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Abstract

Computer aided techniques for scheduling software projects is a crucial step
in the software development process within the highly competitive software in-
dustry. The Software Project Scheduling (SPS) problem relates to the decision
of who does what during a software project lifetime, thus involving mainly both
people-intensive activities and human resources. Two major, conflicting goals
arise when scheduling a software project: reducing both its cost and duration.
A multi-objective approach is therefore the natural way of facing the SPS prob-
lem. As companies are getting involved in larger and larger software projects,
there is an actual need of algorithms that are able to deal with the tremendous
search spaces imposed. In this paper we analyze the scalability of eight multi-
objective algorithms when they are applied to the SPS problem using instances
of increasing size. The algorithms are classical algorithms from the literature
(NSGA-II, PAES, and SPEA2) and recent proposals (DEPT, MOCell, MOABC,
MO-FA, and GDE3). From the experimentation conducted, the results suggest
that PAES is the algorithm with the best scalability features.

Keywords: Software project scheduling, scalability analysis, multi-objective
optimization

1. Introduction

In the current software industry, the market is becoming highly competitive,
so software companies have to elaborate accurate project plans in order to have
success. In order to plan a software project, companies need, on the one hand,
to estimate the project workload (using for example the COCOMO model [1])

∗Corresponding author
Email addresses: fluna@inf.uc3m.es (Francisco Luna), dlga@unex.es (David L.
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and, on the other hand, to establish the project schedule and to assign resources
to tasks. Tasks may be anything from maintaining documents to typing source
code, and resources include people, machines, time, etc. Like other similar
projects (e.g., civil engineering problems), scheduling and staffing management
might be performed with traditional techniques such as Program Evaluation and
Review Technique (PERT), Critical Path Method (CPM), and those enclosed
within the class known as the Resource-Constrained Project Scheduling Problem
(RCPSP) [2]. Although relevant and helpful, these methods are also becoming
hardly applicable to the today’s software projects, specially PERT/CPM, which
are not applicable to the complex networks of activities and their precedence
and durations that usually arise [3]. What makes the difference of software
projects from those from other areas (production scheduling, RCPSP, etc.) is
that only one type of resources are allocated, i.e., employees, having each of
them different skills and being able to get involved in several tasks during a
working day [4]. Employees’ salary is also important as it allows the project to
be assigned with a cost (and not only its duration).

When a software company starts scheduling any given project, two main
goals are always in conflict: reducing the project cost, that is, completing the
entire development at the lowest investment; and, minimizing the project dura-
tion so that new projects can be addressed. Of course, these two goals have a
direct impact on the company’s income. In this paper we focus on the assign-
ment of employees to tasks in a software project so as to minimize these two
objectives, that is, it is a multi-objective optimization problem, which has been
called the Software Project Scheduling (SPS) problem [5]. Because of their com-
putational complexity and the size of actual projects, this problem cannot be
efficiently solved using complete algorithms since enumerating the entire search
space would require years of computation [6, 7]. Metaheuristics [8] become the
choice here. These are a broad family of approximate techniques that can be
considered as general search algorithms, including —but not restricted to— Evo-
lutionary Algorithms, Ant Colony Optimization, Particle Swarm Optimization,
Simulated Annealing, Tabu Search, and Iterated Local Search. As opposed to
exact techniques, metaheuristics do not guarantee to find optimal solutions to
the problems, but they allow to reach good solutions in a reasonable amount
of time. A metaheuristic can be defined as a high level strategy which controls
a number of subordinated techniques (usually heuristics) in the search for an
optimum. Using this kind of algorithms does make sense when no efficient algo-
rithm is known to find the optimal solutions or when the complete enumeration
is not viable due to time or memory constraints. Researchers have therefore
used these algorithms to solve software engineering optimization problems, as
it is clearly shown in [9], where a comprehensive review and analysis of the
literature is carried out.

The SPS problem is multi-objective in nature [10] and such a formulation
has been used (no aggregation of the objective values into one single value has
been considered). Contrary to single-objective optimization, the solution of a
multi-objective problem such as SPS is not one single solution, but a set of
nondominated solutions known as the Pareto optimal set, which is called Pareto
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border or Pareto front when it is plotted in the objective space [11]. Whatever
solution of this set is optimal in the sense that no improvement can be reached
on an objective without worsening at least another one at the same time. That
is, in the context of the SPS problem, it is not possible to reduce the project cost
without increasing its duration (or vice versa). The main goal in the resolution
of a multi-objective problem is to compute the set of solutions within the Pareto
optimal set and, consequently, the Pareto front. Many metaheuristics have been
proposed in the literature to deal with multi-objective problems [12].

Previous works in the literature have addressed the multi-objective SPS
problem with metaheuristics [10], where 36 instances with up to 30 tasks and
15 employees have been tackled. But actual, relevant, contemporary software
projects involve both more people and more tasks. This work evaluates the issue
of the scalability of eight multi-objective metaheuristics for the SPS problem,
three classical methods —NSGA-II [13], SPEA2 [14], and PAES [15]— plus
five novel algorithms —DEPT [16], MO-FA [17], MOABC [18], MOCell [19],
and GDE3 [20]— on a set of 36 instances with an exponential increase in both
the number of tasks (from 16 to 512) and the number of employees (from 8 to
256). Two quality indicators, the hypervolume (HV) [21] and the attainment
surfaces [22], have been used to measure the quality of the resulting Pareto
fronts. This piece of research has to be considered as an extension of a previous
conference publication [23] and, as a consequence, we want to clearly state
the novel contributions included here. They follow two different lines: on the
one hand, we have included four new algorithms in the comparison (SPEA2,
MOABC, MOCell, and GDE3, i.e., doubling the experimentation conducted) to
provide the reader with insights about their scalability capabilities; on the other
hand, we have thoroughly analized the solutions of the different algorithms to
find correlations between their features and the region in the objective space
in which these solutions are located. In other words, we want to know what
“metaheuristic algorithms do” to obtain a solution with some concrete values for
the objective functions, i.e., the characteristics of the resulting project schedules.

The paper is structured as follows. The next section provides the reader with
the formulation of the SPS problem. Section 3 briefly describes the eight multi-
objective metaheuristics used. The experimentation performed to assess the
performance of these algorithms is detailed in Section 4. In Section 5 we show
how a project manager can profit from the results of this paper and Section 6
includes the main conclusions of this work and devises the future lines for further
research.

