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Abstract: PSO, like many stochastic search methods, is very sensitive to efficient parameter setting such that 

modifying a single parameter may cause a considerable change in the result. In this paper, we study the ability of 
learning automata for adaptive PSO parameter selection. We introduced two classes of learning automata based 
algorithms for adaptive selection of value for inertia weight and acceleration coefficients. In the first class, particles of a 
swarm use the same parameter values adjusted by learning automata. In the second class, each particle has its own 
characteristics and sets its parameter values individually. In addition, for both classed of proposed algorithms, two 
approaches for changing value of the parameters has been applied. In first approach, named adventurous, value of a 
parameter is selected from a finite set while in the second approach, named conservative, value of a parameter either 
changes by a fixed amount or remains unchanged. Experimental results show that proposed learning automata based 
algorithms compared to other schemes such as SPSO, PSOIW, PSO-TVAC, PSOLP, DAPSO, GPSO, and DCPSO have 
the same or even higher ability to find better solutions. In addition, proposed algorithms converge to stopping criteria for 
some of the highly multi modal functions significantly faster.  
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1. INTRODUCTION 

The particle swarm optimization (PSO) algorithm is introduced by Kennedy and Eberhart [1] based on the social 
behavior metaphor. In particle swarm optimization, a group of particles, without quality and volume, fly through a 
D-dimensional space, adjusting their positions in search space according to their own experience and their 
neighbors. The position of the particle i is represented with a position vector pi=( pi1, pi2,…, piD) and a velocity 
vector vi=(vi1, vi2, …, viD). In every time step t, particle i changes its velocity and position according to the following 
equations: 

( ) ( ) ( ) ( )1 1 2 21 ( ) ( )i i i i iv t wv t c r pbest p t c r gbest p t+ = + − + −  (1) 

( ) ( ) ( )1 1i i ip t p t v t+ = + +  (2) 

Where w is the inertial weight, and c1 and c2 are positive acceleration coefficients used to scale the contribution 
of cognitive and social components respectively. r1 and r2 are uniform random variables in range [0,1]. pbesti is the 
best personal position of particle i which has been visited during the lifetime of the particle. gbest is the global best 
position that is the best position of all particles in the swarm.  

Performance of PSO is very sensitive to properly setting the above parameters. Several attempts have been done 
to improve the performance of basic PSO, which were classified by Niu et. al [2] as:  

i. Adjusting the parameters in standard PSO [3-5]. 
ii. Designing different population topologies [6-9]. 
iii. Combining PSO with other search techniques [10-12]. 
iv. Incorporating bio-inspired mechanisms into the basic PSO [13-17]. 
v. Utilizing multi-population scheme instead of single population of the basic PSO [18-20]. 

Although many of these studies improved performance of the basic PSO, they introduced new parameters and 
issues, which increases the complexity of the model. We follow the opposite direction and try to improve the basic 
PSO by making the parameter of PSO adaptive while keeping the model as simple as possible. 

Learning automata are adaptive decision making devices that operate in an unknown stochastic environment and 
 
 
 



progressively improve their performance via a learning process. It has been used successfully in many applications 
such as call admission control in cellular networks [21, 22], capacity assignment problems[23], Adaptation of back 
propagation parameter[24], and Determination of the number of hidden units for three layers neural networks [25]. 
In this paper, we have proposed learning automata based algorithms for adaptive parameter selection in PSO. Two 
classes of algorithms are proposed. In the first class, the same parameters are set for all particles while in the second 
class each particle adjusts its parameters individually. In addition, two approaches for changing value of parameters 
were taken. In the first approach, value of a parameter is selected from a finite set while in the second approach,  
value of a parameter either changes by a fixed amount or remain unchanged. Experimental results showed that 
proposed algorithms are highly competitive with well-known PSO algorithms in all test functions. 

The rest of the paper is organized as follows: section 2 reviews the parameter selection methods for PSO in 
literature. Section 3 introduces learning automata. The proposed algorithms are given in section 4. Experiments 
settings and results are presented in section 5. Section 6 concludes the paper. 

2. Related work 

PSO Parameter selection schemes introduced in literature can be classifies in three categories. In the first 
category, all parameters of PSO are selected empirically. Although this approach may lead to the suboptimal results 
for a single problem, it would not be helpful as a general approach to solve optimization problems. Algorithms in 
the second category try to choose time variant parameter values, e.g. adjust particle to do more exploration rather 
than exploitation at the beginning. Though it helps the swarm to have different behavior during its lifetime, it could 
vary in different applications. Finally, algorithms in the third category adaptively change PSO parameters over time 
by looking on the swarm state. 

2.1. PSO with constant parameters 

In a swarm, acceleration coefficients, c1 and c2, known as cognitive and social parameter respectively, control 
range of particle movement in a single iteration. Although they are not critical for convergence of PSO, assigning 
different values to c1 and c2 sometimes leads to faster convergence and improved performance [8]. Typically, these 
are set to a value of 2.0 [1], but experimental results indicate that alternative configurations, depending on the 
problem, may produce superior performance. An extended study of the acceleration coefficients in the earliest 
version of PSO, is given in [26].  

Clerc [27] introduced a constriction model in which w, 1c  and 2c  has been chosen to insure the convergence by 
controlling the magnitude of the velocities, in a way similar to the velocity clamping[28]. One of such constriction 
model is: 

( ) ( )1 1 2 2( 1) ( ) ( ) ( )i i i i it t t tv v c r pbest p c r gbest pχ+ ⎡ ⎤= + − + −⎣ ⎦  (3) 
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− − −
, 1 2 , 4c cφ φ= + >  (4) 

Carlisle and Dozier has reported that it might be even better to choose a larger cognitive parameter, c1, than a 
social parameter, c2, but with constraint c1+c2≤4 [29]. 

Eberhart and Shi compared the performance of PSO using velocity clamping to one using only the constriction 
factor [30]. The results indicated that the inclusion of constriction factor increases the rate of convergence. 
However, when tested on different benchmark problems, the constriction model failed to reach the specified goal 
for some problems within the allocated number of iterations. Nevertheless, after applying velocity clamping to the 
constriction model by setting vmax to the length of the search space, performance improved for all test problems. 

