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Abstract

The Square Kilometre Array (SKA) project is an international cooperation
project to build the largest radio telescope worldwide. Data processing is one of
the biggest challenges of building the SKA telescope. As a distributed execution
framework, the Data Activated Liu Graph Engine (DALiuGE) was proposed to
be one of the candidates for addressing the massive data of the SKA. DALiuGE
has many distinctive features, but its actual ability to handle scientific data is
still not evident. In this paper, we perform an objective evaluation of the us-
ability of DALiuGE concerning the execution performance, developer workload,
and implementation difficulty of porting the SAGECal to DALiuGE. The evalu-
ation results showed that the DALiuGE enables fast integration of astronomical
software, but there are significant differences in the efficiency of different paral-
lel granularities. Even with the deep optimization of the program, there is still
a gap between the current DALiuGE and the traditional MPI in execution per-
formance. Therefore, we come to a preliminary conclusion that the DALiuGE
has no performance advantage in batch processing of massive data, while it may
be more suitable for application scenarios with more customized computational
tasks, such as SKA science regional centers.

Keywords: Square Kilometre Array, SAGECal, DALiuGE, MPI, Distributed

execution framework

1. Introduction

The Square Kilometre Array (SKA) project[I] 2] is an international effort to
build the world’s largest radio telescope proposed to be built in Australia and
South Africa. As a radio interferometer with 197 mid-frequency dishes and up to
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512 stations ( 131072 low-frequency antennas), the SKA brings huge challenges
in both engineering and scientific research towards building and delivering a
unique instrument.

The Science Data Processor (SDP) for the SKA is the essential parts of the
SKA telescope that in charge of generating final scientific level data. An updated
system sizing estimate revealed the computational loads for 13.6 PFLOPS for
the SKA1-Low high-priority science objectives (HPSOs) and 11.5 PFLOPS for
SKA1-Mid[3] [ 5 [6].

The Data Activated Liu Graph Engine (DALiuGE), a generic, data-driven
execution framework, is developed for processing large astronomical datasets [7].
Drop is basic idea of the DALiuGE and is representation of applications and
data, AppDrop and DataDrop respectively. The DALiuGE includes an interface
for expressing complex data-reduction pipelines consisting of data sets, algo-
rithmic components and a run-time implementation to execute such pipelines
on distributed resources. The full SKA scale testing of the DALiuGE proved
that the DALiuGE owns a series of distinctive advantages[7].

However, many system architecture experts urgently demand to test the
DALiuGE in more detail in order to have a more reasonable and fair analysis
of the applicability for the final SKA data processing. In recent years, novel
parallel and distributed computing models are proposed, reflecting advances
in new computational devices and environments such as optical interconnects,
programmable logic arrays, networks of workstations, radio communications,
mobile computing, DNA computing, quantum computing, sensor networks and
so on. These new computing models may also become key technologies for future
SKA data processing. Before finding the most suitable computing model for
SKA, it is necessary to carefully analyze various frameworks and their respective
advantages and disadvantages through comparative experiments. After all, we
have never dealt with such a huge amount of data before.

In this study, we mainly focus on a more objective analysis and evaluation of
applicability of the DALiuGE for the SKA data processing. We strive to answer
four key questions, including: 1) how about the programming difficulty on the
DALiuGE? 2) is it easy to port existing and typical astronomical software? 3)
how much is the porting cost? 4) what is the performance under the DALiuGE
execution framework? In the rest of the paper, we first introduce SAGECal soft-
ware and conduct static analysis and workload characterization of SAGECal in
Section 2. We propose three porting approaches in Section 3. The performance
evaluation is presented in detail in Section 4. We finally discussed the relevant
questions in Section 5 and came to a conclusion in the last Section.

2. A Brief Analysis of SAGECal

To objectively evaluate the DALiuGE, we initially consider to implement a
test program for the DALiuGE. But we soon gave up this idea because we real-
ized that this would complicate the comparison with other frameworks. Using
a proven software and running it on different platforms would make usability
evaluations more descriptive.



After long-term research and development, there are many reliable, ma-
ture and open sources radio data processing softwares such as CASA, AIP-
S/AIPS++, Miriad, SAGECal and so on. We finally chose SAGECal as our
testing program.