2. The SPS Problem

We follow here the same formulation proposed in [5]. Thus, the resources
considered are people with a set of skills and a salary. These employees have a
maximum degree of dedication to the project. Formally, each person (employee)
is denoted with ei, where i goes from 1 to E (the number of employees). Let SK
be the set of skills, and si the i-th skill with i varying from 1 to S = |SK|. The
skills of the employee ei will be denoted with eskillsi ⊆ SK, the monthly salary
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with esalaryi , and the maximum dedication to the project with emaxded
i . The

salary and the maximum dedication are real numbers. The former is expressed
in abstract currency units, while the latter is the ratio between the amount of
hours dedicated to the project and the full working day length of the employee.
The tasks are denoted with ti, where i goes from 1 to T (the number of tasks).
Each task ti has a set of required skills associated with it, which we denote
with tskillsi , plus an effort tefforti , expressed in person-month (PM). The tasks
must be performed according to a Task Precedence Graph (TPG) that indicates
which tasks must be completed before a new task is started. The TPG is an
acyclic directed graph G(V,A) with a vertex set V = {t1, t2, . . . , tT } and an
arc set A, where (ti, tj) ∈ A if the task ti must be completed, with no other
intervening tasks, before task tj can start. The objectives of the SPS problem
are to minimize the cost and the duration of the project, which are defined in
Equations (7) and (8), respectively. The constraints are: first, that each task
must be performed by at least one person; second, the set of required skills of
a task must be included in the union of the skills of the employees performing
the task; and, third, no employee must exceed her/his maximum dedication to
the project.

A solution can be represented with a matrix X = (xij) of size E × T , where
xij ≥ 0. The element xij is the degree of dedication of the employee ei to the
task tj . In order to compute the project duration, denoted with pdur, we need
to calculate the duration of each individual task (tdurj ). This is calculated in
the following way:

tdurj =
teffortj

tahrj

(1)

where tahrj is the amount of human resources spent on task tj and is defined as
the sum of the dedication degree that the employees have on the task, that is:

tahrj =

E
∑

i=1

xij (2)

At this point we can also define the participation of employee ei in the
project, epari , as the fraction of the total workload of the project that was
performed by the employee, that is:

epari =

∑T

j=1 xijt
dur
j

∑T
j=1 t

effort
j

=

∑T
j=1

xij∑
E
k=1

xkj
teffortj

∑T
j=1 t

effort
j

(3)

From the right-most expression it is clear that:

E
∑

i=1

epari = 1 (4)

The next step is to compute the starting and ending time for each task (tstartj
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and tendj ), which are defined according to the following expressions:

tstartj =

{

0 if ∄ti, (ti, tj) ∈ A
max

ti,(ti,tj)∈A
{tendi } otherwise (5)

tendj = tstartj + tdurj (6)

The project duration, pdur, is the maximum ending time ever found:

pdur =
T

max
j=1
{tendj } . (7)

The project cost pcost is the sum of the salaries paid to the employees for
their dedication to the project. These charges are computed by multiplying the
salary of the employee by the time spent on the project. The time spent on the
project is the sum of the dedication multiplied by the duration of each task. In
summary:

pcost =
E
∑

i=1

T
∑

j=1

esalaryi · xij · t
dur
j (8)

In order to check the validity of a solution we must first check that all tasks
are performed by somebody, i.e., no task is left undone. That is:

tahrj > 0 ∀j ∈ {1, 2, . . . , T } (9)

The second constraint is that the employees performing the task must have the
skills required by the task:

tskillsj ⊆
⋃

{i|xij>0}

eskillsi ∀j ∈ {1, 2, . . . , T } (10)

Finally, in order to compute the overwork pover we first need to compute the
working function for each employee, defined as:

ework
i (τ) =

∑

{j|tstart
j

≤τ≤tend
j

}

xij (11)

If ework
i (τ) > emaxded

i the employee ei exceeds her/his maximum dedication at
instant τ . The overwork of the employee eoveri is:

eoveri =

∫ τ=pdur

τ=0

ramp(ework
i (τ) − emaxded

i )dτ (12)

where ramp is the function defined by:

ramp(x) =

{

x if x > 0
0 if x ≤ 0

(13)
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The definite integral in (12) always exists and can be easily computed because
its integrand is piecewise continuous. The total overwork of the project is then
the sum of the overwork for all the employees, i.e.:

pover =

E
∑

i=1

eoveri (14)

This total overwork must be zero:

pover = 0 (15)

3. Algorithms

In this section, we briefly describe the eight metaheuristics used in this
study, namely NSGA-II, SPEA2, PAES, DE-PT, MO-FA, MOABC, MOCell,
and GDE3. They all are either population-based metaheuristics [8], i.e., they
operate on a set of solutions at every iteration, or include an external archive
for storing the nondominated solutions found during the search (e.g., PAES is a
trajectory-based metaheuristic using such a mechanism), or both (e.g., SPEA2,
MOCell are population-based algorithms with external archive). A general tem-
plate for a multi-objective metaheuristic is displayed in Algorithm 1. The gen-
eral operation of these algorithms begins by generating the initial solutions, S
(usually in a random manner), and updating the set of non-dominated solutions
found in this first sampling, A (lines 1 to 3). Then, the search loop starts. It
lies in stochasticly varying the solutions included in S and A, and generating a
(hopefully improved) new set of solutions (line 7) from which those that are non-
dominated are retrieved (line 9). The matching of this general scheme on the
eight algorithms used in this work is briefly presented in the following subsec-
tions (for a detailed description, interested readers are referred to the references
provided for each one).

Algorithm 1 Template of a multi-objective metaheuristic

1: S(0)← GenerateInitialSolutions() // S can contain only a solution
2: Evaluation(S)
3: A(0)← Update(A(0), S(0))
4: t← 0
5: while not StoppingCriterion( ) do

6: t← t+ 1
7: S(t) ← Variation(A(t− 1), S(t− 1))
8: Evaluate(S(t))
9: A(t) ← Update(A(t), S(t))

10: end while

11: Output: A
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3.1. NSGA-II

The Non-dominated Sorting Genetic Algorithm II, NSGA-II, was proposed
by Deb et al. [13]. It is a genetic algorithm based on generating a new popula-
tion from the original one by applying the typical genetic operators (selection,
crossover, and mutation); then, the individuals in the new and old population
are sorted according to their rank, and the best solutions are chosen to cre-
ate a new population. In case of having to select some individuals with the
same rank, a density estimation based on measuring the crowding distance to
the surrounding individuals belonging to the same rank is used to get the most
promising solutions. From Algorithm 1, S and A are considered to be one single
set P = S ∪A so that, at each iteration, the non-dominated solutions found are
used to generate new solutions within the evolutionary loop.

