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Abstract
Digital mammography is one of the most suitable methods for early detection of breast cancer. It uses digital mammograms to find suspicious

areas containing benign and malignant microcalcifications. However, it is very difficult to distinguish benign and malignant microcalcifications.

This is reflected in the high percentage of unnecessary biopsies that are performed and many deaths caused by late detection or misdiagnosis. A

computer based feature selection and classification system can provide a second opinion to the radiologists in assessment of microcalcifications.

The research in this paper proposes a neural-genetic algorithm for feature selection to classify microcalcification patterns in digital mammograms.

It aims to develop a step-wise algorithm to find the best feature set and a suitable neural architecture for microcalcification classification. The

obtained results show that the proposed algorithm is able to find an appropriate feature subset, which also produces a high classification rate.

# 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Breast cancer is a leading cause of cancer death in women

between the ages of 40 and 55 [1–6]. Currently, there is no

certain way to prevent breast cancer [2]. This is why early

detection represents a very important factor in its treatment and

consequently the survival rate.

Digital mammography is considered to be the most reliable

method of early detection, however, in the early stage, the

visual clues are subtle and varied in appearance, making

diagnosis difficult, challenging even for specialists. In

mammography breast abnormalities are divided into exhibiting

microcalcification, circumscribed lesions and spiculated

lesions. Microcalcification appears as a small bright spot on

the mammogram. Fig. 1 shows the occurrence of micro-

calcification on digitized mammogram. Most of the minimal

breast cancers are detected by the presence of microcalcifica-

tions [7]. It is however difficult to distinguish between benign

and malignant microcalcifications. To decide whether a

suspicious area on a digital mammogram contains benign/
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malignant microcalcifications, traditionally the tissue has to be

removed for examination using breast biopsy techniques. The

computer classification system of the microcalcifications can

provide a second opinion to the radiologists and reduce the

number of unnecessary biopsies. A digital mammogram is

created directly by the digital machine or digitized from a

conventional mammogram. It brought the possibility of using

computer-aided diagnosis system.

Current image processing techniques make microcalcifica-

tion detection easier, however classification of malignant and

benign microcalcifications is still very challenging and a

difficult problem [7–65] for researchers. One important factor

directly affects the classification result is feature extraction.

Researchers spend a lot of time in attempt to find a group of

features that will aid them in improving the classification for

malignant microcalcifications from benign. In the literature,

region-based features [7,24], shape-based features [19,31,32],

image structure features [7,20,14,15,33,34], texture based

features [35,36], and position related features [35] are described

and used for experiments.

One feature taken alone might not be significant for the

classification but might be very significant if combined with

other features. The whole set of the features may include the

redundant or irrelevant information. There can also be estimation
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Fig. 1. The occurrence of microcalcifications on mammogram.
errors in the system parameters used to measure the features. Ho

[57], combined and constructed multiple classifiers using

randomly selected features which can achieve better perfor-

mance in classification than using the complete set of features.

2. Previous work

Searching for an accurate subset of features is a difficult

search problem. The only way to guarantee the selection of an

optimal feature vector is an exhaustive search of all possible

subset of features. However, search spaces to be explored could

be very large. For N features, the number of possible subsets is

2N. Feature subset selection is defined as a process of selecting a

subset of features out of the larger set of features, which

maximize the classification performance of a given procedure

over all possible subsets. Researchers put lots of effort to find

best feature or best combination of features (i.e. feature vector)

that gives highest classification rate using appropriate classifier.

Search strategies such as Hill-climbing and Best-first search

have been used by Kohavi et al. [60] to find subsets of features

with high predictive accuracy. Cost and Salzberg [61] used

feature weighting technique assigning a real-valued weight to

catch feature. The weight associated with a feature, measures

its relevance or significance in the classification task. John et al.

[62], examined the use of heuristic search for feature subset

selection. Most of these techniques assume monotonicity of

some measure of classification performance and then use

branch and bound search. This monotonicity assumption in

some form appears to work reasonably well with linear

classifiers. However, they can exhibit poor performance with

nonlinear classifiers such as neural networks [63].

Racz and Nieniewski [64], employed most discriminative

components analysis and a forward/backward selection strategy

to reduce the input size from 189 to 46 for his CAD system based

on analysis of microcalcifications. Some others [57–59] have

explored randomized and population based heuristic search

techniques such as genetic algorithms to select feature subsets for

use with different classifiers. Genetic algorithm (GA) offers a

particularly attractive approach to multicriteria optimization,

which cannot be handled by most of the other methods. In [30]

genetic algorithm was used for feature selection for texture
classifier on synthetic aperture radar airborne imagery. They

found a few more effective features than the others of image

classification. Guerra-Salcedo et al. [58,59] involved genetic

strategies for feature selection combined CF/RSC (Common

Features/Random Sample Climbing) and Decision Tables

dealing with large feature spaces showing a good result.