2.2. PSO with Time Varying Parameters 

Generally, in population based optimization methods, considerably high diversity is necessary during the early 
stages of the search to allow use of the full range of the search space. On the other hand, during the latter stages of 
the search, when the algorithm is converging to the optimal solution, fine tuning of the solution is important to find 
the global optima efficiently. Considering these concerns, Shi and Eberhart [3, 31, 32] have found a significant 
improvement in the performance of the PSO method with a linearly varying inertia weight over the generations. In 
this method, particle velocity is updated according to eq. (5) and  (6) 

( ) ( )1 1 2 2( 1) ( ) ( ) ( ) ( )i i i i it t t t tv w v c r pbest p c r gbest p+ = + − + −  (5) 



( ) ( )
( ) (0) ( ) ( )t

t t
t

n t
w t w w n w n

n
−

= − +   (6) 

Where nt is the maximum number of time steps for which the algorithm is executed, and w(0) and w(nt) are the 
initial and final value for inertia weight respectively. 

The role of the inertia weight, w in equation (5), is considered critical for the convergence of PSO[33]. The 
inertia weight is used to control the impact of the previous velocity of particle on its current velocity. In addition, 
the inertia weight regulates the trade off between exploration and exploitation abilities of the swarm. Where a large 
inertia weight facilitates global exploration and a small one tends to facilitate local exploration. Through empirical 
studies, Shi and Eberhart [31, 32] have observed that the optimal solution can be improved by linearly decreasing 
the value of inertia weight from 0.9 at the beginning of the search to 0.4 at the end of the search for most problems. 

Suganthan suggested that both acceleration coefficient be linearly decreased, but reported no performance 
improvement using this scheme[8]. Ratnaweera et al. [34] proposed a PSO with time varying acceleration 
coefficients (PSO-TAVC), in which c1 decreases linearly over time while c2 increases linearly. This strategy focuses 
on exploring the early stages of the optimization, while encouraging convergence to a good optimum near the end 
of the optimization process by attracting more particles toward the global best positions. In PSO-TVAC, the values 
of c1 and c2 at time step t are modified according to eq. 7. 

( ) ( ( ) (0)) (0), 1,2i i t i i
t

tc t c n c c i
n

= − + =   (7) 

The best reported results were achieved when c2 start by 0.5 increases linearly to reach 2.5 in the last iteration, 
and c1 starts with 2.5 and decreases to 0.5 in the last iteration [34]. In case of no improvement, the velocity is 
mutated by a mutation probability to the maximum allowed velocity multiplies by the mutation step size. In [34], the 
mutation step size start with 1 and decrease linearly to 0.1 in the last iteration. In addition, PSO-TVAC uses the time 
varying inertia weight as proposed in [31]. 

Chatterjee and Siarry [4] proposed DAPSO, a PSO model with dynamic adaptation that concentrates on the 
adjustability of the decreasing rate for the inertia weight. In DAPSO, a set of exponential like curves are used to 
create a complete set of free parameters for any given problem, to remove the trial and error based approach to 
determine them for each specific problem.  

2.3. PSO with Adaptive Parameters 

Fan and Chang [35] proposed a nonlinear function of decreasing inertia weight model like [4] in which there is 
no need to know the maximum number of iterations for designing the decreasing inertia weight method. They 
introduced a new method for updating inertia weight according to eq. (8).  
w=(d)rwinit (8) 

Where winit is the initial value for w, d is the decrease rate ranging between 0.1 and 1.0, and r is the dynamic 
adaptation parameter depending on the following rules for successive adjustment at each time step. In this model 
when particles find a better solution in the current iteration, it is considered that the swarm may need more 
exploitation capability. Therefore, w, and consequently “r”, should be decreased. Otherwise, if the best solution 
found in the current iteration is not better than the best solution found in the previous iteration, it is considered that 
the swarm may need more exploration capability. Hence, w, therefore “r”, should be increased. This model has been 
shown a significant improvement in performance, especially in terms of the solution quality and convergence speed 
than DAPSO [4]. 

Tawdross and König [36] has proposed a new approach in PSO in which , like real world, each individual has its 
own character, which means that each particle has different values for w, c1, and c2. In this approach, the velocity of 
the particle i is computed by equation (9) instead of equation (1). 

( ) ( )1 1 2 2( 1) ( ) ( ) ( )i i i i i i i it t t tv w v c r pbest p c r gbest p+ = + − + −  (9) 

Where wi, c1i, and c2i are local parameters of the particle i. These local parameters are updated after each iteration 
by a controller in order to improve fitness of each particle. wi is initialized by a random number within the range of 
[0.5 ,1.0], while c1i and c2i are initialized by a random number within the range of [1.75,2.5]. These local parameters 
are updated by a simple algorithm in which the particles that are improving will move more toward the global best 
by increasing c2i as long as they are improving. If a particle is not improving anymore, it will start to move more 
toward its pbest and mutate its velocity with a mutation probability of 0.007. This behavior will start a new search 
for new local optima in the search space after particles found a local optimum. Like PSO-TAVC [34], velocity of a 
particle for each dimension will be reinitialize if the particle stops in that dimension. As a result, diversity of 
particles will increase during the search period, which improves quality of the solution. 

Pasupuleti and Battiti introduced GPSO [37], in which a particle's previous velocity is not taken into account for 



calculating new velocity. In GPSO, the population is attracted by the global best position and each particle is 
reinitialized with a random velocity if it is stuck close enough to the global best position. Hence, the algorithm 
proceeds by greedily scouting the local minima whereas basic PSO proceeds by trying to avoid them. In each 
iteration, a particle either will take a step along the direction towards the global best position or reinitialized if it 
gets closer than ε to the global best position as follows:   

( )( )
( )

( ) ( )( )

max max1

1
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i i
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if p gbest
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ε

γ

+

+

− <
= −

= −

 (10) 

The factor γ determines the step size that each particle moves towards the direction of the global best position. 
Large values of γ will make particle i go over the global best position, thus resulting in oscillations and small values 
of γ will result in small step sizes, which will lead to slow convergence to the global best position. Therefore, γ is 
adaptively adjusted by checking the improvement on the global best value found at the end of each iteration 
according to eq. (11). 

( ) ( )
( )

min

max

( ) ( 1)max γ , γ if ( ) ( )γ min γ , γ otherwise
t tf g f gδ

δ
−⎧ − <

← ⎨ +⎩
 (11) 

Where initial value for γ, [γmin, γmax], and δ are set to 3.0, [2,4] and 0.5, respectively [37].  
Yanga et al. proposed DAPSO, a PSO algorithm with dynamic adaptation [38]. In DAPSO, velocity update 

formula of the particle is modified so that the randomness in updating particle velocity is relatively decreased over 
time. Moreover, DAPSO introduced two parameters describing the state of the algorithm, the evolution speed 
factor, which takes the run history of each particle into account and reflects the evolutionary speed of each particle, 
and aggregation degree factor, which shows the deviation of best solution found in each iteration. The inertia weight 
of each particle is dynamically adjusted according to the evolution speed and aggregation degree. 