3.2. SPEA2

The Strength Pareto Evolutionary Algorithm 2, SPEA2, was proposed by
Zitler et al. in [14]. In this algorithm, each individual has a fitness value that is
the sum of its strength raw fitness plus a density estimation. SPEA2 fits per-
fectly in the general template of Algorithm 1, having a population of solutions
plus an external archive. That is, the algorithm applies the selection, crossover,
and mutation operators with solutions from S to fill the archive A of individ-
uals; then, the nondominated individuals of both the original population and
the archive are copied into a new population. If the number of nondominated
individuals is greater than the population size, a truncation operator based on
calculating the distances to the k-th nearest neighbor is used. This way, the
individuals having the minimum distance to any other individual are chosen.

3.3. PAES

The Pareto Archived Evolution Strategy, PAES, is a metaheuristic proposed
by Knowles and Corne [15]. The algorithm is based on a simple (1+1) evolution
strategy. To find diverse solutions in the Pareto optimal set, PAES uses an
external archive of nondominated solutions, which is also used to decide about
the new candidate solutions. That is, from one single solution PAES is able
to approximate the entire Pareto front. In this case |S| = 1 in Algorithm 1,
and the variation operator works with one single solution (a mutation operator)
to generate new non-dominated ones. An adaptive grid is used as a density
estimator in the archive.

3.4. Differential Evolution with Pareto Tournaments

The Differential Evolution (DE) is an evolutionary algorithm created by Ken
Price and Rainer Storn [24]. The fundamental idea behind DE is a scheme for
generating new possible solutions (trial individuals) taking advantage of the
differences among the population (target individuals), according to its simple
formulae of vector-crossover and mutation. We have defined a new multiobjec-
tive version that incorporates the Pareto Tournaments concept (DEPT) [16] to
choose the best solution between two given ones based (in this case, the target
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and the trial individuals). Ties are broken in the tournament (in case on non-
dominance) by using the crowding distance of NSGA-II. As it can be seen, this
algorithm considers both the solution set S and the archive A from Algorithm 1
to be the same set. Non-dominated solutions are generated by using the DE
crossover with solutions in this set.

3.5. Multiobjective Firefly Algorithm

The Firefly Algorithm (FA) is one of the latest nature-inspired optimizers
proposed. This algorithm is defined by Xin-She Yang [17] and it is inspired
by the flash pattern and characteristics of fireflies. To solve the SPS problem
we have developed the Multiobjective Firefly Algorithm (MO-FA) in which the
attractiveness of a firefly, determined by its brightness, is associated with the
objective functions. So, by generating a set of fireflies, the search loop of the al-
gorithm evolves by moving dominated fireflies towards brighter (non-dominated)
ones. As DEPT, MO-FA considers the solution set and the archive to be unified.
The parameter values have been established as proposed in [17].

3.6. Multiobjective Artificial Bee Colony

The Artificial Bee Colony (ABC) is a new population-based algorithm pro-
posed by Karaboga [18] and inspired by the collective behaviour of the honey
bee swarms. A multi-objective version of ABC (MOABC) has been devised. It
keeps the general outline of the ABC algorithm but incorporating the concept of
dominance and crowding distance from NSGA-II. In fact, it uses the same idea:
the bee colony is split into two sub colonies. As in NSGA-II, the first colony
is used to generate the second one and finally those non-dominated solutions
from the entire one are retrieved. That is, the matching with Algorithm 1 is the
same as NSGA-II: S and A are considered as one single set which is iteratively
improved with the ABC search operators.

3.7. MOCell

The Multi-Objective Cellular Genetic Algorithm, MOCell, is a cellular ge-
netic algorithm (cGA) [19]. Like many multi-objective metaheuristics, it in-
cludes an external archive to store the nondominated solutions found so far.
The matching with Algorithm 1 is therefore straightforward. The archive is
bounded and uses the crowding distance of NSGA-II to keep diversity in the
Pareto Front. We have used here an asynchronous version of MOCell, called
aMOCell4 in [25], in which the cells are explored sequentially (asynchronously).
The selection is based on taking an individual from the neighborhood of the
current solution (called cell in cGAs) and another one randomly chosen from
the archive. After applying the genetic crossover and mutation operators, the
new offspring is compared with the current one, replacing it if better; if both so-
lutions are nondominated, the worst individual in the neighborhood is replaced
by the current one. In these two cases, the new individual is inserted into the
archive.
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3.8. GDE3

The Generalized Differential Evolution 3, GDE3 [20], is an improved version
of the Generalized Differential Evolution (GDE) algorithm [26]. It starts with
a population of random solutions, which becomes the current population. At
each generation, an offspring population is created using the differential evolu-
tion operators; then, the current population for the next generation is updated
using the solutions of both, the offspring and the current population. Before
proceeding to the next generation, the size of the population is reduced using
nondominated sorting and a pruning technique aimed at diversity preservation,
in a similar way as NSGA-II, although the pruning used in GDE3 modifies the
crowding distance of NSGA-II in order to solve some of its drawbacks when
dealing with problems having more than two objectives. Therefore, the match-
ing with Algorithm 1 is the same as NSGA-II: S and A are merged into one
single set.

4. Experimentation

This section is aimed at presenting the experiments conducted to evaluate
the scalability capabilities of the previously described algorithms on 36 instances
of the SPS problem. Recall that we are looking at both the (financial) cost
and the duration of the project scheduling given by the aforementioned multi-
objective metaheuristics. These are the two conflicting objective functions that
guide the search of these algorithms.

4.1. SPS Instances

For the empirical study we have used a total of 36 instances1. Each instance
represents a different software project. The number of employees and tasks
scales up from 8 to 256 and from 16 to 512, respectively. The total number of
skills in the project, S, is 10 and the number of skills per employee ranges from
6 to 7. We denote the instances with iT -E, where T and E are the number of
tasks and employees, respectively. For example, the instance i128-32 has 128
tasks and 32 employees. The maximum dedication for all the employees is 1
(full working day) in the 36 instances.

4.2. Methodology

In order to measure the performance of the multi-objective solvers used
here, the quality of their resulting nondominated set of solutions has to be
considered [27, 28]. Two indicators have been used for this purpose in this
work: the hypervolume (HV) [21] and the attainment surfaces [22].

