results from
the 17 machines. All the above processes are called Improved LOF method
based on PCA and MC, or ILOFPM briefly. The distribution of the average
selection numbers for the reduced dataset RD is shown in Figure 7, and it can
be found that the selection numbers are greater than 900 and less than 1,140.
Figure 8 shows all the outlier factor values for our reduced dataset RD resulted
from 17 machine after the process of ILOFPM.

As we point out in 4.3.1 that we try to pick out the top 10 percent of
all dataset and we assign the contamination parameter a value 0.1, and after
cutting with that parameter we get the threshold at about 1.289. Those having
outlier factor values not less than the threshold are defined as outliers dataset
and the rest are ordinary dataset. We get 313,424 outliers at all and give them
the name OD. Next, we will go on the study of outlier spectra in set OD in
order to analyze the particularity of them.

5. Result analysis

In this part, we first make an overall evaluation of those spectra defined
as outliers, including comparison of the basic atmospheric physical parameters,
S/N and RV released from LAMOST DR5 between outlier and other ordinary
spectra. The mean values of S/N of outliers is lower than the ordinary spec-
tra, and the standard deviation of outliers RV is a little larger than that of
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Figure 8: All the LOF values for the reduced dataset resulted from 17 machine after process
of ILOFMC.

the ordinary. Then, according to the cumulative function graph of the sorted
values of LOF, we intercept the highest part of outliers which have the highest
sorted value of LOF. Using these outliers we compare the parameters of com-
mon stars from crossing match with APOGEE. The result show that the stellar
parameters of them are mostly corrected according to external comparison even
the spectra have lots of bad pixels or bad flux calibrations, which means the
LASP has good adaptability. Then, we divide these most outlier spectra into 10
clusters according to different spectral specificity. And the distributions of the
parameters of the 10 groups in the parameter grid of LAMOST DR5 empirical
library are used to analyse the properties of the outlier spectra.

5.1. Comparison between outliers and the ordinary

In order to test the validity of the selected outlier spectra in dataset OD,
we compare the properties of outlier spectra with those of the ordinary spectra.
First we compare the basic atmospheric physical parameters (effective temper-
ature, surface gravity and metallicity) of outliers to the ordinary spectra, which
is shown in Figure 9. Second is the comparison of S/N, and from Figure 10
we can see that the S/N of outliers are much lower than the ordinary ones in a
whole, and the mean values of S/N for outliers and the ordinary are 64.1 and
91.8 respectively. Next the comparison of RV between outliers and the ordi-
nary is shown in Figure 11. Under the same calculation accuracy of LAMOST
pipeline, we can find the standard deviation of outliers’ RV is a little larger than
that of the ordinary. Through the analysis of the nature of the outlier spectra,
we found that the outlier spectra found using our method are validate.

5.2. LOF cut for highlight particularity

We have proved the validity of the outlier spectra we pick out, and that en-
sures we can select more representative special spectra to study the relationship
between outliers and parameters. So, in order to get a sub sample with the most
highlight particularity, we make the LOF cut process using a criterion applied
to our outlier dataset OD using the cumulative distribution function (CDF for
short). In detail, we get a new cut criterion by making a new threshold from
second derivative of the CDF curve.
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Figure 9: Comparison of basic atmospheric physical parameters of Outliers (313,424 spectra)
and the Ordinary (2,820,812 spectra). Those having values of LOF not less than the threshold
are defined as outliers and the rest are ordinary.

Figure 10: Comparison of S/N of Outliers (313,424 spectra) and the Ordinary (2,820,812
spectra), and the numbers of respective bins are 40 and 60. And the mean values of S/N for
outliers and the rest are displayed at the bottom right of the figure.

Figure 11: The comparison of parameter RV released from LAMOST DR5 for outliers and
the Ordinary, and the numbers of bins are 50 and 100 respectively. We can find the standard
deviation of outliers’ RV is a little larger than that of the rest.
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In probability theory and statistics, the CDF of a real-valued random vari-
able X, is the probability that X will take a value less than or equal to x,
evaluated at x. If we consider the LOF values of outlier as a continuous random
variable, its cumulative distribution curve is monotonically increasing. With
the increase of LOF values, the CDF value tends to 1 (100%), thus we use
a polynomial function to fit the curve and the first derivative and the second
derivative can be used to obtain the intercept point. We calculate the second
derivative and find a point for the LOF values, that the mathematical symbols
of the second derivative of the points in front of it is different from those of the
points after it. This shows that the slope of the function curve at this point (the
first derivative) has the maximum rate of change. So we take this point as the
inflection point of the CDF function, that is, our intercept point. The intercept
point locates at LOF value of 3.01939, which gives us 3,627 most outlier spectra
as our special sub sample. In the following part we give a new name to those
3,627 most outlier spectra, sample MO, to make further research.

