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Abstract

Many geographical applications have to deal with spatigab that reveal an intrinsically vague
or fuzzy nature. A spatial object is fuzzy if locations exisat cannot be assigned completely to the
object or to its complement. Spatial database systems aagr&ghical Information Systems (GIS) are
currently unable to cope with this kind of data. Based on ailavle abstract data modelfoizzy spatial
data typedor fuzzy pointsfuzzy linesandfuzzy regionshat leverages fuzzy set theory and fuzzy point
set topology, this article proposesaatial Plateau Algebrgéhat providesspatial plateau data typess
an implementation of fuzzy spatial data types. Esgétial plateau objeatonsists of a finite number of
crisp counterparts that are all adjacent or disjoint to edloar, are associated with different membership
values, and hence form differeplateaus The formal framework and the implementation are based on
well known, exact models and implementations of crisp sipdtta typesSpatial plateau operatioress
geometric operations on spatial plateau objects are esguless a combination of geometric operations
on the underlying crisp spatial objects. This article affeconceptually clean foundation for implement-
ing a database extension for fuzzy spatial objects and dipeirations, and demonstrates the embedding
of these new data types as attribute data types in a datatisesma as well as the incorporation of fuzzy
spatial operations into a database query language.
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1 Introduction

Spatial databases as the data management foundation ofapbmgl Information Systems (GIS) represent
geometries such as point, line, and region objects by dpdatia types calledpatial data type§41]. These
data types can be used in the same way as attribute data s/pesgers, floats, or characters. Their objects
have the fundamental and tacitly assumed property thatateygrisp, that is, they have a definite extent,
boundary, and shape. However, many, or even most, spaj@itebn reality cannot be described by crisp
concepts since they are inherently fuzzy, vague, or indetete. A spatial object is fuzzy if it contains
locations that cannot be assigned completely to the objetd ibs complement. Hencepatial fuzziness
captures the property of objects that do not have sharp lavi@sdand crisp interiors but rather vague or
indeterminate boundaries and interiors. Examples argala&ocial, or cultural phenomena like oceans,
pollution areas, and English speaking regions. It is, fanegle, impossible to say with precision where the
Indian Ocean ends and the Arabian Sea begins since thetivansttween them is smooth and seamless.
So far, available spatial database systems and GIS areeutoafgipresent indeterminate spatial objects.

From a modeling standpoint, especially the GIS community pr@pagated the use @fzzy set the-
ory [56] to characterize and describe indeterminate spatial. dehe spatial database community has pro-
duced a few approaches to the conceptual modeling of suahhtaughfuzzy spatial data typesn previous
work [42], at an abstract, fuzzy point set theoretic and yuzaint set topological level, we have defined
fuzzy pointsfuzzy linesandfuzzy regiondy assigning anembership valuenging from 0 to 1 to each point
of such an object by an appropriately defined and applicapmtificmembership functiorA membership
value indicates how strongly or weakly a point belongs to lajea. From an implementation standpoint,
adequate implementation approaches to the representstimzzy spatial data types in spatial database
systems and GIS are lacking. A first main reason is that treagmbroximation of the fuzzy boundary of a
fuzzy spatial object is insufficient since the interior o€Bwan object is usually fuzzy too. A second main
reason is that each of the infinitely many points of the ioteof a fuzzy spatial object can have a different
membership value and thafiaite representation of such a constellation is challenging éffidudt.

The goal of this article is to propose an appropriate impla@ateon concept for these types that enables
their efficient representation, querying, and maniputativa database context. Our approach introduces an
executable algebréor type systeincalled Spatial Plateau Algebr#hat bases the implementation of fuzzy
spatial data types, operations, and predicates pilataau conceptThe idea is to providspatial plateau
data typesthat approximate a fuzzy point, fuzzy line, or fuzzy regidmjext by aplateau point plateau
line, or plateau regionobject respectively. Eacépatial plateau objectonsists of a finite number of crisp
and finitely representable counterparts (that is, crisptpdine, or region objects) that are all adjacent or
disjoint to each other and that are associated with difteneembership values which forplateausand
which determine the degree of belonging to the fuzzy spati@ct. A main benefit of the Spatial Plateau
Algebra is that its formal framework and its implementatame based on well known, general, and exact
models and implementations of crisp spatial data typess &hables its own exact and robust definition
and implementation. Geometric operations (like geomenion, intersection, and difference) on spatial
plateau objects are callegpatial plateau operationand are expressed as a combination of corresponding
operations on the underlying crisp spatial objects. Heogeapproach enablexecutable specificatioros
the spatial plateau operations such that they can be imbtegdissed as implementations. The spatial plateau
data types are, in particular, closed under spatial platgeumations. Further, spatial plateau objects are
represented asompact storage structurdarrays) that are directly processed by geometric algosttavoid
any serialization and deserialization cost, and thus erabkfficient object transfer between main memory
and database. This article offers a precise and conceptlaiin foundation for implementing a database
extension for fuzzy spatial objects and operations, andodestrates the embedding of these new data types
as attribute data types in a database schema as well as thpadration of fuzzy spatial operations into
queries formulated in a database query language. Spaitelbpl predicates implementing fuzzy topological



predicates and fuzzy directional predicates as well asicn@tteau operations implementing fuzzy metric
operations are not considered in this article.

Sectior 2 discusses related work on the fuzzy approach t@mbkgata handling, both from a conceptual
and an implementation perspective. It also briefly reviesspcspatial data types as the underlying basis of
our Spatial Plateau Algebra. Sectidn 3 introduces spaftiéau objects as an implementation concept for
fuzzy spatial objects and provides a formal definition ofg¢patial plateau data types. Secfidon 4 focuses on
the specification of spatial plateau operations for theejucounterparts in terms of their crisp counterparts.
An emphasis is on the plateau versions of the fuzzy geonsstioperationfuzzy unionfuzzy intersectign
andfuzzy differenceThese versions are namplateau unionplateau intersectionandplateau difference
Fuzziness can be expressed in different ways. Hence, basiegtablished and predefined understanding of
fuzziness for our spatial plateau operations, we also ptesgariation of these operations that is context-
dependent and lets the application or user select an ajgi@pterpretation of fuzziness. Sectidn 5 shows a
few application scenarios and queries that leverage thextipes of the Spatial Plateau Algebra. Seclibn 6
discusses implementation aspects of the Spatial Plategebrd. Sectiofi]7 draws some conclusions and
considers future work.

2 Related Work

In this section, we discuss related work that has been peapfis modeling fuzzy spatial objects and that
is relevant for describing our implementation concept dasecrisp spatial data types. As indicated in the
Introduction, the goal of this article is to propose an impdmtation concept for fuzzy spatial data types
in terms of spatial plateau data types that themselves asdban well known crisp and complex spatial
data types for point, line, and region objects. Correspuyidj fuzzy spatial operations are implemented
in terms of spatial plateau operations that themselves asedoon well known crisp spatial operations.
Hence, in Sectionh 211, we first delineate the available nsoofeuzzy spatial objects. Sectibn R.2 deals with
implementation approaches to fuzzy spatial objects. Implgations are missing so far and only available
for indeterminate spatial objects that are based on a 3sldogic. Finally, Sectioh 213 gives a concise
overview of crisp spatial data types and operations as tiwed@tion of our implementation concept.

2.1 Approaches to Modeling Fuzzy Spatial Objects

Fuzzy set-based modebst onfuzzy set theorfb6], which describes thadmission of the possibilitigiven

by amembership functigrthat an individual is a full or partial member of a set. Itaesf to the vagueness
resulting from the imprecision of the meaning of a conceppatial fuzziness an intrinsic feature of a
spatial object itself and describes the vagueness of sudbjant which certainly has an extent but which
inherently cannot or does not have a precisely definabledsyrand/or interior. Examples @lizzy spa-
tial objectsinclude mountains, valleys, biotopes, polluted areas, a@hns, which cannot be rigorously
bounded by a sharp line and which can have a blurred interior.

The deployment of fuzzy set theory and fuzzy logic for spaigplications and spatial analysis methods
has gained increasing popularity in the geoscience and @t8nunities and also led to a large amount of
literature on fuzzy approaches in the GIS domain. A spatiatept is vague or fuzzy if locations exist that
cannot be completely associated with the concept or wittoitsplement. For example, when mapping veg-
etation, it is difficult to determine whether a certain léoatbelongs to one vegetation class or to another.
Examples from the geosciences that exhibit transition zam&ead of sharp boundaries and that have been
modeled with fuzzy concepts are geomorphological uhits48i types and boundaries [16,/34], landscape
objects[[11], forest types|[4], and soil pollution classegmvironmental applications [28]. The work id [7]
introduces fuzzy geographical objects for modeling natobgects with indeterminate boundaries. Fuzzy
spatial objects also play a role in fuzzy architectural igp@nalysis [[2] which applies fuzzy concepts to



architectural spatial planning and analysis and expldrespatial formation and architectural space inten-
sity within architectural structures. The authors(ofl [22,,[33] deal with qualitative spatial and temporal
reasoning using fuzzy logic. The approaches_in [23, 51] dathl fuzzy representations of geographical
boundaries in GIS. The author in |47] defines concepts like emd boundary of a fuzzy region and gives
examples of membership functions for modeling fuzzy regiorhe approach in [19] classifies geographic
objects according to the features of crispness and vagsieridbeir interior and boundary. Geographic
objects can have a crisp interior and crisp boundary, a erispor and fuzzy boundary, a fuzzy interior and
crisp boundary, or a fuzzy interior and fuzzy boundary. Tloekan [50] presents a fuzzy query approach in
order to introduce more natural language expressions ifffouSer interfaces. The authors [in[52] propose
a fuzzy relational data model for geographic informaticaghetuple is annotated with a membership value.

The references mentioned so far demonstrate the usefufiiegzy concepts in geoscience applications
from a modeling standpoint. However, they do not deal withiisues of representing, storing, retrieving,
and querying fuzzy spatial objectsfuzzy spatial databasetcreasingly, there is interest in pursuing these
goals. The work in[] presents fuzzy set theoretic appreadar handling imprecision in spatial analysis
and introduceduzzy regionsas a binary relation on the domain &# (N denotes the set of natural num-
bers). Distance and directional metrics on fuzzy regiomsatestrate their possible use in qualitative spatial
analysis. The studies inl[5] 6] introdubezzy plane geometgnd provide alternative definitions for each
of the three categories of fuzzy points, fuzzy lines, andyuzgions. One definition in each category is
selected with respect to its capability to be visualizedzzyypoints and fuzzy lines have an areal structure
so that one could describe them as special kinds of fuzzpmegiThe work in[[5]7] proposes a concentric
core-boundary model for simple fuzzy regions and assumesrmtonically decreasing membership func-
tion from the core towards the boundary. For the deternonatif topological relationshipsy-cut level
regions of a fuzzy region are used. The authors i [35] praggeatihe incorporation of fuzzy spatial data and
operations into a fuzzy object-oriented data model andodata Fuzziness of spatial objects is modeled in
a class hierarchy such that the membership of a class ingeyaass need not be crisp. Once fuzzy mem-
bership values have been assigned to (spatial) objectsy {spatial) operations can be defined on them.
The data structures and algorithms provided by the Spdagdd&u Algebra can help the authors implement
their approach. The approach |in [20] defifiezzy partitionover the Euclidean plane to model fuzzy spatial
objects and distinguishes their possibly overlappingyumierior, fuzzy boundary, and fuzzy exterior. The
study in [45] represents a fuzzy region by a core and a boyrttat are approximated by thdirzzy mini-
mum bounding rectangle3he work in [17] leveragegeneralized constrainisitroduced by Lofti Zadeh to
cope with imperfect spatial information and relies on a maalyied logic based on extended possibilistic
truth values.

The approach i [42] provides the foundatiorfufzy spatial data typdser fuzzy pointsfuzzy linesand
fuzzy regionsnd also specifielizzy spatial operationkke fuzzy spatial unionfuzzy spatial intersectign
andfuzzy spatial differencelhe author presents an abstract specification in whictyfsgatial objects are
defined as special fuzzy sets olR#. A similar type system ofague spatial data typesith a comprehen-
sive set of operations is introduced in [18]. Instead of #rent“fuzzy”, the authors use the term “vague”.
The work in [46] offers a similar (informal) concept of fuzeggions but different concepts of fuzzy points
and fuzzy lines which have an areal structure too. The Saladéeau Algebra uses especially the models
and concepts in [18, 42] as a specification for its implent@arta With some modifications, our approach
could also be applied to the kind of fuzzy spatial objectshay aire defined in [46].