The HV is considered as one of the more suitable indicators in the multi-
objective community since it provides a measure that takes into account both
the convergence and diversity of the obtained approximation set. Higher values

1http://mstar.lcc.uma.es/problems/swscheduling.html
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of the hypervolume metric are desirable. Since this indicator is not free from
an arbitrary scaling of the objectives, we have built up a reference Pareto front
(RPF) for each problem composed of all the nondominated solutions found
for each problem instance by all the algorithms. Then, the RPF is used to
normalize each approximation prior to compute the HV value by mapping all
the nondominated solutions to [0, 1]. This way the reference point to compute
the HV values is (1,1), which results from the mapping of the extreme solutions
of the RPF.

While the HV allows one to numerically compare different algorithms, from
the point of view of a decision maker, knowing about the HV value might not
be enough, because it gives no information about the shape of the front. The
empirical attainment function (EAF) [22] has been defined to do so. EAF
graphically displays the expected performance and its variability over multiple
runs of a multi-objective algorithm. In short, the EAF is a function α from
the objective space Rn to the interval [0, 1] that estimates for each vector in
the objective space the probability of being dominated by the approximated
Pareto front of one single run of the multi-objective algorithm. Given the r
approximated Pareto fronts obtained in the different runs, the EAF is defined
as:

α(z) =
1

r

r
∑

i=1

I(Ai
4 {z}) (16)

whereAi is the i-th approximated Pareto front obtained with the multi-objective
algorithm and I is an indicator function that takes value 1 when the predicate
inside it is true, and 0 otherwise. The predicate Ai 4 {z} means Ai dominates
solution z. Thanks to the attainment function, it is possible to define the
concept of k%-attainment surface [22]. The attainment function α is a scalar
field in Rn and the k%-attainment surface is the level curve with value k/100
for α. Informally, the 50%-attainment surface in the multi-objective domain is
analogous to the median in the single-objective one.

Metaheuristics are stochastic algorithms; therefore the results have to be
provided with statistical significance. The following statistical procedure has
been used. First, 30 independent runs for each algorithm and each problem
instance have been performed. The HV indicator and the attainment surfaces
are then computed. In the case of HV, as the probability distributions of these
values do not follow the normality and homocedasticity conditions [29], the
Friedman’s test has been used to rank the algorithms attending to their median
HV value. Then, the Holm’s multicompare test have been used to assess which
algorithms are statistically worse than that that ranked the first in the Fried-
man’s test (1×N comparison) [30]. All the statistical tests are performed with
a confidence level of 95%.

4.3. Parameterization

In order for a fair comparison among all the algorithms to be performed,
they all are required to run for 100,000 function evaluations and to obtain 100
nondominated solutions at most. The detailed settings for each of the eight
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Table 1: Parameterization of the algorithms. L is the individual length (number of tasks ×

number of employees).
Parameterization used in NSGA-II

Population Size 100 individuals
Selection of Parents binary tournament + binary tournament
Recombination simulated binary, pc = 0.9
Mutation polynomial, pm = 1.0/L

Parameterization used in SPEA2
Population Size 100 individuals
Selection of Parents binary tournament + binary tournament
Recombination simulated binary, pc = 0.9
Mutation polynomial, pm = 1.0/L

Parameterization used in PAES
Population Size 1 individual
Mutation polynomial, pm = 1.0/L
Archive Size 100

Parameterization used in DEPT
Population Size 32
Crossover Probability 90%
Mutation Factor 50%
Selection Scheme RandToBest/1/Binomial

Parameterization used in MO-FA
Population Size 32
Mutation Factor 50%
Alpha (α) 1
Beta (β0) 1
Gamma (γ) 1

Parameterization used in MOABC
Population Size 100
Mutation Probability 10%
Mutation Shift 30%
Scout Bees 5

Parameterization used in MOCell
Population Size 100 individuals (10 × 10)
Neighborhood 1-hop neighbors (8 surrounding solutions)
Selection of Parents binary tournament + binary tournament
Recombination simulated binary, pc = 0.9
Mutation polynomial, pm = 1.0/L
Archive Size 100 individuals

Parameterization used in GDE3
Population Size 100 individuals
Recombination Differential Evolution, CR = 0.1, F = 0.5

algorithms are included in Table 1. A solution to the problem is a vector of
floating point numbers in which the component i stores the dedication of em-
ployee ⌊i/T ⌋ to task i MOD T (where T is the number of tasks). With this
encoding, the typical operators from the multi-objective metaheuristic commu-
nity have been used (see Table 1). Finally, we want to clarify two relevant
points. On the one hand, we have not paid attention to the particular param-
eterization of the algorithms as we have used the standard values given in the
seminal works in which they are presented. Such a thorough analysis for each
combination algorithm/SPS instance is out of the scope of this work. On the
other hand, we want to remark again that the comparison is fair in terms of both
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the numerical performance (i.e., the size of the sampling in the search space)
and the maximum size of the approximated fronts (i.e., no algorithm is given
more chance to cover regions of the Pareto front by using nondominated sets of
unbounded size).

4.4. Repair Operator

Because of the size of the SPS instances addressed (see next section), it
has been very hard for all the algorithms to compute feasible solutions. We
found out that the employees’ overwork (Equation (15)) is the most difficult
constraint to meet. The reason is that the search operators are not endowed
with problem-specific knowledge so it is usual to find assignments in which one
or more employees exceed their maximum dedication. In order to deal with
such issue, we have used a repair operator that, whenever an overwork in the
assignment is detected, it is fixed by dividing the dedication of all the employees
to all the tasks by the maximum overwork of the employees. That is, the effect
of the operator is:

x′
ij =

xij

maxi,τ{ework
i (τ)} + ε

(17)

where ε = 0.00001 is used in order to prevent from inaccuracies in the floating-
point operations.

This operator increases the project duration of the tentative solution and
keeps the cost unchanged. That is: p′dur = pdur · (maxi,τ{e

work
i (τ)} + ε) and

p′cost = pcost. In addition, the new solution satisfies the third constraint (the one
related to the overwork). From the point of view of the algorithmic complexity,
the overhead introduced is the same as the evaluation of the solution, since
the coefficient used in the denominator is computed at the same time that the
solution is evaluated. If a solution violates the other constraints of the problem,
then it is penalized in the selection and replacement operators (it is the last one
selected).

4.5. Comparison of the MO algorithms

This first part of the analysis is devoted to compare the multi-objective
metaheuristics on the set of 36 SPS instances by using the HV indicator. Table 2
shows the median and interquartile range of the HV values of the algorithms for
each instance on 30 independent runs. A special notation appears in the table:
a gray coloured background has been used to better show the best (darker gray)
and second-best (lighter gray) performing algorithm.