Overall reviewing the literature, neural networks are

particularly effective for fine-tuning solutions once promising

regions in the search space have been identified. It is currently

used for classification by many researchers. Chitre et al. [7] used

a Back Propagation Neural Network for image structure

microcalcification classification and compared results with

statistical classifiers. Though result is not promising, it is better

than the statistical classifiers. Qian et al. [23,55] used the back

propagation (BP) algorithm and wavelet transform-based

methods with Kalman filtering neural network for mass

detection. Verma [15] employed BP with momentum and

DSM (Direct Solution Method) based training algorithms to train

a feedforward neural network for classification of microcalci-

fication. He achieved the classification rate of 81.25% for benign

and malignant. Verma and Zakos [50] developed a computer-

aided diagnosis system for digital mammograms based on fuzzy-

neural and feature extraction techniques. They used a fuzzy

technique to detect microcalcification patterns and a neural

network to classify it. The microcalcification areas from the

Nijmegen digital mammographic database were used for their

experimentation. Their research achieved a very commendable

result with the classification rate 88.9% for classifying the

microcalcification as benign or malignant.

Evolutionary algorithms are generally quite effective for rapid

global search of large search spaces in multi-modal optimization

problems. The use of GA for training neural network (e.g. in [65])

has recently begun to receive a considerable amount of attention.

The objective of this paper is to present a neural-genetic

algorithm to find the most significant feature or a set of features

suitable for classifying abnormalities such as benign and

malignant microcalcifications.

The remainder of this paper is organised as follows: Section

3 describes the proposed research methodology followed by the

implementation in Section 4. The experimental results are

presented in Section 5. Section 6 discusses the obtained results
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by the proposed technique. The conclusion and future

directions are stated in the final section.

3. Research methodology

The research methodology uses a novel neuro-genetic

algorithm proposed in this paper, for finding the most

significant feature or a set of features from a number of

existing features and classifying the microcalcifications into

benign and malignant. An overview of the proposed

methodology is shown in Fig. 2.

3.1. Mammographic database

In this research Digital Database for Screening Mammo-

graphy (DDSM) from University of South Florida is used for

experiments. It was downloaded from http://marathon.

csee.usf.edu/Mammography/DDSM. The OD (optical density)

range of the scanner for the database was 0–3.6. The 12 bits

digitizer was calibrated so that the grey values were linearly and

inversely proportional to the OD.

In DDSM database, the outlines for the suspicious regions

are derived from markings made on the film by at least two

experienced radiologists. Each boundary for the abnormality is

specified as a chain code, which allows easy feature extraction

for each of the suspicious areas in the image files.

3.2. Feature extraction

As mentioned before, feature extraction is a very important

part for the classification. To find the best feature or

combination of features and get the high classification rate

for microcalcification classification is one of the main aims of

the proposed research.
Fig. 2. An overview of th
The feature extraction technique consists of three parts: (1)

area extraction from the marked mammograms; (2) feature

extraction from the extracted areas; (3) feature selection for the

classification.

3.2.1. Area extraction

Area extraction deals with extracting the grey values from all

the suspicious areas in the mammograms marked by the expert

radiologists. It accomplished by three steps: (1) according to the

chain codes described in the ‘‘.overlay.’’ files of the database,

extract the boundary of the suspicious areas, (2) resize the

boundary, (3) extract all the grey values in the area and in the

boundary area. Fig. 3 shows the whole process of area extraction.

3.2.2. Feature extraction from the extracted area

A set of 14 features is calculated for each suspicious area in

this research. Ten of these features are commonly used existing

features in the literature, which are histogram, average grey

level, energy, entropy, number of pixels, standard deviation,

skew, average boundary grey level, difference and contrast.

Four of them are modified by us (Verma and Zakos) in our

previous research, which are modified energy, modified

entropy, modified standard deviation and modified skew.

