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Abstract

Many geographical applications have to deal with spatial objects that reveal an intrinsically vague
or fuzzy nature. A spatial object is fuzzy if locations existthat cannot be assigned completely to the
object or to its complement. Spatial database systems and Geographical Information Systems (GIS) are
currently unable to cope with this kind of data. Based on an available abstract data model offuzzy spatial
data typesfor fuzzy points, fuzzy lines, andfuzzy regionsthat leverages fuzzy set theory and fuzzy point
set topology, this article proposes aSpatial Plateau Algebrathat providesspatial plateau data typesas
an implementation of fuzzy spatial data types. Eachspatial plateau objectconsists of a finite number of
crisp counterparts that are all adjacent or disjoint to eachother, are associated with different membership
values, and hence form differentplateaus. The formal framework and the implementation are based on
well known, exact models and implementations of crisp spatial data types.Spatial plateau operationsas
geometric operations on spatial plateau objects are expressed as a combination of geometric operations
on the underlying crisp spatial objects. This article offers a conceptually clean foundation for implement-
ing a database extension for fuzzy spatial objects and theiroperations, and demonstrates the embedding
of these new data types as attribute data types in a database schema as well as the incorporation of fuzzy
spatial operations into a database query language.
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1 Introduction

Spatial databases as the data management foundation of Geographical Information Systems (GIS) represent
geometries such as point, line, and region objects by special data types calledspatial data types[41]. These
data types can be used in the same way as attribute data types as integers, floats, or characters. Their objects
have the fundamental and tacitly assumed property that theyare crisp, that is, they have a definite extent,
boundary, and shape. However, many, or even most, spatial objects in reality cannot be described by crisp
concepts since they are inherently fuzzy, vague, or indeterminate. A spatial object is fuzzy if it contains
locations that cannot be assigned completely to the object or to its complement. Hence,spatial fuzziness
captures the property of objects that do not have sharp boundaries and crisp interiors but rather vague or
indeterminate boundaries and interiors. Examples are natural, social, or cultural phenomena like oceans,
pollution areas, and English speaking regions. It is, for example, impossible to say with precision where the
Indian Ocean ends and the Arabian Sea begins since the transition between them is smooth and seamless.
So far, available spatial database systems and GIS are unable to represent indeterminate spatial objects.

From a modeling standpoint, especially the GIS community has propagated the use offuzzy set the-
ory [56] to characterize and describe indeterminate spatial data. The spatial database community has pro-
duced a few approaches to the conceptual modeling of such data throughfuzzy spatial data types. In previous
work [42], at an abstract, fuzzy point set theoretic and fuzzy point set topological level, we have defined
fuzzy points, fuzzy lines, andfuzzy regionsby assigning amembership valueranging from 0 to 1 to each point
of such an object by an appropriately defined and application-specificmembership function. A membership
value indicates how strongly or weakly a point belongs to an object. From an implementation standpoint,
adequate implementation approaches to the representationof fuzzy spatial data types in spatial database
systems and GIS are lacking. A first main reason is that the sole approximation of the fuzzy boundary of a
fuzzy spatial object is insufficient since the interior of such an object is usually fuzzy too. A second main
reason is that each of the infinitely many points of the interior of a fuzzy spatial object can have a different
membership value and that afinite representation of such a constellation is challenging and difficult.

The goal of this article is to propose an appropriate implementation concept for these types that enables
their efficient representation, querying, and manipulation in a database context. Our approach introduces an
executable algebra(or type system) calledSpatial Plateau Algebrathat bases the implementation of fuzzy
spatial data types, operations, and predicates on aplateau concept. The idea is to providespatial plateau
data typesthat approximate a fuzzy point, fuzzy line, or fuzzy region object by aplateau point, plateau
line, or plateau regionobject respectively. Eachspatial plateau objectconsists of a finite number of crisp
and finitely representable counterparts (that is, crisp point, line, or region objects) that are all adjacent or
disjoint to each other and that are associated with different membership values which formplateausand
which determine the degree of belonging to the fuzzy spatialobject. A main benefit of the Spatial Plateau
Algebra is that its formal framework and its implementationare based on well known, general, and exact
models and implementations of crisp spatial data types. This enables its own exact and robust definition
and implementation. Geometric operations (like geometricunion, intersection, and difference) on spatial
plateau objects are calledspatial plateau operationsand are expressed as a combination of corresponding
operations on the underlying crisp spatial objects. Hence,our approach enablesexecutable specificationsof
the spatial plateau operations such that they can be immediately used as implementations. The spatial plateau
data types are, in particular, closed under spatial plateauoperations. Further, spatial plateau objects are
represented ascompact storage structures(arrays) that are directly processed by geometric algorithms, avoid
any serialization and deserialization cost, and thus enable an efficient object transfer between main memory
and database. This article offers a precise and conceptually clean foundation for implementing a database
extension for fuzzy spatial objects and operations, and demonstrates the embedding of these new data types
as attribute data types in a database schema as well as the incorporation of fuzzy spatial operations into
queries formulated in a database query language. Spatial plateau predicates implementing fuzzy topological
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predicates and fuzzy directional predicates as well as metric plateau operations implementing fuzzy metric
operations are not considered in this article.

Section 2 discusses related work on the fuzzy approach to spatial data handling, both from a conceptual
and an implementation perspective. It also briefly reviews crisp spatial data types as the underlying basis of
our Spatial Plateau Algebra. Section 3 introduces spatial plateau objects as an implementation concept for
fuzzy spatial objects and provides a formal definition of thespatial plateau data types. Section 4 focuses on
the specification of spatial plateau operations for their fuzzy counterparts in terms of their crisp counterparts.
An emphasis is on the plateau versions of the fuzzy geometricset operationsfuzzy union, fuzzy intersection,
andfuzzy difference. These versions are namedplateau union, plateau intersection, andplateau difference.
Fuzziness can be expressed in different ways. Hence, besidean established and predefined understanding of
fuzziness for our spatial plateau operations, we also present a variation of these operations that is context-
dependent and lets the application or user select an appropriate interpretation of fuzziness. Section 5 shows a
few application scenarios and queries that leverage the operations of the Spatial Plateau Algebra. Section 6
discusses implementation aspects of the Spatial Plateau Algebra. Section 7 draws some conclusions and
considers future work.

2 Related Work

In this section, we discuss related work that has been proposed for modeling fuzzy spatial objects and that
is relevant for describing our implementation concept based on crisp spatial data types. As indicated in the
Introduction, the goal of this article is to propose an implementation concept for fuzzy spatial data types
in terms of spatial plateau data types that themselves are based on well known crisp and complex spatial
data types for point, line, and region objects. Correspondingly, fuzzy spatial operations are implemented
in terms of spatial plateau operations that themselves are based on well known crisp spatial operations.
Hence, in Section 2.1, we first delineate the available models of fuzzy spatial objects. Section 2.2 deals with
implementation approaches to fuzzy spatial objects. Implementations are missing so far and only available
for indeterminate spatial objects that are based on a 3-valued logic. Finally, Section 2.3 gives a concise
overview of crisp spatial data types and operations as the foundation of our implementation concept.

2.1 Approaches to Modeling Fuzzy Spatial Objects

Fuzzy set-based modelsrest onfuzzy set theory[56], which describes theadmission of the possibility(given
by amembership function) that an individual is a full or partial member of a set. It refers to the vagueness
resulting from the imprecision of the meaning of a concept.Spatial fuzzinessis an intrinsic feature of a
spatial object itself and describes the vagueness of such anobject which certainly has an extent but which
inherently cannot or does not have a precisely definable boundary and/or interior. Examples offuzzy spa-
tial objects include mountains, valleys, biotopes, polluted areas, andoceans, which cannot be rigorously
bounded by a sharp line and which can have a blurred interior.

