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ABSTRACT: In this paper, on-line training of neural networks is investigated in the context of computer-

assisted colonoscopic diagnosis. A memory-based adaptation of the learning rate for the on-line 

Backpropagation is proposed and used to seed an on-line evolution process that applies a Differential 

Evolution Strategy to (re-)adapt the neural network to modified environmental conditions. Our approach 

looks at on-line training from the perspective of tracking the changing location of an approximate solution of 

a pattern-based, and, thus, dynamically changing, error function. The proposed hybrid strategy is compared 

with other standard training methods that have traditionally been used for training neural networks off-line. 

Results in interpreting colonoscopy images and frames of video sequences are promising and suggest that 

networks trained with this strategy detect malignant regions of interest with accuracy.  

KEYWORDS: Minimally invasive imaging procedures, Backpropagation networks, Medical image 

interpretation, On-line learning, Differential evolution strategies, Artificial evolution. 

1. INTRODUCTION 

In medical practice, endoscopic diagnosis and other minimally invasive imaging procedures, such as computed 

tomography, ultrasonography, confocal microscopy, computed radiography, or magnetic resonance imaging, 

are now permitting visualization of previously inaccessible regions of the body. Their objective is to increase 

the expert’s ability in identifying malignant regions and decrease the need for intervention while maintaining 

the ability for accurate diagnosis. Furthermore, it may be possible to examine a larger area, studying living 

tissue in vivo - possibly at a distance [5] - and, thus, minimise the shortcomings of biopsies, such as limited 

number of tissue samples, delay in diagnosis, and discomfort for the patient.  
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In this paper, we focus on neural network-assisted diagnosis of colonoscopy images. Colonoscopy is a 

minimally invasive technique for the production of images of the colon: a narrow pipe like structure, an 

endoscope, is passed into the patient’s body. Video endoscopes have small cameras in their tips, when passed 

into a body, what the camera observes is displayed on a television monitor (see Figure 1 for frame samples 

of a video sequence). The physician controls the endoscope’s direction using wheels and buttons and the 

whole procedure is carried out under variable perceptual conditions (shadings, shadows, lighting condition 

variations, reflections etc.).  

  

 

  

Figure 1. Frames of a video sequence showing a polypoid tumor of the colon. 

Neural network-based methodologies present some interesting qualities, such as learning from experience, 

generalisation, and are able to handle uncertainty and ambiguity in distorted or noisy images to some extent. 

Thus, these methods provide human experts with significant assistance in medical diagnosis [8], [10], [12], 

[13], [23]. 

The use of neural networks for the detection of malignant regions in colonoscopy video sequences 

encounters several problems: the time varying nature of the process; changes in the perceptual direction of 

the physician; variations in the diffused light conditions. In most of these cases, off line learning or 

knowledge-based approaches are not able to represent all possible variations of the environment. On-line 

training and retraining allow the network to update its weights during operation by taking into account both 

the already stored knowledge and the knowledge extracted from the current data, and are proposed as 

alternatives to batch learning-based approaches. Of course, the main challenge when dealing with adaptive 

techniques for learning, such as on-line training and retraining, is to balance the information related to 

recently acquired data with the information already embodied in the network [3], [6], [27].  

Thus, in this paper we explore on-line training and retraining of neural networks with the aim to detect 

malignant regions in colonoscopy images though a formulation of the problem that is based on the idea of 

tracking the moving “optimum” of a dynamically changing pattern-based error measure. This approach 

coincides with the way adaptation on the evolutionary time scale is considered [29], and allows us to explore 

and expand further research on the tracking performance of evolution strategies and genetic algorithms [2], 

[29], [35]. Hence, the reader should keep in mind that in this paper we do not seek global minimisers of the 

error function, but we are interested in developing an on-line evolution strategy that will converge to an 

approximation of the optimum solution (the interesting topic of finding global minimisers in neural networks 

training is described elsewhere [24]).  
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The paper is organised as follows. Section 2 explains how textural variations of the tissue are modelled in 

our approach. Section 3 discusses existing learning approaches, while Section 4 describes the proposed on-

line evolution strategy. In Section 5 experimental results are presented and findings are discussed. Lastly, 

conclusions are drawn in Section 6.  

