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Abstract —  

Commercial speech recognizers have made possible many speech control applications such as wheelchair, 

tone-phone, multifunctional robotic arms and remote controls, for the disabled and paraplegic. . However, 

they have a limitation in common in that recognition errors are likely to be produced when background noise 

surrounds the spoken command, thereby creating  potential dangers for the disabled if recognition errors exist 

in the control systems.  In this paper, a hybrid noise suppression filter is proposed to interface with the 

commercial speech recognizers in order to enhance the recognition accuracy under variant noisy conditions. 

It intends to decrease the recognition errors when the commercial speech recognizers are working under a 

noisy environment. It is based on a sigmoid function which can effectively enhance noisy speech using 

simple computational operations, while a robust estimator based on an adaptive-network-based fuzzy 

inference system is used to determine the appropriate operational parameters for the sigmoid function in 

order to produce effective speech enhancement under variant noisy conditions. The proposed hybrid noise 

suppression filter has the following advantages for commercial speech recognizers: i) it is not possible to tune 

the inbuilt parameters on the commercial speech recognizers in order to obtain better accuracy; ii) existing 

noise suppression filters are too complicated to be implemented for real-time speech recognition; and iii) 

existing sigmoid function based filters can operate only in a single-noisy condition, but not under varying 

noisy conditions. The performance of the hybrid noise suppression filter was evaluated by interfacing it with 

A hybrid noise suppression filter for accuracy 

enhancement of commercial speech recognizers in 

varying noisy conditions 



a commercial speech recognizer, commonly used in electronic products. Experimental results show that 

improvement in terms of recognition accuracy and computational time can be achieved by the hybrid noise 

suppression filter when the commercial recognizer is working under various noisy environments in factories. 

Index Terms — Fuzzy neural networks, noise suppression filter, ANFIS, speech recognition, commercial 

speech recognizer, sigmoid filter, speech enhancement 

I. INTRODUCTION 

Well-established speech recognition technologies benefit many rehabilitation and biomedical engineering 

industries in the development of health or assistance devices for paraplegics and the disabled, where speech 

recognition is used as a patient-machine interface which transfers control commands from patient to the 

machine and provides feedback from the machine to the patient. Although advanced sensors for human 

movements such as eyes and tongue switches have been included in health or assistance devices, such 

sensing approaches have many limitations which make these devices less efficient for the user. In fact, speech 

control is simpler in interfacing between the patients and the assistance devices, and it has been implemented 

for the control of server-assistance devices for the disabled [44, 45]. In the commercial and industrial sectors, 

speech controls [2, 27] are used in factory automation [32], warehouse automation [1], and industrial robotic 

control [26]. Disabled people can give verbal commands or input data to control the manufacturing system 

without the necessity for physical contact since speech is the only thing required to control the manufacturing 

systems [24]. 

During the development of the commercial recognizer mechanism, much research regarding speech 

recognition was conducted on enhancing speech recognition accuracy by developing effective recognition 

algorithms [23, 14], identification mechanisms for capturing significant speech features for recognition [30, 

20], recognition algorithms for distorted and contaminated speech [42], etc. However, these approaches have 

a common limitation in that the development of speech recognizers has been based only on a database which 

consists of a limited number of speech signals contaminated by certain types of acoustic noise. It is 



impractical for industrial sectors to manufacture a commercial speech recognizer which can work ideally in 

every noisy environment, due to the limitations of cost and time. Hence, conventional commercial 

recognizers can work accurately only under the trained noisy conditions, but might not work under untrained 

noisy conditions in which inaccurate recognitions are likely to occur. Recognition errors in a control system 

would create potential risks and dangers for the disabled user. Therefore, it is necessary to decrease the 

recognition errors for commercial speech recognizers that are working in noisy environments. 

Although multi-channel beamformers [9, 15, 41] can be used to enhance noisy speech which is 

contaminated by near-end noise, such approaches have the commonly limitation that the signal source needs 

to be tracked, based on the difference between the signal spectrums collected from multiple channels. Also, 

their mechanisms are computationally complex and their inbuilt parameters need to be calibrated with respect 

to the location of noise sources and speech sources. 