The deployment of fuzzy set theory and fuzzy logic for spatial applications and spatial analysis methods
has gained increasing popularity in the geoscience and GIS communities and also led to a large amount of
literature on fuzzy approaches in the GIS domain. A spatial concept is vague or fuzzy if locations exist that
cannot be completely associated with the concept or with itscomplement. For example, when mapping veg-
etation, it is difficult to determine whether a certain location belongs to one vegetation class or to another.
Examples from the geosciences that exhibit transition zones instead of sharp boundaries and that have been
modeled with fuzzy concepts are geomorphological units [9], soil types and boundaries [16, 34], landscape
objects [11], forest types [4], and soil pollution classes in environmental applications [28]. The work in [7]
introduces fuzzy geographical objects for modeling natural objects with indeterminate boundaries. Fuzzy
spatial objects also play a role in fuzzy architectural spatial analysis [2] which applies fuzzy concepts to
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architectural spatial planning and analysis and explores the spatial formation and architectural space inten-
sity within architectural structures. The authors of [21, 22, 33] deal with qualitative spatial and temporal
reasoning using fuzzy logic. The approaches in [23, 51] dealwith fuzzy representations of geographical
boundaries in GIS. The author in [47] defines concepts like core and boundary of a fuzzy region and gives
examples of membership functions for modeling fuzzy regions. The approach in [19] classifies geographic
objects according to the features of crispness and vagueness of their interior and boundary. Geographic
objects can have a crisp interior and crisp boundary, a crispinterior and fuzzy boundary, a fuzzy interior and
crisp boundary, or a fuzzy interior and fuzzy boundary. The work in [50] presents a fuzzy query approach in
order to introduce more natural language expressions into GIS user interfaces. The authors in [52] propose
a fuzzy relational data model for geographic information; each tuple is annotated with a membership value.

The references mentioned so far demonstrate the usefulnessof fuzzy concepts in geoscience applications
from a modeling standpoint. However, they do not deal with the issues of representing, storing, retrieving,
and querying fuzzy spatial objects infuzzy spatial databases. Increasingly, there is interest in pursuing these
goals. The work in [1] presents fuzzy set theoretic approaches for handling imprecision in spatial analysis
and introducesfuzzy regionsas a binary relation on the domain ofN2 (N denotes the set of natural num-
bers). Distance and directional metrics on fuzzy regions demonstrate their possible use in qualitative spatial
analysis. The studies in [5, 6] introducefuzzy plane geometryand provide alternative definitions for each
of the three categories of fuzzy points, fuzzy lines, and fuzzy regions. One definition in each category is
selected with respect to its capability to be visualized. Fuzzy points and fuzzy lines have an areal structure
so that one could describe them as special kinds of fuzzy regions. The work in [57] proposes a concentric
core-boundary model for simple fuzzy regions and assumes a monotonically decreasing membership func-
tion from the core towards the boundary. For the determination of topological relationships,α-cut level
regions of a fuzzy region are used. The authors in [35] propagate the incorporation of fuzzy spatial data and
operations into a fuzzy object-oriented data model and database. Fuzziness of spatial objects is modeled in
a class hierarchy such that the membership of a class in its superclass need not be crisp. Once fuzzy mem-
bership values have been assigned to (spatial) objects, fuzzy (spatial) operations can be defined on them.
The data structures and algorithms provided by the Spatial Plateau Algebra can help the authors implement
their approach. The approach in [20] definesfuzzy partitionsover the Euclidean plane to model fuzzy spatial
objects and distinguishes their possibly overlapping fuzzy interior, fuzzy boundary, and fuzzy exterior. The
study in [45] represents a fuzzy region by a core and a boundary that are approximated by theirfuzzy mini-
mum bounding rectangles. The work in [17] leveragesgeneralized constraintsintroduced by Lofti Zadeh to
cope with imperfect spatial information and relies on a many-valued logic based on extended possibilistic
truth values.

The approach in [42] provides the foundation offuzzy spatial data typesfor fuzzy points, fuzzy lines, and
fuzzy regionsand also specifiesfuzzy spatial operationslike fuzzy spatial union, fuzzy spatial intersection,
andfuzzy spatial difference. The author presents an abstract specification in which fuzzy spatial objects are
defined as special fuzzy sets overR

2. A similar type system ofvague spatial data typeswith a comprehen-
sive set of operations is introduced in [18]. Instead of the term “fuzzy”, the authors use the term “vague”.
The work in [46] offers a similar (informal) concept of fuzzyregions but different concepts of fuzzy points
and fuzzy lines which have an areal structure too. The Spatial Plateau Algebra uses especially the models
and concepts in [18, 42] as a specification for its implementation. With some modifications, our approach
could also be applied to the kind of fuzzy spatial objects as they are defined in [46].

The work in [43] proposes a conceptual model and an implementation model of fuzzy spatial objects
that arenot defined on the Euclidean plane but on a discrete geometric domain calledgrid partition. It takes
into account finite-precision number systems available in computers. Membership values are assigned to
the points, edges, and cells as elements of the grid partition, and fuzzy objects are built from these grid
elements.

An important requirement for a model of fuzzy spatial objects is that the fuzzy spatial data types are

4



closed under geometric operations. This means, for example, if a model defines a concept of fuzzy region
objects, then the geometric intersection, union, and difference of two fuzzy region objects should yield
a fuzzy region object again according to the corresponding type definition. Invalid result objects will let
operations on them fail. Unfortunately, from all the modelscited in this subsection, only the models in
[18, 42] satisfy this requirement.

2.2 Approaches to Implementing Fuzzy Spatial Objects

To the author’s knowledge, an implementation of fuzzy spatial data types, or, at least, an implementation
of an adequate approximation of them, does not exist so far. In the crisp case, all points of a spatial object
belong completely to that object so that a linear boundary representation can adequately serve as a finite
representation. Line objects can be represented by a finite number of segments, and each segment can be
finitely described by its two boundary endpoints. Region objects can be represented by a finite number of
cycles. Each cycle can be represented by a finite number of segments, and each segment can be finitely
described by its two boundary endpoints. In the fuzzy case, we are confronted with the problem that each
point of a spatial object is associated with a membership value that is an element of the infinite range of real
numbers between 0 and 1 in order to indicate partial membership. But only a finite numbern of membership
values can be explicitly represented in a computer system. This amounts to ann-valued approximation
approach and to ann-valued logic.

For the case thatn= 3 holds, several models (for example, [13, 14, 38]) have beenproposed that lead
to feasible and efficient implementations. Due to the strictrestriction ofn to 3, we cannot regard these
approaches as fuzzy spatial object models but they help us better understand the concept and implementation
idea of the Spatial Plateau Algebra. Without going into detail, despite some conceptual differences, they
have all in common that they are 3-valued approximation approaches which, for an indeterminate spatial
object, model parts thatdefinitelybelong to this object, parts that dodefinitely notbelong to this object, and
parts thatperhapsbelong to this object. In our own approach, calledVague Spatial Algebra(VASA) [38],
these parts are calledkernel parts, exterior parts, andconjecture partsrespectively. All approaches rest on
a 3-valued logic with the truth valuestrue, false, andmaybe. Their attractiveness and benefit rests on the
fact that their conceptual and implementation framework isbased on well known, general, and exact models
of crisp spatial data types (see Section 2.3) and thus on a wide range of existing definitions, techniques,
data structures, and algorithms for crisp spatial objects that need not be redeveloped but only modified and
extended, or simply used. In case of VASA, both the kernel part and the conjecture part of an indeterminate
spatial object are of the same crisp spatial data typepoint, line, or region. This enables an exact definition of
these models. In particular, this enablesexecutable specificationsfor the operations on indeterminate spatial
objects in terms of operations on the corresponding crisp counterparts. Hence, the executable specifications
can be immediately used as implementations and thus minimize the needed implementation effort.

As we will see, the Spatial Plateau Algebra picks up and extends these ideas by representing fuzzy
spatial objects on the basis of their crisp counterparts andby permittingn object parts withn different
and arbitrary membership values such that, in general,n ≥ 1 holds and, in particular,n > 3 is possible.
Therefore, the Spatial Plateau Algebra is an extension of VASA from a 3-valued approach and logic to an
n-valued approach and logic. Its benefit is a much more fine-grained modeling of spatial vagueness than in
VASA, just in the sense of a fuzzy approach. But it requires much more, and much more precise, knowledge
about the vagueness of spatial objects from the applicationside than we need in VASA. This knowledge has
to be provided in terms of appropriate, application-specific membership functions.