The formulae for every feature are described below: for each

of the formulae: T is the total number of pixels, g an index value

of image I, K the total number of grey levels (i.e. 4096), j the

grey level value (i.e. 0–4095), I(g) the grey level value of pixel g

in image I, N( j) the number of pixels with grey level j in image

I, P(I(g)) the probability of grey level value I(g) occurring in

image I, P(g) = N(I(g))/T, and P(j) is the probability of grey

level value j occurring in image I, P(j) = N(j)/T:

histogram ¼ 1

K

XT�1

j¼0

Nð jÞ (1)
e proposed algorithm.

http://marathon.%20csee.usf.edu/Mammography/DDSM
http://marathon.%20csee.usf.edu/Mammography/DDSM
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Fig. 3. (a) The boundary of the suspicious area, (b) the area and resized area, and (c) boundary.
average grey level ¼ 1

T

XT�1

g¼0

IðgÞ (2)

modified energy ¼
XT�1

g¼0

½PðIðgÞÞ�2 (3)

modified entropy ¼ �
XT�1

g¼0

PðgÞ log2½PðIðgÞÞ� (4)

number of pixels ¼ count of the pixels in the extracted area

(5)

modified standard deviation ðsmÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XT�1

g¼0

ðIðgÞ � AvgGreyÞ2PðIðgÞÞ

vuut (6)

modified skew ¼ 1

s3
g

XT�1

g¼0

ðIðgÞ � AvgGreyÞ3PðIðgÞÞ (7)

boundary grey level ¼ count grey levels at boundary (8)

difference ¼ average grey� average boundary grey (9)

contrast ¼ difference

AvgGreyþ AvgBoundryGrey
(10)
energy ¼
XK�1

j¼0

½Pð jÞ�2 (11)

entropy ¼ �
XK�1

j¼0

Pð jÞ log2½Pð jÞ� (12)

standard deviation ðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XT�1

g¼0

ð j� AvgGreyÞ2Pð jÞ

vuut (13)

skew ¼ 1

s3
j

XK�1

j¼0

ð j� AvgGreyÞ3Pð jÞ (14)

3.2.3. Feature selection algorithm

In this research, a neural-genetic algorithm is developed for

feature selection based on the neural network pattern classifiers.

Each individual in the population represents a candidate

solution to the feature subset selection problem. Here, there are

214 possible feature subsets.

In this step, a binary vector of dimension 14 represents the

individual in the population. In other words, the chromosome

defined contains 14 genes, one gene for each feature, which can

take two values. A value of 0 indicates that the corresponding

feature is not selected, and a value 1 means that the feature is

selected. An initial population of chromosomes is randomly
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Fig. 4. The NNs trained separately in the process of features selection.
generated. One-point binary crossover and binary mutation

are performed. The roulette wheel selection strategy is also

used in the algorithm for feature selection. The relevant

parameter settings are: population size, 30; number of

generation, 200; probability of crossover, 0.8; probability of

mutation, 0.2.

The fitness of the chromosome is calculated according to the

classification rate of the evolved subset of features, as it is

shown in Fig. 4.

3.3. Neural Networks (NNs) for classification

In this research, the selected features are the inputs of the

Neural Networks, which are used for classification. The

number of the inputs are decided by the automatically selection

of GA processing. The values of the inputs are the normalized

features that are between 0 and 1. One hidden layer is used in

the NN. The nodes of hidden layer were adjusted in an attempt

to achieve optimum classification rates. One output of NN is

used in the proposed research. The value is also set to be

between 0 and 1. The desired output was specified as 0 for

benign and 1 for malignant. An output value of an actual NN

less than threshold1 is classified to be benign. That means the

relevant input features belong to a benign microcalcification.

An output value of more than threshold means that the neural

net has classified the input features as belonging to a malignant

microcalcification.

The NNs for classification with different selected inputs are

trained separately by another genetic algorithm. In the genetic

algorithm for feature selection involves many generations. In

each generation, evaluation of an individual (a feature subset)

involves training neural networks.

A standard genetic algorithm with a roulette wheel selection

strategy is used in this research. In the process of NN training,
1 Threshold was initially set to 0.5 as it is the middle value between 0 and 1.

However it is not necessarily the most ideal value to achieve the best possible

classification rate. In the later experiments it is changed to find the best

classification rate.
the genes of every individual in the population represent the

weights between input and hidden layer and the weights

between hidden layer and output of the NN. The results are

based on random initialization to the weights of every

individual in the population with the following parameters:
� p
w

opulation size, 40;
� n
umber of generation, 50;
� p
robability of crossover, 0.8;
� p
robability of mutation, 0.2.

Here crossover is performed by two points real value

crossover. Two points (point1 and point2) are selected randomly,

where point1 < point2, and point1 > 1, point2 < n, n is the

number of genes (here are weights) of one individual NN. For

mutation, a small random value between 0.1 and 0.2 is added to

every weight of selected member that would perform mutation.

After NN is trained the best weights of the NN and the

classification rates are saved for the further features selection.

