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Meta-heuristic Algorithms for Optimized Network
Flow Wavelet-based Image Coding
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Abstract: Optimal multipath selection to maximize the received multiple description coding (MDCs) in a lossy
network model is proposed. Multiple Description Scalar Quantization (MDSQ) has been applied to the wavelet
coefficients of a color image to generate the MDCs which are combating transmission loss over lossy networks. In
the networks, each received description raises the reconstruction quality of an MDC-coded signal (image, audio or
video). In terms of maximizing the received descriptions, a greater number of optimal routings between source and
destination must be obtained. The Rainbow Network Flow (RNF) collaborated with effective meta-heuristic
algorithms is a good approach to resolve it. Two meta-heuristic algorithms which are Genetic Algorithm (GA) and
Particle Swarm Optimization (PSO) have been utilized to solve the multi-objective optimization routing problem for
finding optimal routings each of which is assigned as a distinct color by RNF to maximize the coded descriptionsin
a network model. By employing a local search based priority encoding method, each individual in GA and particle
in PSO is represented as a potential solution. The proposed algorithms are compared with the multipath Dijkstra
agorithm (MDA) for both finding optimal paths and providing reliable multimedia communication. The
simulations run over various random network topologies and the results show that the PSO algorithm finds optimal
routings effectively and maximizes the received MDCs with assistance of RNF, leading to reduce packet loss and

increase throughput.

Keywords. Genetic agorithm (GA), particle swarm optimization (PSO), rainbow network flow (RNF), multi-

objective multipath optimization, routing representation, multiple description image coding, image transmission.

1. Introduction

The transmission of multimedia information over communication channels/paths has become a challenging problem
with the increased usage of multimedia services in networks. Transmitting original source (information) naturally
requires a significant amount of bandwidth and storage. This has been a strong motivation to examine and develop

an efficient optimization method in order to use less bandwidth as well as finding the optimum network routings.

In multimedia transmission, original source image should be compressed for reducing redundancy in the image as
well as efficient usage of bandwidth. There are two different approaches that have been applied to compress source

image [1]. The first is lossless, where a compact representation of the source coding can be decoded to reconstruct

" Corresponding Author Tel.: +905423599211
E-mail address: huseyin.kusetogullari @gediz.edu.tr



the original signal without error. The second is lossy, which causes distortion in the original signal and the exact
reconstruction of the original source cannot be achieved [1]. The purpose of using both techniques is to encode the
source into a compressed digital representation that can be used for transmission. However, packet transmission
problems such as packet dropping or congestion may occur over lossy transmission networks. For instance, there
may be encounters with low capacity links, network congestion or excessive delay to deliver packets. To combat
multimedia packet loss transmission problem, multiple description coding (MD coding or MDC) transmitting
through multipath is preferred because even if one MDC packet is lost over a path, the lost MDC packet may be
received via another path [1, 2]. Thus, using this approach maximizes MDC packets over lossy networks since the

probability of receiving packets at the destinations increases [ 3].

The descriptions which carry similar information of the original source can be efficiently generated by using various
quantization techniques (e.g. multiple description scalar and vector quantization) [6, 7] and sampling methods
(orthogonal, quincunx) [8]. Since the quantization methods are used, transformation methods such as Discrete
Wavelet Transform (DWT) [3], Discrete Cosine Transform (DCT) [4], and Embedded Zero Tree Wavelet
Transform (EZW) [5] provide significant improvements in terms of preserving the important information of the
multimedia source. In this work, a wavelet-based multiple description scalar quantization method has been applied
to generate the MDCs of the color images since such methods are known to provide excellent rate-distortion
performance [3]. Thus, the important information or energy in the sub-bands of the transformed image will be
protected. The generated MDCs with acceptable quality are transmitted over multipath in lossy networks but finding
the optimal paths and providing enough bandwidth capacity from source to destination are the two complex
problems because of the many potential intermediate destinations an MDC packet might traverse before reaching its
final destination [9]. To find an optimum solution, various algorithms have been proposed to provide greater and
efficient performance of communication. For instance, Jiazi et a. [39] proposed Multipath Dijkstra Algorithm
(MDA) to obtain multipath and they show that the algorithm gains great flexibility by employing different link
metrics and cost functions. Furthermore, Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO) are
significant approaches to resolve the communication problems [10, 11]. They are used for solving different NP-hard
network problems such as K-shortest paths [12], constrained shortest-path [13], multi-objective shortest path [14]
and network flow [15]. In the most of routing optimization problems, only one weight or cost associated with each
network link has been considered to find the optimum solution e.g., delay or length [10,11,17,18]. Begen et a. [19,
45] examined multimedia transmission over optimized lossy networks. They state that each network link has more
than one cost parameter such as packet loss rate, length and bandwidth as it makes the network routing optimization
problem even harder. However, they neither provide an optimization method to solve the multi constrained network
routing problem nor a path selection method. In this paper, a new multi-objective cost function and an enhanced
path representation are explained to solve these open problems and the performances of meta-heuristic algorithms

are examined to find optimal multipath in the multi constrained network problems.

The problem of simultaneously optimizing multiple weights and costs is defined as one of multi-objective network
optimization. In the simulated network models, three different cost variables will be considered associated with each

network link that will be used to optimize path length, bandwidth consumption and packet loss rate for receiving an



acceptable quality of transmitted image. The strategies employed in [18] and [19] are used to select the numerical
weights for each edge to optimize the shortest paths and packet loss rate. In this problem, the significant goal is to
find optimal multi paths with minimum packet loss rate and path length as well as maximizing the average
reconstruction quality of a received MDC-coded signal (image, audio or video) at the sink nodes. Meta-heuristic
algorithms such as GA and PSO are employed in this work to provide an optimal trade-off between the cost values
and the performances of them are compared with the MDA [39]. Three different fitness functions which are single
obj ective shortest path, single objective minimal packet loss rate and multi-objective cost functions are employed for
efficient result estimation in both finding optimal multipath and providing multimedia transmission. The simulations
described in this paper consider undirected path graphs of a given node size n and edge size m. The optimization will
employ a given set of MDC packet subsets and utilize the RNF algorithm, a GA and PSO. The main contribution

and strength of the paper are asfollows;

e A new multi-objective cost function is proposed and compared with the previously used single objective
cost functions in terms of finding optimum multipath as well as increasing the probability of receiving

multimedia packets at the destination nodes in lossy network problems[18, 19].

e Two meta-heuristic algorithms which are GA and PSO algorithms have been adapted with both proposed
multi-objective cost function and RNF algorithm, and they are compared with MDA [39].

e Average quality of received images is estimated in terms of optimized network resources and statistics

based on three fitness functions.

e The effectiveness of the proposed multi-objective cost function has been shown in transmitting the
multimedia information through the optimized network. Besides, creating descriptions using the wavelet
based image coding has been further improved to produce MDCs of color image for the available

bandwidth between the source and destination nodes.

e Priority encoding method is enhanced to reduce invalid paths for corresponding multi-cost problem in

terms of reducing computational time for finding multipath in networks.

The rest of the paper is organized as follows: work related to MDC generation is given in section |1, the model and
analysis of the network problem is presented in section 11, the details of meta-heuristic algorithms for solving the
multi-objective network routing problem are explained in section 1V, results and discussions are provided in section

V and the paper is concluded in Section V1.

2. Work related to Multiple Description Coding (MDC) Generation

MDC provides a good quality of received images if losses are inevitable in the network and many works have been
examined to design practical MDC systems. MD scalar quantization (MDSQ) is one of the most popular techniques
which have been discussed in [6]. The improvement of MDSQ which is MD vector quantization is studied and

reported in [7]. The quantization methods cause loss of the information of the original image. However, there are



lossless MD image coding generation methods which are implemented by using source coding and transformation
methods. The wavelet and discrete cosine transformation methods are most used techniques which have been widely
discussed in the literature. For example, one of the most popular algorithms called Set Partitioning in Hierarchical
Trees (SPIHT) used the wavel et approach [5]. Furthermore, Servetto et a. [3] applied the discrete wavel et transform
(DWT) and resulting wavelet coefficients quantized by MDSQ to generate MDCs. Wang et a. [4] used the pairwise
correlating transformation to generate multiple correlated descriptions in the framework of standard DCT -based

image coding. Splitting an image into the descriptions was discussed by Zhang et d. [8].

This paper is focused upon two different problems, namely (i) optimizing network routings in order to get
acceptable quality of received images in the lossy network and (ii) the simple generation of MDCs. Wavelets are
attractive in image coding problems due to a tradition of excellent rate-distortion performance, so, we have applied
MDSQ on awavelet based colored image to generate MDCs.

2.1 Generating MDCs for Proposed Method

Even though the RGB color space can be used for pixel transmission, it has the disadvantage of illumination
dependence. This means that there is a significant amount of correlation between the RGB components. If the
illumination of an image changes because of packet lossesin alossy network, the achievement of high reconstructed

images will be compromised.

