
Brunel University
Research Archive

Article

Post Print
This article is a version after peer-review, with revisions having been made. In terms of
appearance only this might not be the same as the published article.

Author(s)

Title

Original Citation

This version is available at:

Access to and use of the material held within the Brunel University Research Archives,
is based on your acceptance of the BURA End User Licence Agreement (EULA)

Evolving Cellular Automata to Generate

Nonlinear Sequences with Desirable Properties

Syn Kiat Tan
1
 and Sheng-Uei Guan

2

1
Department of Electrical and Computer Engineering

National University of Singapore

10 Kent Ridge Crescent, Singapore 119260

 2School of Engineering and Design

Brunel University

Uxbridge, Middlesex, UB8 3PH, UK

Abstract—This paper presents a new chromosomal representation and associated genetic

operators for the evolution of highly nonlinear cellular automata that generate

pseudorandom number sequences with desirable properties ensured. This chromosomal

representation reduces the computational complexity of genetic operators to evolve valid

solutions while facilitating fitness evaluation based on the DIEHARD statistical tests.

Index Terms— cellular automata, random number generation, incremental evolution.

I. INTRODUCTION

The theory for cellular automata (CA) based pseudorandom number generators (PRNG)

is well developed [1,2] and n -bit linear CA can be designed to generate sequences with

desirable properties: maximum period 2 1np = − , uniform distribution of n-bit tuples and

balanced distribution of ‘1’ and ‘0’. These so-called m-sequences cannot be used directly

due to their linear structure while the theory for nonlinear CA are less developed since it

is difficult to ensure desirable sequence properties [8]. For cryptographic applications, a

nonlinear Boolean function must be applied to destroy the linearity within these m-

sequences. The Boolean functions used must possess high nonlinearity, high algebraic

degree, correlation-immunity etc [8]. Cryptographic Boolean functions are usually very

complex and large. Recently, heuristic methods have been gaining popularity in the

search for such Boolean functions [6]. In this paper, we evolve nonlinear CA by viewing

the linear CA and nonlinear Boolean function as a single entity.

In another direction, researchers focused on a variety of genetic algorithm (GA) based

techniques to improve the randomness quality of CA generated sequences – typically

verified though empirical testing with the DIEHARD statistical test suite [7]. The cellular

programming approach [3] is used to evolve the linear transformation function of

individual registers in the CA so that the generated sequences pass all 19 DIEHARD test

results. In [4], the above approach is extended to consider nonlinear functions with up to

five inputs. In [5], multi-objective genetic algorithm is used for evolving the minimum

cost CA to pass all 19 DIEHARD tests. Due to complex CA models evolved, it is

generally difficult to apply analysis to properties such as period length for these CA

designs.

Approaches combining GA and CA have shown tremendous potential in various

disciplines [12,13]. In our context, CA based PRNG that pass DIEHARD have been

successfully evolved via GA [3-5]. However, such GA derived solutions currently lack

the theoretical support possessed by the m-sequences generated by linear CA. Our

objectives thus follow:

i) to provide an efficient chromosomal representation and genetic operators that

ensure evolved solutions have desirable sequence properties: long period, balanced

distribution of ‘1’ and ‘0’, uniform distribution of n-bit output,

ii) to evolve solutions that pass all 19 DIEHARD tests.

II. CELLULAR AUTOMATA

An -bitn CA is an array of n binary registers whose state at time ()t can be denoted by

() () () ()
1 2 0[, , ,]'t t t t

n nS s s s− −= … (see Fig. 1). Each CA register si has a transformation function

fi(.) to compute its next state, i.e. () ()
2 3 1

t t
f s s= ⊕ in Fig. 1. The CA can be equivalently

viewed as a vector Boolean function 1 2 0[(.), (.), , (.)] 'n nF f f f− −≡ � which maps the

current CA state to the next state, i.e. (1) ()()t t
S F S

+ = . In Fig. 1, if () [1,1,1,1]'t
S = , we

have (1) [0,0,1,0]'t
S

+ = . The states of a CA during each discrete time step can be

successively sampled to form a pseudorandom n-bit word sequence (0) (1) (2){ , , , }S S S … .

