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Abstract

Objective
To develop a classifier that tackles the problem of determining the risk of a

patient of suffering from a cardiovascular disease within the next ten years. The
system has to provide both a diagnosis and an interpretable model explaining the
decision. In this way, doctors are able to analyse the usefulness of the information
given by the system.
Methods

Linguistic fuzzy rule-based classification systems are used, since they pro-
vide a good classification rate and a highly interpretable model. More specifi-
cally, a new methodology to combine fuzzy rule-based classification systems with
interval-valued fuzzy sets is proposed, which is composed of three steps: 1) the
modelling of the linguistic labels of the classifier using interval-valued fuzzy sets;
2) the use of theKα operator in the inference process and 3) the application of
a genetic tuning to find the best ignorance degree that each interval-valued fuzzy
set represents as well as the best value for the parameterα of theKα operator in
each rule.
Results
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The suitability of the new proposal to deal with this medicaldiagnosis classi-
fication problem is shown by comparing its performance with respect to the one
provided by two classical fuzzy classifiers and a previous interval-valued fuzzy
rule-based classification system. The performance of the new method is statisti-
cally better than the ones obtained with the methods considered in the comparison.
The new proposal enhances both the total number of correctlydiagnosed patients,
around 3% with respect the classical fuzzy classifiers and around 1% versus the
previous interval-valued fuzzy classifier, and the classifier ability to correctly dif-
ferentiate patients of the different risk categories.
Conclusion

The proposed methodology is a suitable tool to face the medical diagnosis
of cardiovascular diseases, since it obtains a good classification rate and it also
provides an interpretable model that can be easily understood by the doctors.

Key words: Linguistic Fuzzy Rule-Based Classification Systems,
Interval-Valued Fuzzy Sets, Genetic Fuzzy Systems, Cardiovascular Diseases.

1. Introduction

Cardio Vascular Diseases (CVDs) affect the heart and they are usually caused
by some disorder that hinders the blood flow. These diseases imply a high risk
of suffering from severe illness like heart attacks or thrombosis among others.
They are the main health problem in adult population provoking a high death
rate in many developed countries [1]. Therefore, it is important to obtain an early
diagnosis of the risk of suffering from such diseases so as tostart a proper medical
treatment to reduce the chances of developing them.

In order to estimate such risk, Spanish doctors look up specific tables called
REGICOR [2]. These tables consider different variables like gender, age, presence
or absence of diabetes, systolic and diastolic blood pressure, total cholesterol and
HDL cholesterol values, among others. The value provided bythis procedure
quantifies the risk of the patient of suffering from a CVD during the next ten
years. In this manner, different categories of patients according to this value can
be established. Hence, the problem of estimating the patients’ risk category can
be considered as a classification problem.

Fuzzy Rule-Based Classification Systems (FRBCSs) [3] are a useful tool to
face classification problems. These systems are widely usedbecause of their good
performance and their capability to build an interpretablemodel which uses com-
mon linguistic terms for the user in the problem domain. Moreover, they offer
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the possibility of mixing information coming from different sources, i.e, expert
knowledge, mathematical models or empirical measures. Forthis reason, FR-
BCSs are suitable to deal with medical diagnosis problems since, besides from
providing the patients diagnosis, doctors can know the reasoning behind the deci-
sion by looking the rule or set of rules involved in the final classification.

FRBCSs use fuzzy logic [4] in order to model the linguistic termsused by
the system. A key step for the subsequent success of fuzzy systems is the defini-
tion of the membership functions representing the problem information as well as
possible. Sometimes, it is really difficult to determine themembership functions
because the same concept can be defined in different ways by different persons [5].
This problem led Zadeh to suggest the notion of type-2 fuzzy sets [6] as an exten-
sion of fuzzy sets [4]. A particular case of type-2 fuzzy setsare the Interval-Valued
Fuzzy Sets (IVFSs) [7] that assign as membership degree of the elements to the
set an interval instead of a number. IVFSs allow the system uncertainties to be
modelled whereas their computational effort is less than the one demanded by the
use of type-2 fuzzy sets.

In [8], the authors proposed an Interval-Valued FRBCS (IV-FRBCS),that is,
a FRBCS whose linguistic labels are modelled with IVFSs enhancing the per-
formance of classical FRBCSs. In this manner, the inherent ignorance related to
the definition of the membership functions was modelled by means of the IVFSs.
Then, the shape of every IVFS considered in the system was optimized by using
an evolutionary tuning approach. Furthermore, an Interval-Valued Fuzzy Rea-
soning Method (IV-FRM) was proposed, where the first two steps, namely, the
computation of the matching and the association degrees foreach rule of the FR-
BCS, used IVFSs. In order to apply the remainder of the method asin the classical
FRM [9], a number was given as a result of the association degree. To compute it,
the two values associated with the lower and upper bounds of the intervals were
averaged, which may cause that the system does not make the most of the interval
information.