The work in [43] proposes a conceptual model and an implestient model of fuzzy spatial objects
that arenot defined on the Euclidean plane but on a discrete geometriaithoralledgrid partition. It takes
into account finite-precision number systems availableoimputers. Membership values are assigned to
the points, edges, and cells as elements of the grid partiind fuzzy objects are built from these grid
elements.

An important requirement for a model of fuzzy spatial olgeist that the fuzzy spatial data types are



closed under geometric operations. This means, for exanfiglenodel defines a concept of fuzzy region
objects, then the geometric intersection, union, and rdiffee of two fuzzy region objects should yield
a fuzzy region object again according to the correspondipe tiefinition. Invalid result objects will let
operations on them fail. Unfortunately, from all the modeited in this subsection, only the models in
[18,(42] satisfy this requirement.

2.2 Approaches to Implementing Fuzzy Spatial Objects

To the author’s knowledge, an implementation of fuzzy spatata types, or, at least, an implementation
of an adequate approximation of them, does not exist soriahd crisp case, all points of a spatial object
belong completely to that object so that a linear boundapyesentation can adequately serve as a finite
representation. Line objects can be represented by a finitdber of segments, and each segment can be
finitely described by its two boundary endpoints. Regioreoty can be represented by a finite number of
cycles. Each cycle can be represented by a finite number ofes#tg, and each segment can be finitely
described by its two boundary endpoints. In the fuzzy caseam® confronted with the problem that each
point of a spatial object is associated with a membershipevtilat is an element of the infinite range of real
numbers between 0 and 1 in order to indicate partial memiperBht only a finite numben of membership
values can be explicitly represented in a computer systehis dmounts to am-valued approximation
approach and to amvalued logic.

For the case that = 3 holds, several models (for example, [13] [14, 38]) have Ipeeposed that lead
to feasible and efficient implementations. Due to the stastriction ofn to 3, we cannot regard these
approaches as fuzzy spatial object models but they helpttes baderstand the concept and implementation
idea of the Spatial Plateau Algebra. Without going into idleteespite some conceptual differences, they
have all in common that they are 3-valued approximation @ggres which, for an indeterminate spatial
object, model parts thatefinitelybelong to this object, parts that definitely notbelong to this object, and
parts thatperhapsbelong to this object. In our own approach, caldabue Spatial AlgebréVASA [38],
these parts are calldatrnel parts exterior parts andconjecture partsespectively. All approaches rest on
a 3-valued logic with the truth valudrue, false andmaybe Their attractiveness and benefit rests on the
fact that their conceptual and implementation framewobaised on well known, general, and exact models
of crisp spatial data types (see Secfion 2.3) and thus on a mitge of existing definitions, techniques,
data structures, and algorithms for crisp spatial objéwtneed not be redeveloped but only modified and
extended, or simply used. In case of VASA, both the kernelgnadal the conjecture part of an indeterminate
spatial object are of the same crisp spatial data pgiet, line, or region This enables an exact definition of
these models. In particular, this enabdagcutable specificatiorigr the operations on indeterminate spatial
objects in terms of operations on the corresponding crisiteoparts. Hence, the executable specifications
can be immediately used as implementations and thus miaithezneeded implementation effort.

As we will see, the Spatial Plateau Algebra picks up and eldtdhese ideas by representing fuzzy
spatial objects on the basis of their crisp counterparts tgndermittingn object parts withn different
and arbitrary membership values such that, in general,1 holds and, in particulam > 3 is possible.
Therefore, the Spatial Plateau Algebra is an extension @A/&om a 3-valued approach and logic to an
n-valued approach and logic. Its benefit is a much more finergdamodeling of spatial vagueness than in
VASA, just in the sense of a fuzzy approach. But it requiregimmore, and much more precise, knowledge
about the vagueness of spatial objects from the applicatadmthan we need in VASA. This knowledge has
to be provided in terms of appropriate, application-specifembership functions.

An interesting alternative is the approach(ini[48] whichyides two models for fuzzy spatial data. The
first one is a raster (bitmap) approach, and the second oneeidar-based approach based on triangulated
irregular networks (TINs). The approach in [2] uses a fuazigrience system for spatial analysis and
creates raster-based fuzzy region objects representiiegetiit transparency and stress intensities. The raster
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Figure 1. Examples of a simple point object (a), a simple tibgect (b), a simple region object (c), a
complex point object (d), a complex line object (e), and a glemregion object (f).

approach (see alsb [49]) and the plateau approach propodéds iarticle show conceptual resemblance.
But the goal of the Spatial Plateau Algebra is to leveragdadla crisp spatial (vector) data types and the
operations defined on them as they can be found in spatidbaisda. The TIN model is quite interesting
since it allows the user to model fuzzy spatial regions withtmuous membership functions. However, it is
only applicable to areal spatial features but not point amelfeatures. Further, the cognitive view of fuzzy
region objects gets lost since the user only sees a largectiolh of artificial triangles whose end points are
annotated with membership values. The plateau approadiatdeito implement the TIN model since all

points of a component of a spatial plateau object have the saembership value.

Closure properties are also and in particular importanh@implementation level. At this level, algo-
rithms should only get input objects and only produce resojiects that reflect the properties of the formal
definitions of the data types at the modeling level and whas& structures correspond to the data structure
definitions of the corresponding input and result data tygidhe implementation level. To be able to pro-
duce correct result values, algorithms need correct ingluies; otherwise, algorithms will fail and produce
invalid results. Beside the Vague Spatial Algebra withéstricted logic, only the TIN-based model in [48]
fulfills closure properties. Although the intersectionjam and difference of two TINs is usually not a TIN,
a Delaunay triangulation can help us transform the interatedntersection result into a TIN.

2.3 Crisp Spatial Data Types and Operations

In the spatial database and GIS communities, jstial data typesike point, line, or region have found
wide acceptance as fundamental abstractions for modélengttucture of geometric entities, their relation-
ships, properties, and operations. They form the basis afnaber of data models and query languages
for processing spatial data and have gained access into emiansoftware products. The literature dis-
tinguishessimple spatial data types (for example, [24, 27]) ammplexspatial data types (for example,
[12,(41,[44] 53, 54]), depending on the spatial complexigytare able to model. Simple spatial data types
(Figure[1(a)-(c)) only provide simple object structurdelIsingle points, continuous lines, and simple re-
gions. However, from an application perspective, theredsramon consensus that they are insufficient to
cope with the variety and complexity of geographic realfyom a formal perspective, they are not closed
under the geometric set operationgersection union, anddifference Complex spatial data types (Fig-
ure[1(d)-(f)) solve these problems. They provide univeesal versatile spatial objects with finitely many
components, permit regions with holes, and are closed ugpel@metric set operations [41]. We employ
them as the definition basis of our spatial plateau data typgdementations of complex spatial data types
are available in ESRI's Spatial Database Engine (ArcSDE]), [Qracle Spatial [37], the Informix Geodetic
DataBladel[29], DB2's Spatial Extendér [30], PostGIS| [39};SQL Spatial Suppori [36], Java Topology
Suite (JTS)[[31], and Geometry Engine Open Source (GEO$) T2y can be used as an implementation
basis of our Spatial Plateau Algebra.



3 Spatial Plateau Objects for Representing Fuzzy Spatial Gbcts

Fuzzy spatial data types have been defined_in [18, 42] on this loh fuzzy set theory [56] and fuzzy
topology [55]. Hence, they are an abstract concept only,caedof their main goals is to serve as a clear
specification for a possible implementation. The objeativeur Spatial Plateau Algebrés to provide such
an implementation. Our algebra, or type system, comprisest afspatial plateau data typeand a set
of operations between these t)Beas implement their abstract, fuzzy counterparts. A few apens are
applicable to several types or type combinations and are ¢hrerloaded. We do not aim at developing
a type system with a “complete” set of data types and opemtidt is common consensus in the spatial
database community that this is impossible since alwaysdaea types, operations, and predicates can be
designed. It is then more favorable to retroactively addrnthe the algebra; hence, we take extensible
approach. A feature of the Spatial Plateau Algebra is thattibth adescriptivealgebraand anexecutable
algebra. On the one hand, it offers a descriptive design gpa system with the specialty that spatial
plateau data types, operations, and predicates are alll lmas¢heir crisp counterparts and can thus be
expressed exclusively in terms of them. On the other harslfaht means that we can leverage available
implementations of crisp spatial algebras, realize thdi8Rlateau Algebra on top of them with minimal
effort, and directlyexecutespatial plateau operations and predicates without beingedbto design and
implement new algorithms for them. In other words, we ob&iecutable specificatioriisat can be directly
leveraged as an implementation.

In this section, we describe and formally define our concépipatial plateau data types (and spatial
plateau objects as their values) as the first fundamentalopdhe Spatial Plateau Algebra. Section]3.1
reviews the abstract definition of fuzzy spatial data tymesflizzy points, fuzzy lines and fuzzy regions
from an informal viewpoint and illustrates these types hyie@xamples. Sectign 3.2 informally introduces
and motivates plateau points, plateau lines and plateaon®g@s implementation concepts of their fuzzy
counterparts. Finally, Sectién 8.3 provides a formal definiof the three spatial plateau data types.

3.1 Review: Fuzzy Spatial Data Types

So far, spatial data handling in spatial database systech&#p rests exclusively on the assumption that
a spatial object like a point, line, or region object is psety determined, homogeneous, and universally
recognized, that each interior point fully belongs to tHaeot, and that the object is delimited by a precisely
specified boundary. However, many spatial objects, edpetti@se describing natural, social, and cultural
phenomena, do not follow this pattern. They are charaeeri the inherent feature epatial vagueness
including vague interiors and blurred boundaries. Example land features with continuously changing
properties (such as population density, soil quality, teti@n, pollution, temperature, air pressure), oceans,
deserts, English speaking areas, or mountains and valldyestransition between a valley and a mountain
usually cannot be exactly ascertained so that the two $pdiiects “valley” and “mountain” cannot be pre-
cisely separated and defined in a crisp way. For some areasatfiial resource like iron ore, experts know
its existence with high certainty because of soil samplesbameholes and represent it by high membership
values. For other areas, experts are only sure to some extdrassume the incidence of this mineral; this
can be modeled by lower membership values. In case of olssfiilis very important for environmental
authorities to obtain information about the spread of adksl in order to be able to take measures for their
removal, assess the consequences for the marina flora amal fand implement rescue measures. Due to
radar and helicopter observations it is possible to detegrttie minimal distribution of oil slicks. Mathe-
matical models fed by parameters like wind velocity and enirenable the determination of the possible
extent of the oil pollution.

lwe assume that other needed, well known data types (for deaaiphanumerical data types and crisp spatial data tyyi¢fs)
corresponding operations are provided by other algebyps &ystems).
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Figure 2: Examples of air polluted areas caused by a chefaict@ry (a), (b), and polluted rivers (note that
thick lines are used to visualize the feature of fuzzinesg) (

Figured 2a and 2b show an example and possible visualizaftefuzzy regiorthat models the expansion
of air pollution caused by a chemical factory. The exhaustds emitted by the factory spread around in the
region surrounding the factory and create a pollution clotide shaded region shows the area which has
been affected by the pollution particles. The density ofytin particles around the factory is not uniform
but varies. Figuré€]2a shows a radial expansion where theseeagfrpollution concentrates in the center
(darker locations) and decreases with increasing distbooe the chemical factory (brighter locations).
Figure[2b has the same theme but this time we imagine thathéical factory is surrounded by high
mountains to the north, the south, and the west. Hence, thgtipo cannot escape in these directions
and finds its way out of the valley in eastern direction. Inhbcéises we can recognize the smooth, fuzzy
transitions to the exterior, that is, there is no clear baumaf this region.

Fuzzy spatial objects can also represent the vaguenesg @&tant of phenomena in space; that is,
objects can shrink and extend and hence have a minimum éefind maximum vague extent. Such an
example is given by a lake whose water level depends on the&ed evaporation and on the amount of
precipitation. High evaporation implies dry periods andstta minimum water level, that is, we obtain
the parts of the lake with higher membership values. Higltipi@ation entails rainy periods and thus a
maximum water level, that is, we additionally obtain thetpaf the lake with lower membership values.
Islands in the lake form “holes” in the lake. The parts of darid that are never or rarely flooded by
water have higher membership values. The parts that aresiomdre often have lower membership values.
Hence, a lake and an island can share common parts to sonezdagrltiple membership).

Fuzzy set theory [56] deals with fuzziness. It describesatthmission of the possibilit{given by a
membership functigrthat an individual is a member of a set or that a given staténsetrue. Hence, the
vagueness represented by fuzziness is not the uncertdiaigpectation like in probability theory. It is the
vagueness resulting from the imprecision of the meaning ajrecept. Fuzzy set theory has been a very
popular approach to modeling vague spatial objects andteesim a formal concept diuzzy spatial data
typesfor fuzzy point objectsuzzy line objectsandfuzzy region objectfil8,(42]. The definition of these
spatial data types is based on two equivalent views, theivigay and their structured view [42]. THeat
viewregards fuzzy spatial objects as pure point sef@3nvhich are characterized by particular properties
and whose points are annotated with membership values. sffbetured viewconsiders theonnected
componentsormed by these point sets.