Fig. 1. A 4-bit linear CA using only XOR gates

(0)
3s

(0)
2s

(0)
1s

(0)
0s

s3 s2 s1 s0

(1)
0s

(1)
1s

(1)
2s

(1)
3s

�

�

�

�

A symmetric neighborhood is often used to denote the surrounding CA registers that can

be used as inputs for each register. For example, with neighborhood radius r=1, the CA

in Fig. 1 has () () () ()
1 1(, ,), 0 1t t t t

i i i i is f s s s i n− += ≤ ≤ − . We only consider CA with null

boundary conditions where the leftmost/rightmost registers’ function receive a fixed "0"

input from its “supposed” left/right neighbors respectively, i.e. () () ()
0 0 0 1(,)t t t

is f s s += and

() () ()
1 1 2 1(,)t t t

n n n ns f s s− − − −= . Null boundary conditions avoid long connection wires routing

across the whole length of the CA when periodic boundary conditions are used

Denote
()t

S as the n-bit output from the CA at time (t). Consider the sequence

(1) (2) (2 1)
{ , , , }

n

S S S
−

… where each unique n-bit
()t

S appears exactly once. It is clear that

there are (2 1)!n − such sequences that can be generated - these include both the linear m-

sequences generated by CA as well as nonlinear sequences (generated by a system with

nonlinear functions). Ideally, these sequences should form the complete search space for

genetic algorithms to locate solutions that pass all DIEHARD tests. However, in previous

approaches [3-5], solutions are not searched specifically within this solution space due to

the chromosomal representation used.

In [3-5], the chromosomal representation used for evolving CA-based PRNG [3-5] is the

concatenated binary string containing the truth tables of each CA registers’

transformation functions 1 2 0[(.), (.), , (.)] 'n nF f f f− −≡ � . These individual functions fi(.)

are constrained to use r=1 neighborhood. This means only
122

r+
 functions can be

represented by this truth table. This reduces the size of the chromosome (concatenated

truth tables) to 12r
n

+⋅ bits and the evolutionary search space is focused on CA candidates

with simple local inter-connections. There are also some works that extends this

neighboring radius r to 5 so that a larger search space can be exploited [4]. Nevertheless,

it is possible to evolve CA that passes all DIEHARD tests as shown in prior work, but if

desirable sequence properties are required, the present chromosomal representation is not

appropriate. Information about the sequence properties is not readily present in the truth

table. In the following section, we introduce a more appropriate chromosomal

representation that avoids the decision for the constraint r.

III. THE GENETIC ALGORITHM

A variety of heuristic methods, including genetic algorithm, simulated annealing, hill

climbing etc., has been examined [6] to search for Boolean functions satisfying several

desirable cryptographic properties. The evolved functions located possess properties

which compares favorably with functions built from analytical approaches [10].

A. Chromosomal Representation

All n-input Boolean functions can be represented by two commonly used chromosomal

representations: truth table representation (TTR) and algebraic normal form

representation (ANFR) [9]. The TTR is simply the column vector for the truth table

output over all possible inputs in lexicographical order. The ANFR is defined as the

vector of coefficients from the algebraic normal form (XOR sum of AND terms) of the

Boolean function [8]. Both representations use 2n bits for an n-input Boolean function

and an efficient transform between these two representations is given in [9].

The TTR is popular with researchers on evolution design of Boolean functions [9] and

CA [3-5] as it is intuitive and direct. The balanced-ness [8] of the Boolean function can

also be easily computed from the TTR. The ANFR is suitable for studying the structure

of the Boolean function in terms of the XOR and AND logic involved. The algebraic

degree can be easily read from the ANFR.