5.2.1. Parameters comparison with APOGEE

It is generally believed that the higher the spectral resolution, the higher the
accuracy of the parameters. We decided to cross-compare the outlier spectrum
with APOGEE to study the properties of the outlier spectrum. As Jönsson
pointed out that the Apache Point Observatory Galactic Evolution Experi-
ment (APOGEE) was originally an infrared stellar spectroscopic survey within
Sloat Digital Sky Survey (SDSS)-III ([26]; [27]; [28]). APOGEE DR16 includes
about 430,000 spectra for stars having high-resolution (R 22,500) , near-infrared
(1.514-1.694µm), and it covers both the northern and the southern sky provid-
ing stellar parameters and chemical abundances of up to 26 species [26]. Using
a maximum radius of 3 arcsec, we cross the sample MO with APOGEE and get
122 common spectra to analysis the three basic physical parameters: T eff , log
g, and [Fe/H]. In our work each spectrum is treated as an independent observa-
tion, and we show the comparison of the released parameters of these common
spectra in Figure 12. The left, centre and right sub figures show the T eff plane,
the log g plane and the [Fe/H] plane respectively. The parameters from LASP
are shown along the x-axis and the parameters from APOGEE along the y-axis,
with cyan error bar representing the uncertainty of parameters. The results of
the three experiments show that the parameters of our outlier spectra obtained
by LASP are in agreement with APOGEE on the whole, except for a few which
deviate far from the 1:1 line. We further analyse the spectra with deviation of
greater than 2 times of variance for each parameter that are marked with red
boxes in the figure. We find that the larger parameter deviation is due to the
bad points in the spectrum, which may cause errors in the parameter estima-
tion of LASP (LASP derive the stellar parameters via minimizing the squared
difference between the observations and the model in the range 4400-6800Å,
which is illustrated in [25]). For example, the spectrum marked with a gray
circle in the three sub figures has the largest deviation in all three parameter,
and this spectrum (LAMOST J030136.37-000922.6) has abnormal flux values
in the range 4700-5200Å. For details of the comprehensive comparison between
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Figure 12: The comparison between released parameters generated from LASP and the
parameters from APOGEE for the common spectra in MO. The solid oblique line represents
1:1.

APOGEE and LAMOST, one can refer to [29].

5.2.2. Clustering for the outliers sample MO

In order to better explain the properties of the most outlier spectra, we
divide the sample MO into 10 clusters and carry out spectral analysis for each
cluster. K-means clustering is used in this part, and it is a method of clustering
analysis that aims to divide all samples into k clusters and each sample belong
to one single cluster, objects in the same cluster being similar to each other. The
number of clusters needs to be specified before operating the traditional method
K-means. For the purpose of analysing the characteristics of the most outlier
spectra with different outlier morphology and specific properties, firstly we apply
the classical K-means clustering method and appoint the number of clusters
k=50 to the sample MO. According to the prior knowledge of the continuous
spectrum and spectral lines of the spectra, by defining the number of 50 clusters,
spectra in sample MO can be divided into sufficient clusters based on the details
of spectral differences. Some spectral fluxes may suddenly change to zero or
invalid value on different wavelength range. Another phenomenon can form
long or short emission lines, and the span may be only a few angstroms or even
reach more than half the wavelength range of the whole spectrum. Only when
the spectra are divided into sufficient number of clusters, can we combine these
differences and analyse them comprehensively according to the prior knowledge
of astronomical spectra. After merging similar clusters manually we classify
sample MO into 10 groups finally. For example, spectra that contain a small
number of bad points of flux values are grouped together, no matter which
wavelength range these points are in. Detailed description of those groups are
shown as below:

(1) Group 1 of flux having many bad points.
The outlier spectra in this group have such characteristics that the fluxes
at some wavelength points suddenly become zeros or abnormal values.
These zeros or abnormal values can be renamed as bad points in the flux
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of a spectrum, and the wave band length of the part with bad points of the
flux is more than 200 angstroms for every spectrum in this group. There
are 203 spectra in this group, and according to general coding habits the
number starts from 0 in our catalog.