An interesting alternative is the approach in [48] which provides two models for fuzzy spatial data. The
first one is a raster (bitmap) approach, and the second one is avector-based approach based on triangulated
irregular networks (TINs). The approach in [2] uses a fuzzy inference system for spatial analysis and
creates raster-based fuzzy region objects representing different transparency and stress intensities. The raster
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Figure 1: Examples of a simple point object (a), a simple lineobject (b), a simple region object (c), a
complex point object (d), a complex line object (e), and a complex region object (f).

approach (see also [49]) and the plateau approach proposed in this article show conceptual resemblance.
But the goal of the Spatial Plateau Algebra is to leverage available crisp spatial (vector) data types and the
operations defined on them as they can be found in spatial databases. The TIN model is quite interesting
since it allows the user to model fuzzy spatial regions with continuous membership functions. However, it is
only applicable to areal spatial features but not point and line features. Further, the cognitive view of fuzzy
region objects gets lost since the user only sees a large collection of artificial triangles whose end points are
annotated with membership values. The plateau approach is unable to implement the TIN model since all
points of a component of a spatial plateau object have the same membership value.

Closure properties are also and in particular important at the implementation level. At this level, algo-
rithms should only get input objects and only produce resultobjects that reflect the properties of the formal
definitions of the data types at the modeling level and whose data structures correspond to the data structure
definitions of the corresponding input and result data typesat the implementation level. To be able to pro-
duce correct result values, algorithms need correct input values; otherwise, algorithms will fail and produce
invalid results. Beside the Vague Spatial Algebra with its restricted logic, only the TIN-based model in [48]
fulfills closure properties. Although the intersection, union, and difference of two TINs is usually not a TIN,
a Delaunay triangulation can help us transform the intermediate intersection result into a TIN.

2.3 Crisp Spatial Data Types and Operations

In the spatial database and GIS communities, crispspatial data typeslike point, line, or regionhave found
wide acceptance as fundamental abstractions for modeling the structure of geometric entities, their relation-
ships, properties, and operations. They form the basis of a number of data models and query languages
for processing spatial data and have gained access into commercial software products. The literature dis-
tinguishessimplespatial data types (for example, [24, 27]) andcomplexspatial data types (for example,
[12, 41, 44, 53, 54]), depending on the spatial complexity they are able to model. Simple spatial data types
(Figure 1(a)-(c)) only provide simple object structures like single points, continuous lines, and simple re-
gions. However, from an application perspective, there is acommon consensus that they are insufficient to
cope with the variety and complexity of geographic reality.From a formal perspective, they are not closed
under the geometric set operationsintersection, union, anddifference. Complex spatial data types (Fig-
ure 1(d)-(f)) solve these problems. They provide universaland versatile spatial objects with finitely many
components, permit regions with holes, and are closed undergeometric set operations [41]. We employ
them as the definition basis of our spatial plateau data types. Implementations of complex spatial data types
are available in ESRI’s Spatial Database Engine (ArcSDE) [25], Oracle Spatial [37], the Informix Geodetic
DataBlade [29], DB2’s Spatial Extender [30], PostGIS [39],MySQL Spatial Support [36], Java Topology
Suite (JTS) [31], and Geometry Engine Open Source (GEOS) [26]. They can be used as an implementation
basis of our Spatial Plateau Algebra.
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3 Spatial Plateau Objects for Representing Fuzzy Spatial Objects

Fuzzy spatial data types have been defined in [18, 42] on the basis of fuzzy set theory [56] and fuzzy
topology [55]. Hence, they are an abstract concept only, andone of their main goals is to serve as a clear
specification for a possible implementation. The objectiveof ourSpatial Plateau Algebrais to provide such
an implementation. Our algebra, or type system, comprises aset ofspatial plateau data typesand a set
of operations between these types1 to implement their abstract, fuzzy counterparts. A few operations are
applicable to several types or type combinations and are thus overloaded. We do not aim at developing
a type system with a “complete” set of data types and operations. It is common consensus in the spatial
database community that this is impossible since always newdata types, operations, and predicates can be
designed. It is then more favorable to retroactively add them to the algebra; hence, we take anextensible
approach. A feature of the Spatial Plateau Algebra is that itis both adescriptivealgebraandanexecutable
algebra. On the one hand, it offers a descriptive design of a type system with the specialty that spatial
plateau data types, operations, and predicates are all based on their crisp counterparts and can thus be
expressed exclusively in terms of them. On the other hand, this fact means that we can leverage available
implementations of crisp spatial algebras, realize the Spatial Plateau Algebra on top of them with minimal
effort, and directlyexecutespatial plateau operations and predicates without being forced to design and
implement new algorithms for them. In other words, we obtainexecutable specificationsthat can be directly
leveraged as an implementation.

In this section, we describe and formally define our concept of spatial plateau data types (and spatial
plateau objects as their values) as the first fundamental part of the Spatial Plateau Algebra. Section 3.1
reviews the abstract definition of fuzzy spatial data types for fuzzy points, fuzzy lines and fuzzy regions
from an informal viewpoint and illustrates these types by some examples. Section 3.2 informally introduces
and motivates plateau points, plateau lines and plateau regions as implementation concepts of their fuzzy
counterparts. Finally, Section 3.3 provides a formal definition of the three spatial plateau data types.

3.1 Review: Fuzzy Spatial Data Types

So far, spatial data handling in spatial database systems and GIS rests exclusively on the assumption that
a spatial object like a point, line, or region object is precisely determined, homogeneous, and universally
recognized, that each interior point fully belongs to that object, and that the object is delimited by a precisely
specified boundary. However, many spatial objects, especially those describing natural, social, and cultural
phenomena, do not follow this pattern. They are characterized by the inherent feature ofspatial vagueness
including vague interiors and blurred boundaries. Examples are land features with continuously changing
properties (such as population density, soil quality, vegetation, pollution, temperature, air pressure), oceans,
deserts, English speaking areas, or mountains and valleys.The transition between a valley and a mountain
usually cannot be exactly ascertained so that the two spatial objects “valley” and “mountain” cannot be pre-
cisely separated and defined in a crisp way. For some areas of anatural resource like iron ore, experts know
its existence with high certainty because of soil samples and boreholes and represent it by high membership
values. For other areas, experts are only sure to some extentand assume the incidence of this mineral; this
can be modeled by lower membership values. In case of oil spills, it is very important for environmental
authorities to obtain information about the spread of oil slicks in order to be able to take measures for their
removal, assess the consequences for the marina flora and fauna, and implement rescue measures. Due to
radar and helicopter observations it is possible to determine the minimal distribution of oil slicks. Mathe-
matical models fed by parameters like wind velocity and current enable the determination of the possible
extent of the oil pollution.

1We assume that other needed, well known data types (for example, alphanumerical data types and crisp spatial data types)with
corresponding operations are provided by other algebras (type systems).
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Figure 2: Examples of air polluted areas caused by a chemicalfactory (a), (b), and polluted rivers (note that
thick lines are used to visualize the feature of fuzziness) (c)

Figures 2a and 2b show an example and possible visualizationof afuzzy regionthat models the expansion
of air pollution caused by a chemical factory. The exhaust fumes emitted by the factory spread around in the
region surrounding the factory and create a pollution cloud. The shaded region shows the area which has
been affected by the pollution particles. The density of pollution particles around the factory is not uniform
but varies. Figure 2a shows a radial expansion where the degree of pollution concentrates in the center
(darker locations) and decreases with increasing distancefrom the chemical factory (brighter locations).
Figure 2b has the same theme but this time we imagine that the chemical factory is surrounded by high
mountains to the north, the south, and the west. Hence, the pollution cannot escape in these directions
and finds its way out of the valley in eastern direction. In both cases we can recognize the smooth, fuzzy
transitions to the exterior, that is, there is no clear boundary of this region.

Fuzzy spatial objects can also represent the vagueness of the extent of phenomena in space; that is,
objects can shrink and extend and hence have a minimum definite and maximum vague extent. Such an
example is given by a lake whose water level depends on the degree of evaporation and on the amount of
precipitation. High evaporation implies dry periods and thus a minimum water level, that is, we obtain
the parts of the lake with higher membership values. High precipitation entails rainy periods and thus a
maximum water level, that is, we additionally obtain the parts of the lake with lower membership values.
Islands in the lake form “holes” in the lake. The parts of an island that are never or rarely flooded by
water have higher membership values. The parts that are flooded more often have lower membership values.
Hence, a lake and an island can share common parts to some degree (multiple membership).