We first review the flat view of fuzzy spatial objects at an edugtlevel and compare to crisp spatial
objects. A crisp spatial object of the spatial data tymént, line, or region is conceptually modeled as
a point set of the Euclidean plane with particular featuEl§[#4]. Each of its points belongs definitely
and completely to it. IfA € a € {point,line,region}, this means that there is characteristic function
Xa : R? — {0,1} such that for allp € R? holds thatya(p) = 1 if, and only if, p € A. Otherwise xa(p) =0
holds. Thusy discriminates sharply between points that belong to aapeaiiject and those that do not.
In contrast, a fuzzy spatial object is conceptually modeled point set of the Euclidean plane with the
particular feature that each of its points may completedytiglly, or not at all belong to it. This especially



implies that a point can belong to multiple fuzzy spatialent. IfA e a € {fpoint fline, fregion}, this
means that each point & is mapped to a value of the real intery@J1] that represents the degree of its
membership irA. We call such a single annotated poinfuazy pOiI’E. Hence, for a fuzzy spatial object
A, uz 1 R? - [0,1] is its membership function, anl= {(p, uz(p)) | p € R?} describes all its fuzzy points,
that is, all its points irR? with their membership values. #¥zzy point objectepresents finite set of fuzzy
points, that is, points annotated with a membership valteid0, 1] indicating partial membership. fuzzy
line objectA represents an infinite one-dimensional subsé&%fwith special properties discussed [in|[42])
whose elements are annotated with a membership value fitlbindicating partial membership. fuzzy
region objectis an infinite two-dimensional subset B? (with special properties discussed [in[[42]) whose
elements are annotated with a membership value dat dfindicating partial membership. The distribution
of membership values within a fuzzy spatial object may beamaontinuous, or piecewise continuous.

While the flat view regards fuzzy spatial objects as puretm®is with particular properties, the equiva-
lent structured view looks at the connected componentsesitipoint sets and identifies their geometric and
topological features. All fuzzy spatial objects are comphkbat is, they may consist of several connected
components, and fuzzy regions may have holes. This is inditiethe definition of crisp complex spatial
data types[41, 44]. The flat view and the structured viewadmfor afuzzy point objecsince each fuzzy
point is a connected component. The structured view fafizay line objectlistinguishes a finite number
of connected components calletzzy blocks Each fuzzy block consists of a finite number of meeting or
disjoint fuzzy curves Each fuzzy curve represents a single continuous curve inohadach element is a
fuzzy point and which may have smooth transitions of mentbeigrades between neighboring points. The
structured view of duzzy region objectlistinguishes a finite number of areal and connected conmpene
possibly with holes. A component is a calleduazy face Both the boundary and the interior of a fuzzy
region object may be fuzzy.

If we consider an air polluted area modeled as a fuzzy redipeco (Figure$ Ra arid 2b), then each point
in this area is a fuzzy point indicating the concentratioraiofpollution at that point. That is, the degree
of membership of such a fuzzy point in the air polluted arekarger than 0 and less than or equal to 1.
In Figured 2a anfll2b, each fuzzy region object consists afgesfuzzy face without holes. Fuzzy points
can also arise from the geometric intersection of two funzg bbjects; together, they form a fuzzy point
object. The pollution of a river in a low scale map can be repnéed by a fuzzy line object, as shown in
Figure[2c, where each point on the fuzzy line object reptssire concentration of the pollutants at that
location. The concentration may be different at differemings. In Figuré Rc, the darker line parts represent
river sections of greater pollution, and the lighter linetpaepresent river sections of lower pollution. The
fuzzy line object here consists of a single fuzzy block witree fuzzy curves meeting in a common point.

3.2 Spatial Plateau Objects

To the author’s best knowledge, implementations of fuzatiapobjects are not available, especially notin a
spatial database and GIS context. Hence, this article istafoproach in this direction. Since conceptually,
that is, at an abstract level, crisp and fuzzy spatial objace modeled as infinite point sets that are not
directly representable in finite computer systems, finipgesentations are needed and usually obtained by
linear approximations. For example, a crisp, curvilingze Is usually approximated by a polyline consisting
of a finite sequence of straight segments. A crisp, cunalimegion is usually approximated by well known
polygonal structures for the outer cycles and holes cydeéts @omponents with the assumption that the
enclosed interior belongs completely to the region. Theleympent of approximations essentially means
that we are only able to represent a proper subset of thel aetuaf conceptually possible lines or regions.

2The literature knows different definitions ofazzy pointIn some cases, they correspond to our understandisigngfie fuzzy
point objectqsee below). In our context here, the term of a fuzzy poinsedlas a counterpart to a crisp point as an element of the
Euclidean plane.



However, even such approximations are not easy to obtaiiufay spatial objects since first, these objects
usually have an indeterminate boundary and/or a blurrediort second, they have infinitely many interior
points but only finite representations can be kept in a coerpand third, each point can have a different
membership value.

In this article, the fundamental idea for representing, lementing, and approximating fuzzy spatial
objects is to leverage available crisp spatial data typéscamresponding software packages (Sedfioh 2.3)
implementing them. Several reasons have led to this degigisidn. First, this strategy enables us to take
advantage of existing definitions, techniques, data strast algorithms, etc., which need not be redevel-
oped but only modified and extended, or simply used. For th8adplateau data types this means that they
are based on their crisp counterparts. For the spatialqulaiperations (like geometric union, intersection,
and difference) and spatial plateau predicates (like tapohl predicates) this means that they are translated
to crisp spatial operations and predicates (see SddtidBy4)sing this approach, the formal specification of
spatial plateau data types, operations, and predicatégshe aame time their implementation; we call this
executable specificatiorsecond, this strategy improves the correctness of botbatheeptual specification
and the implementation of the Spatial Plateau Algebra. Atdbnceptual level, the correctness of the def-
initions of the spatial plateau concepts largely rests encthrrectness of the already defined crisp spatial
concepts; thus, we reduce the chance of errors in our defisiti At the implementation level, having an
available, tested and robust implementation of crisp apd#ta types, their operations, and predicates, we
can robustly implement fuzzy spatial data types in termgpatial plateau data types on top of them (see
Sectior 6). Third, several available implementations isfcspatial data types are tailor-made for an embed-
ding and usage in a database and querying context. This rtiegtrthe data structures of crisp point, line,
and region objects ampact storage structurdarrays) that can be directly stored in or retrieved from a
database and that are directly processed by the algoritiipigrnenting the operations. In particular, these
data structures do not use pointer data structures in mammomyewhich would imply high serialization and
deserialization cost for a transfer between main memorydatabase. We apply this concept of compact
storage representation to our spatial plateau objects.

Our Spatial Plateau Algebris atype systenor algebra which includes spatial data types, operations,
and predicates fgulateau pointsplateau linesandplateau regionghat implement their fuzzy counterparts.
The approximation step from fuzzy spatial objects to spplédeau objects contains two aspects. First, since
we are unable to explicitly represent an infinite number ofmbership values, we confine ourselves to an
arbitrary but representable and thus finite number of meshiigivalues for each spatial plateau object.
However, different spatial plateau objects may have difiefinite numbers of membership values. Second,
in a spatial plateau object, the unit of representation isarqmint as is the case in an abstract fuzzy spatial
object (Sectiol_3]1) but a (possibly very small) correspmgdarisp spatial object which itself is already a
(linear) approximation and which is additionally labeleh/a membership value. A spatial plateau object is
then a finite collection of their crisp counterparts whereheeisp spatial object (calledcmmponent objeyt
is associated with a unique membership value and thus forfilas ‘glateau” consisting of a conceptually
infinite number of points of equal membership. The precisiith which we represent a fuzzy spatial object
as a spatial plateau object depends on the size and the noithercrisp component objects of the spatial
plateau object. The smaller the size and the larger the nuaflibe crisp component objects is, the better
is the approximation and the higher is the precision of tipeagentation of a fuzzy spatial object.

Figure[3 illustrates the concept. The conceptual, absfteaty region object shown in Figuté 3a is
represented as a plateau region object shown in Figure Bbtlétnine crispcomponent regions:r... . rg
and their associated membership values. Any pair of commamgions is eithedisjoint (for example,

r, andrg) or adjacent(for example,r, andrs). A component region is, in general, a complex region
(see Section_213) and can hence consist of several facesx@onple,r; has two faces) that all have the

same membership value. Different component regions hdferatit membership values assigned to them.
Similarly, Figurd Bc shows a fuzzy line object, and Fiduret8ghossible plateau representation. We will see
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Figure 3: A fuzzy region object (a), its (possible) repreatan as a plateau region object (b), a fuzzy line
object (c), and its (possible) representation as a plateawbject (d)

below that the topological relationships allowed betwdendomponent lines of a plateau line object are
slightly different in comparison to the plateau region cas&uzzy point object and its plateau representation
are structurally the same; both consist of a finite numbemgitpbjects where the elements of each point
object are associated with the same membership value angk wliflerent point objects carry different
membership values. The only difference is the underlyingniper system used for the representation of
the coordinates (for example, infinitely margal numbersR from mathematics for modeling fuzzy spatial
objects versus finitely marfipating pointhumbers (as approximations of real numbers) in computégeisys
for implementing spatial plateau objects).

Another, equivalent view of a spatial plateau object is #ikits points that have the same membership
value are aggregated into groups and that each group ofsp@irdgssociated as a whole with the same
membership value. In addition, to obtain a finite repregs@mtawe require that the number of groups is finite
(finitely many membership values) and that each group forrmsn@ponent object (atomic representation
unit) of the corresponding crisp spatial data type. Hengatial plateau objects can only represent a clearly
defined, proper subset of fuzzy spatial objects (see Sd8if)n

As a consequence of this aggregation process, any two aispanent regions of a plateau region
object must be either disjoint or adjacent. Otherwise, twspccomponent regions would share interior
points with different membership values. While this can beided for interior points, this is not the case
for the boundaries of two or more adjacent crisp componegibns since they have common points with
different membership values. In Figlire 3b, for example pibiats on the boundary betweegnandrs have
the membership values 0.3 and 0.5, respectively, and thgedimundary point shared by, rg, andrg has
the membership values 0.4, 0.6, and 0.8 respectively. @i plateau line object, the situation is slightly
different. The component lines of a plateau line object cdigpurse, be disjoint (for examplk, andlg in
Figure[3d) or adjacent (for examplg,andlg). Adjacency means that two or more component lines meet in
a common boundary end point. Again, for each meeting compdim®, the membership value might be
different in such an end point. In addition and differentnir¢the plateau region case, we must also allow
that two component lines intersect in a common interior paird that a boundary point of one component
line coincides with an interior point of another componéme| In summary, we must permit arbitrary point
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Figure 4: Two plateau line objects with intersecting (a)etimg (b), touching (c), intersecting, meeting, and
touching (d) crisp component lines

intersections of component lines. The reason is that theng&@ union of two plateau line objects can,
in general, lead to arbitrary boundary/boundary, bounf@d#grior and interior/interior point intersections
that have to be maintained in the resulting single plate@idbject in order to ensure the closure property
of the fuzzy/plateau union operation (see Sedtibn 4). Eigushows examples of all three kinds of point
intersections.

Two questions arise from these observations. The first iquestfers to the semantics of common
boundary parts of adjacent component regions in plateaarr@pjects and common single points of meet-
ing, intersecting, or touching component lines in plateaa bbjects. A point that is shared by more than
one component object obtains the highest membership véla# sharing component objects since it is
guaranteed to belong to the spatial plateau object (andhieusizzy spatial object) by this maximum mem-
bership value. The second question is how to handle thesaiti®ns from a representation standpoint.
We pursue the strategyot to explicitly model and represent the possible multiple rhemahips of a point
in the samespatial plateau object but to maintain consistent compooigjects in which all points have the
same membership value. This implies that for the determomadf the membership value of a particular
point of a spatial plateau object we have to consult all itejgonent objects that contain this point and yield
the maximum membership value.

The limitations of the Spatial Plateau Algebra can be surimadras follows. First, the number of mem-
bership values for each spatial plateau object is variabldihite. The algebra cannot represent infinitely
many membership values, for example, by a finite number of peeship intervals. Second, the term
“plateau” indicates that a membership value remains cohstaa line component or region component of
a plateau line object or plateau region object. This meaaisftizzy spatial objects with continuously in-
creasing or decreasing membership functions cannot belawbdg this approach. Third, at the boundaries
of line components and region components, the membershiiidns of plateau line objects and plateau
region objects are not differentiable since we have abrigrhbership value changes at these locations.