2. TISSUE CLASSIFICATION FOR ENDOSCOPIC DIAGNOSIS 

In endoscopic diagnosis, the medical expert, based on a distributed percept of local changes, interprets the 

physical surface properties of the tissue - such as roughness or smoothness, regularity, and shape - to detect 

abnormalities. It is important to note, however, the vast difficulties in physical attributes of the organs. For 

example, in colonoscopy, no two colons are alike. Even within the same colon, one section may have very 

different characteristics from another. Adjacent regions of the colon lining showing different properties are 

distinguished on the basis of the textural variations of their tissue (pit patterns) [22]. These difficulties 

introduce severe limitations in the use of computer-assisted endoscopic diagnosis [13], [23]. Given a medical 

image, the “true” features associated with the physical surface properties of the tissue are not exactly known 

to the image-interpretation system developer. Usually, one or more feature-extraction models [16], [17] are 

used to provide values for each feature’s parameters. The findings are then used to infer the correct 

interpretation. On this same task of interpretation on the basis of local changes of the properties of the tissue 

under examination, the performance of human perception is considered outstanding. Furthermore, medical 

experts have the ability to either add or remove components from an image to give meaning to what they see. 

Medical experts can also adapt to changes to the extent that even a distorted image can be recognized.  

In computerised systems, the classification of image regions is usually quite sophisticated and involves 

multiple levels of processing. In general, a model with three stages is employed as shown in Figure 2 

(adapted from [16]). 

 

Image Formation Images 

Lower Level Processing 

Enhancement, Feature 
Extraction, Segmentation. 

Higher Level Processing 

Classification, Labelling, Outcome 
prediction. 

Diagnostics 

 
Figure 2. Model for diagnostic system that uses medical images. 

The lower-level processing takes image pixels as input and performs various tasks such as image 

enhancement, feature extraction and image segmentation. The higher-level processing takes the output from 

the lower-level processing as input and generates output related to medical diagnostics. Tasks accomplished 
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in the higher-level processing include classification of features, detection of specific lesions and diagnosis 

for various abnormalities. 

 Original Image 
Image window 

extracted 
from the original image Feature extraction 

technique 

A 1 A 2 A 3 A N 
Feature Vector 

. . . 
 

Figure 3. Stages in feature extraction. 

An important stage of the implementation is the feature extraction process (see Figure 3). In our experiments 

the method of cooccurrence matrices was used for feature extraction. Cooccurrence matrices, [9], represent 

the spatial distribution and the dependence of the grey levels within a local area. Each p(i,j) entry of the 

matrices, represents the probability of going from one pixel with a grey level (i) to another with a grey level 

(j) under a predefined distance and angle. From these matrices several sets of statistical measures, or feature 

vectors, are computed to build different texture models. In our implementation, the colonoscopy image was 

separated into windows of size 16×16 pixels with 8 pixels overlap. Then the cooccurrence matrices 

algorithm was used to gather information from the pixels of an image window. Four angles, namely 0?, 45?,  

90?, 135?, were considered as well as a predefined distance of one pixel in the formation of the cooccurrence 

matrices. Therefore, four cooccurrence matrices using the following four statistical measures were formed 

(see [12] for details):  
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where gN  is the number of grey levels, xµ , yµ are the marginal mean values of x (along the horizontal pixel 

axis) and y (along the vertical pixel axis), respectively, and xσ , yσ  are the corresponding standard 
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deviations. Thus, a set of 16 features describing spatial distribution in each window is obtained and used to 

formulate inputs for high level processing. 