Fuzzy set theory [56] deals with fuzziness. It describes theadmission of the possibility(given by a
membership function) that an individual is a member of a set or that a given statement is true. Hence, the
vagueness represented by fuzziness is not the uncertainty of expectation like in probability theory. It is the
vagueness resulting from the imprecision of the meaning of aconcept. Fuzzy set theory has been a very
popular approach to modeling vague spatial objects and resulted in a formal concept offuzzy spatial data
typesfor fuzzy point objects, fuzzy line objects, and fuzzy region objects[18, 42]. The definition of these
spatial data types is based on two equivalent views, their flat view and their structured view [42]. Theflat
view regards fuzzy spatial objects as pure point sets inR

2 which are characterized by particular properties
and whose points are annotated with membership values. Thestructured viewconsiders theconnected
componentsformed by these point sets.

We first review the flat view of fuzzy spatial objects at an abstract level and compare to crisp spatial
objects. A crisp spatial object of the spatial data typepoint, line, or region is conceptually modeled as
a point set of the Euclidean plane with particular features [41, 44]. Each of its points belongs definitely
and completely to it. IfA ∈ α ∈ {point, line, region}, this means that there is acharacteristic function
χA : R2 → {0,1} such that for allp∈ R

2 holds thatχA(p) = 1 if, and only if, p∈ A. Otherwise,χA(p) = 0
holds. Thus,χ discriminates sharply between points that belong to a spatial object and those that do not.
In contrast, a fuzzy spatial object is conceptually modeledas a point set of the Euclidean plane with the
particular feature that each of its points may completely, partially, or not at all belong to it. This especially
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implies that a point can belong to multiple fuzzy spatial objects. If Ã ∈ α ∈ {fpoint,fline, fregion}, this
means that each point ofR2 is mapped to a value of the real interval[0,1] that represents the degree of its
membership inÃ. We call such a single annotated point afuzzy point2. Hence, for a fuzzy spatial object
Ã, µÃ : R2 → [0,1] is its membership function, and̃A= {(p,µÃ(p)) | p∈ R

2} describes all its fuzzy points,
that is, all its points inR2 with their membership values. Afuzzy point objectrepresents afinite set of fuzzy
points, that is, points annotated with a membership value out of ]0,1] indicating partial membership. Afuzzy
line objectÃ represents an infinite one-dimensional subset ofR

2 (with special properties discussed in [42])
whose elements are annotated with a membership value out of]0,1] indicating partial membership. Afuzzy
region objectis an infinite two-dimensional subset ofR2 (with special properties discussed in [42]) whose
elements are annotated with a membership value out of]0,1] indicating partial membership. The distribution
of membership values within a fuzzy spatial object may be smooth, continuous, or piecewise continuous.

While the flat view regards fuzzy spatial objects as pure point sets with particular properties, the equiva-
lent structured view looks at the connected components of these point sets and identifies their geometric and
topological features. All fuzzy spatial objects are complex, that is, they may consist of several connected
components, and fuzzy regions may have holes. This is in linewith the definition of crisp complex spatial
data types [41, 44]. The flat view and the structured view coincide for afuzzy point objectsince each fuzzy
point is a connected component. The structured view of afuzzy line objectdistinguishes a finite number
of connected components calledfuzzy blocks. Each fuzzy block consists of a finite number of meeting or
disjoint fuzzy curves. Each fuzzy curve represents a single continuous curve in which each element is a
fuzzy point and which may have smooth transitions of membership grades between neighboring points. The
structured view of afuzzy region objectdistinguishes a finite number of areal and connected components
possibly with holes. A component is a called afuzzy face. Both the boundary and the interior of a fuzzy
region object may be fuzzy.

If we consider an air polluted area modeled as a fuzzy region object (Figures 2a and 2b), then each point
in this area is a fuzzy point indicating the concentration ofair pollution at that point. That is, the degree
of membership of such a fuzzy point in the air polluted area islarger than 0 and less than or equal to 1.
In Figures 2a and 2b, each fuzzy region object consists of a single fuzzy face without holes. Fuzzy points
can also arise from the geometric intersection of two fuzzy line objects; together, they form a fuzzy point
object. The pollution of a river in a low scale map can be represented by a fuzzy line object, as shown in
Figure 2c, where each point on the fuzzy line object represents the concentration of the pollutants at that
location. The concentration may be different at different points. In Figure 2c, the darker line parts represent
river sections of greater pollution, and the lighter line parts represent river sections of lower pollution. The
fuzzy line object here consists of a single fuzzy block with three fuzzy curves meeting in a common point.

3.2 Spatial Plateau Objects

To the author’s best knowledge, implementations of fuzzy spatial objects are not available, especially not in a
spatial database and GIS context. Hence, this article is a first approach in this direction. Since conceptually,
that is, at an abstract level, crisp and fuzzy spatial objects are modeled as infinite point sets that are not
directly representable in finite computer systems, finite representations are needed and usually obtained by
linear approximations. For example, a crisp, curvilinear line is usually approximated by a polyline consisting
of a finite sequence of straight segments. A crisp, curvilinear region is usually approximated by well known
polygonal structures for the outer cycles and holes cycles of its components with the assumption that the
enclosed interior belongs completely to the region. The employment of approximations essentially means
that we are only able to represent a proper subset of the actual set of conceptually possible lines or regions.

2The literature knows different definitions of afuzzy point. In some cases, they correspond to our understanding ofsimple fuzzy
point objects(see below). In our context here, the term of a fuzzy point is used as a counterpart to a crisp point as an element of the
Euclidean plane.
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However, even such approximations are not easy to obtain forfuzzy spatial objects since first, these objects
usually have an indeterminate boundary and/or a blurred interior, second, they have infinitely many interior
points but only finite representations can be kept in a computer, and third, each point can have a different
membership value.

In this article, the fundamental idea for representing, implementing, and approximating fuzzy spatial
objects is to leverage available crisp spatial data types and corresponding software packages (Section 2.3)
implementing them. Several reasons have led to this design decision. First, this strategy enables us to take
advantage of existing definitions, techniques, data structures, algorithms, etc., which need not be redevel-
oped but only modified and extended, or simply used. For the spatial plateau data types this means that they
are based on their crisp counterparts. For the spatial plateau operations (like geometric union, intersection,
and difference) and spatial plateau predicates (like topological predicates) this means that they are translated
to crisp spatial operations and predicates (see Section 4).By using this approach, the formal specification of
spatial plateau data types, operations, and predicates is at the same time their implementation; we call this
executable specification. Second, this strategy improves the correctness of both theconceptual specification
and the implementation of the Spatial Plateau Algebra. At the conceptual level, the correctness of the def-
initions of the spatial plateau concepts largely rests on the correctness of the already defined crisp spatial
concepts; thus, we reduce the chance of errors in our definitions. At the implementation level, having an
available, tested and robust implementation of crisp spatial data types, their operations, and predicates, we
can robustly implement fuzzy spatial data types in terms of spatial plateau data types on top of them (see
Section 6). Third, several available implementations of crisp spatial data types are tailor-made for an embed-
ding and usage in a database and querying context. This meansthat the data structures of crisp point, line,
and region objects arecompact storage structures(arrays) that can be directly stored in or retrieved from a
database and that are directly processed by the algorithms implementing the operations. In particular, these
data structures do not use pointer data structures in main memory which would imply high serialization and
deserialization cost for a transfer between main memory anddatabase. We apply this concept of compact
storage representation to our spatial plateau objects.