The HV values draw a clear scenario: PAES has been able to approximate
the Pareto fronts with the best (highest) indicator values. It has ranked the
first in 34 out of the 36 instances studied in this work. Indeed, attending to the
output of the Friedman’s test (Table 3), PAES has reached an average ranking
of 1.0556 and, as a consequence, it has been established as the control method
for the 1 × N pos-hoc Holm’s test. It can be observed in the last column of
Table 3 that all the p-values included are lower than 0.05, so we can state that
the differences are statistically significant in all the cases (statistical confidence
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Table 2: Median and interquartile range of HV for all the algorithms and SPS instances.
Instance NSGA-II SPEA2 PAES DEPT MO-FA MOABC MOCell GDE3
i16-8 0.6560.035 0.5400.043 0.7300.032 0.3100.027 0.5390.030 0.3640.041 0.7160.039 0.7650.044
i16-16 0.4690.036 0.3720.040 0.8260.015 0.3250.062 0.6120.034 0.2280.042 0.5210.053 0.6550.039
i16-32 0.1470.023 0.0860.021 0.8110.010 0.2170.058 0.3860.147 0.1370.036 0.1770.039 0.4210.058
i16-64 0.1290.023 0.0810.022 0.8590.015 0.2790.038 0.3510.118 0.2070.072 0.1460.032 0.3510.037
i16-128 0.0490.021 0.0290.021 0.7240.013 0.1220.038 0.1210.105 0.0100.014 0.0470.022 0.2640.033
i16-256 0.0190.012 0.0100.010 0.6830.009 0.0740.038 0.0630.041 0.0180.013 0.0310.017 0.2250.029
i32-8 0.5380.036 0.4310.033 0.7230.018 0.1110.025 0.2110.030 0.1130.038 0.5800.035 0.6450.040
i32-16 0.1880.038 0.1260.014 0.8240.019 0.0350.022 0.3460.078 0.1230.031 0.2230.029 0.4020.067
i32-32 0.1250.024 0.0790.013 0.7430.015 0.1050.020 0.2760.057 0.1200.028 0.1430.016 0.3330.015
i32-64 0.0480.013 0.0270.010 0.7960.030 0.0420.019 0.2590.131 0.0620.025 0.0610.020 0.2200.030
i32-128 0.0400.011 0.0240.009 0.7270.015 0.0750.019 0.0630.012 0.0020.006 0.0350.016 0.1980.020
i32-256 0.0090.009 0.0000.000 0.6190.022 0.0070.014 0.0000.000 0.0000.000 0.0300.015 0.1940.016
i64-8 0.4690.048 0.3450.042 0.8110.015 0.0860.018 0.1450.028 0.0250.018 0.5260.038 0.5280.038
i64-16 0.2190.019 0.1540.015 0.9610.008 0.0240.008 0.3410.041 0.1730.074 0.2640.030 0.3220.044
i64-32 0.0650.014 0.0310.014 0.7980.012 0.0000.000 0.3120.044 0.0110.015 0.0590.015 0.2390.027
i64-64 0.0740.020 0.0460.012 0.8720.006 0.0000.005 0.0290.025 0.0000.000 0.0810.021 0.2580.024
i64-128 0.0260.009 0.0120.007 0.7370.014 0.0050.006 0.0000.002 0.0000.000 0.0230.011 0.1570.025
i64-256 0.0000.000 0.0000.000 0.6190.017 0.0000.000 0.0000.000 0.0000.000 0.0070.014 0.1500.022
i128-8 0.3200.025 0.2420.024 0.9870.005 0.0000.000 0.0730.038 0.0000.000 0.3720.045 0.4050.023
i128-16 0.2510.028 0.1790.026 0.9920.010 0.0000.000 0.0000.000 0.0000.000 0.3100.030 0.3060.033
i128-32 0.2110.016 0.1480.025 0.9830.009 0.0000.000 0.0000.000 0.0000.000 0.2670.029 0.2700.018
i128-64 0.0950.012 0.0690.010 0.9160.025 0.0000.000 0.0440.039 0.0000.000 0.1040.012 0.1690.016
i128-128 0.0280.011 0.0130.012 0.7810.014 0.0000.000 0.0000.000 0.0000.000 0.0370.014 0.1400.015
i128-256 0.0080.007 0.0000.003 0.8770.040 0.0150.011 0.7230.063 0.2540.062 0.0270.009 0.1480.018
i256-8 0.3060.023 0.2330.014 0.9980.003 0.0000.000 0.0000.014 0.0000.002 0.3580.020 0.3670.033
i256-16 0.1540.015 0.1210.008 0.9890.011 0.0000.000 0.2750.033 0.1600.109 0.1740.011 0.2320.031
i256-32 0.0860.012 0.0680.008 0.9270.020 0.0000.000 0.0020.014 0.0000.000 0.1040.014 0.1550.011
i256-64 0.0270.004 0.0140.006 0.7440.030 0.0000.000 0.0000.002 0.0000.000 0.0270.009 0.1160.011
i256-128 0.0180.006 0.0100.004 0.7550.015 0.0000.000 0.0000.000 0.0000.000 0.0250.008 0.1100.010
i256-256 0.0030.005 0.0000.002 0.8680.048 0.0000.000 0.8800.151 0.2360.048 0.0230.009 0.1060.014
i512-8 0.2380.020 0.1820.025 0.9960.004 0.0000.000 0.0220.039 0.0100.032 0.2730.023 0.2170.017
i512-16 0.1040.013 0.0850.006 0.9630.016 0.0000.000 0.0180.034 0.0000.000 0.1190.011 0.1430.013
i512-32 0.0650.010 0.0480.009 0.9630.011 0.0000.000 0.0000.000 0.0000.000 0.0810.013 0.1170.019
i512-64 0.0300.013 0.0190.006 0.8220.016 0.0000.000 0.0000.000 0.0000.000 0.0450.013 0.1020.011
i512-128 0.1980.005 0.1910.003 0.8220.013 0.1020.004 0.1040.006 0.0950.003 0.2160.013 0.2490.009
i512-256 0.0000.000 0.0000.000 0.5610.046 0.0000.000 0.0000.000 0.0000.000 0.0200.008 0.0720.009

Table 3: Average Friedman’s rankings with Holm’s correction (α = 0.05).