A practical way to improve recognition accuracy is to interface the commercial speech recognizer with a 

noise suppression filter which works effectively under multi-noise conditions for varying noisy 

environments. Noise suppression filters first identify both active and inactive periods of noisy speech, and 

then estimate the noise spectrum based on the inactive periods. Hence, an enhanced speech spectrum can be 

produced by removing the noise spectrum from the original speech spectrum [4]. However, several acoustic 

criteria need to be addressed in order to enhance the accuracy of commercial speech recognition, as annoying 

residual noise or musical noise can be perceivable when the noise spectrum is under-estimated, and original 

speech can be distorted leading to a loss of speech quality and intelligibility when the noise spectrum is 

over-estimated [29]. It is difficult to optimize those acoustic criteria even under a single condition with 

respect to a single user and a single noisy environment, as nonlinearities exist in those acoustic criteria; 

moreover, multi-objective optimization for satisfying those acoustic criteria needs to be handled. It is much 

more difficult to satisfy multi-noise conditions which involve multi-users and varying noisy environments. 

Although much progress has been made in the development of noise suppression filters using different cost 

functions engaged with different acoustic criteria which are perceptual, intelligibility and quality [6, 3], these 



approaches are often computationally complex and difficult to implement in real-case scenarios. Even though 

a powerful processor can be used to implement such complex filters, speech quality can only be improved 

with respect to the specified but limited acoustic criteria which may not be related to accuracy of speech 

recognition. Hence, they still result in poor speech recognition performance. 

Hu et al. [16] show that sigmoid filters with low complexity can be implemented for real-time speech 

recognitions. These simple sigmoid filters overcome the limitation of the noise suppression filters which are 

too computationally complex for real-time implementation. To further increase the flexibility of speech 

enhancement for varying noise conditions, Yong et al. [39] have recently developed an advanced sigmoid 

gain function, which combines a logistic function with a hyperbolic tangent function. The advanced sigmoid 

gain function provides several filter parameters that can be adjusted to flexibly model exponential 

distributions, in order to achieve a balanced trade-off between many acoustic criteria such as noise reduction, 

speech distortion and musical noise [41]. With this trade-off, the accuracy of the commercial recognizer can 

be enhanced under a single-noisy condition. However, a particular set of filter parameters can be optimized 

only with respect to a single condition with a particular noise power level. Hence, it is necessary to adjust the 

filter parameters to maintain the trade-off under varying noisy conditions. 

In this paper, a hybrid noise suppression filter, namely ANFIS-SF, is proposed based on the mechanisms 

of the ANFIS and the sigmoid filter, in order to improve the accuracy of the commercial recognizer operating 

in varying noisy conditions. To develop ANFIS-SF, a speech recognition problem is formulated in order to 

optimize the accuracy of the commercial recognizer with respect to a single-noisy condition. A global 

optimization method, namely particle swarm optimization (PSO), is used to initialize a set of optimal filter 

parameters, each of which is optimized with respect to the speech recognition problem, as PSO can effective 

in solving optimization problems with similar landscapes which are discontinuous, vastly multimodal and 

non-differentiable [25, 36, 37, 43]. Based on these optimal filter parameters for single-noise conditions, a 

robust estimator [18], ANFIS, is used to perform a mapping relationship between filter parameters and 

various noisy conditions, as this mapping relationship is highly nonlinear and ANFIS is an effective method 



for nonlinear mapping [31, 22, 10, 13]. As the ANFIS provides appropriate filter parameters for the sigmoid 

filter with respect to varying noisy conditions, the resulting ANFIS-SF is likely to work effectively under 

such conditions.  

The effectiveness of the ANFIS-SF is demonstrated by interfacing it with a commercial speech recognizer 

which is used in electronic products [28]. When compared with other existing noise suppression filters, 

ANFIS-SF produces better results in terms of recognition accuracy and computational time in factory 

environments. 