In this paper, in order to handle the interval information inthe IV-FRM, we
introduce theKα operator defined by Atanassov [10] to compute the association
degree. In this manner, the information given by the IVFSs isexploited, since
other values rather than the average one can be obtained. As aresult of introducing
theKα operator, the values for theα parameters need to be found. In order to do
so, we propose an evolutionary tuning to compute the bestα value for each rule
involved in the inference process and therefore, to providethe system with a new
mechanism to take advantage of the extra information given by the IVFSs.

In the experimental study, we will show that our new IV-FRBCS allows one
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to improve the behaviour of the previous approaches when predicting the risk
of suffering a CVD and hence, it allows helping the primary care doctors. The
new FRBCS will only use as inputs the physical values that can be measured
directly by the doctor, i.e, gender, age, smoking condition, blood pressure and
body mass index. The objective of the system is to provide thedoctors with a
quick and reliable estimation of the patients’ risk category, in such a way that
they can make better decisions like deriving the patient to the secondary health
centres (hospitals) or starting an appropriate treatment according to the patient’s
risk category if necessary.

In order to show the validity of our proposal, in the experimental study we will
use two well-known FRBCSs, namely the Chi et al.’s method [11] andthe Fuzzy
Hybrid Genetics-Based Machine Learning (FH-GBML) algorithm[12]. We will
study the behaviour of our new methodology with respect to both the initial FR-
BCSs and the previous IV-FRBCS [8]. To this end, we will consider the standard
classification accuracy as well as the classification rate for each one of the three
different CVD risk categories in which the patients can be classified.

The paper is organized as follows: the problem of the CVDs is presented
in Section 2. Next, the basic concepts of IVFSs and FRBCSs along with the
description of the previous proposal to combine FRBCSs with IVFSs are given
in Section 3. Then, in Section 4, we describe in detail both our new proposal to
introduce theKα operator in the IV-FRM and the genetic tuning of the parameter
α. Section 5 shows the experimental framework along with the analysis of the
obtained results. Finally, the main conclusions of this paper are drawn in Section
6.

2. Problem description

CVDs affect different parts of the body, mainly the heart and the arteries of
the brain, heart and legs. Most of these diseases are inducedby the decrease
of either the calibre or the diameter of the arteries. The lack of blood supply
does not only damage the heart but also the legs and the brain,which can lead to
health disorders implying an increase of the risk of suffering from heart attacks,
thrombosis or rupture of blood vessels, among others.

Among adult population, CVDs are the main health problem in general, being
in the first place of the list of death cause of persons older than forty five years
in many countries. As an example, about 100,000 persons per year die in Spain
due to these diseases, representing a death rate of 75-150 deaths per 100,000 in-
habitants depending on the region. This rate is similar in most of the developed
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countries [1]. Therefore, it is really important to estimate the patients’ risk of
developing a CVD in order to obtain a quick diagnosis to try to avoid their conse-
quences.

The main CVD risk factors were identified in the Framingham Heart Study
published in 1951 [13]. In Fig. 1 the different factors involved in the CVDs are
depicted. Although these factors are known, their epidemiological relevance is
different and, in some cases, they need extra studies so as tocorrectly weight them.
In order to estimate the risk of suffering from a CVD, a global evaluation using
the Anderson Table [14] should be made. This table is easily applicable, being
advised to estimate the total coronary risk. Specifically, the following categories
of risk are defined in this table:

• High CDV risk : persons having a probability greater than 25% of suffering
from a CVD in ten years.

• Moderate CDV risk : the probability of a person to develop a CVD in ten
years is between 10% and 20%.

• Low CDV risk : the person have a probability less than 10% of suffering
from a CVD in ten years.
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Figure 1: Cardiovascular disease involved factors.

The lower number of CVD events suffered in Spain led to developthe REGI-
COR tables [2], which are a version of the Anderson tables adapted to the Spanish
population. Thereafter, Marrugat et al. published an estimation of the CVD risk
in Spain using the calibrated Framingham equation [13]. In this paper, authors
showed that in ten years, the probability of the Spanish population of suffering
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from a CVD estimated by their method is thirteen times lower than the probability
computed using the Framingham approach with the patients considered as high
risky when using the Framingham method.1.

In any case, the use of these tables is only advocated for primary care pre-
vention health centres. That is, a patient derived to secondary prevention (due to
previous events of ischemia, cerebral vascular or peripheral arterial accidents) has
a high risk independently of the value computed using the aforementioned tables.

The patients having the main priority to be monitored and treated are those
who belong to secondary prevention. They are followed by thepatients belonging
to primary care prevention having a bigger CDV risk, that is, patients having high,
moderate and low CVD risks. This priority order makes possible:

• To avoid wasting resources of the secondary health centres due to the fre-
quent referral of patients without an appropriate initial evaluation.

• To establish a good collaboration and coordination betweenthe nursery ser-
vices of both the primary care and the secondary care attention health cen-
tres.

• To reduce the waiting period for the first visit to the cardiovascular pathol-
ogy consultation.

• To analyse the effectiveness of the therapeutic medical treatment prescribed
to patients of the different groups of risk.

Furthermore, in the primary care health centres, the categorization of the pa-
tients according to their CVD risk allows to control the different risk factors af-
fecting the patients of each category. Therefore, the main objective of the primary
care doctors is to make a proper diagnosis and pharmaceutical prescription, which
is adjusted to the medical evidence of each patient.