Algorithm Ranking pHolm

NSGA-II 4.6528 1.3942E-9
SPEA2 5.9861 6.7127E-17
PAES 1.0556 —
DEPT 6.6111 3.8548E-21
MO-FA 5.0000 3.3501E-11
MOABC 6.6944 1.0937E-21
MOCell 3.7083 8.6655E-6
GDE3 2.2917 3.2273E-2
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(b) Zoom at cost 3100000 to 3170000 currency units and duration 10 to 35 weeks.

Figure 1: 50%-Attainment surfaces of the i32-64 instance with full (a) and zoomed (b) views.

at 95%). The second best performing algorithm is GDE3, with an average rank
of 2.2917 (it scores the best in one instance and 26 the second best out of 36
instances). The opposite side of the ranking is occupied by MOABC, DEPT,
and SPEA2. We want to clarify that the zero HV values obtained by many of
the algorithms are due to the normalization process that simply discards the
nondominated solutions that are out of the limits of the RPF built up for each
instance.
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In order to better explain these results, Figure 1 displays the 50%-attainment
surface of the i32-64 instance, which has the representative features that mostly
appear in all studied instances. We have included both (a) the full plot and
(b) a zoom of the region with 3,100,000 to 3,170,000 of the project cost and 10
to 35 weeks of its duration2. Figure 1(a) clearly explains the high HV value
obtained by PAES. The approximated sets of this algorithm are the ones that
cover a larger portion of the objective space, what means that it is the one that
can provide the decision maker with a more diverse set of options. This fact
becomes more evident as long as the instances are larger. We can therefore
conclude that PAES has the desirable property of scalability, which is precisely
the aim of this study. Such a behavior is justified by the constrained search space
of the SPS problem, the repair operator used, and the disruption provoked by
recombination operators. Indeed, once PAES reaches the feasible region of any
given instance, its search engine is specially well suited here as it is based on a
mutation operator. This mutation changes, on average, one single assignment
of an employee to a task (pm = 1/L, where L is the length of the solution) and,
as a consequence, it is rather easy to keep the exploration within the feasible
region (no need for the repair operator to be applied). On the other hand, it is
rather easy for the algorithms that recombine solutions to incur in employees’
overwork because of the big changes induced in the resulting project schedules.
The repair operator then fixes such infeasibility by decreasing the employees’
dedication, which usually leads to a large increment in the project duration but
keeping its cost almost the same. However, we also want to show the benefits
of solution recombination in Figure 1(b): in this zoomed region, it can be seen
that the solutions from NSGA-II, SPEA2, MOCell, and GDE3 clearly dominate
those from PAES. That is, these algorithms have sampled this area of the search
space better than PAES, so if the decision maker is particularly interested in
this region of the Pareto front, PAES is not recommended.

As to the scalability capabilities of the algorithms, let’s start by analizing
their behavior with an increasing number of employees. The general trend in
all the algorithm but PAES is that, the higher the number of employees, the
lower (worse) the HV value. In order to support this claim, Figure 2 shows, for
each algorithm, the average HV over all the SPS instances addressed with the
same number of employees (i.e., i16-8, i32-8, i64-8, ...). This reported tendency
is specially relevant (a higher negative slope) in NSGA-II, MOCell, and GDE3.
Again, the recombination of solutions on large instances justifies this fact. In-
deed, as the instance size gets larger, the approximated fronts get narrower with
respect to the RPF (which is mainly determined by the solutions provided by
PAES) and the HV values get smaller as well. In the case of PAES, it can be
observed that its averaged HV values start decreasing in instances with more
than 64 employees.

If we now turn to evaluate the scalability in terms of the increasing number

2We have removed from the legend those algorithms that do not have any nondominated
solution in this portion of the objective space.
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Figure 2: Average HV value over all the SPS instances with the same number of tasks for all
the algorithms with an increasing number of employees.

Figure 3: Average HV value over all the SPS instances with the same number of employees
for all the algorithms with an increasing number of tasks.

of tasks, similar conclusions can be drawn. On the one hand, more tasks mean
increasing difficulty, and this is what Table 2 reflects. In general, the HV values
decrease with the number of tasks. This fact is shown in Figure 3, in which we
have aggregated, for each algorithm, the average HV over all the SPS instances
addressed with the same number of tasks (i.e., i16-8, i16-16, i16-32, ...). The
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key issue again is the algorithm with/without solution recombination. All but
PAES do not scale properly. However, the aggregated HV values of PAES even
increase with the number of tasks. In this work, in which scalability is the feature
of the algorithms under investigation, these results are encouraging because
this algorithm has shown outstanding results (always bearing in mind the HV
indicator). The attainment surfaces previously displayed have pointed out that
these results are mainly due to the wide diversity of project plans reached (with
low costs and long durations). However, PAES is also outperformed by NSGA-
II, SPEA2, MOCell and GDE3 in the region of high-cost short-duration project
schedulings.

Finally, regarding wall clock time, the execution of the algorithms requires
between a few seconds in the case of the smallest instances to around 5 hours
in the case of the largest instances.

4.6. Analysis of the problem solutions

In this section we focus on the solutions obtained using the multi-objective
algorithms. We want to analyze the features of these solutions, showing corre-
lations between their features and the region in the objective space they can be
found. In particular, we are interested in analyzing the participation of each
employee in the project, epari , and the amount of human resources spent on each
task, tahrj . We want to analyze how these values change as the solutions move in
the objective space. For each proposed solution by one algorithm for one single
instance, E +T values have to be analyzed. For each instance, all the solutions
of the approximated Pareto front obtained in the different independent runs of
the algorithms are considered. The epari and tahrj values are then computed for
each employee and each task in all the previous solutions. The Spearman rank
correlation coefficients [30] between all the epari , tahrj , pdur, and pcost are then
calculated. This means a large amount of data to process and show. In order
to reduce this amount of data without losing interesting information we focus
on some relevant correlations to show how are the solutions of the different al-
gorithms and how the solutions in the approximated Pareto front change as the
size of the instance increases.

But first, let us illustrate the meaning of the correlations in this context
with a first example: the correlations found in the i16-8 instance for PAES.
The correlation coefficients are shown in Figure 4. An arrow up means positive
correlation and an arrow down means negative correlation. The absolute value
of the correlation is shown in gray scale (the darker the higher).

The first observation we can highlight is the clear inverse correlation between
project cost and duration. This is an expected result and it gives no relevant
information since we are analyzing solutions belonging to sets of nondominated
solutions where an increase in cost implies a decrease in duration.