II. ENHANCEMENT OF RECOGNITION ACCURACY UNDER MULTI-CONDITIONS 

A commercial recognizer,  . , is designed to identify n inbuilt speech commands,  1 2, ,..., nu u u  of which 

those speech commands can be single words such as numerical digits, ‘yes’ or ‘no’ decisions, ‘left’ or ‘right’ 

directions etc, or those speech commands can also be phrases, such as operational commands for 

manufacturing processes, speech controls for toys or audio players etc. 

Let the t-th sample of the noisy speech,  i

jx t , received by  .  be denoted as,  

      ,i i

j jx t s t v t      1,2,...,i n
                        (1) 

where  i

js t , is the i-th speech command voiced out by the j-th regular user, with j=1,2..,N of which N is the 

number of regular users;  v t , is the background noise; 1,2,...,t m ; and m is the number of samples. Let î  

be the recognized command from  .  for the noisy speech,  i

jx t , which is given by, 

 ˆ i

ji x ,                                     (2) 

where      1 , 2 ,...,i i i i

j j j jx x x x m    . If î i , a correct recognition is obtained with respect to i

jx . 

Otherwise, an incorrect recognition occurs, if î i . When the power of  v t  is large, recognition errors are 

likely to be produced by  . . A sigmoid filter, namely   SIG , ,G     with three filter parameters, 



       1 2 3, ,           , can be used to enhance the accuracy of  . , where   is a real angular 

center frequency given by 0, 1, 1...., K    
   ;  is the time frame index given by 

 
 0,1,...., 1L  ; K is 

the number of bands; L is the number of frames; and   is the estimated degrees of signal to noise ratio 

(SNR). 

Using   SIG , ,G    , the estimate of clean speech spectrum,  ˆ ,i

jS  , with respect to  i

js t  can be 

obtained by: 

        SIG
ˆ , , , ,i i

j jS G X                               (3) 

where  ,i

jX   is the M-point short time Fourier transformation of  i

jx t ; and   SIG , ,G     is 

formulated as: 

         

      

   

   
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ee

   

        

         

 
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


 



;
                    (4) 

 ˆ ,   is the estimate of a priori SNR, which is determined based on the modified decision directed 

approach [39] and is given by 

   
    

 
    

2

SIG , 1, ,
ˆ , 1 , 1

ˆ ,v

G X
P

   
     

 

 
     

where  ˆ ,v 
 
and   SIG , 1,G   

 
denote, respectively, the estimated noise PSD from [38] and the 

gain value from the preceding frame. The parameter   denotes the smoothing factor,  .P  denotes the 

half-wave rectification and  ,   denotes the a posteriori SNR. With  ˆ ,  ,   can be determined as 

  ˆ ,E   .  

In   SIG , ,G    ,     needs to be optimized with respect to  . In the first term of   SIG , ,G     

illustrated in (4), the sigmoid slope of the logistic function can be adjusted in order to maximize sensitive 



towards speech and minimize sensitive towards variation of noise, by tuning  1   and  2 
 
with respect 

to  . To further enhance the effectiveness of noise reduction at low SNR,  3  can be used to make 

  SIG , ,G     trending to be zero under a very low  . Therefore, the behavior of   SIG , ,G     can 

be made similar to different conventional noise filters by optimizing        1 2 3, ,            
with 

respect to   [39]. 

When working under a single condition, the filter parameters,    , need to be optimized only with 

respect to a single  , by solving the following optimization problem in order to maximize the accuracy of 

 . : 

      
 

1 1

max  
N n

i

s j

j i

J
 

  
 

  ,                          (5) 

subject to 

  
 

 

ˆ0    if  , which is incorrect recognition

ˆ1    if  , which is correct recognition   

i

ji

j i

j

s i

s i


  
 

 

,  

where ˆi

js  is the time domain of  ˆ ,i

jS  in (3) which is obtained by the inverse M-point short-time Fourier 

transformation of  ˆ ,i

jS  . However, it is impractical to develop a filter which can only work effectively 

with respect to a single condition, as the power of noise and the power of user speeches cannot be a constant 

in an operational environment for the commercial recognizer. Hence, multi-conditions need to be addressed 

to generate a filter which can enhance accuracy of the commercial recognizer under multiple SNR. For 

multi-conditions, the following optimization problem is solved, in order to maximize accuracy of  .  under 

varying  : 