3. Learning Automata 

The automata approach to learning can be considered as the determining of an optimal action from a set of 
actions. An automaton can be regarded as an abstract object that has finite number of actions. It selects an action 
from its finite set of actions and applies it to an environment. The environment evaluates the applied action and 
sends a reinforcement signal to automata. The response from environment is used by learning algorithm of automata 
to update its internal state. By continuing this process, the automaton learns to select the optimal action, which leads 
to favorable responses from the environment.  

Variable structure learning automata are represented by the sextuple <β,Φ,α,P,G,T>. β is a set of input actions, Φ 
is a set of internal states, α is a set of outputs, P denotes state probability vector governing the choice of the state at 
each stage, G is the output mapping, and T is learning algorithm, which is used to modify the state probability 
vector. 

It is evident that the crucial factor affecting the performance of the variable structure learning automata is the 
learning algorithm for updating the action probabilities. The linear reward-penalty algorithm (LR-P) is one of the 
various learning algorithms reported in the literature [39]. Let αi be the action chosen at time k as a sample 
realization from distribution p(k). In a P-model environment where β∈{0,1}, an LR-P scheme for updating 
probability vector of learning automata with r actions is defined as eq. (12) when β=0 (favorable response) and eq. 
(13) when β=1 (unfavorable response). 

( )
( )

( ) 1 ( )  ( 1)    ( ) 1
j j

j
j

p k a p k if i jp k if i jp k a
⎧ + −⎪ =+ = ⎨ ≠−⎪⎩

 (12) 

( )
( )

( ) 1  
( 1)   

1 ( )  1

j

j
j

p k b if i j
p k b b p k if i jr

⎧ − =⎪+ = ⎨ + − ≠⎪⎩ −
 (13) 

Where parameters a and b represent reward and penalty step length respectively.  

4. Proposed Algorithms 

Previous studies have shown that problem based tuning of parameters in PSO is a key factor to find the optimum 



solution accurately and efficiently. In this section, new learning automata schemes for adaptive parameter selection 
of PSO are presented. The proposed algorithms are classified in two classes. In the first class, named UAPSO 
(United/Unified Adaptive PSO), particles of a swarm share the same parameters, while in the second class, named 
IAPSO (Intelligent/Independent Adaptive PSO), particles are independent and try to adjust their parameters using 
their own learning automata.  

Proposed PSO algorithms perform like the standard PSO with a new supplementary section at the end of each 
iteration to select value of PSO parameters (Fig. 1). This additional section contains two phases, the first phase is 
for selecting new values of PSO parameters and the second phase is the learning phase. The first phase is studied 
with two approaches for selecting value of parameters for both classes of proposed model, UAPSO and IAPSO. In 
the second phase, two different learning phases for each class of the proposed algorithms is used. 
Procedure LearningAutomataBasedAdaptivePSO 

begin 

Initialize a D-dimensional PSO  

repeat 

Update particles velocity, position, pbest, gbest successively. 

Parameter Selection: 

I. Select new values for PSO parameters  

II. Update the learning automata. 

 until a terminate condition is met 

end 
Fig. 1. Pseudocode of the proposed algorithms. 

4.1. Parameter Selection Approaches 

Two approaches for selecting the value of a parameter is introduced and applied for both classes of proposed 
algorithms. In the first approach, a learning automaton selects value of a parameter from a permissible range, 
allowing a parameter to change drastically from one end to other end of its range in two consecutive iterations; 
hence, this approach is called adventurous. Conversely, in the second approach, new value of a parameter either 
will be the same as its current value or will change by a fixed amount. Since in this approach value of a parameter 
change gradually, it is called conservative approach. The adventurous and conservative are explained in detail as 
follows. 
Adventurous approach 

In the adventurous approach, new value of a parameter is not bind to its previous value and will be selected from 
a permissible range defined for the parameter. In this approach a permissible range for parameter ξ is discretized 
into m equally distance values. A learning automaton (LAξ) with m actions is assigned for parameter ξ so that each 
action of LAξ corresponds to one of m permissible values for parameter ξ. The adventurous approach works as 
follows. At each iteration, LAξ selects one of its actions e.g. αi, then corresponding value of the selected action will 
be set as the new value for parameter ξ (Fig. 2). 

Let [ξmin, ξmax] be the permissible range for parameter ξ. 

Let LAξ be the learning automata with m actions {α1, α2,…, αm } 

{ ξ1, ξ2,…, ξm }←Discretize [ξmax , ξmax] into m equally distance value  
At time step t:  

 Select action of LAξ and denote it as αi 

 ξ(t+1) ← ξi 
Fig. 2. Pseudocode of the adventurous approach for selecting value of parameter ξ. 

Conservative approach 
In the conservative approach, new value of a parameter ξ will not be far from its current value. More precisely, 

the new value either will be the same as the current value or will be greater than or smaller than the current value by 
a fixed amount denoted by δξ. This approach is modeled by a 3-action learning automata, which its actions 
corresponds to increase, decrease, and no-change. In order to select new value for parameter ξ, responsible learning 
automata, LAξ, select one of its actions, e.g. αi, then depend on the selected action, value of parameter ξ for next 
iteration will be set accordingly (Fig. 3). 

Let [ξmin, ξmax] be the permissible range for parameter ξ 



Let δξ be the change step for parameter ξ 

Let LAξ be the learning automata with 3 actions {increase, decrease, no-change} 
At time step t:  

Select action of LAξ and denote it as α. 

if α == increase then  

ξ(t+1) ← ξ(t) + δξ 

elseif α == decrease then  

ξ(t+1) ← ξ(t) - δξ 

else 

ξ(t+1) ← ξ(t) 
endif  

Fig. 3. Pseudocode of the conservative approach for selecting value of parameter ξ. 

4.2. UAPSO 

This class of proposed PSO algorithms is similar to a conformist society, where every member of the society 
behaves like everybody else. In UAPSO particles share the same values for PSO parameters, w, c1, and c2 which are 
adaptively set at each iteration using there learning automata LAw, LAc1, and LAc2 respectively. This algorithm 
work as follows. 

At iteration t, value of each parameter is selected by either the adventurous approach (UAPSOAdv) or the 
conservative approach (UAPSOCon). Then the success of the parameter selection is evaluated to update three 
learning automata. In UAPSO parameter selection is considered “successful” if the fraction of improved particles in 
the previous iteration is greater than a specified threshold θ. If the parameter selection is successful the learning 
automata will receive a favorable response and will be rewarded otherwise an unfavorable response will be 
generated and learning automata will be penalized (Fig. 4).  