(2) Group 2 of flux having fewer bad points.
Being similar to Group1, the fluxes at some wavelength points suddenly
becomes zeros or abnormal values for spectrum in this group. But the
wave band length of the part with bad points of the flux is less than 200
angstroms for every spectrum in this group. There are 426 spectra in
Group 2.

(3) Group 3 of flux having false emission lines.
In this group the fluxes of a spectrum suddenly become very strong at
certain wave points. At first glance, the strong fluxes look like emission
lines. Only by careful observation can we find that these sudden strong
flow points are abnormal values in a flux, and we also call them bad points.
The number of items in this group is 963.

(4) Group 4 of flux having anomalies caused by stray light pollution.
There are 823 spectra in sample MO that the continuum of spectrum is
slightly convex like a small hill at roughly wavelength range 5400-5500Å,
and they are classified into Group 4. We carefully check out these spectra
and find that all of them are observation output of the telescope on just
the same day. This phenomenon should be caused by stray light pollution
in the sky.

(5) Group 5 of flux showing nebular contamination.
Group 5 includes 189 spectra totally and all of them show strong neb-
ular characteristics, including stellar formation region (HII), supernova
remnant (SNR), and planet nebular (PNe). We try to spectroscopically
classify them with an emission-line diagnostic criterion based on
log([SII]λ6718, 6732/Hα) and log([NII]λ6585/Hα), Using the following

equation: log( [SII]
Hα ) ≥ 0.63log( [NII]

Hα ) − 0.55 ([30]; [31]; [32]). Figure 13
shows the classification of these spectra having nebular characteristics got
using their spectral line ratios.

(6) Group 6 of flux having bad points in the region of wrongly connection
between blue and red bands.
For the spectra in this group there are bad flux values in the region of
wrongly connection between blue and red bands. And Group 6 contains
669 spectra.

(7) Group 7 of normal spectra.
This group include 44 normal spectra such as 13 A type stars, and this
is explicable. Our analysis method is applied to the dataset of archived
AFGK stars in LAMOST DR5, and the A stars in the dataset only include
late types which occupy 1.73% of the total dataset. Thus late A type stars
may be picked out as outliers.

(8) Group 8 of spectra having continuum anomalies.
The red band of 38 spectra in this group are seriously reddening, and
there are 78.95% of the stars corresponding to them are located within
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Figure 13: Spectra in Group 5 show strong nebular characteristics of HII, SNR or PN, and
all the spectra are classified according to their spectral line ratio. The solid line represents
the separator of HII/PNe.

±30 degrees of the Galactic latitude of the celestial coordinate system
(according to [33], there are variations of reddening between different stars
especially at low Galactic latitudes). For the other 21 spectra, the shape
of continuous spectrum is abnormal may due to bad flux calibrations.
Perhaps some spectrum of peculiar stars may be found in this group.

(9) Group 9 of flux having bad points in the red band only.
The spectra in this group exhibit similar characteristics, that is, the flux
in the blue band of the spectrum is normal value, while the flux in the red
band is obviously abnormal. There are 118 spectra in this group.

(10) Group 10 of flux with bad points in the blue band only.
The red band of the spectrum in this group is normal, while the blue
band has obvious continuum anomalies. And the amount of spectra in
this group is 133.