3. BATCH LEARNING OF MULTILAYER PERCEPTRONS  

The most popular neural network model is the so-called Multi-Layer Perceptron (MLP). In an MLP, whose l-

th layer contains Nl nodes, (l = 1,...,M), artificial neurons operate according to the following equations: 

∑ −
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where net
j

l  is, for the j-th neuron in the l-th layer ( j = 1,...,N l ), the sum of its weighted inputs. The weights 

for connections from the i-th neuron at the (l-1) layer to the j-th neuron at the l-th layer are denoted by w ij

l l−1, ; 

l
jy  is the output of the j-th neuron that belongs to the l-th layer, and the logistic function 

f net netj

l

j

l( ) ( ( ))= + − −1 1exp  is the j-th's neuron non-linear activation function.  

Training an MLP to recognise abnormalities in image regions is typically realised by adopting an error 

correction strategy that adjusts the network weights through minimisation of learning error: 
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where ( )y tj p

M

j p, ,− 2  is the squared difference between the actual output value at the j-th output layer neuron, 

for an input sample p, and the target output value; p is an index over input-output patterns.  

A variety of approaches adapted from the theory of unconstrained optimisation have been applied to the 

minimisation of function E. For example, let us consider the class of batch learning algorithms that adjust the 

weights according to the iterative scheme: 

K,2,1,01 =+=+ kww kkk ηϕ  (8) 

Note that in (8) the weights of the MLP are expressed in a simplified form using vector notation. Thus, kw  

defines the current weight vector, kϕ  is a correction term, and η  is the learning rate at the kth iteration. 

Various choices of the correction term kϕ  give rise to distinct batch learning algorithms, which are usually 

classified as first-order or second-order algorithms depending on the derivative-related information they use 

to generate the correction term. Thus, first-order algorithms are based on the first derivative of the learning 

error with respect to the weights, while second-order algorithms on the second derivative (see [4] for a 

review on first-order and second-order training algorithms).  
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A broad class of batch-type first-order algorithms, which are considered much simpler to implement than 

second-order methods, uses the correction term )( kk wE−∇=ϕ . The term )( kwE∇  defines the gradient 

vector of the MLP and is obtained by means of back-propagation of the error through the layers of the 

network. The most popular algorithm of this class, called batch Back-Propagation (BP) applies the steepest 

descent method with a constant, heuristically chosen, learning rate η  that usually takes values in the interval 

(0,1) [17]. Values in this interval are considered small enough to ensure the convergence of the BP training 

algorithm and consequently the success of learning [4]. However, it is well known that this practice tends to 

be inefficient [4], [17] and the use of adaptive learning rate strategies is suggested in order to accelerate the 

learning process (see [4] and [19] for reviews on adaptive learning rate algorithms).  

 

With regards to second-order training algorithms, nonlinear conjugate gradient methods, such as the 

Fletcher-Reeves or the Polak-Ribiere methods [21], or variable metric methods, such as the Broyden-

Fletcher-Goldfarb-Shanno method [4], or even modification of Newton's method [7], [18] have been 

proposed in the literature. These methods exploit derivative calculations and subminimization procedures 

(e.g. the nonlinear conjugate gradient methods) and/or approximations of various matrices (e.g. the Hessian 

matrix for the variable metric or quasi-Newton methods) to accelerate the learning process. 

4. ON-LINE EVOLUTION STRATEGY 

On-line training in neural networks is related to updating the network parameters after the presentation of 

each training example, which may be sampled with or without repetition. On-line training may be the 

appropriate choice for learning a task either because of the very large (or even redundant) training set, or 

because of the slowly time-varying nature of the task. Although batch training seems faster for small-size 

training sets and networks, on-line training is probably more efficient for large training sets and networks. It 

helps to escape local minima and provides a more natural approach to learning in non-stationary 

environments. On-line methods seem to be more robust than batch methods as errors, omissions or redundant 

data in the training set can be corrected or ejected during the training phase. Additionally, training data can 

often be generated easily and in great quantities when the system is in operation, whereas they are usually 

scarce and precious before. Lastly, on-line training is necessary in order to learn and track time varying 

functions and continuously (re-)adapt in a changing environment.  