Furthermore, the chrominance coefficients can be used for enhancement of the received image rather than modeling
itsintensity and can be neglected for larger changes without affecting our perception of the image. So it is necessary
to transform the RGB color space to one of the color spaces where the separation between intensity and
chrominance is more discriminate. Because of the linear conversion between RGB and Y CbCr color spaces, we use
the Y CbCr color space to model the transmitted image. Poynton [20] discussed the conversion from RGB to Y CbCr
color space and from Y CbCr to RGB color space.

Fig. 1. The conversion of RGB to Y ChCr color space and implementation of DWT with two levels of decomposition.

After the RGB to YCbhCr color space conversion shown in Fig. 1, a transformation method has been applied to

each color space of the given image to find the energy distribution of its coefficients. This determination of the



image energy distribution may be approached via several transformation approaches [3, 4]. However, wavelets
have gained popularity in recent years for feature extraction [21], denoising [22], compression [23], face
recognition [24] and packet image transmission [25] because they offer high coding efficiency [26]. The discrete
wavelet transform (DWT) procedure uses a low pass filter and a high pass filter, chosen such that they divide the

frequency range equally between them and is thus a suitable tool for packetizing the image in our application.

Briefly, the DWT may be explained as follows: The 2-D wavelet decomposition of an image is performed by
applying a 1-D DWT along the rows of the image first and then the results are decomposed along the columns.
This operation results in four decomposed sub-band images referred to as low—low (LL), low—high (LH), high—
low (HL), and high—high (HH). The frequency components of those sub band images cover the frequency
components of the original image. The LL band can be decomposed once again in the same manner, thereby
producing even more sub bands. This can be repeated to any level as shown in Fig. 1. Loss of low level sub-
band coefficients over the network effects significant distortion when image is reconstructed at the
destinations. Therefore, MDSQ based MDC generation will be an efficient technique for the proposed method
because most of the signal energy in the lower resolution subbands can be protected when the MDCs are
generated. Further details of MDSQ for wavelet based image coding can be found in [26]. In this work, we use

i.i.d. Gaussian source of variance one.

The achievable rates of MDCs are denoted as:

L Lj
_ ) p(¥) | (€) p(Ch) | _(Cr) p(Cr)
R= (nj R+ nPREP +n{RE ) @

i=1j=1

where L; is the number of descriptions, L is the number of subbands. R; ™, R;® and R;; " are the bit rate of
related subband of luminance, Chrominance Blue and Chrominance Red components, respectively, n; ™, Pand n,
(©) are the ratios of number of samples in layer j over that of the full resolution layer. In the case of less available

bandwidth, n;  and n; ™ are indicated as small as possible to reduce the redundancy.

The achievable bit rates of the generated MDCs of color image can be different according to the capacity of the
optimal paths obtained. Let k be the number of optimal paths from source to each sink.

Case 1: k=1: Single description coding (SDC) has been considered to transmit throughout only one optimal
path. In SDC, each source sample is encoded with an average rate of “R” bits per sample and each codeword is
placed in SDC packets to transmit through the network. Upon delivery, the SDC packets are then received by
the decoder and after appropriate transformation the source sample is transferred to their destination.
Furthermore, because of random or congestion losses on the path, SDC packets may be lost before reaching
their final destination. Some losses may involve important information that will cause substantial distortion in
the received image. In order to decrease the distortion of received color image, image interpolation methods

have been applied to improve quality of received image [27]. The rate R of generated SDC will depend on the



bandwidth hw of the obtained optimal path and will be denoted as follows:

R=—2" (2a)
T HxWxd (bpp)
D(R) = e 2R (2b)

Where H, W and d are the height, width and dimension of the image, respectively, and D(R) denotes the

achieved average distortion at the bit rate R.

Case 2: k=2: This assumption is different from the SDC approach because two optimal paths can transmit
the descriptions generated. This problem is related to a two channel/path with three receivers’ problem that
multiple descriptions (MDs) can be transmitted over these channels/paths [1, 3]. Even if a receiver gets only
part of the descriptions, it can still reconstruct an image with acceptable quality. In the MDC model, source
information is encoded by several encoders where multiple description scalar quantization (MDSQ) and index
assignment methods were used in this work [1, 3]. Furthermore, rates of “R;”and “R,“bits per samples are
allocated to first and second encoder, respectively. Totally, a rate of “R,” bits per sample is decoded at the
destination. The total rate of the generated MDC will depend on the bandwidths of the optimal paths and is

estimated as follows:

R _i bWi b 3
0__1H><W><d (bpp) (32)
i=

D;(R) = e~ 2Ri ,i=0,1,2 (3b)

Case 3. k>2: This problem is similar to the MDC problem but the received description is more likely than the
cases of SDC and MDC but increasing number of descriptions will cause data redundancy transmission through the
network. In addition, this problem is related to generation of k different descriptions of an image and is customarily
referred to n-channel MDC generation; further details can be found in [28]. In this case, multiple description image
coding using several multiple description scalar quantizers have been applied to the wavelet coefficients of Y CbCr
to create k descriptions [3, 28, 29]. This coding method is suitable for this case because more than two descriptions
can be generated for the corresponding problem. The MDCs can be generated with achievable bit rates according to
obtained bandwidths (bw) of the optimized paths. Consequently, the total rate of generated MDC and the average

distortion will be:

i bWi
R=) ssca (o) 3
i=1
k __bw;
D(bw;) = e 2Zi=iHxWxa (4b)

Where bw; is the bandwidth of the optimized path 7, and H, W and d are the height, width and dimension of

the image, respectively. The quality and distortion estimation of the received images at the destination nodes



are developed in the following section.

2.2 Image Quality Estimation

The quality of the received images is estimated using several methods. Let the transmitted high resolution
(HR) image I, and reconstructed HR image I, be of size HxW pixels and consist of three spectral bands, i.e., Y,
Cb and; Cr which are first converted to R,G and; B and then, the following quantitative metrics are used to

compare [, and 1,:
Correlation Coefficient (CC) [30]: the correlation between each band of the reference image and the
reconstructed image:

Np

oo LN T e - 500 wy) - 570)

Y. , PN , — 2
A B @) - 50 500 ) - 70)
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where Ng is the number of spectral bands, i.e., Ns=3, (x, Y) is spatial pixel coordinate, vo(X, ¥) = [vo P (XY) vo (X, ¥)
U@ V] =[P (% y) 1:9(xy) 1.8 (x, y)] denotes the spectral vectors of the pixel (x, y) in the transmitted original
image and v,(x, y) = [vr P(x, y) v: (%, y) v: D% Y] = [P (% y) 1,9 (%, y) 1, (x, y)] denotes the vector obtained
after reconstruction. In order to clearly analyze image quality in the optimization problem, it is beneficia to use the
CC eguation where the estimated values are bounded between 0 and 1. As aresult, the CC value should be as close

to 1 as possible in the maximization problem.

Root Mean Square Error (RMSE): the root mean square error between the original image and the reconstructed

image, i.e.,
1|
RMSE =— | a1, 1), ®)
Np |4
=1
Where
AG® [0y = |1 §® x® 2
17 = o= > (3@ - 20 y) @
xy

The RM SE val ue should be as close to 0 as possible.

3. Modeling and Analysis

The links or edges have associated costs that could be based on their distance, capacity, and transmission medium
quality. Let G = (V,E,W,Q,B) be a connected weighted undirected graph with n = |V| nodes and m = |E| edges, sets

wij €W, pi;=Q and bw;; =B independent cost variables from each other and represent the weights of each edge (i,



j) € E wherethe weight is restricted to be a nonnegative real number [10, 11, 18, 19].

3.1 Utilization of Rainbow Network Flow (RNF) and Network Modeling

The RNF problem collaborating with the efficient generation of MDCs to maximize the quality of received
images for all sinks is an NP-hard problem [31]. RNF gives a distinct color to each optimized path to prevent
receiving the same description or packet twice at a destination node because this will not increase the
reconstruction quality of the received image but will increase network bandwidth consumption. RNF is a
convenient way for solving NP hard network flow problems such as finding multipath between multi-source
and destinations (an NP hard flow problem that has been discussed in [16]) in addition to its bandwidth saving
properties. RNF was first discussed to maximize the flow in a network model and can be greatly simplified if
the flow of MDC descriptions from diversity servers is optimized with respect to a single sink or multi-sinks
[16]. Furthermore, for each optimized path which is colored with i, a new description is generated and colored
with 7 that can be sent from corresponding colored path i. Assume that a number of disjoint paths £ from a
source to a destination can be optimized, then, there are ¥’ colors achieved between k number of sources and
destinations. Here, a GA and PSO collaborating with RNF have been used to optimize the routings across the
overall lossy network so that a different number of paths from source to destination can be obtained which was
discussed with the three cases in previous section.After optimizing the routing problem, the MDCs should be
transmitted through the optimized paths in order to determine the acceptable quality of reconstructed images at
the sink nodes. Therefore, the network flow of MDC that achieves the maximum fidelity at the sinks must have

flow paths of distinct colors and maximizing the network flow of MDC [31].

A version of the RNF that is particularly relevant to our problem is defined with following inputs:
1) G=<V,E,W,Q,B>, an undirected graph with a node set V, an edge set E and set of costs W, Q and B.
2) S={s}, T={ty, to, t3.... £;} two subsets of V representing the set of source and sink nodes respectively.
3) A function R: E — R+ representing the capacity of each link considered an integer in G.