All the programs are implemented using C language on Unix

platforms.

4. Implementation

The implementation of the program is divided into four steps:

(1) area extraction, (2) feature extraction, (3) feature normal-

ization, and (4) neural-genetic algorithm for feature selection.

4.1. Area extraction program

The area extraction program aimed to extract the micro-

calcification area from the mammogram. This program reads

the information from the ‘‘.ics’’ and ‘‘.overlay’’ files in DDSM

database. According to information and the chain code supplied

by the ‘‘.overlay’’ files, it extracts suspicious areas from the

decompressed image files, and then creates the area and

boundary files that include the grey values of all the pixels in the

relevant areas. This process is shown in Fig. 5.

4.2. Feature extraction program

Feature extraction program used the area and boundary files

as input and extracts the features of every area and creates one

file, which includes all the features of every extracted area.

Fig. 6 is the block diagram of the program.

4.3. Feature normalization program

Feature normalization program normalizes the features to be

real numbers in the range of 0–1. The normalization is

accomplished by the following steps: (1) change all the features

to be positive by adding the magnitude of the largest minus

value of this feature times l.l,2 (2) divided by the maximum

value of the same feature.
2 Here using multiple 1.1 to get rid of 0 values. This step only used when there

as the minus value exists.
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Fig. 5. Area extraction from the mammograms of DDSM database.

Fig. 6. Diagram of feature extraction program.
For example, there is a set of features as shown in

Table 1:
� T
Ta

A

N

1

2

3

4

5

6

7

8

9

10
he normalized the Histogram (Hist) of No. 1 is: 2.420654/

2044.85 = 0.001184.
� T
he normalized skew of No. 1 should be: 1.
� T
he normalized skew of No. 2 is: (�0.507747 �
1.1 (� 1.120872 ) ) / ( 0.22179 � 1.1 (�1.120872 )) =
ble 1

n example set of features

o. Hist AvgGrey M-entropy No-pixel M-S

2.420654 3216.655 51.65028 1449 145

618.0623 2261.459 557.5256 42217 1331

96.0481 2673.919 288.2817 11177 426

1219.577 2822.901 793.1155 58486 1377

1406.039 3191.339 1060.691 44486 1007

2572.532 3082.447 1227.898 76777 1560

20444.85 2889.106 2961.471 272657 3212

650.0071 1409.151 477.5477 56121 1740

864.1545 2177.935 665.5077 48409 1373

283.4334 1841.098 336.6776 34067 1411
(�0.507747 + 1.23296)/(0.22179 + 1.23296) = 0.725212/

1.45475 = 0.498513.
� T
he normalized skew of No. 5 is: (�1.120872–

1.1(�1.120872))/(0.22179–1.1(�1.120872)) = 0.112087/

1.45475 = 0.07705.

The normalized features are used as the inputs of the

proposed neural-genetic approach for feature selection and
.D. M-skew Boundgrey S.D. Skew

.7969 0.010777 3033.2036 69.6345 0.22179

.549 �0.01973 2237.4526 217.2295 �0.507747

.7099 0.020204 2457.2856 91.6372 �0.385337

.377 0.008712 2501.7749 196.2122 �0.354677

.179 0.021869 2914.0163 123.9923 �1.120872

.878 0.001706 2925.9076 179.7458 �0.776106

.437 0.01601 2272.3514 259.4753 �0.31798

.77 �0.02035 1174.6264 340.4212 0.052807

.107 �0.01065 1875.5232 239.8831 �0.972377

.265 0.025068 1606.6344 282.1944 �0.099654
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Fig. 7. Diagram of genetic algorithms for feature selection and neural network training.
classification. The program uses the feature file as the input, and

creates a file with the normalized features. It can be run with

two parameters, one is the feature file name and other is the

normalized feature file name to be created.

4.4. Feature selection and classification algorithm

This research involved double genetic algorithms for feature

selection and NNs training, respectively. Fig. 7 shows the

diagram of this double GAs.

The program reads the parameter settings that are saved in

the text file. By changing the settings, more different

experiments can be easily done. The program needs the feature

file and target output file for training and testing, which are set

in the parameter text file.

5. Experimental results

A total of 67 microcalcification areas were extracted from

the digital mammograms taken from a Benchmark database for

the experiments. The experiments presented here were run

using 47 microcalcification areas (24 benign, 23 malignant) for
training and 20 microcalcification areas (11 benign, nine

cancer) were used for testing.

Many experiments using different parameters were run to

find the feature or combination of features that best classifies a

microcalcification area into benign and malignant. It was also

performed to determine the ideal neural network parameter

settings for microcalcification classification with the selected

feature set.