3.3 Formal Definition of Spatial Plateau Data Types

Based on the considerations in Secfiod 3.2 we are now ablegagormal definition of the fuzzy spatial
data typedpoint for fuzzy point objects represented as plateau point ohjéate for fuzzy line objects
represented as plateau line objects, faegionfor fuzzy region objects represented as plateau regiorctibje
We aim at a universal and generic definition of these typesesihe structure of their objects are very
similar and since the only difference consists in the pdssidationships between component objects. For
this purpose, we define a type construafothat takes as input a spatial data type {point line, region}
(Sectior 2.B) and produces as output a fuzzy spatial datagygm spatial plateau data typ&r). That is,
fpoint:= @(point), fline:= ¢(line), andfregion:= ¢(region). We define a spatial plateau data type ) as
follows (the symbokp in Condition (vi) denotes geometric union):
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@(a) ={poy,...,poy, |

()  a e{pointline,region}, ks € N

(") V1<i<kq: PG = <(0i,17m,1)7---7(0i,ni7m,ni)70i>
(i) V1<i<kq:neNU{0}

(iv) V1i<i<ksVi<j<n:gjca

(v) V1I<i<ksV1<j<n:mjel01]

N
(viy Vi<i<ks:o=@oeca
j=1

(vi) V1I<i<ksV1i<j<l<n:

if a = pointthendisjoint;(0; j,0;))

else ifa = line thendisjoint;(0; j,0i)) vV mee(0;j,0)) V

(overlap,(0ij,0i1) A |0 ;N0 is finite)

elsedisjointc(oi.j,o”) V mee@(oi,j,o”)
(viii) V1I<i<kgV1i<j<I<m:m;<my
(ix) if o € {pointregion} thenV1<i<ky V1<j<nVpeo:H(p) =m
(x) if a =regionthenvV1 <i<kg Vpe U100 u(p) =max{m;[1<j<mn,pedo;}
(xi) if a=linethenV1<i<ksVpeUj 0 ;:p(p)=max{m;[1<j<n,peo}}

The representable spatial plateau objects of each of the ratial plateau data types can be enumerated
since their number is finite due to the finiteness of computstesns (Condition (i)). Each spatial plateau
object is represented as a finite sequence of pairs and & @ntity at the end, that is, as a compact storage
representation (Condition (ii)). The number of pairs dejseon each individual spatial plateau object and
can thus be different for different spatial plateau objéCtsndition (iii)). If the number of pairs is equal to
zero, we obtain thempty spatial plateau objedhat is, theempty plateau point objectheempty plateau
line object and theempty plateau region objeptspectively. Each pair consists of an object of the undegly
complex spatial data type (Condition (iv)) and a non-zeroninership value (Condition (v)) indicating the
degree of belonging of the crisp spatial object (cattedhponent objektto the spatial plateau object. For
example, a plateau region object consists of a finite numbeaios where each pair consists of a crisp
component region and an assigned membership value laggedtand less than or equal to 1. At the end of
each spatial plateau object, we store the geometric uniafl @ component objects (Condition (vi)). The
reason for this is more based on convenience and perfornisswes than on necessity. We make use of the
union objects later for a more efficient execution of spatiateau operations.

Condition (vii) determines the permitted topological telaships between the component objects of
a spatial plateau object. These relationships depend ouaritlerlying complex spatial data type and are
expressed byopological cluster predicatefl4] indicated by the subscrimt A topological cluster pred-
icate summarizes sevenaasictopological predicates that charactersenilar spatial configurations (for
example, all basic topological predicates that describesatimy situation of two spatial objects). In case
of plateau point objects, we require that the componenttpmbiects are disjoint. In case of plateau line
objects and plateau region objects, we require that thegponding component objects are disjoint from
each other or meet. Any overlap of the interiors of compobigcts would be semantically contradictory.
In case of plateau line objects, we additionally allow th@nponent line objects overlap in finitely many
points (point intersections). We discussed the need fowallg this in detail in Sectioh 3.2. Condition (viii)
requires that all membership values are different and thpais of the sequence are ordered by increasing
membership values. This caters for a unique representatiamplateau region.

Conditions (ix) to (xi) take care of a precise assignment efrthership values to the points of a spatial
plateau object. The operator and thé@ operator used in the conditions are point-set topologipakrators
that determine all interior points and boundary pointspeesively, of a point set. Precise definitions of the
interior and boundary of complex point, line, and regionealsg can be found in [44]. The interior of a point
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object is the point object itself; its boundary is empty. Thierior of a line object contains all its points
except for the end points which form the boundary. The boynd&a region object separates its interior
points from its exterior points. Condition (ix) states thdtinterior points of a component point object or
component region object, respectively, obtain the menhij@nglue of the respective component object.
Thus, they define a plateau. Condition (x) expresses thdt leagndary point of a plateau region object
obtains the highest membership value of all boundaries wipoment region objects to which it belongs.
Condition (xi) states that each point of a plateau line dbgdatains the highest membership value of all
component line objects to which it belongs. As we have se&eatior 3.2, multiple membership values for
the same point can arise if different component line objet&ssect, meet, or touch each other in that point
(see Figurél4). Note that the Conditions (ix) to (xi) are sefical conditions that are not explicitly stored
in the structural sequence representation given in Camd(ti). An operation that asks for the membership
value of a point of a spatial plateau object would have to ki@gonditions (ix) to (xi). If Condition (x)
or (xi) should hold, the whole sequence of components abjeould have to be traversed, and the highest
membership value assigned to that point would have to benedu

Another, equivalent characterization of spatial platebjecis is based on spatial-cut objects. Let
po € ¢(a) with a € {point line,region} be a spatial plateau object, and fate]0,1] with 1 <i < n be
n membership values such thag > m, > ... > my,_; > m,. Then we obtain the spatial-cut objects
POy, € PGy, € ... € POy, , € POy, from powith po,, € a. Arepresentation gbo by means of these spatial
a-cut objects is not recommendable for three main reasonsst, eiue to the containment relationship
between then spatiala-cut objects, a point can belong to several of them. This mdlaat a point opo
can be represented up matimes. This leads to representation and storage redundanog certain areas
(for example, areas whose points have the membership vale Yepresented multiple times. Second, it
is time-consuming to determine the membership of a poirtesthe spatiatr-cut object with the highest
membership value has to be found in which the point is localédrd, one can show that spatial plateau
operations become more time-consuming due to the largeio$igpatiala-cut objects.

However, it is possible to characterize a spatial plategacbpo by spatiala-cut objects. A spatial
plateau object corresponds to the sequence of pairs

((0i,m) |0 = poy, ©pay, , for2<i<n)

wherec denotes the geometric difference operation. Fopalo; holds thatuye(p) = mi. This means
that each point of a spatial plateau objpotbelongs to exactly one of theomponent objects; @and has a
unique membership valus,.

4 Spatial Plateau Operations for Implementing Fuzzy Geomeic Opera-
tions

Spatial or geometric operations enable the constructiamewf spatial objects from existing ones. In this
section, we give formal specifications of sospatial plateau operationthat are geometric operations on
spatial plateau objects, implement corresponding fuzoyrgeric operations, and are based on geometric
operations on corresponding crisp spatial objects. Therlaspect enables the executable specification of
the spatial plateau operations. That is, the specificafitimese operations corresponds to their implementa-
tion. Sectiori 4.11 deals with the important classpétial plateau set operatiorthat include the operations
plateau union plateau intersectionandplateau differenceand implement their fuzzy counterparts. Sec-
tion[4.2 introduces some other spatial plateau operatigadifferentslice operations that construct new
spatial plateau objects based on constraints on the mehipperaues as well as other intersection opera-
tions that compute the intersection between mixed spal@bégu data types. Sectibn 4.3 shows that the
determination of the membership values in the Secfiods@d{4a2 is not the only option for the result of
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each spatial plateau operation. That is, not only the meshiygfunctions of fuzzy spatial objects (and
thus spatial plateau objects) but also the operations an #recontext-dependentThis leads to a class
of parameterized operation instances for each spatiaalabperation. Sectidn 4.4 provides operations to
map spatial plateau objects of the Spatial Plateau Algebspatial objects of our Spatial Algebra 2D for
two-dimensional geometric data, and vice versa.

4.1 Spatial Plateau Set Operations for Implementing Fuzzy @ometric Set Operations

In general, the geometric set operatiam®rsection union anddifferenceapplied to spatial objects belong

to the most important operations that construct new spaltigcts, that is, geometries. In this section, we
describe and give formal definitions of the geometric setatpmns on fuzzy spatial objects on the basis of
our spatial plateau data types. Secfion 4.1.1 informaljeres the abstract definition of fuzzy geometric
set operations that are formally based on fuzzy set theodyfaaey topology. Sectioh 4.1.2 discusses
the implementation of these fuzzy geometric operationgims of the Spatial Plateau Algebra. Finally,
Sectior 4.1.B provides a formal definition of the spatiatqda set operations.

4.1.1 Review: Fuzzy Geometric Set Operations

Unsurprisingly, fuzzy geometric set operations are spaparations that operate on fuzzy spatial objects
and produce new fuzzy spatial objects. As an example, wadmmthe situation that in some European
countries, as in Switzerland and France, people who speak&@eand people who speak French reside
very close to each other. This means that language bordensoaras strict as state or country borders;
they are fluent. Such a situation can be described by two foegpns representing the two language
zones and the degree to which German and French, respgctivelspoken in the two zones. Both regions
have indeterminate boundaries and blurred interiors sithogany locations neither French nor German are
spoken solely but together. Let us now assume that a govetrimmmterested in a study of the population
and wants to find those regions whose residents speak bahdgas. Such a query can be answered by
the fuzzy geometric intersectiaf both fuzzy regions. A point shared by both language zoné$along

to the result region and obtain the lower membership valudisfpoint from one of the two zones since
it represents the minimum extent to which Gernaard French are spoken there. If we are interested in
those regions whose residents speak either French or Gethegianzzy geometric unionan answer this
query. A point shared by any of the two language zones wiltrdautte to the result and obtain the higher
membership value of this point from one of the two zones sihEpresents the maximum extent to which
Frenchor German are spoken there. Further, if we are interested iretiien whose residents speak more
French than German and if we want to quantify the French ascey, we obtain the result by computing
thefuzzy geometric differena# the French language zone and the German language zonentfopthe
result object contains the membership of the French lareggage diminished by the membership value of
the same point in the German language zone.

We now describe the fuzzy geometric set operations in maaldmut informally. As we have seen
in Section[ 3.1, at an abstract level, fuzzy set theory andyfifpoint set) topology are deployed to for-
mally define the fuzzy spatial data typgwoint, fline, andfregion. The fuzzy geometric set operations
fintersection funion andfdifferencehave the same formal basis and the signaturea — a with a €
{fpoint, fline, fregion}. That is, these data types are closed under the fuzzy gdorsetoperations.

The operatioriunionfor fuzzy geometric uniomssigns the membership valug(p) = max(Uz(p), Ug(p))
to each pointp € R2. If for a point p holds thatux(p) = pg(p) = 0, thenpz(p) = O follows, andp does
not belong to the result obje@. In all other cases, poinp belongs toC with the larger membership
value provided by one of the two fuzzy spatial objects. Therafion fintersectionfor fuzzy geometric
intersectionassigns the membership valge(p) = min(ux(p), Ug(p)) to each pointp € R2. Only if
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Figure 5: Two plateau point objectsp; = ((p1.1,0.4), (P12,0.5),(p13,1.0), p1) and pp, = ((p21,0.5),
(p22,1.0), p2) (a), two plateau line objecisl; = ((l1,1,0.5),(112,0.7), (113,0.9),11) andpl, = ((l21,0.3),
(I22,0.8),(l23,1.0),12) (b), and two plateau region objeqts; = ((r11,0.3),(r12,0.6),(r13,0.7),r1) and
pr, = ((rz1,0.2),(r22,0.6),r2) (c), as they are used for illustrating the three spatiakjplatset operations

Hz(p) > 0 and pg(p) > 0 hold, p belongs toC with the lower membership value provided by the two
fuzzy spatial objects. The operatifdifferencefor fuzzy geometric differen@ssigns the membership value
pe(p) = Ux(p) — Hg(p) to each pointp € R?. Fora,b € R, we define thaa ~ b=a—bif a> b, and

a — b =0 otherwise. Note that this geometric operation is definéidréntly than the fuzzy set difference
operation on normal fuzzy sefs [56]. Further, the operatfanion andfintersectionare subject to a fuzzy
regularization process in order to avoid geometric anaadlke dangling lines, punctures, and cuts. The
formal definition of all fuzzy geometric set operations candbtained from[[18, 42]. Crisp geometric set
operations[[4/l, 44] are special cases of fuzzy geometriopations.