There is no clear way to determine the period for generated sequences from both TTR

and ANFR. Furthermore, it is difficult to apply the common crossover and mutation

operators on both the TTR and ANFR without losing any of the desired sequence

properties. Each newly generated child chromosome has to be checked and discarded if

violations occur. This is clearly very inefficient. On the other hand, it is also unclear how

to design a new genetic operator that will work with the TTR and ANFR that will ensure

child chromosomes automatically possess the desired sequence properties.

The maximum length property implies the overall set of n Boolean functions

1 2 0[(.), (.), , (.)] 'n nF f f f− −≡ � must be considered simultaneously but both TTR and

ANFR work only on a single Boolean function (.)if . Since we want all possible n-bit

tuples in a single period, the proposed transition representation (TR) is simply the

generated sequence itself, denoted as (1) (2) (2 1)[, ,...,]
n

S S S − . Each gene ()t
S is the decimal

equivalent of the corresponding CA output at time (t). As long as each

() {1, 2,..., 2 1}t nS ∈ − appears exactly once in the chromosomal representation, the

following desirable properties are ensured: maximum period 2 1np = − , uniform

distribution of n-bit tuples and balanced distribution of ‘1’ and ‘0’. (The actual CA

implementation that generates the sequence can be obtained by a transform from the TR

to the ANFR [9].)

The TR allows efficient initialization of the starting population of chromosomes. We first

create a chromosome using a known linear CA that generates an m-sequence (this can be

a simple counter that starts from 1 to 2 1n −). This guarantees a valid chromosome and

genetic operations can be applied on this chromosome to further breed the entire starting

population of valid chromosomes. For efficiency in ensuring child chromosomes are

valid, all genetic operations must work with the natural boundaries set by the n-bit genes.

In other words, each n-bit gene is the smallest unit that can be manipulated by the genetic

operators. The following replacement-swapping operator ensures that all evolved

sequences retain the desirable sequence properties.

B. The New Genetic Operator - Replacement-Swapping

The popular crossover operator is used to produce child chromosomes using blocks of

genes from two parents. Crossover is essentially a global search operator and its

usefulness is widely debated [11] and can be very problem-specific. Using ordinary

crossover directly with TR will (with very high probability) result in an invalid child

chromosome. To create a child that is very similar to two parents, a new operator

replacement-swapping is suggested in Fig. 2. The child is a near-duplicate of the higher-

fitness parent-A except the following: ρ consecutive genes are replaced using the

weaker parent-B’s genes and ρ genes distributed within the parent-A are also swapped

at the same time. These coordinated replacement and swapping operations ensures that all

desirable sequence properties are retained.

Fig. 2. The replacement-swapping operator

Fig. 3 shows an example of how the replacement-swapping operator is used to achieve

the “crossover” effect. Based on a 4-bit CA, each () {1,2,...,15}tS ∈ and we use a random

starting point i=3 with 5ρ = . Genes in bold represent changes made to the child

chromosome.

parent_A 3 15 1 7 14 5 6 13 8 9 11 10 2 4 12

parent_B 1 7 3 4 12 6 2 8 9 15 11 10 13 14 8

child 3 15 1 7 14 5 6 13 8 9 11 10 2 4 12 Step 1

child 1 15 3 7 14 5 6 13 8 9 11 10 2 4 12 Step 2

child 1 15 3 4 14 5 6 13 8 9 11 10 2 7 12 Step 3

child 1 15 3 4 12 5 6 13 8 9 11 10 2 7 14 Step 4

child 1 15 3 4 12 6 2 13 8 9 11 10 2 7 14 Step 5

child 1 15 3 4 12 6 2 13 8 9 11 10 2 7 14 Step 6

Fig. 3. Replacement-swapping for chromosomes of a 4-bit CA

Initialize child = parent-A (parent-A’s fitness higher than parent-B)

Randomly select a starting point [0, 2 1]ni ∈ − and the range ρ of genes

For each mod 2nj i ρ= + ,

Child S
(j)

 = parent-B S
(j)

 // replace operation

Child S
(k)

 = parent-A S
(j)

 // swap operation, (k is the prior position of Child S
(j)

)

End

Without a local search mechanism, a GA search is likened to the randomized search and

an optimum can be difficult to locate. The mutation operator performs local search

around the best performing solutions during evolution by “flipping” bits in the

chromosome according to the mutation probability mp . Here, any changes must be made

in pairs such that all n -bit states remain distinct in order to avoid violating the maximum

length property. The easiest way is to use still the replacement-swapping operator.