4)Aset w;; € W, (;; € Qand bw EB called the independent costs of the links.
5) A set D C X called the description packet set in source.

6) The set DR C Y called received description packet set in 7.

The descriptions are sent over the optimal colored paths and reconstructed at the destination nodes as illustrated in
Fig. 2. If the network graph is reliable, the image will be the same as the transmitted image. However, if losses are
present (which is inevitable) then the quality of received image will be decreased because of the smaller number of

packets arriving at the destination nodes.



Multi-path Selection (GA or PSO)

Fig. 2. Graphical representation of optimal multipath selection for proposed multimedia communication model.

Figs. 3 (a) and (b) illustrate a small direct network with 8 nodes to discuss and analyze the RNF algorithm with
independent cost values associated with each network link. The server node (s) has a description (SDC) to
transmit to the sink node 7. Nodes 1, to 6 are used as intermediate nodes. Each edge is assigned three
independent cost values such as path length (w;;), packet loss rate (;;) and available bandwidth (bw,;). Based
on the explanation of RNF, Fig. 3 (b) demonstrates the different colored optimal routing solutions (shown by
solid, pointed and dashed lines in the figure) to transmit the description in a lossy network of eight nodes.
Each optimal routing is giving different advantages and disadvantages while the description is sent to the sink
node. For example, the greatest rate of description is generated and transmitted over the path (s-1-2-5-4-t) but
it is the longest optimal path. The shortest path is (s-1-4-t) but the lowest rate of description can be sent over
this path. In addition, packet loss rates over the optimal paths (defined as the difference between the number of
packets sent and packets received per time unit) will affect the process by determining the quality of the image
at the sink node. Estimation of packet loss rate will be briefly explained in the next section. The third optimal
path (s-1-3-6-4-t) provides a low packet loss rate as well as a trade-off between the cost values of bandwidth
and path length. Here, to solve the complex network problem, RNF enhanced by GA and PSO methods has
been applied to obtain optimal routings to reach a specific sink. Furthermore, three different fitness functions

have been discussed in the GA and PSO implementations to obtain optimal routings.
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Fig. 3. An example of routing problem for RNF. (a) The directed network with 8 nodes and 8 edges assigned with path lengths (w), packet
loss rates (plr) and bandwidths (bw). (b) Three optimal routings for an MDC, marked by solid, pointed and dashed icons and edges for
RNF.

3.2 Packet Loss Models

Packets are randomly dropped in the network and generally there will be no opportunity to look inside the packets
and discriminate in terms of which are lost. The usual way to handle a packet lossis to retransmit the lost packet in a
data network. Retransmission protocols such as TCP, whereby the receiver tells the sender whether a packet arrived
or not facilitate end-to-end reliability despite unreliable links. However, retransmitting a lost packet will cause a
network cost and will entail delivery delay. MDC can be utilized to avoid dropping a packet without retransmission.
In lossy networks, packet losses can occur for various reasons which are mainly classified into three types. 1)
Random losses, caused by poor channel conditions; 2) Burst losses, mainly due to link or node failure in wired
systems; 3) Congestion, due to limited buffer, bandwidth and processing capability at network routers. The
proposed agorithm attempts to find the optimal digoint paths. This means that lost packets which are caused by
bursting can be neglected because they generally occur on joint paths.

Random Losses. Transmitting packets over an individual link can be described using Bernoulli trials with asingle
packet loss probability over the first link is p; and loss-free probability 1-p;. Let the set of link loss rates to be
estimated be denoted as p= {p1, P2,....., P.}, Where p. is the packet loss rate at the link L. For the individua links of
a given path, we assume that, the independent packet losses are defined by a Bernoulli loss process. The loss
probability of the k-th path is evaluated as follows:

L
Pe=1-] [a-m ®
i=1

Let M be the number of transmitted packets from the source node and u1. is the expected packet loss over the



transmitted links. In this case, the probability of successful received packets will depend on the packet |oss rate of
the corresponding link, i.e.,

L
.u1+ﬂ2+"'+ﬂL=M[1_1_[(1_pi)l 9
i=1
where

Mp, n=1 (10)

n—1
o = M{]_[(l—pi)}pn n>1
i=1

where L is the number of links of the corresponding path. Furthermore, the Bernoulli model can also be used
for the congestion problem [32]. Packet loss probabilities over the network links are discussed in [19] and

estimated in the range of 10%-20%.

4. Meta-heuristic Algorithmsfor Multi-objective Network Problem

4.1 Overview of Algorithms for Network Routing Problems

Variaions of routing problems have to be solved to achieve high throughput communication in a wide variety of
network problems such as K shortest- paths [12], constrained shortest-path [13], multi-objective shortest path [14]
and dynamic shortest path routing discovery [10]. Most of these problems are NP-hard and one way of solving such
problems is to assign a cost metric (weight) for each link in the network [10, 11, 19]. To date, a range of
deterministic algorithms such as Dijkstra’s algorithm [46], breadth-first search algorithm [47] and the Bellman-Ford
algorithm [48] have been developed to find the lowest cost or routing from a specific source to specific destination
through a network. Jiazi et a. [39] improved Dijkstra’s shortest path algorithm and proposed multipath Dijkstra
algorithm (MDA) to find optima multipath by using different cost functions in network topologies. They show that
the proposed algorithm is flexible in obtaining multiple shortest paths. Recently, Evolutionary Algorithms (EAS)
have drawn considerable attention as routing selection problem solvers as they provide robust and efficient approach
for solving complex network routing problems [10]. EAs such as genetic agorithms (GAs) [10, 49], genetic
programming [50] and evolutionary programming [51] have been previously proposed for various network
problems. Amongst the EAs, GA provides the best performance for optimization problems [10]. Besides the GA,
Particle Swarm Optimization (PSO) is another efficient optimization algorithm, first discussed by Kennedy et d.
[40], which may be employed to search for the optimum solution based on socia agent behavior inspired swarm
intelligence.

In this paper, two meta-heuristic algorithms are used with three different fitness functions, i. e., shortest routing path
[10, 11], minimum packet loss rate [19] and proposed optima multipath selection, to find optimal multipath in lossy
networks to provide effective multimedia transmission. The algorithms are compared with the MDA method [39] to

obtain optimal multipath in various lossy network models to provide efficient multimedia transmission.



4.2 Genetic Algorithm

Genetic algorithms (GAs) are becoming more widely used in many areas to find high quality solutions in
optimization problems [33-37]. In the implementation, the GA starts with an initial set of chromosomes (typically
random) represented as binary numbers to offer a solution for the problem. By applying the evolution operators, a
new generation is formed by firstly applying Tournament Selection Operator (TSO) which considers the fithess
values of the parents, and rejection of the others so as to keep the population size constant. To perform it, new
chromosomes are formed by merging two parents from the current generation using the two-point crossover operator
and modifying a chromosome using a uniform mutation operator. Let’s consider two different individuals with n

dimensions of the given population, i. e.

X, = (Xj1y eoer Xigy eoes Xisy wer Xim)
— (11)
X, = (le, e s Xjpy wees X, ...,xjn),

where r and s denote two randomly selected crossover points, and » <s. After the crossover operator employed, the

produced individuals or new candidate solutions are:

X, = (xil, "'rij' ,st, ...,xin) (12)

7; = (xjp oy Xy ey Xis) ---vxjn)

Let ussuppose X = (x;xy, ..., X, -.., X, ) Where k denotes the randomly selected point in the chromosome. Thus, the
k-th gene of the individual can be changed or mutated to produce another individual. The best chromosome is
selected to be transferred in the new population using elitism in GA. After some generations, the agorithms
converge to the best chromosome, which represents the optimum or suboptimal solution to the problem. Moreover,
two different stopping criteria are used, one being the achievement of the optimal fithess value and the other the
reaching of a previoudy set iteration limit. The pseudo-code of GA is as follows:
Tablel
Pseudo-code of GA.