        
1

p

M s k

k

J J  


  ,                              (6) 



where all k are within the specified minimum and maximum of SNRs with respect to the operational 

environments for the commercial recognizer; and    1 2, ,...opt opt opt       ..., opt

p  


 is the filter 

parameter set for multi-conditions of which  opt

k   is optimal with respect to the SNR of k ; and p is the 

number of multi-conditions with multiple SNR. Since the optimization problem formulated in (6) involved 

the step function which represents the correct recognitions, it is non-differentiable. Hence, local search 

methods, which require gradient information to trace optimum, are not appropriate for solving this 

optimization problem. Since the particle swarm optimization performs effectively on solving similar 

optimization problems which are discontinuous, vastly multimodal and non-differentiable [25, 36, 37, 43], 

the particle swarm optimization (discussed in Section IIIA) is used to solve this optimization problem. 

III. HYBRID ANFIS AND SIGMOID FILTER 

In this paper, a hybrid filter namely, ANFIS-SF, is proposed based on the mechanisms of the ANFIS and the 

sigmoid filter, in order to enhance the accuracy of the commercial recognizer for multi-conditions formulated 

in (6). To develop ANFIS-SF, PSO is first used to initialize a set of optimal filter parameters, each of which is 

optimized with respect to a single condition formulated in (5). Then an ANFIS is developed based on these 

optimal filter parameters, in order to create a map between the filter parameters and the SNR. 

Figure 1 illustrates the mechanism of the ANFIS-SF. The filter parameters are first determined by the 

ANFIS based on the degree of estimate of SNR, which is within the operational environments for 

multi-conditions. Then, the sigmoid filter enhances the noisy speech based on the determined filter 

parameters. Correct recognitions are more likely to be produced by the commercial recognizer based on the 

enhanced speeches. Hence, the multi-conditions formulated in (6) can be addressed. Detailed descriptions of 

the PSO and the ANFIS are discussed in the following two sub-sections. 

 



 

Figure 1 Mechanism of the ANFIS-SF 

 

A. Initiation of filter parameters for single conditions using PSO 

The PSO consists of sN  particles, where the position of the j-th particle at the g-th generation is represented 

by: 

           ,1 ,2 ,3, ,g g g g

j i j i j i j iP        ,                         (7) 

which are the filter parameters used in the sigmoid filter,   SIG , , g

j iG P  , against a single condition for a 

particular SNR, i . At the 1-st generation with g=1, all  ,

g

j k i  , with k=1, 2, 3, are generated randomly 

within their operational ranges, given as      ,1 ,2, 0..1g g

j i j i     and    ,3 0..15g

j i   , which can be 

referred to [39]. When g>1, each  ,

g

j k i 
 
are updated based on its velocity,  ,

g

j k ivel  , by the following 

formulation (8): 

     1

, , ,

g g g

j k i j k i j k ivel                                  (8) 

where 

        
    

1 1

, , 1 , ,

1

2 ,              

g g g

j k i j k i j k i j k i

g

k i j k i

vel C v pbest

gbest

      

    

 



    

   
                 (9) 

       ,1 ,2 ,3, ,j i j i j i j ipbest pbest pbest pbest       , and

       1 2 3, ,i i i igbest gbest gbest gbest       ; 



 j ipbest   denotes the best previous position of a particle recorded from the previous generation; 

 igbest  denotes the position of the best particle among all particles;   denotes a random number in the 

range of [0,1]; w is an inertia weight factor; 1  and 2  are the acceleration constants [11]; and C denotes the 

constriction factor, that ensures the PSO converges [5], which is given by: 

          
2

2

2 4
C

  


  
, with 1 2    and 4  .                                                          (10) 

The PSO utilizes  j ipbest   and  igbest   to modify the current location of all  ,

g

j k i   in order to 

prevent them from moving in the same direction, but to converge gradually towards pbesti and gbest [12]. To 

further refine the dynamic of   ,

g

j k i  ,  ,

g

j k ivel   is limited by a value which was set as 10%–20% of its 

range. This limit is employed to avoid  ,

g

j k i   from flying past good solutions or exploring insufficient 

local solutions. The searching process of the PSO stops when it converges to a satisfactory filter parameter 

with respect to (5), where the satisfactory filter parameters are denoted as 

       ,1 ,2 ,3, ,opt opt opt opt

i j i j i j i           , which can address the enhancement of speech recognition with 

respect to a single condition formulated in (5).  