Despite the abundance of methods for learning from examples, there are only few that can be used 

effectively for on-line learning. For example, the classic batch training algorithms cannot straightforwardly 

handle nonstationary data. Even when some of them are used in on-line training there exists the problem of  

“catastrophic interference”, in which training on new examples interferes excessively with previously 

learned examples leading to saturation and slow convergence [3], [34]. Below we present an on-line BP-
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seeded Differential Evolution (DE) strategy for on-line neural network training. Firstly, we briefly present 

the on-line BP learning stage of the proposed strategy. Then we proceed by describing the on-line DE stage. 

Note that the description below focuses on the problem of adapting the weights on-line, assuming that on-

line evolution is always activated, and does not require the input and desired output data to be known a 

priori. Our experiments, reported in the next section, were also conducted under the same assumptions to test 

the robustness of our approach. Note, however, that in practice, whenever the changes of the environment are 

not considered significant and the performance is satisfactory, the weights and structure of the network 

should remain constant [6]. 

4.1 ON-LINE BACKPROPAGATION LEARNING 

On-line BP learning strategies are usually based on the use of stochastic gradient descent due to the inherent 

efficiency of this method in time-varying environments [1], [30], [31], [33], [34]. On-line learning has been 

analysed within the framework of statistics and it has been shown that it is asymptotically as effective as 

batch (also called off-line) learning. However, sensitivity to learning parameters is a common drawback of 

these schemes [28]. Advanced optimisation methods, such as conjugate gradient, variable metric, simulated 

annealing etc., cannot be used in this context, as they rely on a fixed error surface and need information from 

the whole training set [28].  

 

In [20], a variant of the on-line BP has been proposed. The method can be considered as a meta-learning 

algorithm in the sense that it learns the learning rate parameters of an underlying base learning system (i.e. of 

the stochastic gradient descent). To this end, the new variant uses a memory-based learning rate adaptation 

schedule that exploits gradient related information from the current as well as the two previous pattern 

presentations: 
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At the start of the learning procedure, 0=k , the learning rate is set to a small positive value; e.g. the initial 

learning rate was set to 0.001 in our experiments. Then, the weights are updated on-line, for each pattern p, 

following the iterative scheme: 

)(1 k

p

kkk wEww ∇−=+ η . (10) 

In (9), .,.  stands for the usual inner product in nR , pE is the pattern-based error measure and 
pE∇ is the 

corresponding gradient vector; η  is the learning rate, and 1γ , 2γ are the meta-learning rates ( 121 << γγ ). 

Meta-learning rates are also in use by other on-line learning schemes, such as in [1], [30],[31],[33], and can 

take various forms depending on the method. Previous experiments with the new variant have shown that the 

scheme of Eq. (9) seems to provide additional stabilization in the calculated values of the learning rate, and 
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helps the stochastic gradient descent to exhibit fast convergence and high success rate [20]. In addition, the 

method is characterised by low storage requirements and inexpensive computations, as it only uses already 

calculated information from the current, as well as the previous iteration. The idea of considering the 

gradient of the previous iterations in a learning rate adaptation scheme has also been proposed in the context 

of off-line learning. Particularly, Jacobs in the delta-bar-delta algorithm, [11], measures the running average 

of the current, )( kwE∇ , and past partial derivatives in order to check whether the current gradient has the 

same sign as the average gradient. Then the algorithm either increases the learning rate by adding a positive 

constant to the current value, or decreases it by multiplying the current value with a positive, smaller than 

one, constant. Finally, the weights are updated using a variant of Eq. (8), as the delta-bar-delta algorithm 

needs information from the whole training set (i.e. it performs batch learning). 