3. Interval-Valued Fuzzy Rule-Based Classification Systems

In this section, we first provide some preliminary concepts on both IVFSs and
FRBCSs. Then, we describe the previous model that employs IVFSsto represent
the linguistic labels of FRBCSs [8], which is the base for our newproposal.

1We must remark that we have to be careful with this result since the validation period of the
hypothesis is still in process
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3.1. Interval-Valued Fuzzy Sets
IVFSs [15] are an extension of Fuzzy Sets [4], which was presented in 1975

by Sambuc in his doctoral thesis [7]. He applied IVFSs to dealwith a medical
diagnosis problem in thyroid pathology. Later, in the eighties, Gorzalczany [16]
and Turksen [17] gave relevance to IVFSs, becoming definitively established. We
must point out that IVFSs, which are also known as Interval Type-2 Fuzzy Sets
(IT2FSs), are a particular case of Type-2 Fuzzy Sets. IVFSs have been success-
fully applied in classification [8, 18] or image processing [19, 20] tasks, among
others.

IVFSs assigns an element of the latticeL([0, 1]) as the membership degree of
the elements to the set.L([0, 1]) is defined as follows:

We denote byL([0, 1]) the set of all closed subintervals of the closed interval
[0, 1]:

L([0, 1]) = {x = [x, x]|(x, x) ∈ [0, 1]2 andx ≤ x} .

We must point out that we denotex = [x, x] in order to refer to anyx ∈
L([0, 1]).

L([0, 1]) is a partially ordered set with respect to the relation≤L defined as
x ≤L y if and only if x ≤ y andx ≤ y for anyx, y ∈ L([0, 1])

(L([0, 1]), ≤L) is a complete lattice where the smallest element is0L = [0, 0]
and the largest is1L = [1, 1].

Once the latticeL([0, 1]) is defined, we can recall the definition of IVFSs.

Definition 1. [16, 17, 21] An Interval-valued fuzzy set (IVFS)A on the universe
U 6= ∅ is a mappingAIV : U → L([0, 1]).

Obviously,AIV (u) = [A(u), A(u)] ∈ L([0, 1]) is the membership degree of u
∈ U .

There are three basic operations widely used in fuzzy set theory, namely the
negation, the union and the intersection. In this paper, we use the intersection
to model the conjunction among the antecedents of the rules,as usual, modelled
using t-norms [22, 23, 24].

A triangular norm (t-norm) [22],T : [0, 1]2 → [0, 1], is an associative, com-
mutative, increasing function such thatT (1, x) = x for all x ∈ [0, 1].

The extension of t-norms on IVFSs is defined as follows:

Definition 2. [21, 25] A functionT : (L([0, 1]))2 → L([0, 1]) is said to be an
interval-valued t-normif it is commutative, associative, increasing in both argu-
ments (with respect to the order≤L), and has the neutral element1L.
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Definition 3. [21, 25] An interval-valued t-norm is said to bet-representable
if there are two t-normsTa and Tb in [0, 1], beingTa ≤ Tb, so thatT(x, y) =
[Ta(x, y), Tb(x, y)] for all x, y ∈ L([0, 1]).

All interval-valued t-norm without zero divisors verify that T(x, y) = 0L if
and only ifx = 0L or y = 0L.

In this paper, we model the intersection of IVFSs by means of t-representable
interval-valued t-norms without zero divisors that will bedenotedTTa,Tb

, since
they can be represented byTa andTb as defined above.

When several numerical values need to be combined into a single value we use
aggregation functions [23, 24], which are non decreasing mappingsM : [0, 1]n →
[0, 1] such thatM(0, . . . , 0) = 0 andM(1, . . . , 1) = 1.

A possible way of linking IVFSs and fuzzy sets is by means of theKα oper-
ator, which was proposed by Atanassov in 1983 [10]. This operator is applied to
an interval and provide a number within the interval, depending onα ∈ [0, 1]. A
deep study about this operator can be found in [26].

Definition 4. [10] Atanassov’s operatorKα is a functionKα : L([0, 1]) → [0, 1]
such that

Kα(x) = αx+ (1− α)x with α ∈ [0, 1].

3.2. Fuzzy Rule-Based Classification Systems

FRBCSs are widely used in data mining, since they allow the inclusion of all
the available information in system modelling, i.e, expertknowledge, empirical
measures or mathematical models. They have the advantage ofgenerating a very
interpretable model and, therefore, allowing the knowledge representation to be
understandable for the users of the system. Their importance is clearly shown by
their application to deal with real applications [27, 28]. The two main components
of FRBCSs are:

• Knowledge Base: it is composed of both the Rule Base (RB) and the Data
Base, where the rules and the membership functions are storedrespectively.

• Fuzzy Reasoning Method: it is the mechanism used to classify examples
using the information stored in the knowledge base.