To address the multi-conditions formulated in (6), the PSO can be run for p times where each run targets a 

particular SNR condition, i  with i=1, 2, …, p. However, it is impractical to find large sets of filter 

parameters in which each set of filter parameters is optimal with respect to only a single SNR. Hence, the 

satisfactory filter parameter set, 
 

     1 2, ,...,opt opt opt

p       
 

, determined by the PSO is used to 

develop an ANFIS in order to construct an input-output mapping between   and  '  . A description of 

the development of an ANFIS is given in the following subsection. 

 



B. ANFIS for multi-conditions 

Although simple neural networks are capable of modelling nonlinear systems, the models generated are 

implicit. It is difficult to analyze the relationship between filter parameters and SNR within the simple neural 

network. Therefore, ANFIS is proposed, whereby a non-linear and explicit model can be generated in order 

to represent the relationship between filter parameters and SNR. In ANFIS, the architecture of 

Takagi-Sugeno fuzzy model [34] with one input and three outputs is used, where the input represents the 

SNR,  , and the outputs represents the estimates of the three filter parameters which are denoted by, 

        1 2 3
ˆ ˆ ˆ ˆ, ,           .                               (11) 

Using the mechanism of ANFIS,  ̂   can be estimated with respect to any  , where the ANFIS consists 

of 
rule

n  fuzzy rules, and the g-th fuzzy rule is given by: 

  0, 1,
:  IF  is  THEN  with 1,2,3j j

g g g g g
R A z w w j      ;                (12) 

1,2,....,
rule

g n ;  
0,

j

g
w  and 

1,

j

g
w  are the consequent coefficients with respect to the polynomial of the g-th rule 

and the estimate of the j-th filter parameter,  ˆ
j  ; j

g
z is the consequence of the polynomial with respect to 

the g-th rule and  ˆ
j  ;  g

A   denotes the membership function of the g-th fuzzy rule, which is given by: 

   
 

2

exp
g

g

g

A
 




  
 
 
 

;                              (13) 

and 
g

  and 
g

 are the mean and the variance of  g
A   respectively. When the SNR is  , the estimate of 

the j-th filter parameter,  ˆ
j

  ,is given by: 

 
    

  

0, 1,

1

1

ˆ

n

j j

g g g

g

nj

g

g

rule

rule

A w w

A

 

 






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



.                           (14) 

Here, a widely used approach with fast convergence, namely Jang's algorithm [18], is used to determine the 

ANFIS parameters, 
0,

j

g
w , 

1,

j

g
w , 

g
 , and 

g
 . The filter parameters,        ,1 ,2 ,3, ,opt opt opt opt

i j i j i j i           , 



with i=1, 2,…, p, which are determined based on the PSO, are used to train the ANFIS, where that set of filter 

parameters is divided into two sets, namely training set,  , and validation set,  , such that   opt

i    

and  opt

j   , with  all , 1,2,...,i j p
 
but all i j . 

The training error, e


, and the validation error, e


, with respect to   and   are given by: 

  
 opt

i

opt

ARE ie e
 

 


 

                               (15) 

and   
 opt

i

opt

ARE ie e
 

 


 

   respectively,                        (16) 

where   opt

ARE ie    is the absolute difference between the real parameter,  opt

i  , and the estimated 

parameter,  ˆ
i  , and   opt

ARE ie    is determined by: 

            1 2 3, ,opt opt opt opt

ARE i ARE i i ie e          
   

 

3

1

ˆopt

j i j i

opt
j j i

   

 


        (17) 

 In the early training stage for the ANFIS, both training errors and validation errors decrease gradually, as 

the characteristics of both training and test sets are usually similar. After both errors decrease to a certain 

level, the ANFIS becomes over-trained by the training set
 
and the validation error increases with the 

decreased training error. During this time, the training of the ANFIS is terminated when the validation error 

starts to increase. Hereby, over-fitting can be avoided and the determined filter parameters,    , can be 

used as the filter parameters of the sigmoid filter. Hence, the multi-conditions formulated in (6) with varying 

  can be addressed. 