The on-line iterative scheme of (9)-(10) was shown to provide increased speed and higher possibility of good 

performance  in different classes of problems when compared against the classic on-line BP and other meta-

learning rate algorithms (see [20], [25]  for details and comparisons). The role of on-line BP in the context of 

computer-assisted colonoscopic diagnosis is to initialise the population of the DE strategy with an initial 

approximation of the solution, as will be described below. 

4.2 DIFFERENTIAL EVOLUTION STRATEGY 

Evolution Strategies (ESs) are adaptive stochastic search methods that mimic the metaphor of natural 

biological evolution. The main differences between ESs and Genetic Algorithms lie in that the self-

adaptation of the mutation operator is a key feature of the ESs, and in that GAs prefer smaller mutation 

probability (rate) [2], [29]. Here we use the Differential Evolution strategies, which have been designed as 

stochastic parallel direct search methods that can handle non-differentiable, non-linear and multimodal 

objective functions efficiently, and require few easily chosen control parameters [32]. Experimental results 

have shown that DE strategies have good convergence properties and outperform other evolutionary 

algorithms and annealing methods [32]. To apply DE strategies to neural network training we start with a 

specific number (NP) of n-dimensional weight vectors, as initial population, and evolve them over time; NP 

is fixed throughout the training process and the weight population is initialised by perturbing the 

approximate solution provided by the on-line BP (see Relations (9)-(10)). Thus, the on-line BP seeds the DE, 

so the initial population might be generated by adding normally distributed random deviations to the nominal 

solution.  

Let us now describe the proposed version of DE strategy that is used in the on-line evolution strategy. The 

weight vectors evolve randomly with each pattern presentation (iteration) through the relation  

( ) NPirr

k
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k
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where k

bestw  is the best population member of the previous iteration, 0>µ  is a real parameter (mutation 

constant) which regulates the contribution of the difference between weight vectors, and 
21

, rr ww are weight 

vectors randomly chosen from the population with { }NPiirr ,,1,1,,2,1, 21 KK +−∈ , i.e. 21 , rr are random 

integers mutually different from the running index i. Aiming at increasing the diversity of the weight vectors 

further, a crossover-type operation is introduced in Relation (12). Thus, the so-called trial vector, 

NPiu k

i K,1,1 =+ , is generated. 
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This operation works as follows: the mutant weight vectors, NPivk

i K,1,1 =+ , are mixed with the “target” 

vectors, k
iw . Specifically, we randomly choose a real number r in the interval [0,1] for each component j, 

j=1,2,…, n, of 1+k

iv . This number is compared with ]1,0[∈ρ  (crossover constant), and if ρ≤r  then the j-th 

component of the trial vector 1+k

iu  gets the value of the j-th component of the mutant vector, 1+k

iv ; otherwise, 

it gets the value of the j-th component of the target vector, k

iw . In (12), irand  is a randomly selected index 

that is used to ensure the trial vector has at least one component from the mutant vector. An application 

example of this operation is shown in Figure 4 for a seven-dimensional weight vector. 
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Figure 4. Illustration of the crossover operation. 

The trial vector is accepted for the next iteration if and only if it reduces the value of the pattern-based error 

measure pE ; otherwise the old value, k
iw , is retained. This last operation, called selection, ensures that the 

fitness starts steadily decreasing at some iteration, and is described in Relation (13). 
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The combined action of mutation and crossover operation is responsible for much of the effectiveness of DE 

search, and allows DE strategies to act as parallel, noise-tolerant hill-climbing algorithms, which efficiently 

search the whole space for solutions [32].  

5. EXPERIMENTS AND RESULTS 

In our experiments, the colonoscopy images and video frames were separated into windows of size 16×16 

pixels with overlap of 8 pixels. Then the co-occurrence matrices algorithm was applied to gather information 

regarding pixel neighbourhoods of randomly selected image windows, as described in Section 2. The 

procedure results in 16-dimensional feature vectors, which are very noisy as no pre-filtering or segmentation 

techniques is applied, and are used in the experiments described below. The learning parameters of the on-

line evolution strategy have been set following the recommendations of [25] and [32]: 05.01 =γ , 95.02 =γ , 

5.0=µ , 9.0=ρ . Lastly, NP=100. 