The experiments were conducted by the classification rate of

testing set to calculate the fitness for reproduction of Genetic

feature selection. The number of hidden units and output

threshold were adjusted in the experiments to find the

combination of the features and NN structures, which can

achieve the best classification rate. The results of the

experiments are described as following.

In all the tables, the column ‘Features’ was described by

using the values 0s and 1s. The 0 means the responded feature is

not selected and the 1 means the feature is selected. The

sequence of the features is: (1) histogram, (2) average grey

level, (3) modified energy, (4) modified entropy, (5) number of

pixels, (6) modified standard deviation, (7) modified skew, (8)

boundary grey level, (9) difference, (10) contrast (11) energy,



B. Verma, P. Zhang / Applied Soft Computing 7 (2007) 612–625 619

Table 2

The highest classification rate from experiments of different hidden units

Features (1-selected) Hidden units Training set ((47 � 24)/23) Testing set ((20 � 11)/9)

B-E M-E T-E T-rate (%) B-E M-E T-E T-rate (%)

10000111110100 2 2 11 13 72.3 1 3 4 80.0

01011111000100 8 6 10 16 66.0 1 3 4 80.0

10100111111010 10 10 6 16 66.0 1 3 4 80.0

00011111010001 12 2 12 14 70.2 1 3 4 80.0

11100111101111 12 5 9 14 70.2 1 3 4 80.0

00111111000011 14 8 11 19 59.6 3 1 4 80.0

00001111100000 16 3 11 14 70.2 1 3 4 80.0

10000110101000 16 3 15 18 61.7 0 4 4 80.0

11001110011100 18 6 9 15 61.7 1 3 4 80.0

Table 3

The feature selection reached classification rate >80% using threshold 0.4

Features (1-selected) Hidden units Training set ((47 � 24)/23) Testing set ((20 � 11)/9)

B-E M-E T-E T-rate (%) B-E M-E T-E T-rate (%)

00000110000001 4 8 6 14 70.2 3 1 4 80.0

10011111000111 6 2 15 17 63.8 1 3 4 80.0

10000111000011 8 6 10 16 66.0 0 3 3 85.0

00111011100011 8 11 6 17 63.8 4 0 4 80.0

11000011010111 8 7 9 16 66.0 0 4 4 80.0

11000110110000 12 6 11 17 63.8 1 3 4 80.0

00000110101100 14 3 16 19 59.6 0 4 4 80.0

10001110110110 16 2 13 15 68.1 1 3 4 80.0

01010110110010 18 2 12 14 70.2 1 3 4 80.0
(12) entropy, (13) standard deviation, and (14) skew. The value

followed in the column within brackets indicates the number of

times the feature subset is selected in all the generations (i.e.

200 generations).

Benign-Error (‘‘B-E’’) is used to represent the number of

classification errors3 for benign microcalcifications of the

whole training set or testing set. Malignant-Error (‘‘M-E’’)

represents the number of classification errors for malignant

microcalcifications of the whole training set or testing set.

Total-Error (‘‘T-E’’) refers to the number of classification errors

for all the microcalcifications of the whole training set or testing

set. ‘‘T-rate’’ is the abbreviation of Total-classification Rate. It

is calculated by the following formula:

‘‘T-rate00 ¼ ððtotal number of samplesÞ

� ‘‘T-E00Þ=ðtotal number of samplesÞ

5.1. Experiments using threshold 0.5 and hidden units

2–18

When analyzing the results of the experiments from two

hidden units to 18 hidden units, it is noticed that there are a few

features which are more frequently selected than the others are.

In every experiment, most of the feature sets that get the highest
3 Classification errors mean how many microcalcification areas are not

classified correct.
classification rate are selected many times or are the most

frequently selected in all the generations.

Table 2 gathered all the feature combinations, which get the

highest classification rate using different number of hidden

units. We can see that in every selection, feature numbers 6 and

7 are selected constantly. The eigth feature is almost selected by

all of them, too.

Fig. 8 indicates the frequency of every feature occurred in

the feature sets which gave the high classification rate.

5.2. Experiments using threshold 0.4 and NN hidden units

2–18

All previous experiments were carried out using 0.5 as the

output threshold for classification, because it is the middle value

between 0 and 1. It was found from the results that in most of the
Fig. 8. The selection rate of every feature in the experiments with output

threshohold 0.5.
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Fig. 9. The selection rate of every feature in the experiments with output

threshold 0.4.
Fig. 10. The selection rate of every feature in the experiments with output

threshohold 0.3.
cases the benign classification rates are higher than malignant

classification rates. Here change the threshold lower to do the

further experiments and find out if it can achieve better results.