4.1.2 Spatial Plateau Set Operations

In this subsection, we informally show and motivate how thez§y geometric set operatiofigtersection
funion andfdifferencecan be represented by corresponding spatial plateau settiops on the basis of
our spatial plateau data types. The spatial plateau dags fgpint, fline, andfregion are closed under
the spatial plateau set operations and have the signatuwrer — a with a € {fpoint,fline, fregion} (see
Sectior 4.1.8). We will see that for the different combioa$ of two plateau point objects, or two plateau
line objects, or two plateau region objects, each spat&#bpl set operation works very similar and thus in
a generic manner. This means that the meaning (and latepéodisation) of all three operations is similar
for all three type combinations. For illustration purpgsee will take the spatial plateau objects presented
in Figure[5.

The discussion and specification of the spatial plateaupations requires and leverages a local view
and/or a global view on the two operand spatial plateau thjddaving alocal viewon the two operand
objects means that putting all component objects of thedjrstand object into relationship to all component
objects of the second operand object is sufficient for théuatian of an operation. Having global view
on the two operand objects means that an operation has tintakaccount the union objects stored in the
spatial plateau objects at the end of their representations

Spatial Plateau Intersection

Intersecting two spatial plateau objeqs;,po, € a € {fpoint fline, fregion} means that each crisp com-
ponent object opo, must be geometrically intersected with each crisp compookject ofpo, and that
their smaller membership value is assigned to the resuttimgempty crisp component object. Hence, this
operation only requires a local view on the operand spal#épu objects. The reason is that if a point of
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Figure 6: Spatial plateau intersection: plateau pointaitpe; = fintersectioripp;, pp,) = ((Ps1,0.4), ps)
(a), plateau line objeagbl; = fintersectionpl,,pl,) = ((I31,0.5),13) (b), and plateau region objept; =
fintersectioripry,pry) = ((rs1,0.6),r3) ()

the Euclidean plane belongs to bgib, andpo,, then it belongs to exactly one component objecpof
and exactly one component objectfs,. Computing the intersection of crisp complex spatial oisjes
well known [3,[40/41] and can therefore be assumed. In oumplain Figure_ba, we obtain-2 = 6
point component pairs that have to be intersected gapeeontains three point components gug con-
tains two components. Similarly, we obtain3= 9 line component pairs in Figuré 5b and23= 6 region
component pairs in Figufé 5c. If the geometric intersectibtwo component objects is empty, we discard
this result. Otherwise, the computed component objectrisgfdhe resulting spatial plateau object, and we
assign the smaller membership value of both operand compaoisects to it. The reason is that only the
smaller membership value guarantees that the points ohthesection belong to both component objects.
For example, in Figurel 5¢, the intersection of the comporegibnsr s 3 with its membership value 0.7 and
ro » with its membership value 0.6 leads to a non-empty compamgidn that is assigned the membership
value 0.6 as the minimum of both input membership values.

Since the creation of component object pairs and theirgatgion is a local operation, it can happen
that different resulting component objects are labeledh Wie same membership value. For example, in
Figure[5c, the intersection of 3 andrz, will obtain the membership value 0.6. Similarly, the intsrson
of r1» andr,» will obtain the same membership value. Since accordingeatateau region definition in
Sectior 3.8 all components of a plateau region must haverdift membership values, we have to compute
the geometric union of both region components obtained rsarfd assign the common membership value
0.6 to it. Figurd 6 shows the result of the plateau intersadir our examples in Figufé 5.

Spatial Plateau Union

This operation requires both the local view and the globaiwon its operand spatial plateau objects. The
local view refers to the common parts of two component objethe global view refers to the remaining
part of a component object that is not shared with the othatiaplateau object. In all cases, computed
component objects with the same membership value are alyesysetrically merged in the resulting spatial
plateau object. We detail this strategy in the followingrrimg the union of two objectgo; andpo, of the
same spatial plateau data type principally means that ezopanent object obo, must be geometrically
merged with each component objectpuf,, that common parts obtain the larger membership value of the
two input component objects, and that the remaining pattsigenembership values of their corresponding
input component objects. The intersection object of two ponent objects gets their larger membership
value since at least one of them can guarantee the highezedefbelonging.

The union of the spatial plateau objects in Fidure 5 is ithtsd in Figuré]7. Two main kinds of spatial
configurations can be distinguished. If the intersectiotwaf component objects is empty, both component
objects are added with their respective membership vatuéhetresulting spatial plateau object. For exam-
ple, this is the case for the component lihgegandl,» in Figure[5b and the component regians andr; ;
in Figure[5c. In their union, they can be found again as thepmomant lined, s andls 4 (See Figurél7b) as
well as the component regiong, andr, 1 (see Figurél7c) with their original membership values.
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(l45.0.9)
(P41, 0.5) ® (P41, 0.5)
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@® (Pa2- 1.0) (l42,0.5)

(l41,0.3) (l42, 0.5)

®
P42.1.0)
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Figure 7: Spatial plateau union: plateau point objppt = funion(pp,,ppP,) = ((Pa1,0.5),(pa2,1.0),
ps) (a), plateau line objecpl, = funion(ply,ply) = ((l41,0.3),(l42,0.5),(143,0.7),(124,0.8), (145,0.9),
(l46,1.0),14) (b), and plateau region objegir, = funion(pry,pr,) = ((ra1,0.2),(r42,0.3),(ra3,0.6),
(r474,0.7),r4> (C)

Otherwise, the two component objects intersect, and upréethew component objects are stored in
the resulting spatial plateau object. The local view ralatethe common parts of both component objects.
Here we have to distinguish three cases. First, if the twopmrant objects are geometrically equal, a copy
with the larger membership value of both equal componerdatbijis added to the resulting spatial plateau
object. Second, if one component object is contained in thercone, the contained component object
annotated with the larger membership value of both compookjects is added to the resulting spatial
plateau object. For example, in Figlte 5b, the componeatdinwith the membership value 0.8 is contained
in the component ling 1 with the membership value 0.5 and can be found again as thparment linels 4
with the higher membership value 0.8 in the spatial plate@aruin Figure ¥b. Third, if both component
objects have a proper intersection, the common part is afdéhe resulting spatial plateau object with the
larger membership value of both component objects. For plagrthe intersection of the component regions
r13 with the membership value 0.7 angh with the membership value 0.6 in Figlre 5c is contained as par
of the component regiory 4 with the higher membership value 0.7 (see Figure 7b).

The handling of the remaining unshared parts of each cormpasigect requires a global view. We
illustrate this with an example. In Figuré 5¢, we consider tbmponent object pairg» andr,» as well as
ryzandrop. Let®, @, ando denote the generic geometric intersection, union, andreiffce operations on
crisp spatial data types [41]. The remaining unshared comtoobjects are; , ©rp2, 1226112, 1139122,
andry, ©ry3. If we took the local view, we would, for example, store thelés (ro> ©r12,0.6) and
(r267r13,0.6) into the resulting spatial plateau object. Since componbjects with equal membership
values are merged, we would obt&in > ©r12) ® (r226r13),0.6) = (r22© (r12®r13),0.6) = (r22,0.6)
sincery , ®ry 3 = @. Obviously, this is not the expected result. Instead, tipeeted result igro, & (r12®
ri13),0.6). Thatis, fromry> we have to subtract all component regions of the first opecdmectpr, that
intersectr,». This cannot be locally performed. Since we cannot find osilyeavhich component objects
of pry intersectr; , we leverage the global view provided by the union objectd, @mputer,, ©r1,0.6)
or, as an optimization(r> © (r1 ®r»),0.6) instead of(r,» & (r12 @ r13),0.6). The original membership
value is always maintained in the result. We apply this ppiecto all component objects of both operand
spatial plateau objects for all combinations of equal spatateau data types.

Spatial Plateau Difference

This operation also requires both the local view and thealalew on its operand spatial plateau objects.
The local view refers to the common parts of two componergaibj The global view refers to the remaining
part of a component object of the first spatial plateau olfettis not shared with the second spatial plateau
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(ps1: 0.5) (53 0.9)
. (4)
i0,

(s :I.OJ (15,1,0.5) (I51,0.5)
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Figure 8: Spatial plateau difference: plateau point objems = fdifferencépp,,pp,) = ((ps,1,0.5),

(p57271'0)7 p5> (a)v plateau line ObjemIS = fdiﬁerencéplbplZ) = <(|57170'5)7 (|57270'7)7 (|5737O'9)7 |5> (b),
and plateau region objepts = fdifferencépr,,pr,) = ((rs1,0.1),(r52,0.3),(rs3,0.6),(r54,0.7),r5) (C)

object. In all cases, computed component objects with tisaembership value are always geometrically
merged in the resulting spatial plateau object. Formingdifference of two objectpo; and po, of the
same spatial plateau data type principally means that ezopanent object obo, must be geometrically
subtracted from each component objecpof and that the membership value of the latter component object
is diminished by the membership value of the former compbabject.

The difference of the spatial plateau objects in Fidgdre Slistrated in Figuré 8. Two main kinds
of spatial configurations can be distinguished. If the twanponent objects do not intersect, then the
component object gbo, is copied with its membership value into the resulting spagiateau object. This
is, for example, the case for the component region pairandrs 1 in Figure[5c; the result is shown as the
component regions > in Figure[8c with the original membership valueref.

Otherwise, the two component objects intersect, and up ¢tongw component objects are stored in
the resulting spatial plateau object. The local view ralatethe common parts of both component objects.
Here we can distinguish three cases to which we react in time saanner. Either the two component
objects are geometrically equal, or the first componentabligecontained in the second component object,
or both component objects have a proper intersection. khi@e cases, if the membership value of the first
component object is larger than the membership value ofébhernsl component object, the intersection is
added as a new component object with the positive differefdmth membership values to the resulting
spatial plateau object. As an example for the latter casegomsider the component regiongss with the
membership value 0.7 amd3 with the membership value 0.6 in Figure 5c. The interseation 3 andr; 3
is added as a new component regigh with the membership value D— 0.6 = 0.1 to the resulting spatial
plateau object (see Figuré 8c).

The handling of the remaining unshared parts of each conmparpgect of the first spatial plateau object
requires a global view and is performed in the same way ash®spatial plateau union operation. That
is, from each component object of the first spatial plategeablve subtract the union object of the second
spatial plateau object and assign the original memberstiyeuo the result of the subtraction.

4.1.3 Formal Definition of the Spatial Plateau Set Operatioa

Based on the informal descriptions of the spatial plateawperations in Section 4.1.2, we now present
their formal definitions. These definitions rest on the afoeationed, available, and well known geometric
set operationftersection(®), union (¢), anddifference(&) on the crisp spatial data typesint, line, and
region [41],[44]. The three geometric set operations are geneit,ighpolymorphic, and the three spatial
data types are closed under them. That is, the operatioesthasignaturg: a x a — a fory e {®,®,6}
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anda € {point line,region}. This helps us ensure that the spatial plateau data typedcmed under the
spatial plateau set operations.

The formal definition of the spatial plateau set operati@ugiires an auxiliary construction operator
that enables us to insert a p&xm) € a x [0,1] of a component object and its membership value into the
ordered representation of a spatial plateau olgeet ((01,m), ..., (0n,mMy),0) € @(a) for somen € N. We
define:

po fc=gorm=0
((c,m),c) if po= () andc# @ andm> 0
((01,M),..., (0 c,m),...,(0,,My), 08 C)
ifc2@andn>1and3die{l,....n} :m=m
((01,m),...,(0;,my), (¢, M), (Cit1,Mit1),.- ., (On,Mn),0BC)
ifcAgandn>2and3die{l,....n—1}:m<m<my;
((c,m),(01,Mmy),...,(0n,My),0dC)
if c£2@andn>1and O< m< my
((01,Mm),...,(0n, M), (0,m),0dC)
if c# @ andn> 1 andm > my

po® (c,m) =

The interesting aspects are the third case in which a new @oemp object is merged with an existing
component objeay; if their membership values are equal, and the merging oftie@wbjecto at the end of
the representation with Note that® is left-associative, that iRo® (01, ) ® (02,Mp) = (PO® (01,M)) ®
(02,Mmp). FOrpo® (01,M;) ®...® (0n,My) we also writepo® O (0, my).