If we focus on the project cost and the participation of the employees we
observe that for all the employees except e6 the correlation is positive. This
means that when the cost of the solutions proposed by the algorithm increases,
the participation of these employees increases, that is, these employees spend
more and more time in the tasks of the project as we move in the objective space
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Figure 4: Spearman rank correlation coefficients between pcost, pdur, epari and tahrj in the
i16-8 instance for the solutions obtained with PAES.

to solutions with higher cost and shorter duration (it is also possible to observe
the negative correlation of these employees with project duration). However,
the participation of e6 is reduced. This means that the fraction of workload that
is performed by e6 is reduced. The reason is that e6 is the cheapest employee,
i.e., her/his salary is the lowest one. The algorithm prefers to assign most
of the work of the project to e6 because it earns less money. However, when
the project duration is reduced (and the cost increased) the other employees
have necessarily to increase their participation. We can also observe a negative
correlation between e6 and the rest of the employees, as expected from the
previous discussion.

Let us now focus on the tasks. There is a positive correlation between pcost
and the tahrj , as we would expect; and a negative correlation between pdur and

tahrj , also expected. The rest of the correlations among the tasks and employees
can be explained based on the previous observation. In effect, if we move in
the Pareto front to the region of minimum project duration (and maximum
cost) the value tahrj for all the tasks must increase in order to finish the project
sooner. This is the reason why all the correlations between the tasks is positive.
For the same reason, the correlation between the tasks and the workload of the
employees is positive except for e6. In summary, the information provided by
the correlations between tahrj and the rest of parameters is not relevant in this
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case. This also happens in the rest of the instances.
Now we are ready to compare the solutions in the approximated Pareto front

obtained by the different algorithms. For the sake of clarity in the figures we will
focus on the i16-8 instance because it is the smallest one, but similar conclusions
can be obtained for the other instances. The correlations are shown in Figures 5
and 6.
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(d) NSGA-II

Figure 5: Spearman rank correlation coefficients between pcost, pdur, epari and tahrj in the
i16-8 instance for the solutions obtained with PAES, GDE3, MOCell, and NSGA-II.

The first conclusion we obtain after a comparison of the correlations in all
the algorithms is that the solutions in the approximated Pareto front of the
worst algorithms have low correlations between the considered parameters. For
example, the correlation between the project cost or the project duration and
the amount of human resources in the tasks is low, meaning that it is not
always the case that more people is working on the tasks when the project
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(c) DEPT
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(d) MOABC

Figure 6: Spearman rank correlation coefficients between pcost, pdur, epari and tahrj in the
i16-8 instance for the solutions obtained with MO-FA, SPEA2, DEPT, and MOABC.

duration is reduced (and the project cost increased). We can also find more
inverse correlations between the parallel tasks performed by the employees. A
simple explanation for this behaviour is that the solutions obtained by these
algorithms are far from the optimal Pareto set and, thus, they are solutions
that can be easily improved in many different ways since they are dominated
by other solutions. As a consequence, different paths exist in the solution set
that provides the same Pareto front and some of these paths have the observed
correlations. That is, we can decrease the duration of the project and increase
its cost without increasing the workload of the employees and the amount of
human resources per task. As the algorithms approach the optimal Pareto set
the number of different paths is reduced, limiting the correlations to the ones
observed in PAES.
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In short, we can conclude that if the correlations observed are high and pos-
itive between the amount of human resources and the correlations between the
parallel tasks performed by the employees is mainly positive, then the corre-
sponding approximated Pareto optimal set is near the actual Pareto optimal
set. If we find low or inverse correlations among the amount of human resources
of the tasks and/or a large number of inverse correlations between the number
of parallel tasks performed by the employees then we have reasons to think that
the approximated Pareto optimal set is far from the actual one.

Now we are interested in analyzing the features of the solutions as the size
of the instances increase. For this analysis we focus on only one algorithm,
PAES, which was the best algorithm according to the Hypervolume. We also
remove the correlations related to the amount of human resources per task
because these correlations give no relevant information in these instances, as we
previously illustrated. Thus, we only show the correlations of the number of
parallel tasks per employee and the duration and the cost of the project for the
approximated Pareto set obtained by PAES in the instances with 512 tasks and
8 to 64 employees. The correlations are shown in Figure 7.

We can observe that as the number of employees increases more inverse
correlations can be found. We can also see how low correlations appear more
frequently in the instances with more employees. The employees having low
correlations or inverse correlations with the rest of employees are the ones earn-
ing less money. The explanation is similar as the illustrative case of Figure 4.
The cheapest employees are used in the low-cost long-duration projects. With a
small number of employees the cheapest one is used. As the number of employ-
ees increases, more than one employee is used in these low-cost projects. This
is the reason why more than one employee have inverse correlations. When this
happens we observe that the ones with the highest inverse correlation are those
with the lower salary, but as the salary increase, the correlation decreases in
absolute value and at some point it changes to a positive correlation. That is,
using the correlations between the employees it is possible to classify the em-
ployees according to their salary. The employees with low salary are those with
a strong inverse correlation with most of the employees. The employees having
a low correlation with their partners have a higher salary but still low enough.
Finally, most of the employees fall in the third category with higher salary and
positive correlations with their partners.

5. A Tool for a Project Manager

We try to describe in this section how can a project manager profit from
a tool containing the techniques proposed here. We have already mentioned
that the analysis of the solutions based on correlations presented in Section 4.6
can provide some information to the project manager. However, in her/his
daily work a project manager needs a more clear, easy to interpret and direct
information of the proposed solutions. A plot with the approximated Pareto
front of the solutions obtained after the search is not enough for a project
manager to decide what is the best solution. The reason is that there are
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Figure 7: Spearman rank correlation coefficients between pcost, pdur and epari in the instances
with 512 tasks and 8 to 64 employees for the solutions obtained with PAES.

some constraints and preferences that are not included in the formulation of
the problem, they are only in the mind of the manager. For example, perhaps
one of the employees gets stressed when s/he is working simultaneously in two
tasks requiring programming skills, or one of the tasks has a high probability
of being delayed by an external circumstance. These additional preferences
and constraints determine the final decision of the project manager and they
cannot be easily included in the mathematical model of the problem, since
many of them are subjective. Furthermore, even if we could include some of
them, others probably couldn’t, and perhaps it makes no sense to use a complex
mathematical model that, in the end, is not able to satisfy all the requirements.