Actually, the threshold 0.6 was used to do the experiment

too. The result is the same as predicted. It is not better than

using threshold 0.5. That is because the benign classification

rate is higher than malignant, but not opposite.

The following is the results of the experiments by using

output threshold 0.4. Table 3 shows all the feature subsets what

achieved the classification rate of testing set not <80%.

Obviously, in every feature set include feature number 7.

Except two of them, all include number 6. It is interesting that

these two selections are the two, which did not reach the highest

classification rate in the experiments using eight hidden units.

This result is mainly consistent with that of the experiments

using threshold 0.5. Fig. 9 shows the selected frequency of

every feature in the high classification rate cases of the

experiments using threshold 0.4. The trend line shows the

consistent result as it is shown in Fig. 8.

5.3. Experiments using threshold 0.3 and NN hidden units

2–18

Although the feature selection result is consistent in using

threshold 0.4 and 0.5, in the experiments using threshold 0.4
Table 4

The feature selections reached classification rate � 80% using output threshold 0.

Features (1-selected) Hidden units Training set ((47 � 24)/23)

B-E M-E T-E

11001111011111 2 9 8 17

11110011111111 2 1 19 20

10001111001011 4 9 6 15

11100111011111 6 9 10 19

11101111000000 6 9 7 16

11111011111011 6 10 6 16

00110011010011 8 6 11 17

00110101100011 8 7 15 22

01010111001101 10 3 15 18

01010111001111 10 9 8 17

10001110001111 10 11 6 17

10001111110001 10 5 13 18

11101011100111 10 9 9 18

11001110110011 14 10 9 19

11010110010011 14 4 13 17

11100111010101 14 6 12 18

00101111100000 16 2 12 14

11001111100111 16 2 12 14
achieved the higher classification rate. Further experiments

using 0.3 as the output threshold were run in order to get more

evidence for the consistent feature selection result, and

expected to reach higher classification rate.

Table 4 shows the result of using different NN hidden units

with threshold 0.3. The highest classification rate is achieved

again in the experiment using eight hidden units, also in using

two and six hidden units.

It is not surprising that the feature selection shows the

similar result as it appeared in the previous experiments.

Number 7, feature ‘modified skew’ is still most frequently

selected, and traditional skew here is selected more than it is in

the previous experiments. The frequency of feature selection

from the experiments with threshold 0.3 is shown in Fig. 10. We

can see the trend line is not changed too much.

So far, a few feature subsets have achieved the highest

classification rate 85.0%. More combinations of features

classified the testing set with correct rate 80%.

Table 5 shows feature combinations, which reached 85.0%

classification rate.

A new character of the results is that all the feature subsets

here include traditional standard deviation and skew, beside the

most popular feature modified standard skew. Another feature,
3

Testing set ((20 � 11)/9)

T-rate (%) B-E M-E T-E T-rate (%)

63.8 2 1 3 85.0

57.4 0 4 4 80.0

68.1 2 2 4 80.0

59.6 2 2 4 80.0

66.0 1 3 4 80.0

68.1 2 1 3 85.0

63.8 1 2 3 85.0

53.2 1 3 4 80.0

61.7 1 3 4 80.0

63.8 1 3 4 80.0

63.8 3 1 4 80.0

61.7 0 4 4 80.0

61.7 3 1 4 80.0

59.6 1 3 4 80.0

63.8 0 4 4 80.0

61.7 1 3 4 80.0

70.2 2 2 4 80.0

70.2 1 3 4 80.0
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Table 5

The feature selections reached classification rate 85% using different number of hidden units and thresholds

Features (1-selected) Hidden units Threshold Training set ((47 � 24)/23) Testing set ((20 � 11)/9)

B-E M-E T-E T-rate (%) B-E M-E T-E T-rate (%)

11001111011111 2 0.3 9 8 17 63.8 2 1 3 85.0

11111011111011 6 0.3 10 6 16 68.1 2 1 3 85.0

00110011010011 8 0.3 6 11 17 63.8 1 2 3 85.0

10000111000011 8 0.4 6 10 16 66.0 0 3 3 85.0

Table 6

Classification rates reached using discriminant classifier with the selected features

Features (1-selected) Training set Testing set

B-E M-E T-E T-rate (%) B-E M-E T-E T-rate (%)

11001111011111 7 6 13 72.3 1 5 6 70.0

11111011111011 5 6 11 76.6 3 7 10 50.0

00110011010011 9 5 14 70.2 5 5 10 50.0

10000111000011 10 7 17 63.8 2 6 8 60.0

Table 7

Classification rates reached using logistic regression technique with the selected features

Features (1-selected) Training set Testing set

B-E M-E T-E T-rate (%) B-E M-E T-E T-rate (%)

11001111011111 10 5 15 68.1 3 3 6 70.0

11111011111011 7 3 10 78.7 4 5 9 55.0

00110011010011 9 3 12 74.5 5 5 10 50.0

10000111000011 12 2 14 70.2 5 1 6 70.0
boundary average grey level is also selected by every one of

them.