Procedure GA

{

set the generation index g = 1;
initialize population;

while termination condition not satisfied do

evauate current population;

select parents using tournament selection method [10];

apply two-point crossover and uniform mutation operators to the selected parents to create offspring;
select the best individual to be amember of the next generation by using ditism [10];

Insert new offspring in the new population;




setge—g+1

stop and return the best solution in the current population

}

4.2.1 Proposed Fitness Function for the Multimedia Communication Routing Problem

In GA and PSO agorithms, the quality of a represented potential solution is estimated by a fitness function. The
purpose of using fitness functionsis to map a chromosome and a particle representation into a scalar value or a cost
value. For the multi-objective network problem, the fitness function estimates a cost value for each individua that is
close to globa optimum or not. Thus, the strong and weak candidates can be evaluated according to the fitness
values and the new population is produced based on them. The objective functions or fitness functions that involve

computational efficiency and accuracy are defined with constraints as follows:

fl = min <zijeE(wi’j)Ii’j> (13)

fo=min| 1- 1_[(1 =Gl (14)

i,jEE

fs = minllyll, = min < v+ y%) (15)

(Zﬁjeg(wi,j)li,j>

Where,

C
[(1 — I} jee(1 — fi,j)li,j)J

1: i=1

n n
s.t. E Ii,j_ E Ij,i ={0, i=23..,n—1
j=1 ]:1

—1, otherwise
(bWi,j)Ii,j > &
l; € {0,1}, Vv (i, ))

where ¢ is the maximum vaue of weights w;; € W, bw;;€ B is the bandwidth of the link connection indicator I;; and
f3 is aproposed multi-objective function for finding the optimal multi paths; ¢ denotes the capacity of the transmitted
data or image. Furthermore, the single objective functions f; and f, are used to find shortest path and minimum
packet loss rate of a path in the given network topologies, respectively. Let |;; be the link connection indicator
between nodes i and j which plays the role of a chromosome and particle map providing information on whether the

link from node i to node j isincluded in arouting path, i.e.,



L= {1, if the link from node i to node j exists in the routing path (16)
i

10,  otherwise
4.3 Particle Swarm Optimization (PSO)

The Particle Swarm Optimization (PSO) agorithm is a new optimization algorithm which is inspired by the social
behavior of colony of animals in environment [40]. Like GAs, PSO is a population-based optimization method that
searches multiple solutions [41-43] but it employs a different “competitive” strategy. Position and velocity of each
particle i is updated if the fitness vaue does not provide the minimum optimum solution and the position of the
following properties of an individua particle i are updated at each iteration. To find the fitness value of particle i,
the PSO uses the fitness cost functions defined in Egs. (13), (14) and (15) to find the minimum optimum result or
multipath in the lossy networks. A current position with D dimensions in search space, ¥®, a current velocity with
D dimensions, 3, personal best position and global best position in search space, fis. , f,2,, respectively. The
personal best position, fi,,, corresponds to the position in search space where particle i had the smallest vaue as
determined by the objective function f, aiming to minimize the task. The global best position denoted by £7 .,
represents the position yielding the current global best position amongst the entire particles best positions f;,;. Egs.
(17) and (18) define how the velocities and locations of swarm particles are updated at iteration k, respectively. In
summary, PSO performs the following steps:

1) [Initialize the number of particles p, generation index k=0, constants ¢; =2.0 and ¢,=2.0;
2)  Randomly initialize positions of al particles X = {x!, xi, ..., x5} fori=1,...,p;
3) Randomly initialize velocities of all particles 3 = {vi, vi, ..., vh}; 0 < vl S vy, fori=1,..,p;
4)  While stopping criteria are not reached do:
5) For each particlei:
6) Evaluatethefitnessvalue f! fori =1, ...,p;
If 1< foese then fyee =f', px® =@

Else fi < £, then £, =f', gag), = &

7) End For

8) For each particle i in the swarm:

9) Update velocity: Estimate velocity #® using Eq. (17)
10) Update position: Update position ¥ using Eq. (18)
11) End For

12) Set k= k+1

13) End While

In this work, PSO explores a D-dimensiona space, using a population of particles which are initially provided with

random vel ocities and positions which are updated by using the following equations:

L) _ 0 W) (720 _ 20 D (=2 _ 20
Viesr) = OV T Gl (pxuo x(k)) + Gl (gx(k) x(k)) (17)



=20 _ =20 > (1)
i) = Xao t Ve (18)

where ¢; and ¢, are two learning factors that control the influence of personal best and global best in the search
process and w is the inertia weight which is used to update velocity for increasing the convergence speed. In the
PSO algorithm, both ¢, and ¢, are chosen between [0, 4.0] to perform good results. Inertia weight w is selected
randomly between [0, 1] at each generation [11]. Furthermore, a priority encoding method is also applied in PSO

implementation to represent the valid paths.

4.4 Enhanced Priority-based Encoding for Path Representation

Each node in the network topology is given a unique integer index value from I,...,n where n is the number of
nodes. In addition, each index node is a gene of the chromosome for the GA and a position of the particle for the
PSO and the number of nodes in the network routing topology may differ from individual to individual. An example
of afixed-length individual (e.g. chromosome or particle) and its decoded path is shown in Fig. 4. The length of the
individual which is represented as a string variable in Fig. 4 should not exceed the maximum length of n. In the GA
implementation, a gene in a chromosome is characterized by two factors: the position of the gene located within the
structure of chromosome, and the costs between two connected genes. In the encoding method, the position of a
gene is used to represent the node number and the costs of two connected genes are used to evduate the fitness
values. In the PSO implementation, the positions located within the structure of particles are used to represent the
vaid path.

In the routing problem, representing a valid path is a critical and typical complexity problem because of the many
potential intermediate nodes that can be selected as a node ID in a solution path. If the individua (chromosome or
particle) decoding strategy is not well employed, the obtained path may not terminate at the destination node leading
to an invalid path. Such an invalid path clearly does not provide any benefit for solving the problem because it
cannot be decoded to a solution. The paths represented must aim to find a potential solution for solving the routing
problem efficiently. Priority-based encoding is a very effective method to represent a path that has been applied in
its basic and enhanced forms to solve shortest path routing problems [11, 38]. In this work, an improved priority-
based encoding method or local search based priority encoding method has been applied to represent a potential

routing solution.

In the GA and PSO agorithms, characterizations of individuals have been used to represent a valid path. For
instance, a gene in a chromosome is characterized by two factors: locus, i.e., the position of the gene located within
the structure of chromosome, and alelg, i.e., the value taken by the gene. In the proposed encoding method, the
position of a gene in the GA and the priority of a particle in the PSO are used to represent a candidate path which

can be uniquely determined from this encoding.
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Fig. 4. An example of undirected graph with 7 nodes and 12 edges and the path representation according to local search method with priority-
based encoding.

In terms of an undirected connection network, Fig. 4 illustrates the local search based priority encoding method and
its decoding. Initially, the global priority is randomly generated and then, an attempt is made to find a connected
node ID to the source node 1. Nodes 2 and 3 are eligible for the next possible node which can be easily fixed
according to adjacency relations among the nodes. The node priorities are 56 and 45, respectively so node 2 has the
highest priority and is incorporated into the path. The possible nodes next to node 2 are nodes 1, 4 and 5 but the first
must be removed to be searched as a next node in the path by inserting a value of -N because it was chosen as a
node ID in previous steps. In this case, node 5 has the largest priority value and is placed in the path. Then, we form
the set of nodes available for the next position and select node 7 with the highest priority among them. These steps
are repeated until we obtain avalid path from source to destination (1-2-5-7).

5. Resultsand Discussions

In general, we are interested in two different problems, i.e., multipath optimization in lossy networks and
receiving acceptable quality of an image. Therefore, GA and PSO have been first applied to find optimal
multipath which are colored by RNF in the network topology and then, MDSQ is applied to the wavelet
coefficients of YCbCr to generate the MDCs with achievable rates to transmit through the optimized network
topology. The proposed algorithms are compared with the multipath Dijkstra algorithm (MDA) for both
finding optimal paths and providing reliable multimedia communication. All the simulations were performed

with MATLAB on Intel Core i3 processor (2.40-GHz) and 3-GB (2.86 usable) RAM.

The implementation results are part of the simulation approach to understand our network problem. To verify the

results of different topologies, randomly generated networks with different number of nodes with randomly assigned



link costs were investigated for optimal multipath solution. In this work, network simulator Sinalgo [68] is used to
randomly generate five different network models as case studies each having a different number of nodes and links.
Each network model containing four different sinks (e.g., client, and server) is as follows: case I: 20 nodes, 86 links;
case |1: 40 nodes, 183 links; case I11: 80 nodes, 324 links; case IV: 120 nodes, 567 links; case V: 150 nodes, 953
links. Generated cost values on each link in a network topology will make the corresponding problem solvable.
Therefore, the cost values on each link were randomly selected to analyze the simulation results [10, 11, 19]. In the
network topologies, the available bandwidth on each link (bw;;) was chosen randomly in the range of 32kB-512kB.
The packet loss probabilities (j;) were randomly assigned in the range of 10% - 20% for al links [19] and the link
length (w;;) was randomly chosen between [25, 125]. This approach follows that adopted previously in a variety of
optimization problems[10, 11, 44].

In the GA and PSO implementations, population size (K) was set to two different values, e.g. 30 and 60 and a
number of generations (NG) is selected to find all optimum paths. These algorithms attempt to find all optimal paths
until all of them are determined in the network model. In order to keep the number of fitness function evaluations
(NF = NG*K) fixed and give the same chance for the meta-heuristic algorithms to solve the optimization problem,
we run GA-60 and PSO-60 with 500 generations, and GA-30 and PSO-30 with 1000 generations. In the GA
implementation, the fitness value of each chromosome was computed and then, the Tournament Selection is applied
for parent selection [34]. Two point uniform crossover with a crossover rate Cr of 0.8 is used together with a
uniform mutation rate Mr of 0.01 to evolve the initial population. To keep the fittest individual in next generation,
the best individual is selected using elitist selection in the GA. Thus, the GA agorithm tried to converge to a
solution according to the initial population generated, reducing the chance that the program got stuck in local
minima. In the PSO implementation, the particle positions and velocities were initialized with random real numbers
in the ranges of [0, 100] and [0, 50], respectively. The learning factors ¢; and ¢, set to 2 and inertia weight w is
selected randomly between [0, 1] in each generation [11].