5.2.3. Distribution of MO in LAMOST empirical library parameter space

Du et al.(2019) presented an empirical stellar spectra library using spectra
of LAMOST DR5, containing a uniform dataset in which T eff range from 3750
to 8500 K , log g from 0 to 5.0 dex, and [Fe/H] from -2.5 to +1.0 dex [34]. The
full wavelength coverage of this empirical library is from 3800-8900Å. Figure 14
shows the distribution of published parameters of our most outlier spectra in
MO in the parameter space of the empirical library. We show the parameters
according to our grouping of MO explained in 5.2.2, each row showing two
groups and each group having the same foreground colour. For each group the
left and right sub figures show the T eff -log g plane and the T eff -[Fe/H] plane
respectively, and the name of the group is marked at the end of the y-axis title
of each sub picture, enclosed in square brackets. The background of the gray
gradient represents the density distribution of the library parameters, and the
points of different foreground colour indicate the parameter distribution of our
outlier spectra. Most of the published parameters of our outlier spectra fall
within the parameter grid of the library spectra, and the density distribution
also conforms to the distribution trend of the library spectra. Group 3, Group
7, Group 8 and Group 9 are more consistent examples. The spectral false
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emission lines in Group 3 are masked out when processed by LASP, so the
parameter results are good. Group 7 contains normal spectra so they make
good agree. From Group 8 we can find that spectral continuum anomalies such
as reddening have little effect on LASP. LASP mainly relies on the blue band
for parameter estimation as explained in 5.2.1, so the red band anomaly has
less impact, that’s the fact of Group 9. While Group 1, Group 2, Group 4 and
Group 10 have a low degree of conformity with the parameter grid. Group 1
has the lowest degree of coincidence. The point at the top left corner of the
left sub picture and the point at the top right corner of the right sub picture of
Group 1 represents the same spectrum of LAMOST J065309.31+252943.7, and
the abnormal flux values in 5000-5700Å of the spectrum lead to large deviation
of the estimated parameters. The band range occupied by bad points in Group
2 is smaller than that in Group 1, which also affects the parameter estimation.
The convexities at the blue band of the spectrum in Group 4 may cause some
metal poor misjudgements, as shown in the lower left corner of the right sub
picture. The blue band has obvious continuum anomalies in some bands of
Group 10, so the parameter estimation are also affected.

6. Conclusion

In this work, we download 5,349,401 spectra in LAMOST DR5 which have
released parameters such as temperature, gravity and metallicity, and we only
select spectra that containing more than 2

3 good quality sampling points which
remain 3,134,236 spectra. Next we use the PCA method to reduce the dimension
of these spectra and their outlier factors are calculated by LOF method for
outlier detection. According to the outlier factors we first pick out 313,424
(the top 10 percent of 3,134,236) outlier spectra to find that the parameters of
outlier spectra have acceptable deviation compared with the ordinary spectra.
Second we get 3,627 most outlier spectra (dataset MO) using a new cut on the
outlier factors (threshold of LOF value 3.01939) to make further research. We
cross MO with APOGEE getting 122 common spectra and after comparison we
get the conclusion that the parameters of our most outlier spectra obtained by
LASP are in agreement with APOGEE on the whole. Meanwhile, we also find
that the larger parameter deviation is due to the bad points in the spectrum,
which may cause errors in the parameter estimation of LASP. Then we classify
all spectra in MO into 10 groups using method based on K-means and give detail
description of those groups. We also find that most of the published parameters
of MO fall within the parameter grid of the LAMOST DR5 empirical library,
and the density distribution also conforms to the distribution trend.

To sum up, the result of our work shows that most of the stellar parameters
are mostly corrected according to external comparison even the spectra have
lots of bad pixels or bad flux calibrations, which means the LASP has good
adaptability. On the other hand, some outlier spectra show strong nebular
contamination and the corresponding parameters should be carefully used. We
provide a catalog and an atlas in electronic form in the online version of all
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Figure 14: The distribution of published parameters of 10 groups of MO in the parameter
space of the LAMOST DR5 empirical library, each row showing two groups and the name
of the group is marked at the end of the y-axis title of each sub picture, enclosed in square
brackets. The background of the gray gradient represents the density distribution of the
template parameters, and the points of different foreground colours indicate the parameter
distribution of our outlier spectra.
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the 3,627 outlier spectra. The catalogue contains coordinates, names and group
information that shown in Table 1, and the atlas includes pictures of them.

Table 1: catalog of 3627 outlier spectra
RA DEC FILENAME GROUP

292.17819 41.149151 spec-57307-KP192102N424113V03 sp07-153.fits 2
57.855423 1.550066 spec-56219-EG035637N030328B01 sp02-038.fits 2
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[30] H. Riesgo-Tirado, J. A. López, Diagnostic Diagrams of Electron Density
Versus Excitation for Planetary Nebulae, in: W. J. Henney, J. Franco,
M. Martos (Eds.), Revista Mexicana de Astronomia y Astrofisica Con-
ference Series, Vol. 12 of Revista Mexicana de Astronomia y Astrofisica
Conference Series, 2002, pp. 174–174.

[31] L. Magrini, M. Perinotto, R. L. M. Corradi, A. Mampaso, Spectroscopy of
planetary nebulae in M 33, Astronomy and Astrophysics 400 (2003) 511–
520. arXiv:astro-ph/0301129, doi:10.1051/0004-6361:20030031.