IV. EVALUATION OF ANFIS-SIGMOID FILTER 

A. Implementation of a commercial recognizer 

In this research, a commercial recognizer, namely the RSC3X synthesis microcontroller [28], is used to 

evaluate the effectiveness of the proposed ANFIS-SF since the commercial recognizer has been applied 

widely to various electronic products with speech control functions.  

The commercial recognizer is a finite state machine, which can be in either a standby state or trigger state. 

When there is conversational interchange between the commercial recognizer and the user, the commercial 

recognizer is in the trigger state. Otherwise, the commercial recognizer is in the standby state where it is 

assumed that no conversational interchange is being conducted. During the trigger state, the trigger phrase 

voiced out by the user is passed to its inbuilt hidden Markov model which generates a set of likelihoods for 

the trigger phrase with respect to the speech commands. The speech command with the highest likelihood is 

the outcome of the commercial recognizer which is the recognized command. More than 99% accuracy can 

be produced when the commercial recognizer works under high SNRs [28], but wrong recognitions are likely 

to be produced under low SNRs. 

The commercial recognizer was configured as in Figure 4, which simulates the environment of a noisy 

factory. Here the commercial recognizer was placed in front of a warehouse operator and a noise source was 

produced by a factory machine located beside the warehouse operator. The proposed ANFIS-SF was 

interfaced with the commercial recognizer in order to enhance the noisy speech before performing speech 

recognition. The commercial recognizer was implemented for the assigned machine, which can assign the  

five Christmas carol products including ‘Jingle Bells’, ‘Santa Claus is Coming to Town’, ‘Sleigh Ride’, ‘Let 

It Snow’, and ‘Winter Wonderland’, where the five carol names are the speech commands embedded in the 

commercial recognizer. These are typical commands comprising phrases which can be used as the statements 

for commanding the assigned machine to deliver different song products. The assigned machine can deliver 

the correct song product if the speech command voiced by the factory operator is recognized correctly. If a 



wrong command is recognized, the assigned machine either deliver correct song product or generates no 

action. 

 

 

Figure 2 Configuration of the warehouse automation 

 

When the SNR is high, correct commands are likely to be recognized. However, noise always exists in a 

factory, and inaccurate recognitions are likely to occur. Therefore, ANFIS-SF is used to interface with the 

commercial recognizer in order to upgrade recognition accuracy. In a factory environment, the SNRs of the 

noisy speeches received by the commercial recognizer depend on three factors: 1) the volume of the noise 

produced by the factory machine; 2) the volume of the speech voiced out by the users; and 3) the distance 

between the user and the commercial recognizer. 

The company supporting this research specially developed a Matlab interface for the commercial 

recognizer whereby the recognized commands can be returned by the Matlab. The noisy environments in a 

factory were considered, and noise sequences were collected from the Noisex-92 database [33]. If the 

commercial recognizer is working accurately, factory operators can simply voice out speech commands to 

control the assigned machine in order to remain focused on the main tasks without requiring both hands to 

control the machine. Interruptions to their main task can be minimized. Here, the sampling time used for the 

commercial recognizer is 18 kHz. All the algorithms and computations involved in this study were 



implemented using Matlab 2008 in a PC which has a CPU of Intel(R) Core(TM)2 Duo 2.66GHz and a 

memory of 7.99GB. 

B. Experimental set-up 

Five speech commands voiced by ten people, eight males and two females, were recorded in a recording 

studio which is assumed to be noise free. Then, the recordings were contaminated artificially with two types 

of factory noise, namely machinery noise and engine noise, in order to simulate the noisy environment of 

factories. The machinery noise was recorded near plate-cutting and electrical welding equipment, and the 

engine noise was recorded in the engine room while the engine was running. The recorded speech commands 

were contaminated at different SNRs, so as to simulate the real environment in which the people voice the 

commands with different volumes and at different distances from the commercial recognizer. 