SAGECal is a self-calibration astronomical software that uses the Expecta-
tion Maximization (EM) algorithm to obtain the maximum likelihood estimation
of the instrument and sky parameters [§]. SAGECal uses an improved EM al-
gorithm known as the SAGE algorithm[9] in order to speed up the convergence,
reduce the computational complexity and improve the quality of calibration.

The reason we choose SAGECal is that it is a representative radio data
processing software that has been widely used in data calibration. More im-
portantly, a MPI based SAGECal (SAGECal-MPI) algorithm has been imple-
mented [10], which exploits data parallelism across the frequency axis. This
would make it less difficult for us to port SAGECal-MPI to the DALiuGE.

The central idea of SAGECal-MPI is illustrated in Figure [I] Each agent is
allocated a frequency, and works independently on minimizing a cost function
g;(J) without interacting with others. During each iteration, the fusion cen-
ter enforces the smoothness consensus from all agents by solving a consensus
optimization problem by using the consensus alternating direction method of
multipliers (C-ADMM). The distributed SAGECal algorithm is somewhat “in-
sensitive” to the data size, working as effectively for large datasets as for small
ones. By intentionally varying the total P number of agents, one can achieve an
optimal balance between the completion time and resource footprint (i.e. degree
of data parallelism).

min g;M min gj(J) min gp(J)

fi fa fe

Figure 1: The basic idea of SAGECal-MPI. Figure extracted from [10]

A detailed understanding of these interactions is essential for the integration
of SAGECal-MPT into the DALiuGE. To port SAGECal-MPI to the DALiuGE
framework, we made a deep investigation on the source c0d€E| of the SAGECal-
MPI. We obtain detailed data exchanges between the Master and Slaves, which
are shown in Figure[2] The feasibility of migrating SAGECal to the DALiuGE is

Lgit://git.code.sf.net/p/SAGECal/code



also analyzed [11]. Meanwhile, investigation is done on the accelerator support
of execution framework [12].
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Figure 2: A UML sequence diagram showing message exchanges defined in [10]

In Figure [2] the Master process represents the “Fusion center” and several
Slaves processes represent the “Agents” as depicted in Figure [I] The interac-
tions between Master and Slaves are structured within a nested loop. The outer
loop, shown as Timeslots Iteration, iterates over data chunks, each of which con-
sists of a fixed number tilesz of time samples. The inner loop contains ADMM
Iterations, the number, Nadmm, of which is a predefined parameter.



Within a particular ADMM iteration n, the minimization of g.(J) is per-
formed by a Slave fi (i.e. inside the sagefit_vis), which sends current the
Lagrange multiplier (Y};)" and the newly estimated Jones matrix (J¢;)"*! to
Master upon completion. After receiving this information from all Slaves, the
Master computes an updated global consensus (Z)"*!, and broadcasts it back
to all the Slaves. The Slave fi then updates its local Lagrange multiplier from
(Ys:)™ to (Yy;)" ™! based on the “goodness of fit” of the smoothness constraint
[(Ji)" ! = Bpi(Z2)" ]

3. Running SAGECal on the DALiuGE

Three different approaches have been developed for running SAGECal on the
DALiuGE. 1) Coarse-grained porting by incorporating such “stateful” MPI ap-
plications directly into the DALiuGE execution framework. 2) Fine-grained
porting using “stateless” Application and Data Drops. This decomposition
will lead to a dataflow-style application that shifts the burden of state man-
agement completely to the DALIiuGE. 3) Fine-grained porting with optimized
Data Drops. This approach is basically the same as approach 2), but we have
improved the Data Drop to make full use of memory for variable passing.

Regardless of the approach used, we ensure that the final processing result
is consistent with SAGECal-MPI is the standard for porting and running the
codes.

3.1. Coarse-grained Porting: Drop Wrapping of MPI

To quickly run MPT application on the DALiuGE, we developed a new Appli-
cation Drop class, i.e., MPIApp Drop, to integrate any existing MPI application
seamlessly. The basic principle of MPIApp Drop is quite simple. The octagon
shape in the logical graph (Figure [3) represents an MPIApp, which has a Drop
property of num_of procs, whose value is set to 5 in this example. During
the graph translation stage [7], five MPIApp Drops are generated. One of them
represents the Master process, and the other four of them represent the Slave
processes. Each MPTApp Drop has its own input and output files. For the Mas-
ter, the input is the metadata file describing dataset locations, and the output is
the final solution file. This option requires little modification or augmentation
of the SAGECal-MPI implementation for DALiuGE integration. In addition,
during DALiuGE graph execution, the MPTApp Drop wrapper will monitor the
execution progress of its enclosing MPI process, ensuring that each application
is executed in the node assigned at scheduling time, and trigger events across
edges of the graph to downstream Drops for cascaded execution.