We are now prepared to provide the formal definitions of thedtspatial plateau set operations. We
specify them in a polymorphic manner with the signatyse @(a) x @(a) — ¢@(a) for y, € {fintersection
funion fdifferencg and a € {point line,region}. This means that the meaning and specification of the
three operations is the same for all three type combinatidfise construction operatab ensures that
the three spatial plateau data types are closed under themabyaining the structural constraints of
their definition given in Section 3.3. We assume two spatialgau objectpo;, po, € ¢(a) with po, =
((ok1,Mk1),-- -, (Okne, Mk, ), Ok) for ke {1,2}. Then the operatiofintersectionis defined as

fintersectioripo;,po,) = () ® (*) (01 ®0zj,Min(Myj, My }))
=
This definition (like the others) uses an incremental siratey starting with the empty spatial plateau
object() and incrementally adding local results from the intersextiof component object pairs. As said
before, this local view is sufficient here since each poirithefresult can be only obtained by the intersection
of exactly one pair of component objects.
The operatiorfunionis defined as

funion(po;,poy) = ()© (©) (01 ® 0z ), max(myj,my;))

1<i<ng
1<j<ny

® () (016 (01®02), My )
1<i<m
© O (02)©(01202), M)
1<j<ny
The first subexpression of the three-part expression repteshe local view on the common part (in-
tersection) of any pair of component objects. Each commahipannotated with the higher membership
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value of the component objects. The second and third suessipns represent the global view. From each
component object we subtract the intersection of both ualjacts and maintain its membership value.
The operatiorfdifferenceis defined as

fdifferencépo;,poy) = () (&) (01j®0zj,Myi—My ;)

1§i§n1
1<j<ny

® () (016 (01®02), My )
1<i<m

The first subexpression represents the local view on the @ompart of any pair of component objects.
Each common part is annotated with the difference of the neeship values of both component objects.
The operator-"has been defined in Section 4]1.104f ® 02 j = @ or myj—mp ; = 0 should hold, we obtain
an empty component object, and the construction operatwiill prevent its insertion into the resulting
spatial plateau object. The second subexpression repsetbenglobal view and determines the unshared
part of each component object of the first spatial plateaecbly preserving the original membership value.

4.2 Other Spatial Plateau Operations

Apart from the spatial plateau set operations in Se€tidnatfdw other spatial plateau operations are of inter-
est. Some of these operations cannot be found in the puiisly @omain but only in the fuzzy domain. We
classify them intduzzy spatial object construction operatiqi®ectiori 4.2.11 fuzzy spatial range operations
(Sectiori 4.2.R)¢containment and overlap predicatéSectior 4.2.13), anchembership value changing opera-
tions (Sectiorf 4.2.4). Further, we define an order relatioon the spatial data typepoint < line < region

4.2.1 Fuzzy Spatial Object Construction Operations

The operations of this category construct a new spatiabalabbject from one or two existing spatial
plateau objects. We first discuss a variation of the operdintersectionthat is here applied to heteroge-
neous type combinations. Let < {pointline}, B € {line,region}, anda < 3. The operations have the
signaturdfintersection @(a) x @(8) — ¢@(a) and share the same definition as the operdtigarsectionin
Sectior{4.1.8. The operation takes a component point or line object as well asrgonent line or region
object as operands and computes their geometric intessedtrom the two membership values, it assigns
the smaller one to the resulting component object.

The operatiorfcontour takes a plateau region object as an operand and storesZiglfozndary as a
plateau line object. It has the signatd@itentour: fregion— fline. Its definition makes use of the crisp spatial
operationcontour: region— line [41] that yields the boundary of a crisp region object as spdine object.
Let pr € fregionwith pr = ((r1,my),...,(rn,M),r). Then the operatiofcontouris defined as

fcontour(pr) = () ® () (contour(r;),m)
1<i<n

The operatiorfverticesreturns the fuzzy corner points (fuzzy vertices) of a platiéze or region object
and keeps them in a plateau point object. It has the signbtereces: @(a) — fpointfor a € {line, region}.
We begin with the case that the operand object is a plateawbiectpl = ((I1,m),..., (In,m),l). Each
line objectl; consists of a set of linear segments defined by two end paintsroces A main problem that
impedes the definition of this operation is that only collegtthe fuzzy vertices opl is insufficient. The
reason is that according to our definition of plateau lineeotsj in Section 313, the component linespbf
may meet or overlap in single points. Since different congobtines have different membership values, we
must cater for assigning the highest membership value fo @ammon meeting or overlapping point.

In a meeting situation, we have to distinguish two cases. firbecase is that two fuzzy end points
(p,m) and(q, ) of different component lines coincide. That = q andm## m holds. We handle this
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situation by keeping both poin{e, m) and(p,m’) temporarily in a sequence (collecting phase represented
by the auxiliary functiorcollectFPointg below) and by removing the pair with the lower membershipeal
later (reducing phase represented by the auxiliary funaeoucebelow). For this purpose, we leverage
the crisp spatial operatiovertices: a — point for a € {line,region} [41] that yields the corner points of

a crisp line or region object. The second case is that a fumdypeint of one component line touches a
fuzzy interior point of another component line. The fuzzienor point is not a vertex or corner point of the
second component line. Hence, we use the operatbammonPointsline x line — point [41] to identify all
touching points.

In an overlap situation, we consider intersection pointgeasces and hence as part of the result. Again
we use the operatiooommonPointdo compute them. All intersection points are collected (fseetion
collectFPointg below), and duplicate single points with different memb@rsvalues are removed (see
functionreducebelow).

More formally, collecting fuzzy vertices, touching poinend intersection points is performed by the
function collectFPointg as follows:

collectFPointg(pl) = pp={((p1,Mm),...,(Pk,M), P)
0 © Q (verticesl),m)
1<i<n

® () (commonPointd;,l;),min(m,m;))

1<i<n-1
i+1<j<n

Note that the result of the functicrollectFPoints is, in generalnot a plateau point object. Leip =
((p1,m),...,(pi,m),...,(px, M), p) be the result of this function. The operator already ensures that
duplicate (p;,m;) elements delivered by both functionerticesand commonPointsare merged and that
my < m; holds for all 1<i < j < k. However,pp may still keep element§p;,m;) and(p;j,m;) with i # |
such thatp; ® p; # @. This means there are single points that are annotated viféitesht membership
values. This contradicts the definition of the data tigant. Only the highest membership value of a point
should be maintained ipp. The functionreducesolves this problem and eliminates for a single component
point (p,m) all those single component poirp, ') in ppwith m < m. Itis defined as

reducgpp) = X if pj® pj # @ thenreplacepp,m, pi © (pi ® p;))

1<i<n-1
i+1<j<n

The result is now a correct plateau point object. The funatimkes use of an auxiliary functioaplace
that replaces elements in a sequeincgitu. The replacement function is defined as

replacgpp,m;, pf) = ((pz,M),..., (B, M), ..., (Pk, M), P)

We are now able to define the operatiwerticeson a plateau line objeq as follows:
fverticegpl) = reducécollectFPoints(pl))

The definition of the operatiofverticeson a plateau region objept is given as
fverticegpr) = fverticegfcontour(pr))

The next spatial plateau operation we discuss is the opar@immonPointslt takes two plateau line
objects, or two plateau region objects, or a plateau lineatbjnd a plateau region object as operands
and computes their shared single fuzzy points as a platesut poject. That is, it has the signature
fcommonPoints g(a) x @(B) — fpoint for a,B € {line,region} with a < 3. We first consider the case
of two plateau line objects. Lgtl; = ((I1,1,mM1),...,(l1n, Mn),11), Pl = ((I21,M21), ..., (I2s,Mps),12) €
fline. We collect all fuzzy touching points and intersection peiny the functiorcollectFPoints as follows:
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collectFPoints(ply,ply) = pp= ((P1,M), ..., (Pk, M), P)
() © () (commonPointdy;,lz ), min(my;,my;))
=
The result of the functiorollectFPoints is, in generalnot a plateau point object. The reason is the
same as above for the functiaollectFPoints. Let pp be the result of this function. We use the function
reducefrom above to preserve only single point results with th&hbst membership value. This enables
us to define the operatidnommonPointsn pl, pl, pl, € fline andpr, pr, pr, € fregionas follows:

fcommonPointply,pl,) = reducécollectFPoints(ply,pl,))
fcommonPoint%l, pr) = fcommonPointl, fcontour(pr))
fcommonPointgpr,,pr,) = fcommonPointdcontour(pr, ), fcontour(pr,))

The operatioficommonBordecomputes the shared boundary line parts of two plateaunregiects as
a plateau line object. That is, it has the signafem®mmonBorder fregion x fregion— fline. Let pry,pr, €
fregion. Then the operatiofcommonBorders defined as

fcommonBordeipr, pr,) = fintersectiorifcontour(pr, ), fcontour(pr,))

4.2.2 Fuzzy Spatial Range Operations

The operations of this category take a single spatial pladdgect and perform fuzzy spatial range opera-
tion based on chosen membership values. Hence, they compugeyaspatial selectiorFor this purpose,
based on a type=al for representable real numbers (for example, float or dovddiges), we define the data
typemv= {m|m € real,0 < m < 1} to denote single membership values.

The simplest operation of this category is narf@ite and has the signatufslice: g(a) x mv— ¢(a)
for a € {point line,region}. For a given spatial plateau objgab and a membership valus, it returns
the component object gfo whose membership value is equalrto This makes it possible to answer a
query like “Find all regions where English speaking restdeaccount for 50% of the entire population”.
Letpo= ((01,m),...,(0n,M,),0) € @(a) for somen € N. Then the operatiofsliceis defined as

fslice(po,m) =

((o,m),0) if31l<i<n:m=m
otherwise

The next operation we consider is an extension of the opartgiiceto a range or interval of member-
ship values. The operation is callesliceByRangand has the signatufsliceByRange ¢(a) x mvx mvx
bool x bool— ¢(a) for a € {point, line,region}. The two values of typenvindicate the start and end value
of the membership interval. The two Boolean values indigatether the start value and the end value,
respectively, are includedrge) or excluded false from the membership interval. This operation helps a
user answer a query like “Find all regions where English kipgaresidents account for 50% to 70% of the
entire population”. The operatidsliceByRangés defined as
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fsliceByRanggo, m, mp, by, by) =
((oi,,my),...., (0, m,),0) if the following conditions hold:
(i) I1<k<n3Tig,...,ike{l,...,n}:1<i;<...<ix<n
(i) if by A bpthenm <m, <...<m, <np
else if-by A by thenmy <my, <...<m, <mp
else ifby A —by thenmy <my, <...<m, <mp
elsemp <m, <...<m, <My
(i) Vje{1,...,n} —{i1,...,ik}:
if by A by thenmj <mg VvV mj>nmp
else if=by A by thenm; <mg vV m; >mp
else ifby A —by thenm; <mg vV mj > mp
elsem; <m v m;>m
(V) o =i, <j<i, 0
() otherwise

Note thatfslice(po,m) = fsliceByRanggo, m, m, true, true) holds. This shows that the operatitstice
is a specialization of the operatidsliiceByRange

Finally, we propose another specialization of the opemnatsticeByRange This operation is called
fplateauCutand has the signatufplateauCut @(a) x mvx bool x bool— @(a). It is defined as

fsliceByRanggo,m,1,b,true) if u

fplateauCutpo,m,u,b) = ) .
P P ) {fsllceByRangépo,O,m,falseb) if —u

This means that this operation takes a membership valas a separation value and returns either
the complete upper parti & true) or the complete lower parti(= false) of a spatial plateau objeg by
including (b = true) or excluding b = false) the objectipoat the membership value. In the case ofi = true
andb = true, we obtain the concept of an-cutin fuzzy set theoryl[56, 42]. Ifi = true andb = falseholds,
we obtain astronga-cut In our spatial context, we speak abosir¢ng spatial a-cuts

4.2.3 Containment and Overlap Predicates

This category only includes the two topological predicdiegor fuzzy containmentesting andisectfor

fuzzy intersection testing. Both predicates are definedniraé hoc mannBr The predicatdin checks
whether a spatial plateau object is located within anotpatial plateau object. Its signaturefiis: @(a) x

@(B) — boolfor all a, B € {point line,region} with a < 3. We assume two spatial plateau objquts €

@(a) andpo, € @(B) with po, = ((0k1,Mk 1), - -, (Okn, Mkn, ), Ok) for k € {1,2}. Then the operatiofin is
defined as

fin(po,,po,) = (V1<i<n 31<j<np:og;inside ozj A myj <mpj)

This operation makes use of ttapological cluster predicate insidea x 3 — boolon complex spatial
objects [44] witha and 3 as defined and constrained above. The predicaide. checks here whether a
crisp component object is located within another crisp comemt object; it is independent of the spatial
data type combination considered. The predidatéurther requires that for each containment relationship

3We will present thorough and systematically developed epteoffuzzy topological relationshipdike fuzzy overlapfuzzy
meej andfuzzy directional relationshipdike fuzzy northfuzzy southeakstn future publications.
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found for two component objects, the membership value ofiteecomponent object must not be larger
than the membership value of the second component object.