Our god isto find the optimum colored multipath routings using GA or PSO collaborating with the RNF algorithm
in multi-objective network models. In order to analyze results clearly, the routings between source and multi-
destination nodes (four nodes) are optimized and then the MDCs generated are transmitted to the destination nodes.

In addition, we suppose that each sink node demands different image source from a source node.
5.1 Performance Comparisons of Algorithms

The evolution of algorithms provides great improvement to create individuals to find the optimum cost value
in the optimization problems. There are various parameters in GA and PSO to affect the evolution of
population and optimum cost value estimation. The most important parameters for GA are population size K,
crossover rate Cr and mutation rate Mr. However, the most significant parameters for PSO are population size
K, learning factors ¢; and ¢, and inertia weight w. In order to demonstrate the best cost function value (global
or local optimum) of the population at each generation for the fitness function f;, the estimated cost values are

recorded for different K values.

Figs. 5 (a), (b), (¢) and (d) depict the cost values of the population computed using the implemented algorithms



according to Eq. (13). Different values of population size K and generations g are used in the meta-heuristic
algorithms to give fair chance to achieve the optimum cost value. For instance, GA and PSO are employed
with K= 30 and g =1000 to get the results as shown in Figs. 5 (a), (c) and (d) and they illustrate the best cost
fitness values, the average fitness values and the worst fitness values, respectively. In Figs. 5 (a) and (b),
multipath Dijkstra algorithm (MDA) [39] provides a reference point to compare the meta-heuristic algorithms.
Fig. 5 (b) illustrates the best cost fitness values estimated by using PSO and GA with k=60 and g =500.
According to the best cost fitness values in Figs. 5 (a) and (b), increasing the population size K decreases the
number of iterations to reach the global optimum or suboptimal solution. For example, PSO-60 estimates the
best cost fitness value at the shortest iteration number as shown in Fig. 5 (b). Furthermore, averages of the cost
fitness values, shown in the Fig. 5 (¢), demonstrate that the evolution continues to improve the solution until all

individuals reach the best cost fitness result (global or local optimum).

210 T T T T T 205 T T T T T
———GAID ———GABD
—=-P50-30 — = -PS0-60
205[ -------- MD& | b e MDA
I
2200 B % '
s 1951 B
= >
z g
195 B £ i
= ic I|
e 180 b J
3ol S i
G190y B o
AT L
"—-._‘_‘ _"———\\ 4
185} \ |
............... e )
180 . . . . . . . \ \ 180 ‘ L ! ‘ ! L ! ! !
0 100 200 300 400 500 60D 0D GO0 80D 100D b bl CHe L 0, 950, sk MR #4080 ool 5
Generations Generations
(a) (b)
2500 T T T T T 2500 T T T T
——— AT
— == PS030
2000 B zuuull B
1
I
H 2 H
#1500 4 F 1500 f i
£ C
? L
: | I
£ g
l-‘é'I-WEIEII] i 4 % 1000 Kb 4
8 8 [
E i Yomm—— ___
1 [}
A ."_‘_'-"il _|
s b | 500 3 1 |
T e P Fre——y o
eI PN
T L B P, s T L LT T T - —— i ——— .l—.-—l'-"-.'ﬂ-l"-'ﬂ-l LET B T ML R TG R TR
0 1 | | | 1 1 | | | 0 . L - L L L - - -
0 00 200 30 40 A0, GO0 700 GO0 900 oW o im 2 S0 400 SO0 EOD 700 800 SO0 1000
Generations Generations
(©) (d

Fig. 5. The performance analysis of GA, PSO and MDA algorithms for the fitness function f; under the different population sizes K=30 and
K=60, Cr = 0.8 and Mr =0.01, ¢, and c; set to 2.(a) The best cost fitness values computed by using GA-30, PSO-30 and MDA, (b) The best
cost fitness values computed by using GA-60, PSO-60 and MDA, (c) The average cost fitness values computed by using GA -30 and PSO-
30, (d) The worst fitness values computed by using GA -30 and PSO-30.



Table 2 shows the comparison of the average CPU time required to execute the algorithms to find all optimal paths
between randomly selected one source and four sink nodes in two different network models. To obtain the results,
each algorithm was executed 100 times. For the smallest network model, multipath Dijkstra algorithm (MDA)
provides better average execution time compared to the other algorithms and it takes average of 17.36 seconds for
execution. However, the execution time is dramatically increased for the larger network models. It is clearly seen
that the PSO-30 has the best average execution time compared to the other a gorithms for the larger network model
as an extreme case and it needs average of 28.03 seconds for execution. As a result, from this perspective, MDA
requires less execution time for the smallest network models whereas the PSO-30 takes |less execution time for the

growing network models.

Table?2
Comparison of execution time of the algorithms.

Execution Time Execution Time

(seconds) (seconds)

Algorithm 20 Nodes 150 Nodes
MDA [39] 17.36 34.32
GA-30 18.64 29.12
GA-60 21.43 35.15
PSO-30 17.59 28.03
PSO-60 19.65 29.71

5.2 Routing Optimization and Performance Analyses in Lossy Networks

The GA and PSO methods implemented with RNF algorithm are optimizing the multipath routing problem in
the constructed network models and three different fitness cost functions (13)-(15) were utilized for efficient
routing estimation. In addition, path links which have been found were not considered in the next path
estimation and therefore, the links over the obtained routings were removed to find a next disjoint path
efficiently. This means that the adjacent matrix of the network model was dynamically changed for efficient

results.

Each network model was simulated 20 times to analyze and understand the performance of the implemented
algorithms and to perform it, different population sizes and different number of generations were used in both
GA and PSO algorithms. The results evaluated clarify that the implemented algorithms perform well to resolve
the NP hard RNF problem. The estimated path costs are illustrated in Figs. 6 and 7 for the three different fitness
functions. Optimization was performed using each of these fitness functions in the implemented algorithms, i.e., f;
for Figs. 6 (a) and (c); f, for Figs. 6 (b) and (d); f; for Fig. 7 (8) and (b), which show the performance of five
different algorithms to find the optimal multipath in the randomly generated network models. Figs. 6 (a) and
(d) indicate that multipath Dijkstra algorithm (MDA) provides slightly better performance than PSO-60 and
much better performance than the other algorithms to resolve the NP-hard routing problem using the single
objective functions. On the other hand, the GA-30 performs relatively poor for all network topologies in terms
of solution quality estimation. Figs. 6 (b) and (c) show that the PSO-60 performs well compared to the other

algorithms.
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Fig. 6. Comparison of the optimization results obtained by using GA and PSO with K = 30 and 60 and Dijkstra. (a) , (b) Comparison of the results
of average path lengths estimated by using f; and f,, respectively.(c), (d) Comparison of the results of average packet loss rates (%) estimated by
using f; and f,, respectively.

Fig. 7 (a) and (b) denote the comparison of results between average path length and average packet loss rate of

the optimal paths when the third fitness function f; is used in the algorithms. These results clarify that f;

provides optimal trade-off between the cost values in multipath optimization. Moreover, PSO-30 and PSO-60

perform well among the all algorithms in optimizing the multipath in the lossy networks. Furthermore, meta-

heuristic algorithms achieve great solution to optimize multi-objective network model by using the proposed

multi-objective fitness function whereas MDA provides better results by using the single objective functions.
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Fig. 7. Comparison results of the average packet loss rates (%) and path lengths of optimal paths estimated by using f;in GA, PSO and Dijkstra.

Eventually, the first fitness function f; estimates the shortest paths effectively compared to the other fitness
functions but does not perform well for optimizing packet loss rates. However, the second fitness function f;
optimizes the packet loss rate of the paths better than f;. Furthermore, the modified fitness function f; offers
superior performance than f; and f; in terms of optimizing two independent cost variables simultaneously. In
order to further evaluate and compare the fitness functions, i. e. shortest path, minimum packet loss rate and

optimal multipath selection, the following equation has been developed:

Cijr Pk
W =i J,
Lk T max(€) | max(P) (19)

Where W is a total cost matrix and, 7, j and & are index of algorithms, index of network model and used fitness
functions, respectively. C and P are the optimized path length and optimized packet loss rate matrices
estimated by using all algorithms as shown in Figs. 6 and 7. Table 3 illustrates the total cost matrix W of the
three different fitness functions employed in the GA-30, GA-60, PSO-30, PSO-60 and MDA. The total cost
matrix indicates that PSO-60 implemented with the optimal multipath selection function f; gives the minimum
result with 0.734 and GA-30 implemented with the shortest path function f; gives the maximum result with
1.468. Furthermore, PSO-60 implemented with the optimal multipath selection function f; is the best
performing approach of the comparisons to compute the minimum optimal results of average cost of 0.897. As
a result, PSO-60 implemented with the optimal multipath selection function provides the greatest performance

compared to the other algorithms in terms of finding optimal multipath in networks.



Table 3

Comparison results of algorithms using three different cost functions.