 
Fig. 4. Three learning automata help selecting parameters of PSO in UAPSO and share one single response to update their state. 
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Procedure UAPSO 

begin 

Initialize a D-dimensional PSO with N particles 

Let LAw,LAc1,LAc2 be the learning automata responsible for parameters w,c1, 
and c2 correspondingly 

Let θ be the success threshold for the swarm. 

Let ( )improvedN t  be the number of particles which their fitness has been 

improved since iteration t-1 

repeat 

Update particles velocity, position, pbest, gbest successively. 

Select new values for swarm parameters using Adventurous (Fig. 2) or 
Conservative approach (Fig. 3) 

if 
( )improvedN t

N
 ≥ θ then 

 reward selected actions of LAw,LAc1,LAc2 according to eq.(12). 
else 
 penalize selected actions of LAw,LAc1,LAc2 according to eq. (13). 

 end if  

until a termination condition is met  

end 
Fig. 5. Pseudocode of UAPSO. 

4.3. IAPSO 

In this class of proposed algorithms, every individual is independent and can adjust its own parameters. In order 
to create such individuals, the parameter adaptation process is moved to a lower level, to particles, compared to 
UAPSO in which this process is done at the swarm level. Therefore, in this class of algorithms, each particle 
decides independently how to change value of its parameters. To do so, each particle adjusts its parameters, w, c1, 
and c2 with the help of three learning automata as follows. 

At iteration t, particle i selects value of its parameter with either the adventurous approach (IAPSOAdv) or the 
conservative approach (IAPSOCon). Then the success of the parameter selection is evaluated in order to update three 
learning automata assigned for the particle. In IAPSO, parameter selection for particle i is considered as 
“successful” when the fitness of the particle i improves. If the parameter selection is successful three learning 
automata will received a favorable response and will be rewarded otherwise they will be penalized.  

 
Fig. 6. Three learning automata help selecting parameters of each particle i in IAPSO and share one single response to update their state. 
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Procedure IAPSO 

begin 

Initialize a D-dimensional PSO with N particles 

Let LAw,LAc1,LAc2 be the learning automata responsible for parameters w,c1, 
and c2 correspondingly 

repeat 

Update particles velocity, position, pbest, gbest successively. 

for each particle i  do 
Select new values for swarm parameters using Adventurous (Fig. 2) or 
Conservative approach (Fig. 3) 

if fitness(pi(t))< fitness(pi(t-1)) then 

 reward selected actions of i
wLA , 1

i
cLA ,and 2

i
cLA  according to eq.(12). 

else 

 penalize selected actions of i
wLA , 1

i
cLA ,and 2

i
cLA  according to eq.(13). 

end if  

end for 

until a termination condition is met  

end 
Fig. 7. Pseudocode of the IAPSO. 

5. Experimental Study 

Performance of the proposed PSO models is tested on a number of benchmark functions (Table 1) which have 
been extensively used in the literature [40]. The benchmark functions include two unimodal functions, Rosenbrock 
and Sphere and three multimodal functions, Rastrigin, Griewank, and Ackley. The Rastrigin function has many 
local optima around the global optima, and no correlation among its variables. The Ackley function is a multimodal 
at low resolution. The Griewank function is the only function, which introduces correlation between its variables. 
Table 1 shows the values that have been used for the dimension of these functions, feasible bounds, the range of the 
corresponding initial position of the particles, and the goal for each function that has to be achieved by the 
algorithms [7, 29, 30, 41-44]. 

Table 1 Benchmark functions and their parameters 
Name Equation Dimension Feasible Bounds Initial Range Goal 

Rosenbrock ( ) ( )( )1 2 22
1

1
100 1

n
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i

f x x x
−

+
=
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n
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f x
=

= ∑  30 [ ]5.12,5.12 n
−  [ ]50,100 n  0.01 

Rastrigin ( )( )2
Rastrigin

1

10 10cos 2
n

i i
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Griewank 
2

Griewangk
1 1

1 cos
4000

nn
i i

i i

x x
f

i= =

⎛ ⎞
= + − ⎜ ⎟

⎝ ⎠
∑ ∏  30 [ 600,600]n−  [ ]300,600 n  0.1 

5.1. Experiments settings 

5.1.1. Population Initialization 

Gehlhaar and Fogel [45] have shown that the typical uniform initialization can give false impressions of relative 



performance. This problem escalates specially in the functions with optima at or near the center of search space, 
which include all benchmark functions used in this study. Consequently, they suggested initializing in regions that 
expressly do not include the optima. Therefore, the asymmetric initialization already used by other researchers [43, 
46, 47], adopted for the experiments and particles are deliberately initialized the in regions that do not include the 
global optimum. 

The particles are initialized with a random velocity where the values in every dimension are randomly chosen 
according to a uniform distribution over the length of search space. During a run of the PSO, position of a particle is 
not restricted to the defined boundaries, but when a particle passes the defined boundaries of a function (Table 1), 
its position will not be evaluated. Therefore the global best and particle best are always in the feasible boundaries of 
the search space [43].  

5.1.2. Population Size 

Eberhart and Shi [30] showed that population size has almost no significant effect on the performance of the 
PSO. However, van den Bergh and Engelbrecht [41] suggested that even though there is a slight improvement of 
the optimal value with increasing swarm size, it increases the number of function evaluations to converge to an error 
limit. In the literature, usually the number of particles is in the range 20 to 60. Therefore, in this study the swarm 
size is set to 40 particles, like [34], for all experiments. 

5.1.3. PSO Algorithms configuration 

All experiments are carried out 300 times for 4×105 function evaluations, or until the best particle’s fitness 
reaches the goal specified in Table 1, depending on the type of experiment being performed. For all algorithms, the 
average fitness error and 95% confidence interval are reported. In addition, in each experiment, result of the best 
performing algorithm(s) is highlighted. Where the results of the best algorithms are not statistically different, all of 
them are highlighted. 

For adventurous algorithms, UAPSOAdv and IAPSOAdv, the c1 and c2 are bounded in [0,4]. While for conservative 
algorithms the c1 and c2 are bounded in [0,3]. In all experiments, the permissible range for inertial weight w is set to 
[0,1]. Moreover, in the proposed algorithms, all learning automata use LR-P learning algorithm with a=0.01 and 
b=0.01. 