[32] A. Y. Kniazev, S. A. Pustilnik, D. B. Zucker, Spectroscopy of two PN
candidates in IC10, Monthly Notices of the Royal Astronomical Society
384 (3) (2008) 1045–1052. arXiv:0707.4285, doi:10.1111/j.1365-2966.
2007.12540.x.

28

https://doi.org/10.1088%2F1674-4527%2F11%2F8%2F006
https://doi.org/10.1088%2F1674-4527%2F11%2F8%2F006
https://doi.org/10.1088%2F1674-4527%2F11%2F8%2F006
http://dx.doi.org/10.1088/1674-4527/11/8/006
https://doi.org/10.1088%2F1674-4527%2F11%2F8%2F006
https://doi.org/10.1088%2F1674-4527%2F15%2F8%2F002
https://doi.org/10.1088%2F1674-4527%2F15%2F8%2F002
http://dx.doi.org/10.1088/1674-4527/15/8/002
https://doi.org/10.1088%2F1674-4527%2F15%2F8%2F002
http://arxiv.org/abs/2007.05537
http://dx.doi.org/10.3847/1538-3881/aba592
http://dx.doi.org/10.3847/1538-3881/aba592
http://arxiv.org/abs/1509.05420
http://arxiv.org/abs/1509.05420
http://dx.doi.org/10.3847/1538-3881/aa784d
http://arxiv.org/abs/1101.1529
http://dx.doi.org/10.1088/0004-6256/142/3/72
http://arxiv.org/abs/1807.07625
http://dx.doi.org/10.1051/0004-6361/201833387
http://dx.doi.org/10.1051/0004-6361/201833387
http://arxiv.org/abs/astro-ph/0301129
http://dx.doi.org/10.1051/0004-6361:20030031
http://arxiv.org/abs/0707.4285
http://dx.doi.org/10.1111/j.1365-2966.2007.12540.x
http://dx.doi.org/10.1111/j.1365-2966.2007.12540.x


[33] B. Du, A. L. Luo, X. Kong, J.-N. Zhang, Y.-X. Guo, N. J. Cook, W. Hou,
H.-F. Yang, Y.-B. Li, Y.-H. Song, J.-J. Chen, F. Zuo, K.-F. Wu, M.-X.
Wang, Y. Wu, Y.-F. Wang, Y.-H. Zhao, LAMOST Spectrograph Response
Curves: Stability and Application to Flux Calibration, The Astrophysical
Journal Supplement Series 227 (2) (2016) 27. arXiv:1611.08216, doi:

10.3847/1538-4365/227/2/27.

[34] B. Du, A. L. Luo, F. Zuo, e. a. Bai, Z. R., An Empirical Template Library
for FGK and Late-type A Stars Using LAMOST Observed Spectra, The
Astrophysical Journal Supplement Series 240 (1) (2019) 10. arXiv:1811.

00365, doi:10.3847/1538-4365/aaef3c.

29

http://arxiv.org/abs/1611.08216
http://dx.doi.org/10.3847/1538-4365/227/2/27
http://dx.doi.org/10.3847/1538-4365/227/2/27
http://arxiv.org/abs/1811.00365
http://arxiv.org/abs/1811.00365
http://dx.doi.org/10.3847/1538-4365/aaef3c

	1 Introduction
	2 The LAMOST DR5 Observations
	3 Main Methods and Feasibility Verification
	3.1 basic method 1: PCA
	3.2 basic method 2: LOF
	3.3 basic method 3: MC
	3.4 improved new method ILOFPM
	3.5 Feasibility Verification
	3.5.1 Means of Supervised Method
	3.5.2 Means of Unsupervised Method


	4 Application of our method in LAMOST DR5
	4.1 Data sample and spectral processing
	4.2 Data Dimensional Reduction
	4.2.1 Prepare for PCA
	4.2.2 Process of PCA

	4.3 Outlier selecting using LOF
	4.3.1 Local Outlier Factor
	4.3.2 Process of ILOFPM


	5 Result analysis
	5.1 Comparison between outliers and the ordinary
	5.2 LOF cut for highlight particularity
	5.2.1 Parameters comparison with APOGEE
	5.2.2 Clustering for the outliers sample MO
	5.2.3 Distribution of MO in LAMOST empirical library parameter space


	6 Conclusion