To develop the ANFIS-SF, the number of fuzzy rule, 
rule

n , used in ANFIS-SF is 3. The following 

parameters, which can be found in reference [47], were implemented in the PSO: the number of particles in 

the swarm was 100; the number of elements in the particle was 30; both the acceleration constants 
1

  and 
2



were set at 2.05; the maximum velocity maxv  was 0.2; the pre-defined number of generations was 100. Based 

on the results in [47], these parameters can produce satisfactory results when solving both parameterized and 

combinatorial problems. Therefore, these parameters are used in this research. 

Cross-validations were used to evaluate the effectiveness of the ANFIS-SF, where the cross-validations 

were repeated five times. The training set was generated by the seven male speech commands and the one 

female speech command, which were contaminated with various SNRs. The test set was generated by the 

remaining one male and one female speech commands contaminated with various SNRs. Hence, the 

performance of the ANFIS-SF can be evaluated in terms of the recognition accuracy under multi-conditions 

with various SNRs and multi-users. Also, it simulates a practical situation whereby the ANFIS-SF is trained 

by a group of regular users and is used by new users. It can therefore evaluate whether the trained ANFIS-SF 

can work accurately with respect to those new users. 



After testing the performance of the commercial recognizer by gradually decreasing the SNRs, it was found 

that the commercial recognizer performs poorly under machinery noise and engine noise with similar SNRs. 

Therefore, both training sets and test sets were contaminated with similar SNRs for both types of noise. The 

training set was contaminated with the SNRs of -5dB, -4dB, -3dB, -2dB, -1dB, 0dB, 1dB, 2dB, 3dB, 4dB and 

5dB, while the test set was contaminated with the SNRs of -5.5dB, -4.5dB, -3.5dB, -2.5dB, -1.5dB, -0.5dB, 

0.5dB, 1.5dB, 2.5dB, 3.5dB, 4.5dB. Therefore, 11 SNR cases were considered for both training and test sets. 

The SNRs of the test set was smaller than those of the training set with 0.5dB in order to evaluate the 

recognition accuracy under different SNRs.  

In the five cross-validations, there were 5 commands and 8 persons involved in training, so 120 training 

sequences were involved in each SNR case. While there were 11 SNR cases for training, there were a total of 

1320 training sequences involved in training. For testing, there were 5 commands and 2 persons involved, so 

each SNR case had 50 test sequences. For testing, 11 SNR cases were involved with a total of 550 test 

sequences.  

C. Experimental results 

Figure 3 shows the recognition accuracy against machinery noise, where the recognition accuracy is obtained 

based on the training data for the cross validation. It shows the recognition accuracy obtained solely by the 

commercial recognizer, ANFIS-SF, and the singly-trained sigmoid filters namely SG-(-5), SG-(0), and 

SG-(5) which are optimized with respect to a single condition for low SNR (i.e. -5dB), medium SNR (i.e. 

0db) and high SNR (i.e. 5dB) respectively. Apart from those, a commonly used noise suppression filter, 

namely Wiener filter [35], was used for the comparison. The result shows that the commercial recognizer can 

achieve 65% recognition accuracy when no enhancement method is used under the SNR of 5dB. The 

performance dropped to about 30% and 16% recognition accuracy when the SNRs decreased to 4dB and 

-2dB respectively. At -5dB, the recognition accuracy dropped to about 5%. When the Wiener filter is used, 

recognition accuracy can be improved slightly. However, much better speech recognition can generally be 

obtained by the sigmoid filters. When working under SNR of -5dB, SG-(-5) performed better than SG-(0), 



SG-(5) and Wiener filter. When working under SNR of 0dB and 5dB, SG-(0) and SG-(5) worked better than 

the others respectively. This result indicates that the sigmoid filters which were developed for single 

conditions can improve the recognition accuracy only when they are operated under their developed single 

conditions. 