Each of the two classes of proposed algorithms, UAPSO and IAPSO, has adopted both adventurous and 
conservative approach for the parameter value adjustment. Therefore, there are four algorithms to be studied. In the 
section, first the effect of parameters of each proposed algorithm are studied, then the comparison results of 
proposed algorithm and well-known PSO algorithms in the literature are presented and discussed. 

 

5.2. Study of the parameters of the proposed algorithms 

In experiment 1 to 10, we have studied effect of each parameter of the four proposed algorithm, i.e. UAPSOAdv, 
UAPSOCon, IAPSOCon, and IAPSOAdv. Effect of each parameter for each function has been reported separately and 
concluded by the results of the multiple comparison tests over all function as a table. The multiple comparison test 
has been applied using Holm-Bonferroni procedure [43]. Since the results of all paired comparison tests produce 
enormous amount of data, summary of the comparison tests are provided to compare every pair of PSO algorithms. 
This summary for every two algorithms PSOi and PSOj, is the number of functions in which PSOi outperforms PSOj 
minus the number of functions PSOi is outperformed by PSOj. Therefore, if the result of multiple comparison test 
for PSOi and PSOj is a positive number, it indicates that PSOi performs better than PSOj for most of the test function 
and vice versa. 
Experiment 1: Effect of ηw on fitness error for Adventurous UAPSO 

This experiment is conducted to study the effect of ηw, number of discrete value for the inertia weight, on fitness 
error of UAPSOAdv. In order to perform this experiment, fitness error for different values of ηw with fixed value for 
ηc=10 is observed. Fig. 8 shows the results of this experiment on all benchmark functions concluded the comparison 
table of UAPSOAdv with different ηw,. From this figure, we observe that when there are only two values for ηw, 
UAPSOAdv performs the worst for all function except Rosenbrock and Rastrigin functions. By increasing ηw, fitness 
error for Sphere and Ackley functions will decrease. However, for Ackley function fitness begins increasing when 
ηw increases to a value greater than 20. In addition, for Rosenbrock, Rastrigin, and Griewank functions, fitness does 
not change significantly if ηw is set to a greater value than 5. Hence, as presented in the comparison table, 
UAPSOAdv with ηw equal to or greater than 5 do not performs significantly different.  
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Fig. 8. Effect of ηw on fitness error for Adventurous UAPSO. 

Experiment 2: Effect of ηc on fitness error for Adventurous UAPSO 
This experiment is conducted to study the effect of ηc, number of discrete value for the cognitive c1 and social c2 

factor. In order to perform this experiment, fitness error for different values of ηc in UAPSOAdv with fixed value for 
ηw=20 is observed. Fig. 9 shows the results of this experiment on all benchmark functions concluded by the 
comparison table of UAPSOAdv with different ηc. From this figure, we conclude that if range of c1 and c2 are 
discretized into two values (ηc=2) UAPSOAdv cannot perform well for any of the test functions. However, by 
increasing ηc up to 10 values, fitness error for all functions decreases. This phenomenon continues for unimodal 
functions. But for multimodal functions, by increasing ηc fitness either increases, for Rastrigin and Ackley, or does 
not change, for Griewank. The comparison table concludes this experiment and shows that UAPSOAdv with a 
moderate value for ηc, where ηc is between 10 and 25, performs the best.  
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Fig. 9. Effect of ηc on fitness error for Adventurous UAPSO. 

Experiment 3: Effect of θ on fitness error for Adventurous UAPSO 
This experiment is conducted to study the effect of θ, the success threshold, on the performance of UAPSOAdv. In 

order to perform this experiment, fitness error for different values of θ in UAPSOAdv with fixed value for ηw=20 and 
ηc=10 is observed. Fig. 10 shows the results of this experiment on all benchmark functions concluded by the 
comparison table of UAPSOAdv with different value for θ. From Fig. 10 it can be observed that rigorous success 
threshold, large value for θ, or relaxed success threshold, small value for θ, increases fitness error. The comparison 
table supports this hypothesis and show that when θ is around 50% the proposed algorithm perform the best. 
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Fig. 10. Effect of θ on fitness error for Adventurous UAPSO. 

Experiment 4: Effect of δw on fitness error for conservative UAPSO 
This experiment is conducted to study the effect of the threshold δw, change step of w, on the performance of 

UAPSOCon. In order to perform this experiment, fitness error for different values of δw in UAPSOCon with fixed 
value for δc=1.0 is observed. Fig. 11 shows the results of this experiment on all benchmark functions concluded by 
the comparison table of UAPSOCon with different value for δw. From Fig. 11 it can be observed that for unimodal 
functions, increasing δw from 0.2 to 0.5 causes a temporary decrease in fitness error. Nevertheless, by increasing δw 
to a greater value than 0.5, fitness error will increase. The effect of δw for multimodal function is different, where 
increasing δw decreases fitness error. This could be because of the effect of large w that causes more exploration, 
which helps the particles escape from local minima. 
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Fig. 11. Effect of δw on fitness error for conservative UAPSO. 

Experiment 5: Effect of δc on fitness error for conservative UAPSO 
This experiment is conducted to study the effect of the threshold δc on performance of UAPSOCon. In order to 

perform this experiment, fitness error for different values of δc in UAPSOCon with fixed value for δw=1 is observed. 
Fig. 12 shows the results of this experiment on all benchmark functions concluded by the comparison table of 
UAPSOCon with different value for δc. From this figure, it can be observed that increasing δc up to 1.0 decreases 
fitness error for all functions. By increasing δc from 1.0, fitness error in Sphere, Rosenbrock, and Ackley increases. 
For Rastrigin increasing δc to 1.5 will decrease in fitness error, but setting δc to 2.0 causes a significant increase in 
fitness error. Fitness error for Griewank function shows a different behavior to change of δc and decreases slightly 
by increasing δc. 
Experiment 6: Effect of θ on fitness error for conservative UAPSO 

This experiment is conducted to study the effect of θ, the success threshold, on the performance of UAPSOCon. In 
order to perform this experiment, fitness error for different values of θ in UAPSOCon with fixed value for δw=δc=1 is 
observed. Fig. 13 shows the results of this experiment on all benchmark functions concluded by the comparison 
table of UAPSOCon with different value for θ. Fitness error for each function including with the comparison table 
show that changing value of θ does not have any significant effect on any of the benchmark functions.  
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Fig. 12. Effect of δc on fitness error for conservative UAPSO. 
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Fig. 13. Effect of θ on fitness error for conservative UAPSO. 