More experiments using 0.2 as threshold were conducted,

which achieved the highest classification rate 80.0% with four

and eight hidden units. The overall results were not better than

in previous experiments.

5.4. Further experiments with statistical classifiers

For further validating the selected features, we had the

experiments with discriminant and logistic regression techni-

ques and the results are displayed in Tables 6 and 7. As it can be

seen, the results are much worse than neural classifier. We also

used the random selection of feature sets and did the

experiments using neural network, discriminant analysis and

logistic regression methods, respectively. We have never found

any other feature subset reached over 80% classification rate

with NN. The highest classification rate with the random

selected features was 65% and 70% with discriminant classifier

and logistic regression, respectively. This somehow proved that

GA for feature selection is effective.

6. Discussion and analysis

This section discusses the results presented previously.

Furthermore, it analyses the advantages and disadvantages of

the proposed approach.
6.1. Discussion on the experimental results

Various results were achieved using various parameters of

neural networks and genetic algorithms, as well as the output

threshold. We can see every parameter, i.e. the number of

hidden units of NN, and the output threshold, can affect the final

classification rate.

In this research, the input vector of NN is changing all the

time in order to find the best combination of features. One of the

criteria of the best feature set is to get the best classification

rate. However, the best classification achievement is affected by

many factors, as mentioned above. In addition, the algorithms

used for NN training and feature selection are also very

important.

Look back the experimental results shown in Section 5.

When doing the experiments using the classification rate of

training set as the fitness function to reproduce the next

generation for feature selection, the selection result did not

converge to certain set of a few feature subsets that gave the best

classification rate. We could not get any conclusion from here.

To find the reason, in the process of feature selection, every NN

for classification is trained separately. It is explainable that we

cannot find the consistency, because the NN, which is trained

better does not always give the better testing classification rate.

The better selection convergence and good classification rate

happened in the experiments with the following method and

parameters:
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� U
sing the classification rate of testing set to be the fitness

function for reproducing next generation in the GAs for

feature subset selection.
� T
he number of hidden units is 8–16.
� T
he output threshold 0.3 is the most suitable threshold for

classification, but not the middle value 0.5.
� T
he generation size for feature selection of this case should

not be <200.
� T
Fig. 11. Three examples of GA process used in NN training.
he generation size for NN training can use 50 as

usual.

The best classification happened in a few feature subsets.

They are:
(1) ‘
‘11111011111011’’: Histogram, average grey level, mod-

ified energy, modified entropy, pixel numbers, modified

skew, boundary average grey level, difference, contrast

energy, standard deviation and skew.
(2) ‘
‘11001111011111’’: Histogram, average grey level, pixel

numbers, modified standard deviation, modified skew,

boundary average grey level, contrast, energy, entropy,

standard deviation and skew.
(3) ‘
‘00110011010011’’: Modified energy, modified entropy,

modified skew, boundary average grey level, standard

deviation and skew.
(4) ‘
‘10000111000011’’: Histogram, modified standard devia-

tion, modified skew, boundary average grey level, standard

deviation and skew.
4 The highest classification rate of training set is recorded in the feature

selection process using the classification rate of training as the fitness function

to reproduce next generation.
The experiments with the statistical classifiers and the

experiments with the random selected features show the

effectiveness of GA, although with selected features the highest

classification rate is still lower than our previous experiments.

In our previous experiments we used the different database with

the different cases.

In some researchers’ view, the different type of classifica-

tion errors (benign to malignant/malignant to benign) should

be considered differently. The error of classifying the

malignant to benign is more serious than classifying the

benign to malignant. However, we believe that both errors are

serious. Classifying the malignant to benign can cause death of

the patient, likewise classifying the benign case to malignant

can also destroy the patient’s life. It is controversial to say the

four subsets mentioned about are a 100% the best the feature

sets for the microcalcification classification. However, it is

important to note that in all these feature sets we find the

following features: modified skew, boundary grey level,

standard deviation and skew. It at least tells us that these

four features are important for microcalcification classifica-

tion. Actually, we did the experiments with only these four

features for three different classifiers. The classification rates

reached with NN was 80% for testing and 61.7% for training.