Any classification problem consists ofm training examplesxp = (xp1, . . . , xpn, yp),
p = 1, 2, . . . ,m belonging toM classes wherexpi is theith variable value (i =
1, 2, . . . , n) andyp is the class label of thep-th training example.
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In this work, we use fuzzy rules of the following form for our FRBCSs:

RuleRj : If x1 is Aj1 and . . . andxn is Ajn then Class =Cj with RWj

whereRj is the label of thejth rule,x = (x1, . . . , xn) is ann-dimensional exam-
ple vector,Aji is an antecedent fuzzy set (we use triangular shaped membership
functions),Cj is a class label, andRWj is the rule weight [29]. In this work the
rule weight is computed using the Penalized Certainty Factor(PCF) defined in
[30] as:

RWj = PCFj =

∑

xp∈ClassCj

µAj
(xp)−

∑

xp /∈ClassCj

µAj
(xp)

m∑

p=1

µAj
(xp)

(1)

whereµAj
(xp) is the matching degree of the patternxp with the antecedent part

of the fuzzy ruleRj.
Fuzzy learning methods are the basis to build a FRBCS. In this work, we

use two recognized fuzzy rule learning algorithms, i.e., Chiet al.’s rule genera-
tion method [11] and the Fuzzy Hybrid Genetics-Based MachineLearning (FH-
GBML) algorithm [12].

Chi et al. fuzzy rule learning method is the extension of the Wang and Mendel
algorithm [31] to solve classification problems. This method is one of the most
used learning algorithms in the specialized literature dueto the simplicity of the
fuzzy rule generation method. It generates a rule for each example in the training
set following two main steps: 1) The antecedent part is composed ofn fuzzy
sets, which are the ones associated with the linguistic label having the maximum
membership degree for each variable of the problem; 2) The consequent part is
composed by the label of the class of the example and the corresponding rule
weight. When several rules with the same antecedent are generated, the one with
the maximum rule weight is selected and the remainder ones are deleted.

FH-GBML algorithm [12] allows one to design a fuzzy rule-based system
avoiding the necessity of having linguistic knowledge fromdomain experts, like
other genetic fuzzy systems need [32, 33, 34]. The basis of the method con-
sists of a Pittsburgh approach where each rule set is handledas an individual. It
also contains a Genetic Cooperative Competitive Learning approach (an individ-
ual represents a unique rule), which is used as a kind of heuristic mutation for
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partially modifying each rule set, reaching a high search ability to efficiently find
good fuzzy rules. Consequently, it generates a high quality and robust knowledge
base.

Once the knowledge base of the system has been generated, a mechanism to
induce the class of new examples to be classified is required.In this paper, we use
the general FRM by Cord́on et al [9]. Letxp = (xp1, . . . , xpn) be a new example
to be classified,L denote the number of rules in the RB andM being the number
of classes of the problem; then, the steps of the FRM are as follows:

1. Matching degree, that is,the strength of activation of the if-part of each rule
in the RB for the examplexp. A conjunction operator (t-norm) is applied in
order to carry out this computation.

µAj
(xp) = T (µAj1

(xp1), . . . , µAjn
(xpn)), j = 1, . . . , L. (2)

2. Association degree. Theassociation degree of the examplexp with the class
of each rule in the RB.

bkj = µAj
(xp) ·RW k

j , k = Class(Rj), j = 1, . . . , L. (3)

3. Pattern classification soundness degree for all classes. We use an aggrega-
tion function,f , that combines the positive degrees of association calculated
in the previous step for each class.

Yk = f(bkj , j = 1, . . . , L andbkj > 0), k = 1, . . . ,M. (4)

4. Classification. We apply a decision functionF over the soundness degrees.
This function will determine the class labell corresponding to the maximum
value, that is, the decision functionF is the maximum.

F (Y1, . . . , YM) = argmax(Yk)
k=1,...,M

(5)

3.3. Interval-Valued Fuzzy Rule-Based Classification System

In [8], authors proposed a FRBCS whose linguistic labels were modelled by
means of IVFSs to deal with the ignorance related to the definition of the mem-
bership functions. This method is composed of three steps: 1) the modelling of
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the linguistic labels by means of IVFSs; 2) the extension of the FRM to work with
the new representation of the fuzzy terms and 3) the application of a genetic tun-
ing approach to optimize the ignorance degree represented by each IVFS. In the
remainder of this section we describe these steps in detail.

The first step consists of generating a knowledge base in which the linguistic
labels composing the antecedent of the rules are modeled with IVFSs. To do so,
an initial knowledge base is generated by means of any rule learning algorithm (e.
g., the two rule learning methods introduced in Section 3.2). Then, starting from
the fuzzy sets of the initial knowledge base each IVFSs is constructed as follows:

• The lower bound is the initial fuzzy set.

• The upper bound is centred at the maximum of the lower bound (being
symmetrical in both sides) and the amplitude of its support is determined
by the value of the parameterW , which initially is 50% greater than the one
of the lower bound.

An example of an IVFS constructed with this procedure is depicted in Fig. 2(b).
Since the IVFSs are constructed after the rule generation process, the interpretabil-
ity of the initial FRBCS is maintained because the same set of rules is used.