Shortest Path f; Minimum Packet Loss Rate f, Optimal Multipath Selection f3
Notes | 30 80 s e |MOA| G0 G Tm e [MoA | G G T e | Mo
20 1112 | 0935 [ 0974 | 0.917 0.972 0.903 | 0.789 | 0.785 [ 0.740 0.785 1039 | 0.836 | 0.746 | 0.734 0.727
40 1.085 | 1.022 | 1.124 | 0.987 0.943 1.041 [ 0.888 | 0.887 | 0.779 0.843 0994 [ 0889 [ 0.751 | 0.773 0.783
80 1389 | 1.230 | 1.349 | 1.119 1.146 1222 | 1.038 | 1128 | 0.955 1.012 1267 | 1.084 | 0.973 | 0.987 1.019
120 1326 | 1.202 | 1103 | 1111 1.170 1.318 | 1.137 | 1.240 | 1.019 1.071 1210 | 1.098 | 0.944 | 0.942 0.992
150 1468 | 1370 | 1.295 | 1.173 1.227 1425 | 1314 | 1387 | 1281 1.428 1293 | 1271 | 1102 | 1.130 1.229
Min. 1.085 | 0935 [ 0974 | 0.917 0.943 0.903 | 0.789 | 0.785 | 0.740 0.785 0994 [ 0836 | 0.746 | 0.734 0.775
Max. 1468 | 1.370 | 1.349 | 1.173 1.227 1425 | 1314 | 1387 | 1281 1.428 1293 | 1271 | 1102 | 1.130 1.298
Ave. 1276 | 1152 | 1.169 | 1.061 1.092 1182 | 1.033 | 1.085 | 0.955 1.028 1161 | 1.035 | 0.903 | 0.897 0.950

5.3 Performance Comparison of Algorithms using Non -parametric Tests

The main idea of using the non-parametric tests is that they can deal with probabilistic and non-probabilistic
methods without any limitation. In this section, non-parametric test results are presented and examined for
comparing the applied meta-heuristic algorithms. In order to achieve the test results in Table 4, the Friedman,
Friedman Aligned and Quade non-parametric tests are applied to the estimated results shown in Figs. 6 and 7. The
purpose of using Friedman, Friedman Aligned and Quade non-parametric tests is to determine whether there are
significant differences among the algorithms considered over given sets of data. These tests obtain the ranks of the
algorithms for each individual data set, i.e., the best performing algorithm receives the rank of 1, the second best
rank 2, etc. The equations and further details of the non-parametric procedures of Friedman, Friedman Aligned and
Quade can be found in [52-55]. Furthermore, statistical analysis of the results of experiments was performed using
the available software? and the open source JAVA program calculates multiple comparison procedures: the
Friedman, |man-Davenport, Bonferroni—-Dunn, Holm, Hochberg, Holland, Rom,Finner, Li, Shaffer, and Bergamnn-
Hommel tests as well as adjusted p-values [56-64].

Table 4 depicts the average ranks computed using Friedman, Friedman Aligned and Quade non-parametric
tests. Based on the results, PSO-60 is the best performing algorithm of the comparison, with average rank of
1.0, 3.2, and 1.0 for the Friedman, Friedman Aligned, and Quade tests, respectively. The p-values computed
through the statistics of each of the tests considered (18.560, 4.028, and 13.418). The Iman Davenport statistic
and p-value are computed 9.588%10™, 0.4021 and 5.528*107, respectively.

Table 4
Average rankings of the algorithms using the non-parametric statistical procedure, statistics and p-values.
Algorithm Friedman Friedman Aligned Quade
GA-30 5.00 22.99 4.99
GA-60 3.80 17.20 3.70
PSO-30 3.00 13.20 323
PSO-60 1.00 3.20 1.00
MDA 2.20 8.40 2.06
Statistics 18,560 4.028 13.418
p-value 9.588*10* 0.4021 5.528+10°

? http://sci2s.ugr.es/sicidm




In the second statistical analysis tests, multiple comparison post-hoc procedures (eight) are used to compare the

control agorithm PSO-60 with the rest of algorithms. The results are shown by computing p-values for each

comparison. Tables 5-7 show the p-values obtained, using the ranks computed by the Friedman, Friedman Aligned,

and Quade tests, respectively [52-55]. Based on the computed results, al tests show significant improvements of the
PSO-60 over GA-30, PSO-30, GA-60 and MDA for all the post-hoc procedures considered. Besides this, the Li’s

procedure is the most conclusive to give the clearest results for reaching the lowest p-valuesin the comparisons.

Table 5

Adjusted p-values for Friedman (PSO-60 is the control method).

Algorithm Unadjusted Bonferroni Holm Hochberg/ Hommel /Holland Rom Finner Li
GA-30 6.33*10-5 2.53*10™ 2.53*10™ 2.53*10™ 2.41%10%  2.53*107  8.27*107
GA-60 0.00511 0.02044 0.01533 0.01533 0.01525 0.01019 0.00659
PSO-30 0.04550 0.18201 0.09101 0.09101 0.08891 0.06020 0.05580

MDA 0.23013 0.92055 0.23013 0.23013 0.23013 0.23013 0.23011

Table 6

Adjusted p-values for Friedman Aligned (PSO-60 is the control method).

Algorithm Unadjusted Bonferroni Holm Hochberg/ Hommel /Holland Rom Finner Li
GA-30 2.11*10° 8.41*107 8.41%10° 8.41%10° 8.01*10°  8.41*10°  2.85*10°
GA-60 0.00263 0.01053 0.00789 0.00789 0.00787 0.00525 0.00356
PSO-30 0.03168 0.12675 0.06337 0.06337 0.06236 0.04202 0.04127

MDA 0.26393 1.05573 0.26393 0.26393 0.26393 0.26393 0.26392

Table 7

Adjusted p-values for Quade (PSO-60 is the control method).

Algorithm Unadjusted Bonferroni Holm Hochberg/ Hommel /Holland Rom Finner Li
GA-30 0.01051 0.04206 0.04206 0.04206 0.04011 0.04140 0.02041
GA-60 0.08418 0.33672 0.25254 0.25254 0.25254 0.16127 0.14289
PSO-30 0.15316 0.61265 0.30632 0.30632 0.30632 0.19881 0.23274
MDA 0.49508 1.98034 0.49508 0.49508 0.499508 0.49508 0.49054

Table 8 presents 10 hypotheses of equality among the five algorithms and the p-values achieved. Using different

levels of significance, i.e. o = 0.05 and o = 0.1, first three hypotheses are rejected by all the post-hoc procedures. For

instance, let us compare PSO-60 vs. GA-30 by Nemenyi, Holm, Shaffer and Bergmann procedures [65-67] and the

p-values are estimated for each post-hoc procedure which are less than both o = 0.05 and o = 0.1. Therefore, we

reject the hypothesis for the PSO-60 vs. GA-30. The same process is applied for al hypotheses so first three

hypotheses are rejected. On the other hand, the rest of hypotheses are not rejected because the computed p-values by

Nemenyi, Holm, Shaffer and Bergmann procedures are greater than both o = 0.05 and a. = 0.1. Consequently, these
hypotheses show the improvement of PSO-60 over GA-30 and GA-60, and that of MDA over GA-30.



Table8

Adjusted p-values for tests for multiple comparisons among the all methods.

Index Hypothesis Unadjusted Nemenyi [65] Holm|[58] Shaffer[66] Bergmann[67]
1 PSO-60 vs. GA-30 6.33%10" 6.33%10" 6.33%10" 6.33%10" 6.33%10"
2 GA-30 vs. MDA 0.00511 0.04710 0.04599 0.03066 0.03066
3 PSO-60 vs. GA-60. 0.00511 0.04710 0.04599 0.03066 0.03066
4 GA-30 vs. PSO-30 0.05551 0.44510 0.31850 0.27300 0.18200
5 PSO-30 vs.PSO-60 0.05551 0.44510 0.31850 0.27300 0.18200
6 GA-60 vs. MDA 0.10959 1.08598 0.54799 0.43839 0.32879
7 GA-30 vs.GA-60 0.23013 2.28139 0.92055 0.92055 0.46027
8 PSO-60 vs. MDA 0.23013 2.28139 0.92055 0.92055 0.46027
9 GA-60 vs.PSO-30 0.42371 422717 0.92055 0.92055 0.46027
10 PSO-30 vs. MDA 0.42371 4.22717 0.92055 0.92055 0.46027

5.4 Performance of Generated Descriptions

After finding the distinct colored optimal paths in the multi-objective networks, the problem of generating
descriptions with achievable bit rates needs to be resolved. This problem was addressed separately for the
source and each sink node because descriptions with different bit rates will be generated according to the
capacity of the routings and number of routings which reach the destinations. For example, when one colored
path reaches the first sink and two reach the second sink, the description can be divided by two at the source
node for delivery to the second sink because even if one description fails to reach the destination, the other
description may arrive. However, the same solution cannot be offered for sink one because if a packet is lost
over the path, the quality of received image will be reduced at the destination. To avoid this or decrease the

effect of the loss at the sink one, interpolation methods have been applied for SDC [27].