 

 

Figure 3 Training results for machinery noise 

 

Figure 3 also shows that the ANFIS-SF can align the outcomes obtained by the best sigmoid filter 

developed for a single condition. As ANFIS-SF was developed to maximize the recognition accuracy under 

multi-conditions formulated in (6), the enhanced speech produced by ANFIS-SF can fit well into the 

commercial recognizer working under multi-conditions. Hence, ANFIS-SF is the best among all filters for 

improving the recognition accuracy with respect to multi-conditions. 

 Figure 4 shows the recognition accuracies for the test set which is independent of the training set. Poor 

speech recognitions were indicated by the commercial recognizer with no improvement. Slightly better 

results can be obtained by the Wiener filter. The sigmoid filters, SG-(-5), SG-(0) and SG-(5), perform well 

when working under the SNR conditions in which they were developed. The ANFIS-SF is generally the best 

sigmoid filter of all the filters used for the test sets. Hence, this result indicates that the commercial 

recognizer interfaced with ANFIS-SF can work well with the speech commands voiced by the users which 

have not been involved in the training. 



 

 

Figure 4 Test results for machinery noise 

 

 Figures 5-6 indicate similar results in that the accuracy of the commercial recognizers can be enhanced 

when the ANFIS-SF were interfaced when working under engine noise with multi-conditions. Results further 

show that ANFIS-SF outperforms the Wiener filter and the three sigmoid filters, SG-(-5), SG-(0) and SG-(5), 

which were trained under a single condition. These results further demonstrate that ANFIS-SF
 
tends to 

satisfy multi-conditions, while SG-(-5), SG-(0) and SG-(5) satisfy only single conditions.  

 

 

Figure 5 Training results for engine noise 

 



 

Figure 6 Test results for engine noise 

 

The average computational time required when using solely the commercial recognizer, the ANFIS-SF and 

the single sigmoid filter for processing a piece of speech command was recorded as 0.0228 seconds, 0.08014 

seconds and 0.0809 seconds respectively. It shows that the computational time used by the ANFIS-SF and 

SG-filter are similar and can be implemented in real time. Hence, it can also be concluded that better 

recognition accuracy can be obtained by ANFIS-SF which required slightly more computational time. 

 

V. CONCLUSION AND FURTHER WORK 

In this paper, a hybrid noise suppression filter, namely ANFIS-SF, is proposed based on the mechanisms of 

sigmoid filter and ANFIS, in order to improve the accuracy of commercial speech recognizers working under 

multi-noisy conditions. First, a set of optimal filter parameters for the sigmoid filter is determined where each 

works effectively under a single noisy condition. Then, an ANFIS, is developed based on those optimal filter 

parameters, in order to perform a functional map between filter parameters and noisy conditions. Based on 

the functional map, filter parameters are determined for any noisy conditions; hence, ANFIS-SF can work 

under multi-noisy conditions with varying noisy environments. The effectiveness of the ANFIS-SF is 

evaluated based on a commercial recognizer. Results show that improvement in terms of speech recognition 

can be achieved when the ANFIS-SF is interfaced with the commercial recognizer when operating in 

multi-noisy conditions in factory environments. Also, the computational effort required by ANFIS-SF is 



implementable in real-time. 

 In the future, the mechanism of the proposed ANFIS-SF can be enhanced by conducting the following 

research: 

1) The ANFIS-SF was developed for speech enhancement where only stationary noise can be filtered. It can 

be further enhanced by integrating with the mechanisms of multi-channel filters, in order to filter 

non-stationary noise such as a person’s conversation, songs or music. 

2) The ANFIS-SF will be implemented on an embedded system in order to evaluate the capability of 

ANFIS-SF in real time, where the filter parameters are adapted in a noisy environment which is 

time-varying. Based on the embedded system, both the computational time and recognition accuracy can be 

optimized in real time. Hence, implementation of speech enhancement approaches for speech recognition 

can move a step forward. 

3) Enhanced speech generated by the ANFIS-SF will be analyzed based on well-established acoustic criteria 

[17]. Based on the findings, the relationship between those acoustic criteria and speech recognition is 

expected to be developed. Hence, speech recognition can be maximized by optimizing those acoustic 

criteria which are continuous functions and are easier to optimize than by directly optimizing with respect to 

the speech recognition. 
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