Due to the modelling of the linguistic labels by means of IVFSs, the rule
weight is compounded by a tuple (RW j, RW j), whose computation is performed
applying Eq. (1) considering the lower and the upper bounds respectively:

RW j =

∑

xp∈ClassCj

Aj(xp)−
∑

xp /∈ClassCj

Aj(xp)

m∑

p=1

Aj(xp)

(6)

RW j =

∑

xp∈ClassCj

Aj(xp)−
∑

xp /∈ClassCj

Aj(xp)

m∑

p=1

Aj(xp)

(7)

whereAj(xp) andAj(xp) are the matching degrees of the patternxp associated
with the lower and the upper bounds of the IVFSs composing theantecedent part
of the fuzzy ruleRj.

Since the lower bound of each IVFS is the same fuzzy set used bythe rule
learning algorithm, the rule weight associated with the lower bound (RW j) is
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equal toRWj, which is the rule weight assigned to the rules generated by the
fuzzy learning method.

The second step of the method consists of the extension of theoriginal FRM
introduced in Section 3.2 to take into account the ignorancedegree represented by
the IVFSs in the inference process. The two first steps are modified as follows:

• Matching degree between the antecedent of the rule and the example: We
apply a t-representable interval-valued T-norm both to thelower bound and
the upper bound.

[µAj
(xp), µAj

(xp)] = TTa,Tb
([Aj1(xp1), Aj1(xp1)], . . . ,

[Ajn(xpn), Ajn(xpn)]), j = 1, . . . , L. (8)

• As association degreewe take the mean between the product of the match-
ing degree by the rule weight associated with the lower and the upper bound,
respectively.

bkj =
µAj

(xp) ·RW k
j + µAj

(xp) ·RW
k

j

2
k = Class(Rj), j = 1, . . . , L. (9)

At this point a single number associated with the class is obtained and there-
fore, the rest of the algorithm can be applied as in the general FRM [9].

The last step of the method is the application of a tuning approach to modify
the support of the upper bound of each IVFS. This is due to the fact that the
same value for the parameterW is used in the initial construction of every IVFS,
hence, the same degree of ignorance is considered for each fuzzy term. However,
the ignorance related to the definition of each membership function is probably
different. For this reason, a genetic tuning proposal is applied to compute the best
ignorance degree (determined by the parameterW ) for each IVFS considered in
the FRBCS.

The parameterW takes values within the interval [0, 1], that is, from the
situation in which both bounds are the same (W = 0) to the situation in which the
amplitude of the upper bound is twice than that of the lower bound (W = 1). The
amplitude of the support of the upper bound is uniformly distributed according to
W . The noticeable situations are depicted in Figure 2.
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b) W = 0.5 c) W = 1.0a) W = 0.0

Figure 2: Gene values representation in the genetic amplitude tuning. a) Upper and lower bounds
are the same. b) Initial construction of the IVFSs. c) The amplitude of the upper bound is twice
than the one of the lower bound

4. On the use of theKα operator in the interval-valued fuzzy reasoning
method

This section defines our new proposal. It involves both the introduction of the
Kα operator in the extended FRM with IVFSs recalled in Section 3.3 as well as
the description of the genetic optimization process of the value of the parameter
α.

As we have described in Section 3.3, in [8] the first two steps of the FRM
are extended in order to be able to work with IVFSs. These two steps are the
computation of the matching and the association degrees (see Equations (8) and
(9), respectively). In Eq. (9), the association degree is computed as the mean
between the association degrees associated with the lower and the upper bounds.
For this reason, we can apply theKα operator so as to compute other values rather
than the average one. Therefore, we propose to compute the association degree as
follows:

bkj = Kαj
([AsL, AsU ]), k = Class(Rj), j = 1, . . . , L, (10)

whereAsL = min(Aj(xp) ·RW k
j , Aj(xp) ·RW

k

j )

andAsU = max(Aj(xp) · RW k
j , Aj(xp) ·RW

k

j ).

Equations (9) and (10) are equivalent whenαj = 0.5, since it is the value
which allows one to obtain the intermediate value of the interval. However, by
setting the value of eachαj to 0.5 the information provided by the IVFSs may
not be optimally exploited. Therefore, the extra information given by the IVFSs
could be better handled by selecting a different value for each parameterαj, that
is, adapting it for each rule.
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According to the steps of the FRM, Eq (10) is applied for each rule of the
system. Therefore, the number ofαj parameters is equal to the number of fuzzy
rules in the rule base, that is,j = {1, . . . , L}. In order to try to make the best of
the information provided by the IVFSs, we propose to optimize the values of the
parametersαj, which can lead to improve the behaviour of the system if, indeed,
there is information given by the IVFSs that was not properlyhandled before.

In order to accomplish this optimization problem, we consider evolutionary
methods because they have proved to be appropriate tools both to deal with med-
ical problems [35, 36] and to tune the values of the parameters of inference sys-
tems [37]. The tuning approach is aimed at computing both thebest ignorance
degree that each IVFSs represents [38] and the best value forthe parametersαj so
as to provide the system with a better handling of the extra information given by
the IVFSs.