A reasonable alternative to a more complex model of the problem is to
provide the maximum amount of information to the project manager about any
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particular solution obtained by the algorithms. In our case, in addition to the
project duration and cost we can provide the workload of the employees and
the Gantt diagram showing the starting and finishing dates of the tasks. This
can be done in a software tool for decision support in which the manager just
click in a solution of the approximated Pareto front and all this information is
shown. Furthermore, the tool could be a front-end for the algorithms and could
allow the user to change any data of the instances and run the algorithm again
to obtain a new Pareto front with the new changes. This kind of tool opens the
door to the study of “what if” scenarios. The manager could study in this way
what happens if the workload of an employee is reduced, what if the cost of a
tasks is increased, what if one employee is sick for some weeks, etc. In Figure 8
we show a possible GUI for such kind of tool.

Figure 8: Hypothetical software tool for decision support of a software project manager.

We have partially implemented this kind of tool and, for illustration pur-
poses, we show the workload of the employees along the project for instance
i16-8 in Figure 9. On the left we can see the workload of the solution having the
minimum duration in the Pareto front and on the right we show the solution
with minimum cost. Both solutions were obtained by PAES. We can observe
how the solution found by the algorithm to minimize the cost is the one that
assigns all the work to the cheapest employee (e6 in this case). In general, this
is not a good solution in a real project. Thanks to the information provided by
a tool like the one mentioned here, a project manager can decide to discard this
solution.
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(a) Minimum duration (b) Minimum cost

Figure 9: Workload of the employees along the project for the instance i16-8. The solutions
are the extreme solutions of an approximated Pareto front obtained by PAES.

6. Conclusions and Future Work

In this paper we have analyzed the scalability of eight multi-objective meta-
heuristic algorithms when they are applied to the Software Project Scheduling
problem. The efficient resolution of the problem is important in the context of
software companies, which have to deal with large software projects. We have
performed an experimental evaluation using a benchmark of 36 automatically
generated instances with increasing size and both, the hypervolume indicator
and the attainment surfaces, have been used in order to evaluate the quality
of the approximated fronts. The results have reported encouraging conclusions
taking into account the property of the algorithms being investigated (i.e., scal-
ability). PAES has shown to be not only the algorithm that scales the best
but also the one with the best solution quality (in terms of HV). The attain-
ment surfaces have allowed us to refine this outstanding behavior by graphically
displaying the reason of these high HV values: PAES is able to reach projects
with low cost and long durations, but it is outperformed by other algorithms
in a narrow region of the objective space related to high-cost short-duration
schedules. We have also gone one step further by analyzing the properties of
the obtained solutions by computing the correlations between objectives, the
assigned dedication of the employees, and the tasks.

A future line of research would be the design of a new version of the problem
including some real-world issues that are not present in the current formulation,
like communication overhead in a group of employees or solution robustness. Es-
pecially interesting is the design of new hybrid algorithms that combine together
the best features of the algorithms analyzed in this work as well as a theoret-
ical analysis of the problem landscape so as to devise advanced operators and
algorithms.

24



Acknowledgment

This work has been partially funded by the Spanish Ministry of Science and
Innovation and ERDF (European Regional Development Fund) under contract
TIN2008-06491-C04 (M∗ project), by the Spanish Ministry of Economy and
Competitiveness and the ERDF under contracts TIN2012-30685 (BIO project)
and TIN2011-28194 (roadME project), and by the Andalusian Government un-
der contract P07-TIC-03044. Thanks also to the Fundación Valhondo, for the
economic support offered to David L. González-Álvarez to make this research.

References

[1] B. W. Boehm, C. Abts, A. W. Brown, S. Chulani, B. K. Clark, E. Har-
rowitz, R. J. Madachy, D. J. Reifer, B. Steece, Software Cost Estimation
with Cocomo II, 1st Edition, Prentice Hall PTR, Upper Saddle River, NJ,
USA, 2000.

[2] P. Brucker, A. Drexl, R. Mohring, K. Neumann, E. Pesch, Resource-
constrained project scheduling: Notation, classification, models, and meth-
ods, European Journal of Operational Research 112 (1) (1999) 3–41.

[3] C. K. Chang, M. Christensen, A net practice for software project manage-
ment, IEEE Software 16 (6) (1999) 80–88.

[4] A. Barreto, M. Barros, C. M. L. Werner, Staffing a software project: A
constraint satisfaction and optimization-based approach, Computer and
Opererations Research 35 (10) (2008) 3073–3089.

[5] E. Alba, F. Chicano, Software project management with GAs, Information
Sciences 177 (11) (2007) 2380–2401.

[6] G. Antoniol, M. D. Penta, M. Harman, Search-based techniques applied
to optimization of project planning for a massive maintenance project, in:
21st IEEE International Conference on Software Maintenance (ICSM 2005),
2005, pp. 240–249.

[7] M. di Penta, M. Harman, G. Antoniol, The use of search-based optimization
techniques to schedule and staff software projects: an approach and an
empirical study, Software – Practice and Experience 41 (5) (2011) 495 –
519.

[8] C. Blum, A. Roli, Metaheuristics in Combinatorial Optimization: Overview
and Conceptual Comparison, ACM Computing Surveys 35 (3) (2003) 268–
308.

[9] M. Harman, S. A. Mansouri, Y. Zhang, Search-based software engineer-
ing: Trends, techniques and applications, ACM Computing Surveys 45 (1)
(2012) 11.

25



[10] J. F. Chicano, F. Luna, A. J. Nebro, E. Alba, Using multi-objective meta-
heuristics to solve the software project scheduling problem, in: Proceedings
of GECCO, 2011, pp. 1915–1922.

[11] K. Deb, Multi-objective optimization using evolutionary algorithms, John
Wiley & Sons, 2001.

[12] C. A. Coello Coello, G. B. Lamont, D. A. Van Veldhuizen, Evolutionary
Algorithms for Solving Multi-Objective Problems, 2nd Edition, Springer,
New York, 2007.

[13] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multi-
objective genetic algorithm: NSGA-II, IEEE Trans. on Ev. Comp. 6 (2)
(2002) 182–197.

[14] E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the strength Pareto
evolutionary algorithms, in: EUROGEN 2001, 2002, pp. 95–100.

[15] J. Knowles, D. Corne, Approximating the nondominated front using the
pareto archived evolution strategy, Evolutionary Computation 8 (2) (2000)
149 – 172.

[16] A. Rubio-Largo, M. A. Vega-Rodŕıguez, J. A. Gómez-Pulido, J. M.
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