Our Spatial Plateau Algebrais a type system, or algebra, which includes spatial data types, operations,
and predicates forplateau points, plateau lines, andplateau regionsthat implement their fuzzy counterparts.
The approximation step from fuzzy spatial objects to spatial plateau objects contains two aspects. First, since
we are unable to explicitly represent an infinite number of membership values, we confine ourselves to an
arbitrary but representable and thus finite number of membership values for each spatial plateau object.
However, different spatial plateau objects may have different finite numbers of membership values. Second,
in a spatial plateau object, the unit of representation is not a point as is the case in an abstract fuzzy spatial
object (Section 3.1) but a (possibly very small) corresponding crisp spatial object which itself is already a
(linear) approximation and which is additionally labeled with a membership value. A spatial plateau object is
then a finite collection of their crisp counterparts where each crisp spatial object (called acomponent object)
is associated with a unique membership value and thus forms aflat “plateau” consisting of a conceptually
infinite number of points of equal membership. The precisionwith which we represent a fuzzy spatial object
as a spatial plateau object depends on the size and the numberof the crisp component objects of the spatial
plateau object. The smaller the size and the larger the number of the crisp component objects is, the better
is the approximation and the higher is the precision of the representation of a fuzzy spatial object.

Figure 3 illustrates the concept. The conceptual, abstractfuzzy region object shown in Figure 3a is
represented as a plateau region object shown in Figure 3b with the nine crispcomponent regions r1, . . . , r9

and their associated membership values. Any pair of component regions is eitherdisjoint (for example,
r1 and r9) or adjacent (for example,r2 and r5). A component region is, in general, a complex region
(see Section 2.3) and can hence consist of several faces (forexample,r3 has two faces) that all have the
same membership value. Different component regions have different membership values assigned to them.
Similarly, Figure 3c shows a fuzzy line object, and Figure 3dits possible plateau representation. We will see
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Figure 3: A fuzzy region object (a), its (possible) representation as a plateau region object (b), a fuzzy line
object (c), and its (possible) representation as a plateau line object (d)

below that the topological relationships allowed between the component lines of a plateau line object are
slightly different in comparison to the plateau region case. A fuzzy point object and its plateau representation
are structurally the same; both consist of a finite number of point objects where the elements of each point
object are associated with the same membership value and where different point objects carry different
membership values. The only difference is the underlying number system used for the representation of
the coordinates (for example, infinitely manyreal numbersR from mathematics for modeling fuzzy spatial
objects versus finitely manyfloating pointnumbers (as approximations of real numbers) in computer systems
for implementing spatial plateau objects).

Another, equivalent view of a spatial plateau object is thatall its points that have the same membership
value are aggregated into groups and that each group of points is associated as a whole with the same
membership value. In addition, to obtain a finite representation, we require that the number of groups is finite
(finitely many membership values) and that each group forms acomponent object (atomic representation
unit) of the corresponding crisp spatial data type. Hence, spatial plateau objects can only represent a clearly
defined, proper subset of fuzzy spatial objects (see Section3.3).

As a consequence of this aggregation process, any two crisp component regions of a plateau region
object must be either disjoint or adjacent. Otherwise, two crisp component regions would share interior
points with different membership values. While this can be avoided for interior points, this is not the case
for the boundaries of two or more adjacent crisp component regions since they have common points with
different membership values. In Figure 3b, for example, thepoints on the boundary betweenr3 andr5 have
the membership values 0.3 and 0.5, respectively, and the single boundary point shared byr4, r6, andr8 has
the membership values 0.4, 0.6, and 0.8 respectively. In case of a plateau line object, the situation is slightly
different. The component lines of a plateau line object can,of course, be disjoint (for example,l2 andl8 in
Figure 3d) or adjacent (for example,l4 andl6). Adjacency means that two or more component lines meet in
a common boundary end point. Again, for each meeting component line, the membership value might be
different in such an end point. In addition and different from the plateau region case, we must also allow
that two component lines intersect in a common interior point and that a boundary point of one component
line coincides with an interior point of another component line. In summary, we must permit arbitrary point

11



(a) (b) (c) (d)

Figure 4: Two plateau line objects with intersecting (a), meeting (b), touching (c), intersecting, meeting, and
touching (d) crisp component lines

intersections of component lines. The reason is that the geometric union of two plateau line objects can,
in general, lead to arbitrary boundary/boundary, boundary/interior and interior/interior point intersections
that have to be maintained in the resulting single plateau line object in order to ensure the closure property
of the fuzzy/plateau union operation (see Section 4). Figure 4 shows examples of all three kinds of point
intersections.

Two questions arise from these observations. The first question refers to the semantics of common
boundary parts of adjacent component regions in plateau region objects and common single points of meet-
ing, intersecting, or touching component lines in plateau line objects. A point that is shared by more than
one component object obtains the highest membership value of all sharing component objects since it is
guaranteed to belong to the spatial plateau object (and thusthe fuzzy spatial object) by this maximum mem-
bership value. The second question is how to handle these observations from a representation standpoint.
We pursue the strategynot to explicitly model and represent the possible multiple memberships of a point
in thesamespatial plateau object but to maintain consistent component objects in which all points have the
same membership value. This implies that for the determination of the membership value of a particular
point of a spatial plateau object we have to consult all its component objects that contain this point and yield
the maximum membership value.

The limitations of the Spatial Plateau Algebra can be summarized as follows. First, the number of mem-
bership values for each spatial plateau object is variable but finite. The algebra cannot represent infinitely
many membership values, for example, by a finite number of membership intervals. Second, the term
“plateau” indicates that a membership value remains constant in a line component or region component of
a plateau line object or plateau region object. This means that fuzzy spatial objects with continuously in-
creasing or decreasing membership functions cannot be modeled by this approach. Third, at the boundaries
of line components and region components, the membership functions of plateau line objects and plateau
region objects are not differentiable since we have abrupt membership value changes at these locations.

3.3 Formal Definition of Spatial Plateau Data Types

Based on the considerations in Section 3.2 we are now able to give a formal definition of the fuzzy spatial
data typesfpoint for fuzzy point objects represented as plateau point objects, fline for fuzzy line objects
represented as plateau line objects, andfregionfor fuzzy region objects represented as plateau region objects.
We aim at a universal and generic definition of these types since the structure of their objects are very
similar and since the only difference consists in the possible relationships between component objects. For
this purpose, we define a type constructorφ that takes as input a spatial data typeα ∈ {point, line, region}
(Section 2.3) and produces as output a fuzzy spatial data type as a spatial plateau data typeφ(α). That is,
fpoint := φ(point), fline := φ(line), andfregion:= φ(region). We define a spatial plateau data typeφ(α) as
follows (the symbol

⊕

in Condition (vi) denotes geometric union):
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φ(α) = {po1, . . . ,pokα |
(i) α ∈ {point, line, region},kα ∈ N

(ii) ∀1≤ i ≤ kα : poi = 〈(oi,1,mi,1), . . . ,(oi,ni ,mi,ni ),oi〉
(iii) ∀1≤ i ≤ kα : ni ∈N∪{0}
(iv) ∀1≤ i ≤ kα ∀1≤ j ≤ ni : oi, j ∈ α
(v) ∀1≤ i ≤ kα ∀1≤ j ≤ ni : mi, j ∈ ]0,1]

(vi) ∀1≤ i ≤ kα : oi =
ni
⊕

j=1

oi, j ∈ α

(vii) ∀1≤ i ≤ kα ∀1≤ j < l ≤ ni :
if α = point thendisjointc(oi, j ,oi,l )
else ifα = line thendisjointc(oi, j ,oi,l ) ∨ meetc(oi, j ,oi,l ) ∨

(overlapc(oi, j ,oi,l ) ∧ |oi, j ∩oi,l | is finite)
elsedisjointc(oi, j ,oi,l ) ∨ meetc(oi, j ,oi,l )

(viii) ∀1≤ i ≤ kα ∀1≤ j < l ≤ ni : mi, j < mi,l

(ix) if α ∈ {point, region} then∀1≤ i ≤ kα ∀1≤ j ≤ ni ∀ p∈ o◦i, j : µ(p) = mi, j

(x) if α = region then∀1≤ i ≤ kα ∀ p∈
⋃ni

j=1∂oi, j : µ(p) = max{mi, j |1≤ j ≤ ni , p∈ ∂oi, j}

(xi) if α = line then∀1≤ i ≤ kα ∀ p∈
⋃ni

j=1oi, j : µ(p) = max{mi, j |1≤ j ≤ ni , p∈ oi, j}}

The representable spatial plateau objects of each of the three spatial plateau data types can be enumerated
since their number is finite due to the finiteness of computer systems (Condition (i)). Each spatial plateau
object is represented as a finite sequence of pairs and a single entity at the end, that is, as a compact storage
representation (Condition (ii)). The number of pairs depends on each individual spatial plateau object and
can thus be different for different spatial plateau objects(Condition (iii)). If the number of pairs is equal to
zero, we obtain theempty spatial plateau object, that is, theempty plateau point object, theempty plateau
line object, and theempty plateau region objectrespectively. Each pair consists of an object of the underlying
complex spatial data type (Condition (iv)) and a non-zero membership value (Condition (v)) indicating the
degree of belonging of the crisp spatial object (calledcomponent object) to the spatial plateau object. For
example, a plateau region object consists of a finite number of pairs where each pair consists of a crisp
component region and an assigned membership value larger than 0 and less than or equal to 1. At the end of
each spatial plateau object, we store the geometric union ofall its component objects (Condition (vi)). The
reason for this is more based on convenience and performanceissues than on necessity. We make use of the
union objects later for a more efficient execution of spatialplateau operations.