We consider the use of the CHC evolutionary algorithm [39] because it pro-
vides a good trade-off between diversity and convergence, being a good choice
in complex problems [40]. The components needed to design this process are
explained below:

• Coding scheme: The chromosome is composed of two parts. The first part
(CAmp) is devoted to perform the tuning of the support of the upper bound
of the IVFSs, whereas the second part (CKα

) is aimed at carrying out the
tuning of the value of theαj parameter for each rule. In both parts we
consider the use of a real codification and their genes take values within the
range[0, 1].

CAmp = (W 1

1 , ...W
nk

1 , ...,W 1

n , ...W
nk

n ),

CKα
= (α1, ..., αL),

CAmp+Kα
= CAmp + CKα

.

wheren is the number of variables,nk is the number of linguistic labels of
thenth variable andL is the number of fuzzy rules composing the system.

• Initial individual pool: we consider the initialization of three individuals.
The first one having all the genes equal to0.5, which considers the original
proposal of FRBCS with IVFSs, representing both the initial construction of
the IVFSs and the original computation of the association degree (Eq. (9)).
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All the genes of the second and the third individuals are set to 0 and1, re-
spectively, to include the extreme values. Finally, the remainder individuals
are randomly initialized in[0, 1].

• Chromosome Evaluation: We use the most common metric for classifica-
tion, i.e, the accuracy rate.

• Crossover Operator: We consider the Parent Centric BLX (PCBLX) op-
erator, which is based on the BLX-α operator. Two parents are crossed if
one half of their hamming distance is above a predetermined threshold,L.
Since we consider a real coding scheme, we have to transform each gene
considering a Gray Code (binary code) with a fixed number of bits per gene
(BITSGENE). In this way, the threshold value is initialized as:

L = (#Genes ·BITSGENE)/4.0

where#Genes stands for the total length of the chromosome.L is decre-
mented byBITSGENE when there are no new individuals in the next
generation.

• Restarting approach:When the threshold value is lower than zero, all the
chromosomes are regenerated at random within the interval[0, 1]. Further-
more, the best global solution found so far is included in thepopulation to
increase the convergence of the algorithm following the elitist scheme.

5. Experimental Study

The experimental study aims to show the global improvement and the ad-
vantages of the application of our approach for both the patient and the health
institution. To do so, we analyse the improvements achievedby the application of
our new methodology with respect to the both initial IV-FRBCSs and the original
FRBCS considered in this work.

We first describe the experimental framework and then, we analyse the achieved
results on predicting the category of risk of the patients bystudying the global ac-
curacy rate and checking in detail the classification ability of the proposals to
differentiate patients of the three categories of risk.
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5.1. Experimental Framework

In this section, we describe the data-set used in the generation of the FRBCS
to predict the risk of suffering from a CVD along with the configuration of the
fuzzy rule learning algorithms used to learn the initial rule base.

The dataset consists of 828 clinical cases obtained from theclinical records of
seven primary care attention health centres of Pamplona (Navarra, Spain) during
2008. Among them, 270 cases have a high CDV risk, 281 of these patients suffer
from moderate CDV risk whereas the remainder 277 cases present a low CVD
risk. We have respected the Spanish Law of personal data protection (LOPD).
In each clinical case, a doctor has assigned a CVD risk category following the
REGICOR tables. Furthermore, the doctor also has taken into account all the data
in the medical history of the patient. Therefore, some data can differ from the one
recorded in the tables since doctors takes into account their own knowledge.

As input values we use the following variables:

• Gender.

• Age.

• Smoking condition.

• Blood systolic pressure.

• Blood diastolic pressure.

• Body mass index.

These variables are collected to provide a fast diagnosis tool to the doctor,
since all of them can be obtained in a few minutes in a simple medical encounter.
Furthermore, the provided diagnosis is objective, since the knowledge is learned
from the data, and the system avoids making blood tests, which are necessary
to compute the cholesterol value used to determine the risk category using the
REGICOR tables.

To carry out the experiment we have considered a 10x10-fold cross-validation
model (10x10-fcv), which is a standard method in classification [41]. A 10-fcv
model is produced by splitting the dataset in ten equal sizedfolds. Then, the
combination of nine of them is used to learn the classifiers and the remainder one
is used to test their quality when dealing with unseen patients. This process is
repeated ten times using a different test fold in each run. Therefore, after all the
process all the patients will be treated as unseen cases. In the 10x10-fcv scheme,
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the 10-fcv model is repeated 10 times using a different seed in each repetition to
perform the splitting. Furthermore, for the approaches that apply a genetic tuning,
we have repeated the 10x10-fcv scheme three times using a different seed for the
genetic process each time. As final result, the average performance over all the
testing folders is taken to measure the quality of the classifiers.

In order to compare two methods, we have used the non-parametric Mann-
Whitney’s U statistical test [42]. The logic behind this statistical procedure is to
sort the results of both methods in ascending order and then assigning a rank to
each result in such a way that the worst result receives the rank 1, whereas the
best one receives the maximum rank (two times the number of results). If there
are ties, the corresponding ranks are equally assigned. Next, for each method, the
sum of the ranks is computed. As a result, if a method is regularly better than
the other, the sum of its ranks will be much greater than that of the other method,
which is reflected by the low p-value obtained with the test. Otherwise, if both
methods provide similar results, the sum of their ranks willbe similar leading to
obtaining a large p-value.