With discriminant classifier, the testing classification rate was

70% with 72.3% for training. Logistic regression reached 60%

and 70.2% for testing and training with these four features.

These are quite well results comparing with the results of

random selected features.
Reviewing the experiments, there is another feature, which

is also frequently selected, so we think it is quite important too,

it is modified standard deviation.

6.2. Analysis on double GAs involved in feature selection

and NN training

Fig. 11 shows three examples of GA processes used for

training the neural networks which were used for the

classification.

We can see, in the NN training processes the number of

classification errors changed only a few times, but at least it is

getting better through all the generations. This indicates that the

GA used for NN training is effective. In all the generations, the

classification error changed most in the first few generations, it

tells us that generation size 50 is appropriate for NN training.

However, the result presented previously showed that the

classification rate for training set never reach 90%. For the four

feature combinations that reached the highest classification rate

for testing, their corresponded classification rates were never

more than 70%.

This may have two reasons: one is the database limitation,

this can be explained by comparing the number of training set

used for training. When using 37 samples for training the

classification rate of training set reached 86.5%. When using 47

samples for training the highest training classification rate is

only 80.9%.4 This indicates that it is hard to find a proper NN

for the features extracted from the database for classification.

Another one may be genetic algorithm itself. Although it is

effective, as mentioned, the number of classification errors were

not changed too much through all the generations. As Verma

and Zakos said: ‘‘The good classification rate that the BPNN

did achieve meant that there was no need to use another

classifier to try and improve the classification rate’’, the

experiments in this research did not show GA was more

efficient than BP for NN training.

Fig. 12 traces an entire process of GA used for feature subset

selection. It is made according to the record of the experiment

using eight hidden units and threshold 0.4. The fitness function

for reproduction is the classification rate for testing set. The



B. Verma, P. Zhang / Applied Soft Computing 7 (2007) 612–625 623

Fig. 12. The entire process for feature selection using testing classification rate

as the reproduction fitness function.
main trend line in the figure shows the classification is getting

better as the generation number getting bigger.

However in the whole process, the classification rate is not

constantly getting better, it goes up and down through all the

generations. This is easy to explain. Because in each generation

of feature selection, evaluation of an individual involves

training the neural network, and every NN is trained separately.

There are a few lucky factors in GA, about initialization,

mutation and crossover. This has been proved in the

experiments. The experiments have shown that the same

feature set can be selected through many generations, but the

classification rate is not always the same. That is because every

time the NN is trained differently. It can always have some

unlucky mutation or crossover happen.

Although, there is some lucky factor affects GA, it is still

effective for both NN training and feature selection. The

reproduction involved in GA can always keep the best

individual to the next generation. By doing more experiments

this disadvantage can be weakened.

7. Conclusions and further research

We have proposed and implemented a novel approach for

finding the most significant set of features to classify benign and

malignant microcalcifications in digital mammograms. After

conducting many experiments and analyzing them, the

conclusions of this research are drawn below.

7.1. Conclusions

The achieved classification rate and feature sets are

promising. The highest classification rate achieved for testing

set was 85.0%.

Five features are considered to be the most significant features

of a digital mammogram for microcalcification classification.

They are modified skew, boundary average grey level, standard

deviation, skew and modified standard deviation.

For most experiments, the neural network architecture of

eight hidden units is most suitable for classification. In addition

0.3 is proved to be a good output threshold for classification

with one output NN.

Our genetic algorithm based feature selection approach is

effective. It is also proved by using the best four feature subsets,
which are selected by our approach, as the inputs of the neural

network trained using backpropagation algorithm. It has got the

best classification rate than any other random selected feature

combinations.

7.2. Problems and further research

As mentioned in last section, genetic algorithms rely on

‘lucky’ random crossovers and mutations; so one method for

improving the algorithm was to pursue an increase of the

probabilities of success of the crossovers and mutations. After

all the experiments discussed previously combining the

classification rate for testing and training to do feature selection

has been considered. Adding some other criteria to calculate the

fitness for reproduction is also thought about.

Another big problem has met in this research is that the

double GAs training process is quite slow. That is because for

every selection individual, the neural network has to be trained

separately, and every training process involved many genera-

tions and populations. To find a less cost and more effective

method to train the neural networks and combine with GA for

feature selection can be the next stage of current research.

Although the achieved classification rate for testing is high,

it can still be improved, by improving the classification rates of

corresponding feature sets for training, which were low. Bigger

database will be used and further validation with different split

of training and testing set will be in our further experiments.
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