The rates of descriptions are based on the estimated capacity or the available bandwidth of each optimal path.
In order to estimate required capacity of the optimal paths, the constraint € has been used in the meta-heuristics
employed. Suppose four different optimal paths are determined between a source and sink node with available
bandwidths. In this case, four descriptions with achievable bit rates will be generated according to the available
bandwidths. However, the number of colored paths obtained between source and destination nodes may be
different based on the constraint € when routings are optimized by GA and PSO. This means that the creation
of descriptions is based on the number of optimal paths obtained and the capacities of each optimal path. The
number of optimal colored paths reaching each sink node is determined by using following constraint values

&€ = 32,64,96 and 128 kB, and tabulated in the Tables 9-12, respectively.

Table 9 Table 10
Number of paths obtained based on € = 32kB Number of paths obtained based on € = 64 kB
Net. n, m, sinks # of paths between Net. n, m, sinks # of paths between
s-t; s-t; | s-t3 | s-ty s-t; s-t; | s-t3 | s-ty

1 20, 86, 4 3 4 3 1 1 20, 86, 4 2 3 3 1
2 40, 183, 4 4 3 5 3 2 40, 183, 4 2 2 3 2
3 80, 324, 4 5 3 5 4 3 80,324, 4 3 2 3 2
4 120,567 , 4 3 6 4 6 4 120,567 , 4 2 5 3 4
5 150, 953, 4 6 4 5 7 5 150, 953, 4 4 2 4 5




Table 11 Table 12

Number of paths obtained based on € = 96 kB Number of paths obtained based on € = 128kB
Net. n, m, sinks # of paths between Net. n, m, sinks # of paths between
S-t1 S-tz S't3 S't4 S't1 S'tz S-t3 S't4
1 20, 86, 4 2 2 2 1 1 20, 86, 4 1 1 1 1
2 40, 183, 4 2 2 3 1 2 40, 183, 4 2 1 1 1
3 80, 324, 4 3 1 3 2 3 80,324, 4 1 1 2 1
4 120,567 , 4 2 3 2 4 4 120,567 , 4 1 2 2 2
5 150, 953, 4 3 2 2 3 5 150, 953, 4 2 1 1 2

Here, the color conversion and MDC generation agorithm shown in Fig. 1 has been tested by employing a color
image of dimension 512x512 pixels with three description levels of the decomposition for the wavelet transform.
Multiple descriptions were generated by applying Multiple Description Scalar Quantization (MDSQ) to the wavel et
coefficients of the colour image models. Experiments have been performed on four popular images: “Castle”,
“Lena”, “Baboon”, and “Aircraft” as shown in Fig. 8, to test the overall system. In addition, each sink node demands
adifferent image from the source node; therefore, each color image was simultaneously transmitted to different sink
nodes through the distinct colored optimal paths.

Fig. 8. Test Images used in the experiments.

Different descriptions of the generated image (Df, DS, ...... ,DE) of an MD coded source can be transmitted to
the destination node ¢ via different paths. As discussed in the previous section, PSO and GA implementations
are giving superior cost results to find the optimal paths in different network models. Image transmission was
analyzed in the networks optimized by the third fitness function because it balances the cost values of packet
loss rate and path length on the links. Furthermore, different values of constraint € were employed to obtain the

required bandwidth of each path.

Descriptions generated with achievable bit rates at the source node were simultaneously sent through the
optimal lossy paths to the clients. Figs. 9 (a) and (b) show how the descriptions are affected by lossy paths in
the networks. To reveal the trends, CC was selected to measure the quality results since this is commonly
employed in image processing. After performing 10 simulation runs for each network model, the quality of
received images at all sink nodes was ascertained and the average qualities are illustrated in Figs. 9 (a) and (b).
From these results, the best quality of transmitted image is received at e= 64 kB and = 96 kB. These results
also clarify that the transmitted SDC causes more received image distortion. Therefore, poorer quality images
are received at e= 128 kB even if there is high bandwidth to transmit the data. The reason is because fewer

optimal paths are determined at e= 128 kB and SDCs are mostly transmitted as tabulated in Table 10.
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Fig. 9. Comparison results of quality of received images in CC. (a) Obtained quality results in the optimized networks by PSO -60. (b)
Obtained quality results in the optimized networks by GA -60.

5.5 Reliable Transmission Optimization for Image Quality Enhancement

Although multipath routing can increase the reliability of transmission, using too many paths may increase
data redundancy and energy consumption. To provide the reliable transmission in a given lossy network, the
meta-heuristic algorithms are employed to find the optimal paths as discussed in previous section. The number
of obtained optimal paths are based on the demanding bandwidth as tabulated in Tables 9-12. For instance,
three MDCs are created with available bit rates according to the number of obtained paths shown in second
row and third column of Table 9. To analyze and understand the performance of MDCs in the optimized

networks, qualities of received images are estimated by using the equation of correlated coefficients (CC).
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Fig. 10. Comparison results for the average qualities of received images which are transmitted through the optimized network models by

using (a) GA-60, PSO-60 and MDA, (b) GA-30, PSO-30 and MDA.

Based on a corresponding constraint value of &, descriptions are generated and transmitted over the obtained
lossy paths from a specific source to destination nodes for all optimized lossy networks. Thereafter, the
average quality of received images is estimated for the corresponding value of €. Figs. 10 (a) and (b) illustrate
the average quality of received images in order to provide reliable multimedia transmission. Among the three

fitness functions, /> provides the highest quality received images at the clients when € = 96 kB is used,



whereas for the other fitness functions, the corresponding value is € = 64 kB. The results indicate that using
fitness functions f; and f; with ¢ = 64 kB and /> with ¢ = 96 kB, will avoid redundancy in data transmission and
reception, thus, decreasing energy consumption of network. Besides this, transmitting MDCs over optimized

paths improves the reliable multimedia transmission in lossy networks.

In order to understand and analyze the results statistically, we have applied Friedman, Friedman Aligned and
Quade non-parametric tests to the data shown in Figs. 10 (a) and (b). Table 13 illustrates the average ranks
computed using Friedman, Friedman Aligned and Quade non-parametric tests [52-55]. It compares the average
ranks of five different implementations, i.e. GA-30, GA-60, PSO-30, PSO-60 and MDA using with three
different fitness functions, i. e. shortest path (SP), minimum packet loss (MPL) and optimal multipath (OMP).
Based on the results, PSO-60 implemented with the minimum packet loss fitness function (PSO-60-MPL)
gives the best performance, with the average rank of 1.25, 6.25, and 1.10 for the Friedman, Friedman Aligned,
and Quade tests, respectively. The p-values computed through the statistics of each of the tests considered
(7.19%10°°, 0.9968, and 5.03*10*). However, the worst average ranking results are computed for the GA-30-
SP, MDA-OMP and PSO-30-SP.

li:::glec’rankings of the algorithms using the non -parametric statistical procedure, statistics and p-values.
Algorithm Friedman Friedman Aligned Quade
PSO-60-SP 10.00 38.00 10.60
GA-60-SP 11.00 41.00 10.61
PSO-30-SP 12.50 50.50 12.80
GA-30-SP 14.00 54.00 13.40
MDA -SP 11.25 44.75 10.79
PSO-60-MPL 125 6.25 1.10
GA-60-M PL 275 9.00 2.59
PSO-30-MPL 525 18.75 4.90
GA-30- MPL 7.25 25.25 6.80
MDA- MPL 3.00 9.00 3.00
PSO-60-OMP 325 11.25 3.599
GA-60- OMP 7.00 29.75 7.80
PSO-30- OMP 7.00 27.00 7.20
GA-30- OMP 11.50 44.00 11.80
MDA - OMP 13.00 49.00 13.00
Statistics 49,575 3.742 8.182
p-value 7.19*10° 0.9968 5.03*10%®

In the second statistical analysis tests, multiple comparison post-hoc procedures (eight) are used to compare the
control algorithm PSO-60-OMP with the rest of algorithms. The results are shown by computing p-values for each
comparison. Tables 14-16 show the p-values obtained, using the ranks computed by the Friedman, Friedman



Aligned, and Quade tests, respectively. Based on the computed results, all tests show significant improvements of
the PSO-60-MPL over the rest of agorithms for all the post-hoc procedures considered.

Table 14
Adjusted p-values for Friedman (PSO-60-MPL is the control method).