Along the paper is stated that we use two different FRBCSs, namely the Chi
et al. algorithm [11] and the FH-GBML method [12]. The configuration used
for both FRBCSs is the same, consisting of the product t-norm as conjunction
operator, the PCF to compute the rule weight and the usage of the maximum as
aggregation function. Furthermore, we have considered theuse of three labels per
variable in the case of the Chi et al. fuzzy rule learning method, since it provides
a good classification rate and a high interpretability of thefinal model. Regarding
the FH-GBML algorithm, we have considered the following values for the specific
parameters of the genetic process:

• Number of fuzzy rules: 5· d rules.
• Number of rule sets: 200 rule sets.
• Crossover probability: 0.9.
• Mutation probability: 1/d.
• Number of replaced rules: All rules except the best-one (Pittsburgh-part,

elitist approach), number of rules / 5 (GCCL-part).
• Total number of generations: 1000 generations.
• Don’t care probability: 0.5.
• Probability of the application of the GCCL iteration: 0.5.

whered stands for the dimensionality of the problem (number of variables).
Finally, we have considered the following values for the parameters of the

genetic tuning applied to optimize both FRBCSs:
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• Population Size: 50 individuals.
• Number of evaluations: 5000· number of variables.
• Bits per gene for the Gray codification (for incest prevention): 30 bits.

5.2. Analysis of the Usefulness of the Proposed Method

Table 1 shows the results achieved by the two learning algorithms used in this
work (Chi and FH-GBML). The results obtained in training and testing are shown
in the left and right part of the table respectively. In each part, the results achieved
with the three different methods in this contribution are presented: the initial non
interval-valued FRBCS (Base), the previous proposal to combineFRBCSs with
IVFSs and genetic tuning (IVFSAmp) and the new proposal introduced in Sec-
tion 4 (IVFS Amp+Kα). The best result achieved in testing is stressed inbold-
face. We must point out that the testing results are analysed, since they show
the classification ability of the classifier when dealing with unseen patients (those
who have not been used in the learning process).

Table 1: Results in training and testing of both learning methods with the different approaches
considered in this paper.

Chi

Training Testing

Base IVFSAmp IVFS Amp+Kα Base IVFSAmp IVFS Amp+Kα

72.44 75.10 77.29 70.81 72.53 73.82

FH-GBML

Training Testing

Base IVFSAmp IVFS Amp+Kα Base IVFSAmp IVFS Amp+Kα

72.72 76.47 77.83 70.88 72.82 73.71

The results of Table 1 show that our new methodology allows one to improve
the classification accuracy of the initial FRBCS for both fuzzy rule learning meth-
ods. The performance of both base classifiers is increased around 3% when apply-
ing our new method, which is a notable enhancement. Regardingthe IVFSAmp
method, the improvement of IVFSAmp+Kα is of 1.29% and of 0.89% when us-
ing the Chi et al. and the FH-GBML algorithm, respectively.

In order to stress the importance of the improvement obtained by our new ap-
proach, we have applied the Mann-Whitney’s U statistical test to compare IVFSAmp+Kα
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with the base classifier as well as with the IVFSAmp approach. The obtained
ranks and p-values for the approaches using the Chi et al. and the FH-GBML
algorithms as learning methods are shown in the top and bottom part of Table 2,
respectively. From these results it can be observed that regardless the algorithm
used to learn the fuzzy rule base, the proposed method statistically outperforms
the remainder approaches.

Table 2: Results of the Mann-Whitney’s U statistical test to compare the IVFSAmp+Kα proposal
(R+) against the remainder classifiers (R-). The base classifier is the one defined by Chi et al.

Chi

Comparison Average ranks (R+) Average ranks (R-) p-value

IVFS Amp+Kα vs. Base 107056.5 73243.5 1.66E-15
IVFS Amp+Kα vs. IVFS Amp 97942.5 82357.5 2.42E-4

FH-GBML

Comparison Average ranks (R+) Average ranks (R-) p-value

IVFS Amp+Kα vs. Base 105409.5 74890.5 6.54E-13
IVFS Amp+Kα vs. IVFS Amp 94985 85315 0.023

Thereafter, we perform a deep analysis on the behaviour of our methodology
in two specific scenarios which can provide benefits for both the patients and the
medical institutions. In order to do so, we use confusion matrices [43], which
allow to easily show the number of correctly classified patterns and the class in
which the patterns are classified when they are misclassified. Hence, the source
of the failures can be analysed.

Table 3 shows the confusion matrices of the results providedboth in train-
ing (top part of the table) and testing (bottom part of the table) by the Chi et
al. rule learning algorithm. The first column shows the results obtained with the
classic FRBCS, the confusion matrices provided by the previousIV-FRBCS are
presented in the second column and the results of our new proposal are introduced
in the last column. Similarly, Table 4 presents the confusion matrices for the ap-
proaches applied using the FH-GBML rule learning algorithm.In order to obtain
these confusion matrices we have summed the one hundred confusion matrices of
the 10x10-fcv scheme. For the approaches that apply a genetic tuning, we have
made the same process and, as final result, we have computed the average among
the three confusion matrices obtained when applying the methods with the three
different seeds.