Experiment 7: Effect of ηw on fitness error for Adventurous IAPSO 
This experiment is conducted to study the effect of ηw, i.e. number of discretized value for the inertia weight, on 

fitness error. In order to perform this experiment, fitness error for different values of ηw in IAPSOAdv with fixed 
value for ηc=10 is observed. Fig. 14 shows the result of this experiment on all benchmark functions concluded by 
the comparison table of IAPSOAdv with different value for ηw. From this figure, we observe that not only different 
values for ηw do not have a significant effect on fitness error of IAPSOAdv for different functions, but also the 
overall comparison of IAPSOAdv with different ηw do not show a superiority for a specific ηw. 
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Fig. 14. Effect of ηw on fitness error for adventurous IAPSO. 

Experiment 8: Effect of ηc on fitness error for Adventurous IAPSO 
This experiment is conducted to study the effect of number of partitions of the inertia weight, ηc, on fitness error. 

In order to perform this experiment, fitness error for different values of ηc in IAPSOAdv with fixed value for ηw=5 is 
observed. Fig. 15 shows the results of this experiment on all benchmark functions concluded by the comparison 
table of IAPSOAdv with different value for ηc. From this figure, we observe that for Rosenbrock, Sphere, and 
Rastrigin functions, fitness error decreases by increasing ηc. Nevertheless, for Ackley and Griewank fitness error 
increases slightly as ηc increases. However, since more functions performs better with large values of ηc and the 
increase in offline error for the Ackley and Griewank is of little importance, the overall comparison for all functions 
shows that IAPSOAdv performs if ηc is greater than 10. 
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Fig. 15. Effect of ηc on fitness error for adventurous IAPSO. 

Experiment 9: Effect of δw on fitness error for conservative IAPSO 
This experiment is conducted to study the effect of the threshold δw on performance of IAPSOCon. In order to 

perform this experiment, fitness error for different values of δw in IAPSOCon with fixed value for δc=1.5 is observed. 
Fig. 16 shows the results of this experiment on all benchmark functions concluded by the comparison table of 
IAPSOCon with different value for δw. From this figure, it can be observed that for the unimodal functions, 
increasing δw results a significant increase on fitness error. Nevertheless, in multimodal functions except Rastrigin, 
fitness error slightly decreases by increasing δw. For Rastrigin function fitness error increases when δw changes from 
0.1 to 0.5, but increasing δw from 0.5 to 1.0 causes a significant decrease in fitness. 

0.1 0.20.250.50.75 1
0

2

4

δw

M
ea

n 
B

es
t 

F
itn

es
s

Rosenbrock

0.1 0.20.250.50.75 1
10

-120

10
-100

10
-80

δw

M
ea

n 
B

es
t 

F
itn

es
s

Sphere

0.1 0.20.250.50.75 1
0

5

10

δw

M
ea

n 
B

es
t 

F
itn

es
s

Rastrigin

0.1 0.20.250.50.75 1
10

-5

10
0

10
5

δw

M
ea

n 
B

es
t 

F
itn

es
s

Ackley

0.1 0.20.250.50.75 1
0.02

0.03

0.04

δw

M
ea

n 
B

es
t 

F
itn

es
s

Griewank paired comparison on all benchmark functions
δw 0.1 0.2 0.25 0.5 0.75 1

0.1 0 0 -1 1 0 0

0.2 0 0 1 1 1 -2
0.25 1 -1 0 0 1 0

0.5 -1 -1 0 0 0 0

0.75 0 -1 -1 0 0 0

1 0 2 0 0 0 0

 
Fig. 16. Effect of δw on fitness error for conservative IAPSO. 



Experiment 10: Effect of δc on fitness error for conservative IAPSO 
This experiment is conducted to study the effect of the threshold δc on performance of IAPSOCon. In order to 

perform this experiment, fitness error for different values of δc in IAPSOCon with fixed value for δw=1.0 is observed. 
Fig. 17 shows the results of this experiment on all benchmark functions concluded by the comparison table of 
IAPSOCon with different value for δc. From this figure, it can be observed that for unimodal function, increasing δc 
from 0.1 to 1 slightly decreases fitness error. But when δc increases from 0.5 to 2 fitness error increases 
significantly. For Rastrigin setting δc to 1 results the worst fitness error and by either increasing or decreasing δw 

from 1, fitness error improves. For Ackley function, fitness error slightly improves by increasing δw to 1.5, and then 
begins increasing by changing δw to 2.0. Fitness error for Griewank functions improves as δw increase. 
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Fig. 17. Effect of δc on fitness error for conservative IAPSO. 

5.3. Comparison with Other PSO Algorithms 

In this section, proposed algorithms are compared to well-known PSO algorithms. To do so, for each proposed 
algorithm a set of parameter value is selected based on the previous experiments. Then four proposed algorithms are 
compared with the following well-known PSO algorithms: SPSO[30], PSOIW[3], GPSO[37], PSO-TVAC[34], 
PSOLP[36], DCPSO[48], and DAPSO [49]. The algorithms, which are compared in this section, have been 
configured as follows. 
- UAPSOAdv: θ=50%, ηw=20, ηc=10 
- UAPSOCon: θ=60%, δw=1, δc=1 
- IAPSOAdv: ηw=5, ηc=10 
- IAPSOCon: δw=1, δc=1.5 
- SPSO: Standard PSO with w=0.72 and c1=c2=1.49 as suggested in [27, 30]. 
- PSOIW: PSO with a linearly varying inertia weight PSO [3] w(0)=0.9 and w(nt)=0.4 [31]. 
- GPSO: Gregarious particle swarm optimizer: γinit=3.0, γ∈[2,4], δ=0.5, and ε=10-8 [37]. 
- PSO-TVAC: PSO with Time-Varying Acceleration Coefficients: c1(0)=2.5, c1(nt)=0.5, c2(0)=0.5 c2(nt)=2.5, 

w(0)=0.9, and w(nt)=0.4 [34].. 
- PSO-LP: PSO with Local parameter: α1=1.05, α2=0.975, β1=1.07, β2=0.833, and MutationProb=0.007 [36]. 
- DCPSO: c1=c2=2.0 and Kp=1.4 [48]. 
- DAPSO: Dynamic adaptation PSO: α=0.8 , β=0.4, and w(0)=1.0 [38]. 