Crossover’s global search effect is achieved by using a block version of replacement-

swapping while mutation’s local search effect is achieved by using a point version of

replacement-swapping, i.e. use 1ρ = as shown in Fig. 2 and only one gene is

replaced/swapped.

C. Fitness Functions

A useful fitness function allows different chromosomes to be compared in a manner

which clearly distinguishes the best solution from others. Since the randomness quality of

the generated sequence is the most important empirical objective to be measured, the

number of DIEHARD tests [7] passed is used as the fitness function. We call the

chromosome passing 19 DIEHARD tests as a solution. In our context, there will be

multiple solutions, so that these solutions can be further differentiated in terms of

secondary objectives such as total gate count required for the CA.

A suitable chromosomal representation facilitates the efficient evaluation of

chromosomes’ fitness. The evaluation of different objectives requires the transformation

from one representation to another; this process is facilitated by efficient algorithms

given in [9]. For example, the TR allows direct DIEHARD evaluation – the TR itself is

the sequence to be tested by DIEHARD, the TTR facilitate the derivation of the

function’s nonlinearity and the ANFR gives the implementation details of the CA and

simplifies the calculation of the CA’s gate count.

IV. EXPERIMENTAL RESULTS

In this first series of experiments, the objective is to verify that the proposed

chromosomal representation allows CA solutions that pass all DIEHARD tests to be

located. DIEHARD testing requires a 10M byte sequence and experiments are conducted

for the 24-bit CA which generates the sequence of period 242 10M byte> . The following

simple GA evolution strategy is used:

1) Create an initial population of 10 chromosomes and set the maximum of

evolutions to 50.

2) The crossover range is a decreasing function of the evolution no.

162 / evolution no.ρ  =   while 0.1mp = for each gene.

3) After each individual’s fitness is evaluated using DIEHARD [7], the top five

individuals are retained and five new individuals (child) are created for the next

evolution. To create each child, a random pair of parents is selected from the

retained individuals.

We repeat the above procedure using 10 different initial populations and there is only one

occurrence where the final evolved population does not contain a CA that passes all 19

DIEHARD tests (although it eventually did after re-running the experiment beyond 50

evolutions).

In continuing experiments, it is observed that the number of evolutions required to locate

an individual passing all DIEHARD tests is slightly dependent on the crossover range

and mutation probability. We noticed that changing the crossover range has a more

pronounced effect on the required evolutions. This can be explained from the definition

of the replacement-swapping operation to create crossover. Besides each continuous

block of ρ genes to be swapped, there is a corresponding set of ρ genes which are

modified and the positions of these genes are randomly distributed throughout the

chromosome. Here, the crossover effect is not standalone and inherently includes

mutation.

One disadvantage of the TR is that memory requirements for the GA evolution

simulation program is very high. In general, TR requires 2n
n ⋅ bits to represent a single

chromosome while the representation used in [3-5] requires only 12r
n

+⋅ bits. For the 24-

bit CA used, each chromosome requires approximately 2424 2⋅ bits or 384Mb of RAM.

A Pentium IV 2.4Ghz with 1G memory was used for the experiments and each evolution

took an average of 60 minutes to complete (the initial evolutions took longer since ρ is

larger).