The first specific scenario is the one in which the patient would have a real low
risk degree of suffering a CVD. If patients are not classified with such risk degree
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Table 3: Cumulative confusion matrices in training and testing for the methods applied using the
Chi et al. algorithm. The real class (R.) and the predicted class (P.) are shown in the first column
and row of each matrix respectively.

Training
Base IVFS Amp IVFS Amp+Kα

R.
P.

0 1 2
R.

P.
0 1 2

R.
P.

0 1 2

0 23818 463 649 0 24018 317 595 0 23993 369 569
1 5669 12893 6728 1 4461 14984 5845 1 3576 15524 6190
2 985 5796 17519 2 893 6282 17125 2 629 5431 18240

Testing
Base IVFS Amp IVFS Amp+Kα

R.
P.

0 1 2
R.

P.
0 1 2

R.
P.

0 1 2

0 2619 63 88 0 2637 57 77 0 2632 66 72
1 669 1348 793 1 584 1534 692 1 511 1550 749
2 103 678 1919 2 103 750 1848 2 74 683 1943

Table 4: Cumulative confusion matrix in training and test for the methods applied using the FH-
GML algorithm. The real class (R.) and the predicted class (P.) are shown in the first column and
row of each matrix respectively.

Training
Base IVFS Amp IVFS Amp+Kα

R.
P.

0 1 2
R.

P.
0 1 2

R.
P.

0 1 2

0 22337 1797 796 0 23311 972 647 0 23469 952 509
1 3457 16049 5784 1 2945 16094 6251 1 2462 16878 5951
2 884 6596 16820 2 575 5958 17767 2 482 6001 17817

Testing
Base IVFS Amp IVFS Amp+Kα

R.
P.

0 1 2
R.

P.
0 1 2

R.
P.

0 1 2

0 2422 229 119 0 2500 167 103 0 2502 180 88
1 444 1691 675 1 396 1641 773 1 350 1717 743
2 117 744 1839 2 87 709 1904 2 72 727 1901

they would not have the appropriate medical treatment, which may imply an over
cost for the patients since they have to buy drugs. Regarding the primary care
health centres, in this situation they suffer from a waste ofresources because the
monitoring of such patients is more frequent than those witha low CVD risk de-
gree. From Tables 3 and 4 it can be observed that after the application of our new
methodology the number of misclassification of patients with a low risk degree in
both FRBCSs diminishes. Numerically, when using the Chi et al. algorithm as
base classifier the number of misclassifications is reduced in eighteen and thirteen
when applying the IVFSAmp and IVFSAmp+Kα methods, respectively. Re-
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garding the FH-GBML algorithm, IVFSAmp and IVFSAmp+Kα increases the
number of correctly classified patients in seventy-eight and eighty with respect to
the base classifier, respectively.

Another important situation is the one in which the patient would have a real
moderate or high risk of suffering a CVD. The differentiationbetween both risk
degrees is also important, since the monitoring frequency as well as the restric-
tions and medical treatments are different. From the results shown in Tables 3 and
4, it can be noticed that the number of patients having a real moderate or high risk
that are misclassified as low risk diminishes when any of the IV-FRBCSs are ap-
plied with respect to the original fuzzy system. However, wecan see the following
behaviour of the previous proposal using IVFS (IVFSAmp) (when compared ver-
sus the results provided by the classical method) when classifying patients having
real moderate or high CVD risks:

• Chi et al. algorithm: the number of correctly classified patients having a
moderate CVD risk is increased; otherwise, the classification rate of patients
having a high CVD risk is decreased.

• FH-GBML method: high CVD risk patients classification rate is improved,
whereas the performance over moderate CVD risk patients is worsen.

In this scenario, it is important to observe how our new proposal (IVFSAmp+Kα)
allows one to improve the previously mentioned behaviour leading to enhance the
performance of both classical FRBCSs for the three different classes composing
the CVD diagnosis problem.

6. Conclusion

In this paper, we have introduced theKα operator in the IV-FRM of a previ-
ous IV-FRBCS [8] to provide the system with a mechanism to handlethe extra
information given by the IVFSs. In this manner, the performance of the previous
IV-FRBCS is improved, since there is interval information thatwas not properly
exploited when applying the mean between the values associated with the lower
and the upper bounds. Furthermore, we have proposed a genetic tuning method
that simultaneously modify both the support of the upper bound of the IVFSs and
the value of theα parameter for each rule.

We have applied our new methodology to tackle a medical diagnosis prob-
lem in which patients are classified according to their category of risk of suffer-
ing from a CVD. From the obtained results, it can be concluded that the use of

21



IVFS Amp+Kα allows the enhancement of the classification ability of the non-
interval fuzzy system for the three possible classes and, consequently, it outper-
forms its global performance. In addition, our new method maintains the good
behaviour of the previous proposal when classifying patients having a low risk
whereas it highly enhances its performance for patients having moderate or high
risks. In this manner, it can be stated that our new methodology is a suitable
tool to face this medical diagnosis problem because it statistically improves the
remainder classifiers.
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