 

  
(a) (b) 

Figure 5. Colonoscopy images used in the experiments. 

In the first set of experiments, 1000 MLPs with varying number of hidden nodes (from 8 to 21) were trained 

using two batch learning algorithms, the Adaptive learning rate Backpropagation (ABP) proposed by Vogl 

[36], and the Levenberg-Marquardt (LM) method [7], as typical examples of first- and second- order training 

algorithms respectively. The MLPs were trained using 10 normal/10 abnormal samples from image windows 

that were randomly extracted from images (a) and (b) (see Figure 5) and tested with different tissue samples 

taken from the two images. Note that the malignant regions in these images belong to two different types: 

Image (a) is a low grade cancer, while Image (b) is a moderately differentiated carcinoma [15]. The 

performance of the trained MLPs has been tested on a set of 80 texture samples (40 normal and 40 

malignant) randomly selected from the two images and different from the training set. Only a small sample 

out of 1000 trained MLPs of the different architectures exhibited classification success of 90% or higher. 

Detailed results are shown in Figure 6. More specifically, only 150 MLPs with 8 hidden nodes, out of the 

1000 trained, exhibited the desired classification success (see Figure 6, left part). Note also the significant 

difference in the number of the MLPs with acceptable classification success among the ABP and the LM 

trained ones. The LM algorithm also reveals a higher average percentage of classification success, as shown 
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on the right part of Figure 6. In fact MLPs with 11 hidden nodes exhibit the highest average in classification 

success (96.75%). Thus, 11 hidden node MLPs were used in the second set of experiments. 
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Figure 6. Number of MLPs (out of 1000) with classification success greater than 89% (left), and average classification 
success (right) for these MLPs. Results are for the images of Figure 5. 

In the second set of experiments, 1000 MLPs of 16-11-2 architecture were trained off-line to detect 

malignant regions in a frame of colonoscopy video sequence using a training set of 150 normal/150 

abnormal patterns. Three batch-learning methods were comparatively evaluated in this round of experiments: 

the Levenberg-Marquardt that exhibited good performance in the previous round, the Scaled Conjugate 

Gradient (SCG) method, [21], that is considered according to the literature as a good alternative to the use of 

second-order methods [17], and the Rprop algorithm, [25], which is a first-order method that applies 

heuristics to adapt a different learning rate for each weight of the network and combines successfully 

effectiveness with low computational requirements [17]. The percentage of classification success in testing 

(test set included 3969 patterns, i.e. the whole region covered in the video frame) for the 1000 trained 

networks is shown in Figure 7. One can observe that it is not easy to locate weights that will allow the 

networks to detect malignant regions with a success of over 90%. For example, in Figure 7, only 2 networks 

out of the 1000 trained with the Rprop algorithm achieved recognition success from 90% to 100%. For the 

SCG method the corresponding number is 3 out of 1000, while for the LM method this number is slightly 

higher, as 6 out of the 1000 networks exhibited classification success between 90% and 100%. The best 

result for each training method is: 92% for the Rprop, 92.4% for the LM and 92.6% for the SCG. Rprop 

needs on average more epochs to converge than the SCG and LM methods but does not require heavy matrix 

computations or subminimisations. As a consequence, it was observed that the average time for training with 

Rprop was shorter than the corresponding time of SCG or LM. Thus, we decided to keep Rprop and run 

experiments with data from other video frames of the same video sequence. The best results are summarised 

in Table 1. 
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Figure7. Generalisation results for three batch-training algorithms. 

From the results of Table 1, it is clear that Rprop exhibits the best overall performance compared with ABP. 

Note that the results of Tables 1 have been achieved by training off-line frame-dedicated MLPs with 11 

hidden nodes using 300 patterns randomly chosen from each frame and testing using data of the same frame. 
     