V. CONCLUSION

We have shown that through explicit knowledge and problem formulation, the

chromosomal representation is an effective tool to demarcate the solution space

efficiently. More specifically, the proposed transition representation, together with the

replacement-swapping operation, facilitates the use of genetic algorithms to evolve CA

that passes all DIEHARD tests. All evolved CA are ensured of desirable sequence

properties because of the solution space encoded by the transition representation. This

new representation offers an alternative to the popular truth table representation that is

dominantly used in previous work. It allows the investigation of nonlinear sequences that

have guaranteed desirable sequence properties. The truth table and algebraic normal form

representations are also important intermediate steps for determining other fitness

objectives such as nonlinearity, gate count, etc. As such, multi-objective GA can be

considered for the further work.

REFERENCES

[1] P. Pal Chaudhuri, D. Roy Chowdhury, S. Nandi and S. Chattopadhyay, “Additive

Cellular Automata Theory And Applications”, Volume 1, IEEE Computer Society

Press, Los Alamitos, ISBN 0-8186-7717-1, California, 1997.

[2] K. Cattell and S. Zhang, “Minimal Cost One-Dimensional Linear Hybrid Cellular

Automata of Degree Through 500”, Journal of Electronic Testing: Theory and

Applications, Kluwer Academic Publishers, Boston, Vol. 6, pp. 255-258, 1995.

[3] M. Tomassini and M. Perrenoud, “Cryptography With Cellular Automata”,

Applied Soft Computing, Vol. 1, pp. 151–160, 2001.

[4] Franciszek Seredynski, Pascal Bouvry and Albert Y. Zomaya, “Cellular Automata

Computations and Secret Key Cryptography”, Journal of Parallel Computing, Vol.

30, Issue 5-6, Elsevier, pp 753-766, 2004.

[5] Sheng-Uei Guan and Shu Zhang, “An Evolutionary Approach to the Design of

Controllable Cellular Automata Structure for Random Number Generation”, IEEE

Transactions on Evolutionary Computation, Vol. 7, pp. 23 -36, Feb. 2003.

[6] John A Clark and Jeremy L Jacob, “Two Stage Optimization in the Design of

Boolean Functions”, 5th Australasian Conference on Information Security and

Privacy, LNCS 1841, Springer-Verlag, pp. 242–254, 2000.

[7] Marsaglia, “Diehard”, http://stat.fsu.edu/~geo/diehard.html, 1998.

[8] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone, “Handbook of Applied

Cryptography”, CRC Press, Boca Raton, 1997.

[9] J. Fuller, W. Millan and E. P. Dawson, “Efficient Algorithms for Analysis of

Cryptographic Boolean Functions”, In Proceedings of Australian Workshop on

Combinatorial Algorithms, pp. 133-150, May 2002.

[10] Subhamoy Maitra and Palash Sarkar, “Cryptographically Significant Boolean

Functions with Five Valued Walsh Spectra”, Theoretical Computer Science, Vol.

276, pp.133-146, April 2002.

[11] D. Cvetkovic and I. Parmee, “Preference and Application in Evolutionary

 Multiobjective Optimization”, IEEE Transactions on Evolutionary Computation,

Vol. 6, pp.42–57, Feb. 2002.

[12] Rane T.D., Dewri R., Ghosh S., Mitra K. and Chakraborti N., “Modeling the

Recrystallization Process Using Inverse Cellular Automata and Genetic

Algorithms: Studies Using Differential Evolution”, Journal of Phase Equilibria

and Diffusion 26 (4), pp. 311-321, Aug 2005.

[13] Dewri R. and Chakraborti N., “Simulating Recrystallization Through Cellular

Automata and Genetic Algorithms”, Modeling and Simulation in Materials

Science and Engineering 13 (2), pp.173-183, Mar 2005.

	Text3:
	0: S K Tan and S U Guan
	1: Evolving Cellular Automata to Generate Nonlinear Sequences with Desirable Properties
	2: Syn Kiat Tan and Sheng-Uei Guan, “Evolving Cellular Automata to Generate Nonlinear Sequences with Desirable Properties”, Applied Soft Computing, Volume 7, Issue 3, June 2007, Pages 1131-1134
	3: http://dx.doi.org/10.1016/j.asoc.2006.10.003