The predicatdisecttests whether any two spatial plateau objects intersechggially. Its signature is
fisect: (o) x @(B) — boolfor all a,B € {point line,region} with a < 3. We assume two spatial plateau
objectspo, andpo, as defined above. Then the operatitsectis defined as

fisec{poy, po,) = overlap:(01,07)

The predicateverlap. : a x B — boolis also a topological cluster predicate on complex spabgais.
It tests here whether the union objecisand oy intersect. Then the two spatial plateau objgug and
po, intersect too. Membership values do not play a role in thendigin. The reason is that a test for
intersection implies the existence of a common part shayetadbh spatial plateau objects. For such a
common part, the membership values must be larger than Qfirspatial plateau objects. If the intersection
of the union objects is non-empty, this requirement is eetbuHence, alternatively, we could define that
fisectpo;,po,) = (01 ® 02 # @) must hold. The degree of existence is not relevant here.

4.2.4 Membership Value Changing Operations

The operatiorrelabelwith the signatureelabel: @(a) x mvx mv— @(a) makes it possible to change the
membership value of a component object of a spatial platbgco If the new membership value is not
among the membership values of the other component objbets)d membership value of the component
object is replaced, and the order of the component objestotze updated if necessary. However, if the new
membership value already exists among the other membaerahips, a geometric union of the respective
component objects has to be performed. pet ¢(a) with po= ((01,m),...,(0n,My),0) € @(a) for
somen € N, and letm,m’ € mv. Then we define the operatioelabel as

relabel(po,m,m’) =
((01,m1),...,(0i~1,M-1), (Oi+1,Mi41), .-, (On,My),000) © (0,mM) fIL<i<n:m=m
po otherwise

4.3 Context-Dependent Spatial Plateau Operations

Several binary spatial plateau operations in the previegi®s map two membership values stemming
from two component objects of different spatial plateaweoty into a single membership value. For this
purpose, they apply tretandard fuzzy membership operations,miax and—. The operatiorintersection
uses the minimum functiomin. The operationfunion fvertices andfcommonPointgeverage the maximum
function max Finally, the operatiorfdifferencemakes use of the “positive subtraction” functien The
standard fuzzy membership operations behave preciseheantresponding operations for crisp sets when
the range of membership values is restricted to thg@&eit}. In this way, the standard fuzzy membership
operations are generalizations of the classical set opegat

However, the presented generalizations are not the onlilgesnterpretations of fuzziness, contrary
to their crisp counterparts. For each of the three standerziyfmembership operations above, there exists
a broad class of functions whose members qualify as fuzzgrgémations of the classical operations as
well and could be of interest for spatial applications. 8itlte three standard fuzzy membership operations
are not unique, different functions may be suitable to regmethese operations in different contexts. This
means that not only the membership functions of fuzzy setalba the operations on fuzzy sets aomtext-
dependent Functions that qualify as fuzzy membership intersectiang fuzzy membership unions are
usually referred to in the literature feormsandt-conormsrespectively[[32]. But their application-specific
selection and usage requires expert knowledge.

A t-norm Tis a functionT : [0, 1] x [0, 1] — [0, 1] with the following four properties for ali, b,d € [0, 1]:
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i) T@l)=a (boundary conditionidentity element
(i) T(ab)=T(b,a) (commutativity

(i) b<dimpliesT(a,b) <T(a,d) (monotonicity

(iv) T(aT(b,d))=T(T(ab),d) (associativity

Condition (i) ensures that the fuzzy membership intereadtiecomes the classical set intersection when
the intervall0, 1] is reduced to the crisp séb, 1} since we obtaiT (0,1) =0 andT (1,1) = 1. Condition (ii)
states that the fuzzy membership intersection is symmeiat is, indifferent to the order in which the sets
to be combined are considered. Further, we can concludd tia®) = 0 holds. Condition (iii) expresses
that a decrease in the degree of membership cannot lead ner@ase in the degree of membership in the
intersection. Incorporating Condition (ii], is non-decreasing in both arguments. Further, we can see tha
0<1impliesT(0,0) <T(0,1) =0andT(0,0) = 0. Condition (iv) allows us to take the intersection of any
number of membership values in any order of pairwise graudesired; this enables us to extend the fuzzy
membership intersection operation to more than two merhipeyslues.

The following examples show sonmorms that are frequently used as fuzzy membership irdéoss
(each defined for ath,b € [0, 1]).

Tm(a,b) = min(a,b) (standard intersectigmrminimum t-normGodel t-normn)
Tp(a,b) = max0,a+b—1) (bounded differencd.ukasiewicz t-norin
Tp(a,b) = ab (algebraic productproduct t-norn)
a ifb=1
T*(a,b) = ¢<b ifa=1 (drastic intersectiondrastic t-norm)

0 otherwise
One can easily show that for @lb € [0, 1] holds that
T*(a,b) < Th(a,b) < Tp(a,b) < Tm(a,b)
In fact, if T is anyt-norm, then for alla,b € [0, 1] holds that
T*(a,b) <T(ab) < Tn(ab)

Hence, a geoscientist could make use of one of the aforeometi-norms, or apply othernorms like

Tam(a,b) = {mln(a, b) frav b.> ! (nilpotent minimur
0 otherwise

Tw(ab) = 1—min(L[(1—a)¥+ (1—-b"¥%) (w>0) (Yagert-normy

Ts(ab) = (max0,aP+bP—1))YP (p+#£0) (Schweizer & Sklar t-norms
0 ifa=b=0

Thp(a,b) = ab na=b (Hamacher produgt
atbap Otherwise

or invent ownt-norms tailored to respective spatial applications. Wengedi setnormthat contains the
shortcuts of the names of all listéahorms:

thorm = {Tm, Tb, Tp, T*,Tnm> TWa TS7 THp}

T-conorms are dual tb-norms under the order-reversing operation which assigas 10 x on the
interval [0,1]. Given at-norm T and the complementaryconormC, we obtain the following two dual
relationships:

T(ab) = 1-C(1—a1-b)
Clab) = 1-T(1-a,1-b)
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It follows that at-conorm satisfies similar conditions likeé-@morm. These conditions can be used for an
equivalent definition of-conorms independently ¢fnorms. At-conorm Cis a functionC: [0,1] x [0,1] —
[0, 1] with the following four properties for ath, b,d € [0,1]:

(i) C(a0)=a (boundary conditionidentity element
(i) C(a,b) =C(b,a) (commutativity
(i) b<dimpliesC(a,b) <C(a,d) (monotonicity
(iv) C(aC(b,d)) =C(C(a,b),d) (associativity
A comparison of these conditions with the conditions tfarorms shows that they only differ in the
boundary condition. Conditions (i) to (iii) ensure that foezy membership union becomes the classical set
union when the intervg, 1] is reduced to the crisp s€0,1}. We obtainC(0,0) = 0,C(0,1) =C(1,0) =
C(1,1) = 1. Otherwise, the conditions have the same rationale ae foosnorms.
The following examples show sonteconorms that are frequently used as fuzzy membership sinion
(each defined for ath,b € [0, 1]).

Cm(a,b) = max(a,b) (standard uniopmaximum t-conorin
Cv(a,b) = min(a+b,1) (bounded suin
Cp(a,b) = a+b—ab (algebraic sumprobabilistic sum
a ifb=0
C*(a,b) = <b ifa=0 (drastic uniondrastic t-conorm

1 otherwise

Tm andCpy, Ty andCy, Tp andCp, andT* andC* are pairwise dual. One can easily show that for all
a,b € [0,1] holds that

Cm(a,b) <Cp(a,b) <Cp(a,b) <C*(a,b)
If C is anyt-conorm, then for alé, b € [0, 1] holds that
Cm(a,b) <C(a,b) <C*(ab)
Also the other aforementiongehormsT,m, Tw, Ts, andTyp have duat-conormsCm, Cy, Cs, andCegs:

maxa,b) ifat+b<1

Cam(a,b) = 1 otherwise (nilpotent minimurp

Cu(a,b) = min(1,(@¥+b")¥™) (w>0) (Yager t-conorms

Cs(ab) = 1—(max0,(1—a)P+(1-b)P—1))YP (p#£0) (Schweizer & Sklar t-conoris
Ces(ab) = &% (Einstein sum

We define a setonormthat contains the shortcuts of the names of all listednorms:
tconorm = {Cp,Cp,Cp,C*,Cnm,Cw,Cs, Ces}

For fuzzy membership difference, we have so far specifiedrtmbership functionr-.” An alternative
is the membership functiomdiff defined for alla,b € [0,1] as

mdiff(a,b) = min(a,1—Db)

This function can be explained as follows: For two fuzzy Jetsnd B on R?, the complement of\
is cA = {(p, Hea(P)) | P € R? ui(p) = 1— pz(p)}, and the fuzzy difference betwednandB is A— B =
AncB = {(p, s a(P) | P € R? Uz a(p) = min(uz(p),1— ug(p))}. We collect the two alternatives for
fuzzy membership difference in the siff = {— mdiff}.

Besides thé-norms, thet-conorms, and thdiff functions, we also provide the two additional special
functionsfirst,second [0, 1] x [0,1] — [0, 1] that give priority either to the first or to the second membigrs
argument. They are defined for alb € [0,1] as
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first(a,b) = a
seconda, b) b

For example, assume that a polluted river modeled as a furz§idws across a city modeled as a fuzzy
region, and an environmental science expert wants to knevetigth of the river inside this city in order
to calculate the amount of decontamination liquid that seledbe poured into the river to cope with the
polluted water. Then the membership values of the fuzzydneerelevant and should be preserved while the
membership values of the fuzzy region can be ignored. Hehedunctionfirst would be used.

For the extension of the operatiofistersection funion fvertices fcommonPointsandfdifference we
introduce the three typasgype (intersection type)utype (union type), anditype (difference type). Note
that these three types do not contain the functions themsdiut only function identifiers. Depending on
a selected function identifier, the corresponding memligrsction is called in one of the five spatial
plateau operations.

itype = tnormu {first,second
utype = tconormu {first,second
dtype = diff U {first,secongd

Besides the standard form of each operation given in Seldiib3, we offer each operation also in a
version with one additional parameter of tyipgoe, utype or dtypeso that we obtain the following extended
signatures foor, 3 € {point, line, region} with a < f3:

fintersection o(a) x @(a) xitype —  @(a)

funion: o(a) x @(a) xutype —  @(a)
fvertices: @(a) x utype — fpoint
fcommonPoints ¢@(a) x @(B) x utype — fpoint
fdifference: o(a) x p(a) xdtype —  ¢(a)

The definition of the operations is as before but dependingheniast parameter the corresponding
t-norm,t-conorm,diff function,first function, orsecondfunction respectively is selected and evaluated.

4.4 Mapping Operations between the Spatial Plateau Algebrand the Spatial Algebra 2D

The Spatial Plateau Algebra, as it has been defined so fdgsedcunder operations. This means that its
operations do not leave the algebra or type system. But #risbe useful in applications. In particular,
the mapping of objects between the Spatial Plateau Algeimtaar Spatial Algebra 2D is of interest. The
Spatial Algebra 2D provides a comprehensive collectiorpatial data types, spatial operations, and spatial
(topological and directional) predicates for two-dimemsil geometric data. The Spatial Plateau Algebra
offers the operationkbel, select anddetachto move from one algebra to the other.

The operatioriabel has the signaturkabel: o x mv— @(a) for a € {point,line, region}. This means
it takes a spatial object and a membership value as operaddsoastructs a corresponding spatial plateau
object. Leto € a andm € mv. Then we define the operatitabel as

label(o,m) = ((o,m),0) € @(a)

By using the operatiofunion, larger spatial plateau objects can be assembled fromaspafects. For
example, foo;,0, € a andmy, mp € my, the termfunion(label(oy, my ), label(oz, my)) constructs the spatial
plateau object(0; © 02,my ), (02,Mp),01 & 0) if My < My, ((02 & 01,My), (01,My),01 B 0p) if Mp < My, Or
((01 @ 02,M),01 @ 0p) if M = my,. Note thato; ando, could intersect.