Proposed algorithms are compared to these PSO algorithms in many aspects. First, a comparison over mean best 
fitness is presented. Then the results of algorithms from success and convergence speed in reaching a specified goal 
for each function are presented and compared.  
Experiment 11: Comparison of Mean Best Fitness 

This experiment is conducted to compare mean best fitness of the proposed algorithms with famous PSO 
algorithms. The mean best fitness for 1,000 runs for over 10,000 iterations is presented in Table 2. However, in 
order to present a complete comparison for function T-tests for each pair of PSO algorithm have been performed. 
Since the results of t-test produces enormous amount of data, we have summarized these comparisons in a ranked 
list for each function with the following procedure. 

First, mean fitness of all PSO algorithms are sorted ascendingly. Then the first PSO with smallest mean error 
value creates the first. Then all subsequent PSO algorithms, which are not statistically different from the creator of 
current rank, are added to this rank group. Afterward, the second ranked group is created with the first unranked 
PSO algorithm. This procedure continues until all PSO algorithms are ranked. The result is a ranked list, in which 
mean fitness of the PSO algorithms which share the same rank are not statistically different from the least fitness in 
that rank.  

Although none of the proposed algorithms has the least fitness in any function, the proposed algorithms are 
highly competitive with the PSO algorithms in the literature. Moreover from Table 2 it can be observed that  

1. IAPSOCon is the best proposed algorithm for the Rosenbrock function. However, it could not rank better 
than GPSO and PSOLP.  

2. All proposed algorithms share the third rank for Sphere function with PSO-TVAC. GPSO performs worse 
than all proposed algorithm for this function. 

3. Both IAPSO algorithms and UAPSOAdv share the first rank for Ackley function with GPSO. UAPSOCon 
with PSO-TVAC follow them in the second rank for this function. 

4. UAPSOAdv performs better than all other adaptive PSO for Griewank function and holds the second rank 
after PSOIW. 

5. Both conservative algorithms perform better than or as well as PSO-TVAC for Rosenbrock, Rastrigin, and 
Ackley functions. 

6. Among the proposed algorithms, IAPSOCon holds the best average rank. 
Table 2 Mean best fitness of PSO algorithms and their ranks 

 Mean Fitness Mean Fitness Rank 
Function   
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UAPSOAdv 

25.82 
±1.39 

3.6E-30 
±5.3E-30 

7.7E+00 
±7.9E-01

7.52E-5 
±1.4E-4

1.81E-2 
±1.0E-3 6 3 5 1 2 

UAPSOCon 
5.82 
±0.71 

4.9E-52 
±9.3E-52 

3.1E+00 
±2.0E-01

8.51E-2 
±7.1E-2

2.62E-2 
±1.9E-3 4 3 3 2 5 

IAPSOAdv 
26.30 
±1.77 

1.1E-44 
±1.6E-44 

5.4E+00 
±1.5E-01

6.40E-5 
±1.3E-4

2.35E-2 
±1.4E-3 6 3 4 1 4 

IAPSOCon 
3.50 
±0.30 

2.3E-84 
±2.8E-84 

2.2E+00 
±8.3E-02

1.11E-2 
±1.9E-2

2.81E-2 
±1.4E-3 3 3 2 1 5 

PSOIW 8.19 
±0.83 

2.5E-243 
±0.0E+00

3.2E+01 
±4.9E-01

1.65E+0 
±2.9E-1

1.57E-2 
±9.6E-4 5 2 8 3 1 

PSO-TVAC 7.89 
±0.81 

2.0E-190 
±0.0E+00

2.9E+01 
±3.8E-01

6.96E-2 
±4.9E-2

1.99E-2 
±1.1E-3 5 3 7 2 3 

GPSO 0.17 
±0.04 

8.6E-18 
±1.5E-19 

2.5E-15 
±1.6E-16

2.74E-9 
±2.9E-11

5.86E-2 
±2.4E-3 1 4 1 1 8 

DCPSO 70.72 
±6.72 

1.1E-05 
±1.8E-06 

2.5E+01 
±1.0E+00

4.78E+0 
±9.6E-1

3.19E-2 
±3.8E-3 7 5 6 4 6 

PSO-LP 1.32 
±0.47 

7.3E-292 
±0.0E+00

1.1E+02 
±3.4E+00

1.98E+1 
±7.8E-3

4.76E-2 
±6.8E-3 2 1 10 5 7 

DAPSO 714.42 
±49.13 

5.0E+00 
±1.9E-01 

5.1E+01 
±9.6E-01

4.26E+0 
±3.8E-1

1.03E+0 
±3.0E-3 8 6 9 4 9 

In order to compare these PSO algorithms over all test functions, Holm-Bonferroni multiple comparison tests has 
been applied [43]. Result of multiple comparison tests for every pair of PSO algorithms PSOi, PSOj shows number 
of functions for which PSOi outperforms PSOj, denoted by bij, and number of functions for which PSOi performs 
worse than PSOj, denoted by wij. In Table 3 results of comparison tests is present in the format of (b,-w) over 
subtraction of b and w. If subtraction of b and w is a positive number, it means that PSOi outperforms PSOj in most 
of the test function and vice versa. From this table we can observe that: 



1. IAPSOCon is the only algorithm which no PSO algorithm could perform better than. 
2. IAPSOCon is the best algorithm among the proposed algorithm and outperforms the other proposed algorithm.  
3. UAPSO and IAPSOAdv, are not superior to each other considering all functions.  
4. UAPSO and IAPSOCon outperform PSO-TVAC for most of the test functions and IAPSOAdv does not perform 

worse than PSO-TVAC. 
5. Although GPSO performs very well in most of the tested functions, it cannot outperform any of the IAPSO 

and UAPSOAdv. 
6. Although PSOIW could outperform the conservative algorithms in one function, the conservative algorithms 

are better that PSOIW for three functions. However, either of the adventurous algorithms and PSOIW 
outperforms the other one in two functions, hence, none of them has superiority over the other.  