Obviously, such integration approach is a tricky porting approach. In this
mode, DALiuGE is the equivalent of the MPI program launcher. The overall
running efficiency is comparable to running MPI programs directly. However,
in essence, this method of porting cannot give full play to the performance of
DALiuge.
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Figure 3: Wrap the SAGECal-MPI using MPIApp Drops in the logical graph, which is then
unrolled into the physical graph template with 5 MPI processes and split MeasurementSet
files and output files.

3.2. Fine-grained Porting Based on File Data Drop

In order to evaluate the DALiuGE more truthfully and fairly, we further
rewrite the codes of SAGECal and make it to a real DALiuGE application.

The core of the DALiuGE is data-driven. Drop is a stateless program unit
that starts running processing when Drop receives data and outputs data when
processing is finished. Based on the detailed analysis of the SAGECal code, we
disassembled the SAGECAL-MPI and constructed a series of fine-grained ap-
plication Drops. Each of which represents either stateless computation (Appli-
cation Drop) or persistent/transient datasets (Data Drop). These fine-grained
component Drops were inherited from two standard Drops of the DALiuGE; i.e.,
BashShellApp and FileDrop. BashShellApp is used to revoke C/C++ programs
and FileDrop is used to transmit variables.

The logical graph of SAGECal in the DALiuGE (Figure includes around
30 Drops implemented with BashShellApp and FileDrop, which are the result of
the decomposition of the original MPI-based distributed SAGECal application.
BashShellApp is provided as a wrapper of the actual executable program, and
in each BashShellApp, we need to define an entry for executable programs and
related arguments. The general rule for creating these Drops is based on the
communications between the Master and Slaves and between the application and
the underlying I/O system (in this case, the file system). It should be noted that
the implementation of such a decomposition requires considerable modifications
to the existing MPI wrapper of the distributed SAGECal algorithm. The logical
graph of the distributed SAGECal in Figure [2] is further translated into an
executable physical graph.

The SAGECal-DALiuGE can use DALiuGE’s scheduling capability to run
these physical graphs on distributed resources (rather than on a single node) in
an optimal way in terms of total resource footprint, data movement volume, and
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Figure 4: Logical graph of the distributed SAGECal algorithm with BashShellApp and File-
Drop.

execution time. However, the variable passing are based on file, which would
significantly reduce the execution performance.

3.2.1. Fine-grained Porting Based on Variable Passing With Memory

If variables passing can be performed between memories, it can obviously
improve the performance. DynlibApp, which allows C/C++ programs to read
and write variables in MemoryDrop, was developed. By using CTYPES, a foreign
function library for Python, DynlibApp supports the manipulation of Input and
Output DataDrops in C/C++ codes.

As shown in Figure [5] all the BashShellApp in Figure El are replaced by
DynlibApp. Meanwhile, we used MemoryDrop to replace all FileDrop. Each
DynlibApp Drop needs to specify a dynamic link library file (“.s0” files in Linux).
we create two classes, i.e., Master and Slave, and compile them into two “.so”
files respectively, for invoking different functions.

4. Performance Evaluation

According to our experiments, the inputs and outputs of the DALiuGE
Drops are exactly the same as the corresponding functions in MPI, which proofs
a successful port with functional equivalence. For performance comparison, we
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test SAGECal running on DALiuGE and MPI in the same environment with
the same arguments. Our experimental environment consists of four virtual
machines on an internal computing cluster. Four virtual machines are installed
with CentOS 7.3 operating system and have the same hardware configuration:
Intel Xeon E5-2620 v2 CPUs, 2.1 GHz, 24 cores, 8 GB of memory, 60 GB of
hard disk, and 1Gbps network bandwidth. In addition, another node is used
to provide file-sharing service (via nfs-server) and web interface for submitting
tasks.