The operationrcomponenthas the signature(a) x mv— a. It takes a spatial plateau object and a
membership value as operands and returns the componeaot witje this membership value if it exists. Let
po € @(a) with po= ((01,Mm),...,(0n,My),0) € @(a) for somen € N andm € mv. Then we define the
operationcomponents
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o Ifdl<i<n:m=m

componen(po,m) = {<> otherwise

The operatiordetachhas the signaturdetach: ¢(a) — a. It removes all labels of a spatial plateau
object and returns the union object obtained from the geenation of the component objects as a spatial
object. Geometric operations and predicates can then biedyp this spatial object. Lagio € ¢(a) with
po= ((01,Mm),...,(on,M),0) € @(a) for somen € N. Then we define the operatialetachas

detachlipo) =o€ o

5 Embedding Spatial Plateau Algebra Concepts into Query Laguages

In the previous section we have defined a number of operabiorfiszzy spatial objects that are represented
as spatial plateau objects. In this section, we will show bpatial plateau data types can be integrated into
a database schema and how spatial plateau operations carbbdded into an extension of the Structured
Query Language (SQL), which is the standard query languargabfect-relational databases. In the follow-
ing, we present three simplified scenarios that illustrgtati&l Plateau Algebra concepts and their possible
embedding into table schemas and SQL-like queries.

5.1 Scenario 1: Homeland Security

Secret services are interested in the prevention of tetiomctivities. Important information about each
terrorist is which refuges they have had, which routes theyertaken, and which areas have been their
focus of operation. It is evident that this information ifliefed with spatial fuzziness or vagueness since
the knowledge of the terrorist's presence at a certain ilmcas often not fully known but incomplete. We
use fuzzy spatial objects to represent the inherent vagsarfeéhese locations. From a database perspective
we deploy our spatial plateau data tyfesint, fline, andfregion asattribute data typesn the same way as
we use standard data types likeéegeror dateas attribute data types. This allows us to store the above in-
formation about terrorists in all database models that atiftpe concept of attributes to describe properties
of entities, and leads thus to a database model independEmreenples of such models are the relational,
nested relational, object-oriented, and object-relaliaata models. In a relational table schema, we can
model the information about terrorists as follows:

terrorist(id: integer, name:string, refuge:fpoint, route:fline, active area:fregion)

The attributerefugemodels all locations that a terrorist has used as a refugenme gxtent. The routes
a terrorist has definitely or possibly taken to move betwedinges are modeled in the attributeite Areas
of potential terroristic operation are stored in the atti@active area

Looking at the table schema, we observe the equal treatrhatitstandard and non-standard data types.
This is possible for non-standard data types since they adeled asbstract data typesThis means that
the internal, complex structure of fuzzy spatial objecfmatml plateau objects) is hidden from the user and
that information about these objects can only be obtainebidpy-level operations, which are deployed in
fuzzy spatial queries.

The first query asks for the locations where any two termhsive definitely or possibly taken the same
refuge. It makes use of the topological prediciisgectand the spatial plateau set operatfortersection
Common locations are stored with the minimum degree of meshigein the new attributeommonrefuge

select A.id, B.id, fintersection(A.refuge, B.refugeascommonrefuge
from terroristasA,terroristasB
where A.id # B.id and fisec{A.refuge, B.refugg
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The following query determines the names of terrorists &eddcations where their routes have def-
initely or possibly crossed each other. The tepndenotes the empty spatial plateau object (here empty
spatial plateau point).

select A.name, B.nam&commonPointgA.route, B.routeascrossing
from terroristasA,terroristasB
where A.id # B.id and fcommonPointgA.route, B.route)}# ()

The next query finds out the known sphere of all terroristsherasis of their refuges.

select labe{convexhull (detach(fplateauCut(aggr_funion(refuge), 1.0, true, true))), 1.0)
asknown.sphere
from terrorist

The functionaggr_funionis a newfuzzy spatial aggregation functidhat here computes the fuzzy ge-
ometric union of a collection of spatial plateau point obgeftom the columrmrefuge Since we are only
interested in the known refuges having the membership valdiewe use the operatidplateauCutwith
appropriate parameters to identify these. We interprettimvex hull of the remaining refuge locations as
the known sphere where the terrorists have been definitéilyead-or a given set of points, its convex hull
is the smallest convex polygon that encloses all pointsceSthe operatioronvexhull is a crisp spatial
operation, we first detach all membership values from théiadpalateau point object obtained from the
operationfplateauCut We use the operatidabel to lift the crisp region object obtained from the operation
convexhull to a spatial plateau region object of tyfpegion.

The final query for this scenario asks for the areas of agtiwihereall terrorists have been with a
membership value between 0.12 and 0.78.

select aggrfintersection(restrictedareg ascommonrestrictedarea
from (select fsliceByRangéactive area0.12 0.78, true, true) asrestrictedareafrom terrorist)

For each terrorist, by using the operatitsiceByRangethe nested SQL query determines the area
of activity with membership values between 0.12 and 0.78 apatial plateau region. The outer SQL
query applies the new fuzzy spatial aggregation operatggr_fintersectionthat here computes the fuzzy
geometric intersection of a collection of spatial platesgion objects from the colummastrictedarea Two
main cases are possible. First, the nested SQL query preduitgple with an empty spatial plateau region
(). Then the aggregation will inevitably produce the emptytigpalateau regior{). Second, all tuples have
non-empty spatial plateau regions. Then the fuzzy spaj@iegation function yields either an empty (not
all terrorists have been at the same location) or a non-espgatial plateau region (there is a common area
of terroristic activity).

5.2 Scenario 2: Ecological Application

This scenario assumes an ecological database about waathsoil data with the following table schemas:

weather(climatestring, area:fregion)
soil(quality: string, area:fregion)

The relationweatherhas a column namedrea containing spatial plateau region values for various
climatic conditions given by the columelimate The relationsoil describes the soil quality for certain
regions.

The first query asks for the driest areas with a membershigeval more than 95% where a lack of
water is a problem for cultivation.
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select fplateauCutarea0.95,true,false) asextremedry_area
from weather
where climate = “dry”

The next query is supposed to find out all regions of bad eadbgonditions, that is, all locations
where a lack of water or a bad soil quality is a hindrance fdtivation.

select funiondry_areabad soil) asbadregion
from (select aggrfunion(areg asdry_areafrom weathemwhere climate = “dry”),
(select aggrfunion (areg asbadsoil from soil where quality = “bad”)

In the from clause, we create two temporary relations that contain glgeegated areas of dry climate
regions and bad soil quality regions respectively. Eacletabntains a single tuple with a single attribute
value of typefregion In the selectclause, we compute the fuzzy union of the two attribute \shieboth
tuples. The larger membership values prevail for each point

For each kind of climate, the last query for this scenariedsines the numerical area measures of those
weather zones that we can definitely classify and that we obrvaguely classify.

select  climate
area(detach(fslice(aggr_funion(area)1.0))) asdefinite area
area(detach(fplateauCut(aggr_funion(area) 1.0, false false))) asvaguearea
from weather
group by climate

Note that the operatioareais a crisp operation on the spatial data typgion and that for the empty
crisp region() holds thatarea(()) = 0. Further, for the terndetach(fslice(aggr_funion(area)1.0)) we
could also write the simpler tereomponen{aggr_funion(area)1.0).

5.3 Scenario 3: Environmental Application

Pollution is nowadays a central environmental problem anges an increasing number of environmental
damages. Important examples are air pollution, oil sojlengd radioactive contamination. Pollution con-
trol institutions, ecological researchers, and geogneptsually use maps for visualizing the expansion of
pollution. We assume an environmental database with theséleexplaining relations

pollution(type: string; zone:fregion)
land use(usestring, area:fregion)

The first query asks for inhabited areas which are air palluta order to accentuate heavily polluted
areas and largely inhabited areas and to understate haitilyga areas and hardly inhabited areas, we make
use of the produdtnorm (see Sectidn 4.3).

select fintersectiorfaggr_funion(zone),aggr_funion(area, Tp)
from pollution,land.use
where use = “inhabited’and type = “air”

Finally, we pose the query to determine all areas where peagl endangered by pollution.

select aggrfunion(fintersection(zongareaT)) asendangeredirea
from pollution,land.use
where use = “inhabited’and fisec(zone, area
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6 Implementation

Due to our concept of executable specifications (see Ségi)nthe implementation of the Spatial Plateau
Algebra only requires high level calls to an underlying prépatial type system implementation. This min-
imizes the needed implementation effort. Available crigat®l algebra implementations are, for example,
ESRI's Spatial Database Engine (ArcSDE), Oracle Spatiébriix’s Geodetic Data Blade, DB2’s Spatial
Extender, PostGIS, MySQL Spatial Support, the Java TogdBgte (JTS), and the Geometry Engine Open
Source (GEOS) (see Sectionl2.3). However, the concepisfanes, functional range, and implementations
of these spatial type systems as well as the storage te@mfqu spatial objects are rather different from
each other and depend on the database system used. Thisthaalifferent implementations of the Spatial
Plateau Algebra would be required for different databastesys with their specific spatial type systems.
Some of the aforementioned spatial type systems addiljootiér interfaces based on ti@penGIS Simple
Features Specifications For SQif the Open Geospatial Consortium (OGC). But even thesefaates are
not generic and unique since they are only informally spetifi

We have therefore decided to go another, longer way and amaiel and general solution to complex
object management in databases that enabletyplgesystem implement€rSi) to define, implement, and
integrate new type systems foomplex application objecisto database systems on her own. These type
systems and the whole framework that enables their impleatien are database independent. That is,
they are reusable and can be embedded into several datalstéesms The framework that enables their
implementation is based on two pillars. The first pillar is engralized method, namdygpe structure
specification(TSS, for representing and interpreting the structure of caxpplication objects. Such a
specification provides an interface for the TSI to descrigediructure of complex objects at a conceptual
and high level of abstraction by means of special TSS gramnh@aaddition, it provides a generic interface
for high-level retrieval, storage, and update operatiansanplex objects and their components.

The second pillar is a generalized framework, narmedlligent binary large objectgiBLOBS, for
the efficient and high-level storage, retrieval, and updsdthierarchically structured complex objects in
databases. IBLOBs store complex objects by utilizing thstructured storage capabilities of a DBMS
and provide component-wise access to them. In this sersgs#dive as a communication bridge between
the high-level abstract type system and the low-level pirsdorage. Low-level binary storage is usually
provided by the built-in type fobinary large object{BLOB9. BLOBs themselves are not well suited for
structured object management. They have originally besigded for storing unstructured data as byte

Spatial Plateau Algebra

Crisp Spatial Algebra

TSS Component

iBLOB Component

Generic BLOB Interface

DBMS specific BLOB

Extensible DBMS

Figure 9: Integration of the Spatial Plateau Algebra int@&iensible database system.
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sequences and offer a low-level interface for simple redt#¥vaccess to byte ranges. Thus BLOBs do not
understand the semantics of the internal structure of tpécagion objects stored in them and therefore
do not include methods to access internal components of.thEms makes the access to a component
of an application object rather expensive since the entijeab needs to be loaded into main memory to
understand its structural semantics and get access to thgorent of interest. Further, BLOBSs typically
allow data to be appended, truncated, and modified throwgbwbrwriting of bytes. However, general data
insertions and deletions are not supported unless the xsiity shifts data, which is expensive. Since the
implementations and access operations of the BLOB typelaaggly between different database systems,
we have designed @eneric BLOB Interfacé¢hat has to be implemented for each database specific BLOB
implementation.

Figure[9 illustrates the proposed system architecture. Aerdetailed description of the TSS concept
and the iBLOB concept, which are beyond the scope of thisleytcan be found in [10]. This research
effort is ongoing work. We are currently implementing theSTI&mponent and the iBLOB component and
are beginning with the TSS specification and implementatioa crisp spatial type system call&gpatial
Algebra The implementation of the Spatial Plateau Algebra on tajhefSpatial Algebra will follow these
implementation efforts.

7 Conclusions and Future Work

In this article, we have dealt with the problem of implemegtspatial objects and operations afflicted with
the feature of spatial vagueness in a database con8patial vaguenessr spatial fuzzinesss inherent
to many database applications in the geosciences and imaggocgal information systems. Our solution
presented in this article is the Spatial Plateau Algebré&ithplements a fuzzy spatial algebra (like one
of those described in_[18, 42]) and can be embedded into amngkle and commercially or publicly
available database system and its query language SQL.[§klra is a type system that provides the spatial
plateau data typefpoint, fline, and fregion together with a comprehensive collection of spatial platea
operations. A special characteristic of our approach it ttese data types and operations rest on well
known concepts, data structures, algorithms, and impléatiens of their crisp counterparts. This leads to
executable specifications that can be directly implemewiddminimal effort. Further, spatial plateau data
types are closed under spatial plateau operations. To therauknowledge, the Spatial Plateau Algebra
provides the first approach to an implementation of a fuzatiapalgebra in general and in a database
context in particular.

For future work, we plan to extend the Spatial Plateau Algdiy metric operationsandtopological
predicates on spatial plateau objects the implementation of their counterparts on fuzzy spatigcts.
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