7. All proposed algorithms are superior to DCPSO, PSO-LP, and DAPSO in most functions. 
Table 3 Pair comparison of mean best fitness 
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UAPSOAdv 
(0,0) 

0 
(2,-2) 

0 
(1,-1)

0
(1,-2)

-1
(2,-2)

0
(3,-1)

2
(2,-2)

0
(5,0) 

5 
(3,-1) 

2 
(5,0)

5 

UAPSOCon 
(2,-2) 

0 
(0,0) 

0 
(2,-2)

0
(0,-2)

-2
(3,-1)

2
(2,-1)

1
(2,-3)

-1
(5,0) 

5 
(3,-1) 

2 
(5,0)

5 

IAPSOAdv 
(1,-1) 

0 
(2,-2) 

0 
(0,0)

0
(1,-2)

-1
(2,-2)

0
(2,-2)

0
(2,-2)

0
(5,0) 

5 
(3,-1) 

2 
(5,0)

5 

IAPSOCon 
(2,-1) 

1 
(2,0) 

2 
(2,-1)

1
(0,0)

0
(3,-1)

2
(3,-1)

2
(2,-2)

0
(5,0) 

5 
(3,-1) 

2 
(5,0)

5 

PSOIW (2,-2) 
0 

(1,-3) 
-2 

(2,-2)
0

(1,-3)
-2

(0,0)
0

(2,-2)
0

(2,-3)
-1

(4,-1) 
3 

(3,-2) 
1 

(5,0)
5 

PSO-TVAC (1,-3) 
-2 

(1,-2) 
-1 

(2,-2)
0

(1,-3)
-2

(2,-2)
0

(0,0)
0

(2,-3)
-1

(4,-1) 
3 

(3,-2) 
1 

(5,0)
5 

GPSO (2,-2) 
0 

(3,-2) 
1 

(2,-2)
0

(2,-2)
0

(3,-2)
1

(3,-2)
1

(0,0)
0

(4,-1) 
3 

(3,-2) 
1 

(5,0)
5 

DCPSO (0,-5) 
-5 

(0,-5) 
-5 

(0,-5)
-5

(0,-5)
-5

(1,-4)
-3

(1,-4)
-3

(1,-4)
-3

(0,0) 
0 

(3,-2) 
1 

(4,0)
4 

PSO-LP (1,-3) 
-2 

(1,-3) 
-2 

(1,-3)
-2

(1,-3)
-2

(2,-3)
-1

(2,-3)
-1

(2,-3)
-1

(2,-3) 
-1 

(0,0) 
0 

(3,-2)
1 

DAPSO (0,-5) 
-5 

(0,-5) 
-5 

(0,-5)
-5

(0,-5)
-5

(0,-5)
-5

(0,-5)
-5

(0,-5)
-5

(0,-4) 
-4 

(2,-3) 
-1 

(0,0)
0 

Experiment 12: Comparison of Convergence to global optimum  
In this experiment, first, success rate of each algorithm in reaching the specified goal for each function is studied. 

Success rate of a PSO is defined as the percentage of successful runs of the PSO. A successful run is a run in which 
the PSO reaches the specified goal of the function. Second, we measure the speed of convergence to the goal for 
successful runs of each function in terms of number of iterations required to reach the specified goal. The results 
presented in this section are average of 1000 runs of the algorithms over 5000 iterations. 

The success rates of the PSO algorithms are presented in Table 4. It can be observed that  
1. Although proposed algorithms are more than 90% successful for Rosenbrock function, the conservative 

algorithms are more successful.  
2. All algorithms reach the specified goal for Sphere function in all runs. 
3. All algorithms except UAPSOAdv can reach the specified goal for Rastrigin function in all runs. However, 

UAPSOAdv were successful in 92% of runs. 
4. The proposed adventurous algorithms are the second most successful algorithms for Ackley function after 

GPSO. 
5. The conservative algorithms are not successful in most experiments for Ackley function.  
6. All the proposed algorithms are successful in more than 96% of runs for Griewank function. Moreover, 

UAPSOAdv is the second most successful algorithm for Griewank function. 



Table 4 Mean success rate  
Function 

Algorithm   Rosenbrock Sphere Rastrigin Ackley Griewank 

UAPSOAdv 94.1% 100.0% 92.9% 99.0% 99.4% 
UAPSOCon 99.5% 100.0% 100.0% 21.2% 97.0% 
IAPSOAdv 90.0% 100.0% 100.0% 98.0% 98.0% 
IAPSOCon 99.0% 100.0% 100.0% 18.9% 96.5% 
PSOIW 99.8% 100.0% 100.0% 75.8% 99.8% 

PSO-TVAC 99.9% 100.0% 100.0% 78.1% 99.2% 
GPSO 100.0% 100.0% 100.0% 100.0% 79.1% 

Table 5 Mean number of iterations to reach goal for successful runs 
Function 

Algorithm   Rosenbrock Sphere Rastrigin Ackley Griewank 

UAPSOAdv 55,703±2,329 38,907±1,014 31,393±1,297 44,213±931 36,261±880 
UAPSOCon 39,077±1,498 28,033±309 28,462±682 99,448±7,357 24,230±355 
IAPSOAdv 47,838±1,815 22,931±147 20,947±713 43,285±527 22,779±502 
IAPSOCon 34,556±1,745 18,804±107 25,830±414 132,126±5,235 17,063±381 
PSOIW 42,792±1,307 38,187±143 14,571±242 33,535±367 36,385±156 

PSO-TVAC 28,736±988 22,193±100 11,433±206 22,249±221 21,177±156 
GPSO 13,352±780 5,659±58 17,144±514 90,460±1,624 22,863±2,189 

From the Table 5 it can be observed that: 
1. IAPSOCon is the second fastest algorithm for Sphere function after GPSO. 
2. Among the successful algorithms for Ackley function, the proposed adventurous algorithms are twice as fast 

as the second fastest algorithm, GPSO. 
3. IAPSOAdv is the fastest algorithms for Griewank function. 
4. Although all proposed algorithms are successful for Rosenbrock and Rastrigin function, they are slower 

than GPSO and PSO-TVAC. 

6. Conclusion 

In this paper, we studied the ability of learning automata based schemes to adjust parameters of PSO. Two classes 
of algorithms are proposed. In the first class, the same parameters are set for all particles while in the second class 
each particle adjusts its parameters individually. In addition, for both classes of proposed algorithms, two 
approaches for changing value of parameters were taken. In the first approach, named adventurous, value of a 
parameter is selected from a finite set while in the second approach, named conservative, value of a parameter either 
changes by a fixed amount or remain the same value. Experimental results showed that proposed algorithms are 
highly competitive with well-known PSO algorithms such as SPSO, PSOIW, DCPSO, DAPSO, PSOLP, 
PSO-TAVC, and GPSO in all test functions. Although the proposed algorithms could not perform very well on each 
function separately, comparison of PSO algorithms on all functions showed that they could outperform all PSO 
algorithms in terms of number of function in which they are superior. Moreover, proposed algorithms could reach 
the goal of highly multi modal functions, Ackley and Griewank, faster than most of other PSO algorithms with the 
same success rate. Furthermore, studies the effect of parameters of proposed algorithms demonstrate that proposed 
algorithms are able to perform very well with the same parameters for different functions.  
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Fig. 18. Mean best fitness over time. 
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