Condition (vii) determines the permitted topological relationships between the component objects of
a spatial plateau object. These relationships depend on theunderlying complex spatial data type and are
expressed bytopological cluster predicates[44] indicated by the subscriptc. A topological cluster pred-
icate summarizes severalbasic topological predicates that characterizesimilar spatial configurations (for
example, all basic topological predicates that describe a meeting situation of two spatial objects). In case
of plateau point objects, we require that the component point objects are disjoint. In case of plateau line
objects and plateau region objects, we require that the corresponding component objects are disjoint from
each other or meet. Any overlap of the interiors of componentobjects would be semantically contradictory.
In case of plateau line objects, we additionally allow that component line objects overlap in finitely many
points (point intersections). We discussed the need for allowing this in detail in Section 3.2. Condition (viii)
requires that all membership values are different and that all pairs of the sequence are ordered by increasing
membership values. This caters for a unique representationof a plateau region.

Conditions (ix) to (xi) take care of a precise assignment of membership values to the points of a spatial
plateau object. The◦ operator and the∂ operator used in the conditions are point-set topological operators
that determine all interior points and boundary points, respectively, of a point set. Precise definitions of the
interior and boundary of complex point, line, and region objects can be found in [44]. The interior of a point
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object is the point object itself; its boundary is empty. Theinterior of a line object contains all its points
except for the end points which form the boundary. The boundary of a region object separates its interior
points from its exterior points. Condition (ix) states thatall interior points of a component point object or
component region object, respectively, obtain the membership value of the respective component object.
Thus, they define a plateau. Condition (x) expresses that each boundary point of a plateau region object
obtains the highest membership value of all boundaries of component region objects to which it belongs.
Condition (xi) states that each point of a plateau line object obtains the highest membership value of all
component line objects to which it belongs. As we have seen inSection 3.2, multiple membership values for
the same point can arise if different component line objectsintersect, meet, or touch each other in that point
(see Figure 4). Note that the Conditions (ix) to (xi) are semantical conditions that are not explicitly stored
in the structural sequence representation given in Condition (ii). An operation that asks for the membership
value of a point of a spatial plateau object would have to check Conditions (ix) to (xi). If Condition (x)
or (xi) should hold, the whole sequence of components objects would have to be traversed, and the highest
membership value assigned to that point would have to be returned.

Another, equivalent characterization of spatial plateau objects is based on spatialα-cut objects. Let
po∈ φ(α) with α ∈ {point, line, region} be a spatial plateau object, and letmi ∈]0,1] with 1 ≤ i ≤ n be
n membership values such thatm1 > m2 > .. . > mn−1 > mn. Then we obtain the spatialα-cut objects
pom1

⊆ pom2
⊆ . . .⊆ pomn−1

⊆ pomn
from powith pomi

∈ α . A representation ofpoby means of these spatial
α-cut objects is not recommendable for three main reasons. First, due to the containment relationship
between then spatialα-cut objects, a point can belong to several of them. This means that a point ofpo
can be represented up ton times. This leads to representation and storage redundancysince certain areas
(for example, areas whose points have the membership value 1) are represented multiple times. Second, it
is time-consuming to determine the membership of a point since the spatialα-cut object with the highest
membership value has to be found in which the point is located. Third, one can show that spatial plateau
operations become more time-consuming due to the larger size of spatialα-cut objects.

However, it is possible to characterize a spatial plateau object po by spatialα-cut objects. A spatial
plateau object corresponds to the sequence of pairs

〈(oi ,mi) |oi = pomi
⊖pomi−1

for 2≤ i ≤ n〉

where⊖ denotes the geometric difference operation. For allp∈ oi holds thatµpo(p) = mi. This means
that each point of a spatial plateau objectpo belongs to exactly one of thecomponent objects oi and has a
unique membership valuemi.

4 Spatial Plateau Operations for Implementing Fuzzy Geometric Opera-
tions

Spatial or geometric operations enable the construction ofnew spatial objects from existing ones. In this
section, we give formal specifications of somespatial plateau operationsthat are geometric operations on
spatial plateau objects, implement corresponding fuzzy geometric operations, and are based on geometric
operations on corresponding crisp spatial objects. The latter aspect enables the executable specification of
the spatial plateau operations. That is, the specification of these operations corresponds to their implementa-
tion. Section 4.1 deals with the important class ofspatial plateau set operationsthat include the operations
plateau union, plateau intersection, andplateau differenceand implement their fuzzy counterparts. Sec-
tion 4.2 introduces some other spatial plateau operations like differentslice operations that construct new
spatial plateau objects based on constraints on the membership values as well as other intersection opera-
tions that compute the intersection between mixed spatial plateau data types. Section 4.3 shows that the
determination of the membership values in the Sections 4.1 and 4.2 is not the only option for the result of
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each spatial plateau operation. That is, not only the membership functions of fuzzy spatial objects (and
thus spatial plateau objects) but also the operations on them arecontext-dependent. This leads to a class
of parameterized operation instances for each spatial plateau operation. Section 4.4 provides operations to
map spatial plateau objects of the Spatial Plateau Algebra to spatial objects of our Spatial Algebra 2D for
two-dimensional geometric data, and vice versa.

4.1 Spatial Plateau Set Operations for Implementing Fuzzy Geometric Set Operations

In general, the geometric set operationsintersection, union, anddifferenceapplied to spatial objects belong
to the most important operations that construct new spatialobjects, that is, geometries. In this section, we
describe and give formal definitions of the geometric set operations on fuzzy spatial objects on the basis of
our spatial plateau data types. Section 4.1.1 informally reviews the abstract definition of fuzzy geometric
set operations that are formally based on fuzzy set theory and fuzzy topology. Section 4.1.2 discusses
the implementation of these fuzzy geometric operations in terms of the Spatial Plateau Algebra. Finally,
Section 4.1.3 provides a formal definition of the spatial plateau set operations.

4.1.1 Review: Fuzzy Geometric Set Operations

Unsurprisingly, fuzzy geometric set operations are spatial operations that operate on fuzzy spatial objects
and produce new fuzzy spatial objects. As an example, we consider the situation that in some European
countries, as in Switzerland and France, people who speak German and people who speak French reside
very close to each other. This means that language borders are not as strict as state or country borders;
they are fluent. Such a situation can be described by two fuzzyregions representing the two language
zones and the degree to which German and French, respectively, are spoken in the two zones. Both regions
have indeterminate boundaries and blurred interiors sinceat many locations neither French nor German are
spoken solely but together. Let us now assume that a government is interested in a study of the population
and wants to find those regions whose residents speak both languages. Such a query can be answered by
the fuzzy geometric intersectionof both fuzzy regions. A point shared by both language zones will belong
to the result region and obtain the lower membership value ofthis point from one of the two zones since
it represents the minimum extent to which Germanand French are spoken there. If we are interested in
those regions whose residents speak either French or German, the fuzzy geometric unioncan answer this
query. A point shared by any of the two language zones will contribute to the result and obtain the higher
membership value of this point from one of the two zones sinceit represents the maximum extent to which
Frenchor German are spoken there. Further, if we are interested in theregion whose residents speak more
French than German and if we want to quantify the French ascendancy, we obtain the result by computing
the fuzzy geometric differenceof the French language zone and the German language zone. A point of the
result object contains the membership of the French language zone diminished by the membership value of
the same point in the German language zone.