Algorithm Unadjusted Bonferroni Holm Hochberg/ Hommel  Holland Rom Finner Li
GA-30-SP 5.53%10° 7.74%10™ 7.74%10* 7.74%10™ 7.74%¥10%  7.36%10*%  7.74*10*  1.51*10"
MDA-OMP 2.02*%10™ 0.0028 0.0026 0.0026 0.0026 0.0025 0.0014  5.55%10°
PSO-30-SP 3.74*10™ 0.0052 0.0044 0.0044 0.0044 0.0042 0.0017 0.0010
GA-30-OMP 0.0011 0.0166 0.0130 0.0130 0.0130 0.0124 0.0041 0.0032
MDA -SP 0.0015 0.0219 0.0156 0.0156 0.0155 0.0148 0.0043 0.0042
GA-60-SP 0.0021 0.0286 0.0184 0.0184 0.0182 0.0175 0.0047 0.0055
PSO-60-SP 0.0056 0.0792 0.0452 0.0452 0.0443 0.0430 0.0112 0.0152
GA-30-MPL 0.0577 0.8089 0.4044 0.3450 0.3407 0.3281 0.0989 0.1367
GA-60-OMP 0.0690 0.9662 0.4141 0.3450 0.3488 0.3281 0.1052 0.1591
PSO-30-OMP 0.0690 0.9662 0.4141 0.3450 0.3488 0.3281 0.1052 0.1591
PSO-30-MPL 0.2059 2.8826 0.8236 0.6352 0.6023 0.6352 0.2542 0.3608
PSO-60-OMP 0.5271 73792 1.5812 0.6352 0.8942 0.6352 0.5825 0.5910
MDA -MPL 0.5799 8.1198 1.5812 0.6352 0.8942 0.6352 0.6071 0.6139
GA-60-MPL 0.6352 8.8935 1.5812 0.6352 0.8942 0.6352 0.6352 0.6352
Table 15

Adjusted p-values for Friedman Aligned (PSO-60-MPL is the control method).

Algorithm Unadjusted Bonferroni Holm Hochberg/ Hommel  Holland Rom Finner Li
GA-30-SP 1.10%10™ 0.0015 0.0015 0.0015 0.0015 0.0014 0.0015 6.25%10™
PSO-30-SP 3.39%10™ 0.0047 0.0044 0.0044 0.0044 0.0041 0.00237 0.0019
MDA -OMP 5.36%10™ 0.0075 0.0064 0.0064 0.0064 0.0061 0.0025 0.0030
MDA -SP 0.0018 0.0255 0.0201 0.0201 0.0198 0.0190 0.0063 0.0102
GA-30-OMP 0.0022 0.0313 0.0223 0.0223 0.0221 0.0212 0.0063 0.0125
GA-60-SP 0.0048 0.0685 0.0440 0.0440 0.0431 0.0418 0.0113 0.0270
PSO-60-SP 0.0101 0.1419 0.0811 0.0811 0.0782 0.0771 0.0202 0.0544
GA-60-OMP 0.0570 0.7986 0.3993 0.3993 0.3371 0.3796 0.0977 0.2445
PSO-30-OMP 0.0929 1.3006 0.5574 0.5574 0.4429 0.5300 0.1407 0.345
GA-30-MPL 0.1239 1.7347 0.6195 0.6195 0.4838 0.5891 0.1690 0.4128
PSO-30-MPL 0.3114 4.3600 1.2457 0.8237 0.7752 0.8237 0.3780 0.6386
PSO-60-OMP 0.6851 9.5978 2.056 0.8237 0.9689 0.8237 0.7407 0.7955
GA-60-MPL 0.8237 11.532 2.056 0.8237 0.9689 0.8237 0.8458 0.8237

MDA -MPL 0.8237 11.532 2.056 0.8237 0.9689 0.8237 0.8458 0.8237




Table 16

Adjusted p-values for Quade (PSO-60- MPL is the control method).

Algorithm Unadjusted Bonferroni Holm Hochberg/ Hommel  Holland Rom Finner Li

GA-30-SP 0.1795 2.5141 2.5141 0.8699 0.9374 0.8699 0.9374 0.5801
MDA -OMP 0.1941 2.71811 2.5239 0.8699 0.9395 0.8699 0.9374 0.5989
PSO-30-SP 0.2017 2.8245 2.5239 0.8699 0.9395 0.8699 0.9374 0.6081
GA-30-OMP 0.2430 3.4023 2.6732 0.8699 0.9532 0.8699 0.9374 0.6514
MDA -SP 0.2898 4.0584 2.8989 0.8699 0.9673 0.8699 0.9374 0.6903
GA-60-SP 0.2999 4.1993 2.8989 0.8699 0.9673 0.8699 0.9374 0.6976
PSO-60-SP 0.2999 4.1993 2.8989 0.8699 0.9673 0.8699 0.9374 0.6976
GA-60-OMP 0.4647 6.5066 3.2533 0.8699 0.9874 0.8699 0.9374 0.7814
PSO-30-OMP 0.5056 7.0796 3.2533 0.8699 0.9874 0.8699 0.9374 0.7954
GA-30-MPL 0.5339 7.4759 3.2533 0.8699 0.9874 0.8699 0.9374 0.8042
PSO-30-MPL 0.6784 9.4979 3.2533 0.8699 0.9893 0.8699 0.9374 0.8391
PSO-60-OMP 0.7850 10.991 3.2533 0.8699 0.9893 0.8699 0.9374 0.8579
MDA -MPL 0.8357 11.700 3.2533 0.8699 0.9893 0.8699 0.9374 0.8653
GA-60-MPL 0.8699 12.179 3.2533 0.8699 0.9893 0.8699 0.9374 0.8699

In order to compare the combinations of algorithms with different fitness functions used, 105 hypotheses of equality
have been created among the 15 different approaches. Table 17 presents the first 8 hypotheses with the p-values

achieved. The first four and six hypotheses are rejected by all the post-hoc procedures for the levels of significance o

= 0.05 and o = 0.1, respectively. However, the rest of hypotheses are not rejected by all the post-hoc procedures.

Based on the level of significance o = 0.1, the first six hypotheses show the improvement of PSO-60-MPL over GA-
30-SP, MDA-OMP and PSO-30-SP, that of GA-60-MPL over GA-30-SP, that of MDA-MPL over GA-30-SP, and
that of PSO-60-OMP over GA-30-SP. According to the level of significance a = 0.05, the first four hypotheses
show the improvement of PSO-60-MPL over GA-30-SP, MDA-OMP and PSO-30-SP, and that of GA-60-MPL over

GA-30-SP.

Table 17

Adjusted p-values for tests for multiple comparisons among all the methods.

Index  Hypothesis Unadjusted Nemenyi[65] Holm|[58] Shaffer[66]
1 PS0-60-MPL vs. GA-30-SP. 5.53%10° 0.0058 0.0058 0.0058
2 PS0O-60-MPL vs. MDA-OMP 2.02%10* 0.0212 0.0210 0.0184
3 PSO-30-SP vs. PSO-60-MPL 3.74%10* 0.0393 0.0385 0.0341
4 GA-30-SP vs. GA-60-MPL 3.74%10™ 00393 0.0385 00341
5 GA-30-SP vs. MDA -MPL 5.04%10™ 0.0529 0.0509 0.0503
6 GA-30-SP vs. PSO-60-OMP 6.75%10* 0.0708 0.0675 0.0614
7 PSO-60-MPL vs. GA-30-OMP 0.0011 0.1249 0.1177 0.1082
8 GA-60-MPL vs. MDA-OMP 0.0011 0.12492 0.1177 0.1082

Fig. 11 demonstrates the effect of the information losses to the RMSE and CC in a lossy network. To estimate



the quality results and show the effect of bit rate change, a compressed image with different bit rates between
16-128 kB was sent from source to a sink node. To clarify the simulation results, each compressed image is
sent 40 times. The average qualities of RMSE and CC of received images are used for demonstration. In Fig.
11, the upper plane depicts the average qualities of RMSE and the lower plane illustrates the average qualities
of CC. In the upper plane, it shows that when some of the packets have been lost, the slope is positive and the
quality of the image has been decreased. The lower plane shows that when CC has positive slope, the quality

of the image has been increased.

CC, RMSE

Transmitted Images e T Feoe “T:
' 10 : 7, 4 * <0
Transmitted Bit Rates (R)

Fig. 11. Quality estimation of received color images at a sink node and demonstrating the effect of bit rate to the image quality in the
lossy network.

6. Conclusion
In this paper, we have presented optimal multipath selection by using Genetic Algorithm (GA) and Particle Swarm

Optimization (PSO) collaborating with the Rainbow Network Flow (RNF) method and the generation of MDCs with
achievable rates. For maximizing the received MDCs, the GA and PSO are applied to find optimal routings and
RNF is used to maximize the routing efficiency between source and clients. To find the optimal multipath in multi-
objective network models efficiently, a new multi-objective fitness function is defined based on the three different
cost types of the links and compared with two single objective fitness functions when they are employed in the GA,
PSO and multipath Dijkstra algorithm (MDA). The obtained results indicate that proposed multi-objective fitness
function provides superior trade-off between the multi-cost values over the network links to obtain the optimal
multipath since other fitness functions are well to optimize only one cost value over the links. GA and PSO
algorithms using with two different population sizes are compared with MDA to find the optimal multipath for each
fitness function. After finding optimal multipath, the number of MDCs are generated based on the number of
optimal paths and amount of available bandwidth by using the wavelet based multiple description scalar
quantization. The generated MDCs are sent through the optimal multipath to compare the performances of
algorithms employed with three different fitness functions for providing reliable multimedia transmission. PSO
performs better than GA and MDA for finding efficient routing paths and providing reliable multimedia

transmission in lossy networks. Consequently, using PSO with the proposed fitness function solves the multi-



objective network routing problem efficiently and this solution provides maximal performance of the usage of

routings so that each description can be transmitted through the optimal routings.
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