Method Frame 1 Frame 2 Frame 3 Frame 4 
Rprop 92% 91% 92% 93% 
ABP 81% 85% 83% 81% 

Table 1. Best classification success for two first order batch-learning methods. 

In the third set of experiments, the Rprop algorithm was compared with the classic on-line BP using data 

from another frame of the same video sequence. 300 patterns were used for training and 3969 for testing (i.e. 

the whole tissue region covered in the frame). The capability of the trained network (16-11-2 MLPs were 

used) with the best performance in assigning appropriate characterisations (normal/abnormal) to frame 

regions is shown in Table 2.  

    
Method Abnormal (%) Normal (%) Mean (%) 
Rprop 83 96 93 
On-line BP 73 93 88 

Table 2. Best performance in terms of generalisation for Rprop and on-line BP. 

The Rprop reveals, in general, a higher percentage of success than the on-line BP. The reader should, of 

course, keep in mind that Rprop minimises a batch error measure, i.e. it uses the true gradient of the error 

function as it exploits information from all the training patterns. The on-line BP, on the other hand, 

minimises a pattern-based error measure and works with an instantaneous approximation of the true gradient 

because information from only one pattern is used at each iteration. Therefore, on-line BP can be used for 
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(re-)adapting to modified environment conditions, while Rprop requires all information about input-output 

patterns to be known a priori and, thus, fails to work when all the relevant features of the environment are 

not explicitly defined in advance. However, the results of the experiments made clear that the classic on-line 

BP needs further improvement in order to train networks to detect malignant regions with accuracy 

comparable to batch training methods.  

In the fourth set of experiments, 16-11-2 MLPs have been trained on-line to detect malignant regions in a set 

of four frames from the same video sequence. The frames used in the two previous experiments were 

included in the set. The networks have been trained on-line, following the iterative scheme (9) for adapting 

the learning rate, to recognise patterns from the first frame. Then on-line learning with differential evolution 

occurred as data from the second frame appeared at the input. The on-line evolution learning strategy 

continuously adapts the network as patterns from other frames are presented in random order at the input. In 

total, 1200 patterns from the four frames of the video sequence were presented to the network during the 

training phase. The network was then tested using 15876 patterns from the four frames (4000 patterns 

approximately cover the whole tissue region of a frame and include normal as well as malignant areas). The 

average capability of the trained networks in assigning appropriate characterisations to explored colon lining 

regions is presented in Table 3.  

     
Method Frame 1 Frame 2 Frame 3 Frame 4 
On-line BP  83% 84% 77% 88% 
On-line BP seeded DE 93% 92% 84% 90% 

Table 3. Normal/abnormal detection accuracy. 

The on-line BP seeded DE scheme provides generalisation results close to the best results obtained by the batch training 

methods, as reported in the previous experiments. For example, the best SCG-trained dedicated network in the second 

experiment (trained off-line and tested using data from Frame 1) had 92.6% success, and the best Rprop-trained 

dedicated network in the third experiment (trained off-line and tested using data from Frame 2) had 93% success.  

6. CONCLUSIONS AND FUTURE WORK 

In this paper a new scheme for neural network-based colonoscopic diagnosis was introduced. The proposed 

on-line evolution strategy can be considered as a hybrid algorithm. It uses an on-line Backpropagation 

strategy with adaptive learning rate to seed the initial population of the on-line Differential Evolution 

strategy. In our experiments, neural networks trained with the proposed on-line evolution strategy exhibited 

satisfactory performance under changing environmental conditions, as data from different frames were 

presented to the network.  
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In the reported experiments no emphasis was put in fine-tuning the heuristic parameters of our scheme; 

classic values found in the relevant literature of Differential Evolution strategy were used instead. In future 

work we will fully investigate the properties, study the effect of the heuristic parameters and evaluate the full 

potential of the hybrid learning strategy in colonoscopic diagnosis by means of extensive testing on long 

video sequences and interpretation of complex tissue regions. 
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