We now describe the fuzzy geometric set operations in more detail but informally. As we have seen
in Section 3.1, at an abstract level, fuzzy set theory and fuzzy (point set) topology are deployed to for-
mally define the fuzzy spatial data typesfpoint, fline, and fregion. The fuzzy geometric set operations
fintersection, funion, and fdifferencehave the same formal basis and the signatureα ×α → α with α ∈
{fpoint,fline, fregion}. That is, these data types are closed under the fuzzy geometric set operations.

The operationfunionfor fuzzy geometric unionassigns the membership valueµC̃(p)=max(µÃ(p),µB̃(p))
to each pointp∈ R

2. If for a point p holds thatµÃ(p) = µB̃(p) = 0, thenµC̃(p) = 0 follows, andp does
not belong to the result object̃C. In all other cases, pointp belongs toC̃ with the larger membership
value provided by one of the two fuzzy spatial objects. The operationfintersectionfor fuzzy geometric
intersectionassigns the membership valueµC̃(p) = min(µÃ(p),µB̃(p)) to each pointp ∈ R

2. Only if
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Figure 5: Two plateau point objectspp1 = 〈(p1,1,0.4),(p1,2,0.5),(p1,3,1.0), p1〉 and pp2 = 〈(p2,1,0.5),
(p2,2,1.0), p2〉 (a), two plateau line objectspl1 = 〈(l1,1,0.5),(l1,2,0.7),(l1,3,0.9), l1〉 andpl2 = 〈(l2,1,0.3),
(l2,2,0.8),(l2,3,1.0), l2〉 (b), and two plateau region objectspr1 = 〈(r1,1,0.3),(r1,2,0.6),(r1,3,0.7), r1〉 and
pr2 = 〈(r2,1,0.2),(r2,2,0.6), r2〉 (c), as they are used for illustrating the three spatial plateau set operations

µÃ(p) > 0 and µB̃(p) > 0 hold, p belongs toC̃ with the lower membership value provided by the two
fuzzy spatial objects. The operationfdifferencefor fuzzy geometric differenceassigns the membership value
µC̃(p) = µÃ(p) −̇ µB̃(p) to each pointp ∈ R

2. For a,b ∈ R, we define thata −̇ b = a− b if a > b, and
a −̇ b= 0 otherwise. Note that this geometric operation is defined differently than the fuzzy set difference
operation on normal fuzzy sets [56]. Further, the operations funionandfintersectionare subject to a fuzzy
regularization process in order to avoid geometric anomalies like dangling lines, punctures, and cuts. The
formal definition of all fuzzy geometric set operations can be obtained from [18, 42]. Crisp geometric set
operations [41, 44] are special cases of fuzzy geometric setoperations.

4.1.2 Spatial Plateau Set Operations

In this subsection, we informally show and motivate how the fuzzy geometric set operationsfintersection,
funion, and fdifferencecan be represented by corresponding spatial plateau set operations on the basis of
our spatial plateau data types. The spatial plateau data types fpoint, fline, and fregion are closed under
the spatial plateau set operations and have the signatureα ×α → α with α ∈ {fpoint,fline, fregion} (see
Section 4.1.3). We will see that for the different combinations of two plateau point objects, or two plateau
line objects, or two plateau region objects, each spatial plateau set operation works very similar and thus in
a generic manner. This means that the meaning (and later the specification) of all three operations is similar
for all three type combinations. For illustration purposes, we will take the spatial plateau objects presented
in Figure 5.

The discussion and specification of the spatial plateau set operations requires and leverages a local view
and/or a global view on the two operand spatial plateau objects. Having alocal viewon the two operand
objects means that putting all component objects of the firstoperand object into relationship to all component
objects of the second operand object is sufficient for the evaluation of an operation. Having aglobal view
on the two operand objects means that an operation has to takeinto account the union objects stored in the
spatial plateau objects at the end of their representations.

Spatial Plateau Intersection

Intersecting two spatial plateau objectspo1,po2 ∈ α ∈ {fpoint,fline, fregion} means that each crisp com-
ponent object ofpo1 must be geometrically intersected with each crisp component object ofpo2 and that
their smaller membership value is assigned to the resultingnon-empty crisp component object. Hence, this
operation only requires a local view on the operand spatial plateau objects. The reason is that if a point of
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Figure 6: Spatial plateau intersection: plateau point object pp3 = fintersection(pp1,pp2) = 〈(p3,1,0.4), p3〉
(a), plateau line objectpl3 = fintersection(pl1,pl2) = 〈(l3,1,0.5), l3〉 (b), and plateau region objectpr3 =
fintersection(pr1,pr2) = 〈(r3,1,0.6), r3〉 (c)

the Euclidean plane belongs to bothpo1 andpo2, then it belongs to exactly one component object ofpo1
and exactly one component object ofpo2. Computing the intersection of crisp complex spatial objects is
well known [3, 40, 41] and can therefore be assumed. In our example in Figure 5a, we obtain 3· 2 = 6
point component pairs that have to be intersected sincepp1 contains three point components andpp2 con-
tains two components. Similarly, we obtain 3·3= 9 line component pairs in Figure 5b and 3·2= 6 region
component pairs in Figure 5c. If the geometric intersectionof two component objects is empty, we discard
this result. Otherwise, the computed component object is part of the resulting spatial plateau object, and we
assign the smaller membership value of both operand component objects to it. The reason is that only the
smaller membership value guarantees that the points of the intersection belong to both component objects.
For example, in Figure 5c, the intersection of the componentregionsr1,3 with its membership value 0.7 and
r2,2 with its membership value 0.6 leads to a non-empty componentregion that is assigned the membership
value 0.6 as the minimum of both input membership values.

Since the creation of component object pairs and their intersection is a local operation, it can happen
that different resulting component objects are labeled with the same membership value. For example, in
Figure 5c, the intersection ofr1,3 andr2,2 will obtain the membership value 0.6. Similarly, the intersection
of r1,2 andr2,2 will obtain the same membership value. Since according to the plateau region definition in
Section 3.3 all components of a plateau region must have different membership values, we have to compute
the geometric union of both region components obtained so far and assign the common membership value
0.6 to it. Figure 6 shows the result of the plateau intersection for our examples in Figure 5.

Spatial Plateau Union

This operation requires both the local view and the global view on its operand spatial plateau objects. The
local view refers to the common parts of two component objects. The global view refers to the remaining
part of a component object that is not shared with the other spatial plateau object. In all cases, computed
component objects with the same membership value are alwaysgeometrically merged in the resulting spatial
plateau object. We detail this strategy in the following. Forming the union of two objectspo1 andpo2 of the
same spatial plateau data type principally means that each component object ofpo1 must be geometrically
merged with each component object ofpo2, that common parts obtain the larger membership value of the
two input component objects, and that the remaining parts get the membership values of their corresponding
input component objects. The intersection object of two component objects gets their larger membership
value since at least one of them can guarantee the higher degree of belonging.

The union of the spatial plateau objects in Figure 5 is illustrated in Figure 7. Two main kinds of spatial
configurations can be distinguished. If the intersection oftwo component objects is empty, both component
objects are added with their respective membership values to the resulting spatial plateau object. For exam-
ple, this is the case for the component linesl1,3 andl2,2 in Figure 5b and the component regionsr1,1 andr2,1

in Figure 5c. In their union, they can be found again as the component linesl4,5 andl4,4 (see Figure 7b) as
well as the component regionsr4,2 andr4,1 (see Figure 7c) with their original membership values.
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Figure 7: Spatial plateau union: plateau point objectpp4 = funion(pp1,pp2) = 〈(p4,1,0.5),(p4,2,1.0),
p4〉 (a), plateau line objectpl4 = funion(pl1,pl2) = 〈(l4,1,0.3),(l4,2,0.5),(l4,3,0.7),(l4,4,0.8),(l4,5,0.9),
(l4,6,1.0), l4〉 (b), and plateau region objectpr4 = funion(pr1,pr2) = 〈(r4,1,0.2),(r4,2,0.3),(r4,3,0.6),
(r4,4,0.7), r4〉 (c)

Otherwise, the two component objects intersect, and up to three new component objects are stored in
the resulting spatial plateau object. The local view relates to the common parts of both component objects.
Here we have to distinguish three cases. First, if the two component objects are geometrically equal, a copy
with the larger membership value of both equal component objects is added to the resulting spatial plateau
object. Second, if one component object is contained in the other one, the contained component object
annotated with the larger membership value of both component objects is added to the resulting spatial
plateau object. For example, in Figure 5b, the component line l2,2 with the membership value 0.8 is contained
in the component linel1,1 with the membership value 0.5 and can be found again as the component linel4,4
with the higher membership value 0.8 in the spatial plateau union in Figure 7b. Third, if both component
objects have a proper intersection, the common part is addedto the resulting spatial plateau object with the
larger membership value of both component objects. For example, the intersection of the component regions
r1,3 with the membership value 0.7 andr2,2 with the membership value 0.6 in Figure 5c is contained as part
of the component regionr4,4 with the higher membership value 0.7 (see Figure 7b).