It can be seen through experiments that the SAGECal-MPI exhibits better
performance than the DALiuGE version. Figure [6] shows our experimental re-
sults when dealing with 16 measurement-set files on 1,2,4 nodes. This is true
when we port SAGECal to the DALiuGE. In the case of a fixed number of
measurement set files, as the number of processing nodes increases, the entire
processing time of using the MPI version of SAGECal version does not decrease.
In the case of a fixed number of processing nodes, as the number of measure-
ment set file increases, the entire processing time increases in three approaches,



and the original MPI version performs best (see Figure .

In order to avoid excessive transmission of variables, we output all variables
of different Drops in the DALiuGE execution framework into different files stored
in a shared directory. The subsequent Drops could open the specified file and
obtain the variables. Nevertheless, this brings extra I/O time overhead to the
execution process. We have tested eight measurement set files on two nodes.
The total time used for I/O of shared files is about 16 seconds. The experiments
shows that the time used for I/O of share files increases linearly with the number
of measurement set files.
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Figure 6: Comparison of elapsed times for processing 16 measurement sets on varying nodes
using three different methods (MPI, FileDrop, and MemoryDrop).

5. Workload

Four people have been involved in this work. They are all professional en-
gineers of computer science with a little astronomy background. The leader of
the group has extensive experience in radio interferometric data processing. To
be more in line with the reality of the SKA software development, we did not
invite SAGECal developers to participate in the work. We would also like to
know whether the software engineers can understand the relevant radio inter-
ferometric algorithms and data flow when only documentations and codes are
available.
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Figure 7: Comparison of elapsed time for processing varying number of measurement sets
using three different methods (MPI, FileDrop, and MemoryDrop).

We use the agile software development model to manage all of our work.
According to their actual work, we count workload from three aspects such as
algorithm analysis, coding and debugging (see Table .

Table 1: Workloads in three porting cases. Unit=days. 1 Sprint = 2 weeks (10 work days).

Approach | Algorithm | Coding Debug Description
No. Analysis and
Testing

1 1 4 2 2 task in a sprint.

2 12 4 6 6 tasks in 2 sprints

3 / 6 5 Followed the analysis results
of Approach 2, 2 tasks in 1
sprint.

Obviously, Table 5| answered the question we proposed in the section of
introduction. The development on the DALiuGE is not too difficult and DROP
wrapping can be done effectively after proper learning. In agile development
the tasks scheduled in a Sprint are completed within the specified time.
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6. Discussion

Since the SDP consortium was established, it has been trying to establish a
distributed computing system and build an execution framework for the SKA
data processing. In terms of technology trends, using execution framework to
process the super-massive data of the SKA is likely to be an inevitable choice.
It is in this context that the DALiuGE was proposed and developed.

However, according to our experiments, the DALiuGE execution framework
has no advantage in operating performance. This result is also in line with the
prior speculation. The advantages of the DALiuGE are fast task customization
and a data-driven oriented processing model, which is probably more suitable
for applications such as Science Regional Centre (SRC).

The port of the software was quite labor intensive. Actually, it is a strenuous
work to port the MPI version of SAGECal to the DALiuGE. This work is
not technically difficult, but the implementation consumes a lot of manpower.
In fact, there is a huge gap between the DALiuGE and the mature parallel
implementation such as MPI.

The rationalization of experts from different disciplines for the final SKA
software development is a matter of great concern. In this study, we did not ask
any information from the author of the SAGECal. All algorithm analyses are
dependant on the computer scientists themselves. To clarify the algorithm flow,
divide and wrap the functions into the DALiuGE Drops, computer scientists in
the study took a lot of work to analyze the principles and implementation of
astronomical algorithms. They spent approxmate 55% of full efforts in source
code analysis, process analysis and data flow analysis, but only 20% on porting
and new codes design. In addition, DALiuGE’s code debugging is inefficient
because of no auxiliary tools.

7. Conclusion

We made a deep investigation on running a astronomical application on
the DALiuGE execution framework so as to evaluate the fair performance of
the DALiuGE. To achieve this goal, we ported a classical astronomical soft-
ware, i.e., SAGECAL-MPI to the DALiuGE execution framework with three
approaches. The study proposes some objective comments on the DALiuGE
execution framework for future SKA software development, including the fact
that the execution is not as efficient as MPI and the porting development is dif-
ficult. It is suggested that DALiuGE should find an adapted domain for further
development.

All codes are released at https://github.com/astroitlab/SAGECal-daliuge
and https://github.com/astroitlab/SAGECal-daliuge-dynlib.
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