The handling of the remaining unshared parts of each component object requires a global view. We
illustrate this with an example. In Figure 5c, we consider the component object pairsr1,2 andr2,2 as well as
r1,3 andr2,2. Let⊗, ⊕, and⊖ denote the generic geometric intersection, union, and difference operations on
crisp spatial data types [41]. The remaining unshared component objects arer1,2⊖ r2,2, r2,2⊖ r1,2, r1,3⊖ r2,2,
and r2,2 ⊖ r1,3. If we took the local view, we would, for example, store the tuples (r2,2 ⊖ r1,2,0.6) and
(r2,2 ⊖ r1,3,0.6) into the resulting spatial plateau object. Since componentobjects with equal membership
values are merged, we would obtain((r2,2⊖ r1,2)⊕ (r2,2⊖ r1,3),0.6) = (r2,2⊖ (r1,2⊗ r1,3),0.6) = (r2,2,0.6)
sincer1,2⊗ r1,3 =∅. Obviously, this is not the expected result. Instead, the expected result is(r2,2⊖ (r1,2⊕
r1,3),0.6). That is, fromr2,2 we have to subtract all component regions of the first operandobjectpr1 that
intersectr2,2. This cannot be locally performed. Since we cannot find out easily which component objects
of pr1 intersectr2,2, we leverage the global view provided by the union objects, and compute(r2,2⊖ r1,0.6)
or, as an optimization,(r2,2 ⊖ (r1 ⊗ r2),0.6) instead of(r2,2 ⊖ (r1,2 ⊕ r1,3),0.6). The original membership
value is always maintained in the result. We apply this principle to all component objects of both operand
spatial plateau objects for all combinations of equal spatial plateau data types.

Spatial Plateau Difference

This operation also requires both the local view and the global view on its operand spatial plateau objects.
The local view refers to the common parts of two component objects. The global view refers to the remaining
part of a component object of the first spatial plateau objectthat is not shared with the second spatial plateau
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Figure 8: Spatial plateau difference: plateau point objectpp5 = fdifference(pp1,pp2) = 〈(p5,1,0.5),
(p5,2,1.0), p5〉 (a), plateau line objectpl5 = fdifference(pl1,pl2) = 〈(l5,1,0.5),(l5,2,0.7),(l5,3,0.9), l5〉 (b),
and plateau region objectpr5 = fdifference(pr1,pr2) = 〈(r5,1,0.1),(r5,2,0.3),(r5,3,0.6),(r5,4,0.7), r5〉 (c)

object. In all cases, computed component objects with the same membership value are always geometrically
merged in the resulting spatial plateau object. Forming thedifference of two objectspo1 andpo2 of the
same spatial plateau data type principally means that each component object ofpo2 must be geometrically
subtracted from each component object ofpo1 and that the membership value of the latter component object
is diminished by the membership value of the former component object.

The difference of the spatial plateau objects in Figure 5 is illustrated in Figure 8. Two main kinds
of spatial configurations can be distinguished. If the two component objects do not intersect, then the
component object ofpo1 is copied with its membership value into the resulting spatial plateau object. This
is, for example, the case for the component region pairr1,1 andr2,1 in Figure 5c; the result is shown as the
component regionr5,2 in Figure 8c with the original membership value ofr1,1.

Otherwise, the two component objects intersect, and up to two new component objects are stored in
the resulting spatial plateau object. The local view relates to the common parts of both component objects.
Here we can distinguish three cases to which we react in the same manner. Either the two component
objects are geometrically equal, or the first component object is contained in the second component object,
or both component objects have a proper intersection. In allthree cases, if the membership value of the first
component object is larger than the membership value of the second component object, the intersection is
added as a new component object with the positive differenceof both membership values to the resulting
spatial plateau object. As an example for the latter case, weconsider the component regionsr1,3 with the
membership value 0.7 andr2,3 with the membership value 0.6 in Figure 5c. The intersectionof r1,3 andr2,3

is added as a new component regionr5,1 with the membership value 0.7−0.6= 0.1 to the resulting spatial
plateau object (see Figure 8c).

The handling of the remaining unshared parts of each component object of the first spatial plateau object
requires a global view and is performed in the same way as for the spatial plateau union operation. That
is, from each component object of the first spatial plateau object we subtract the union object of the second
spatial plateau object and assign the original membership value to the result of the subtraction.

4.1.3 Formal Definition of the Spatial Plateau Set Operations

Based on the informal descriptions of the spatial plateau set operations in Section 4.1.2, we now present
their formal definitions. These definitions rest on the aforementioned, available, and well known geometric
set operationsintersection(⊗), union (⊕), anddifference(⊖) on the crisp spatial data typespoint, line, and
region [41, 44]. The three geometric set operations are generic, that is, polymorphic, and the three spatial
data types are closed under them. That is, the operations have the signatureγ : α ×α → α for γ ∈ {⊗,⊕,⊖}
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andα ∈ {point, line, region}. This helps us ensure that the spatial plateau data types areclosed under the
spatial plateau set operations.

The formal definition of the spatial plateau set operations requires an auxiliary construction operator⊙
that enables us to insert a pair(c,m) ∈ α × [0,1] of a component object and its membership value into the
ordered representation of a spatial plateau objectpo= 〈(o1,m1), . . . ,(on,mn),o〉 ∈ φ(α) for somen∈N. We
define:

po⊙ (c,m) =
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po if c=∅ or m= 0

〈(c,m),c〉 if po= 〈〉 andc 6=∅ andm> 0

〈(o1,m1), . . . ,(oi ⊕c,mi), . . . ,(on,mn),o⊕c〉

if c 6=∅ andn≥ 1 and∃ i ∈ {1, . . . ,n} : mi = m

〈(o1,m1), . . . ,(oi ,mi),(c,m),(oi+1,mi+1), . . . ,(on,mn),o⊕c〉

if c 6=∅ andn≥ 2 and∃ i ∈ {1, . . . ,n−1} : mi < m< mi+1

〈(c,m),(o1,m1), . . . ,(on,mn),o⊕c〉

if c 6=∅ andn≥ 1 and 0< m< m1

〈(o1,m1), . . . ,(on,mn),(o,m),o⊕c〉

if c 6=∅ andn≥ 1 andm> mn

The interesting aspects are the third case in which a new component objectc is merged with an existing
component objectoi if their membership values are equal, and the merging of the union objecto at the end of
the representation withc. Note that⊙ is left-associative, that is,po⊙(o1,m1)⊙(o2,m2) = (po⊙(o1,m1))⊙
(o2,m2). Forpo⊙ (o1,m1)⊙ . . .⊙ (on,mn) we also writepo⊙

⊙n
i=1(oi ,mi).

We are now prepared to provide the formal definitions of the three spatial plateau set operations. We
specify them in a polymorphic manner with the signatureγφ : φ(α)×φ(α)→ φ(α) for γφ ∈ {fintersection,
funion, fdifference} and α ∈ {point, line, region}. This means that the meaning and specification of the
three operations is the same for all three type combinations. The construction operator⊙ ensures that
the three spatial plateau data types are closed under them bymaintaining the structural constraints of
their definition given in Section 3.3. We assume two spatial plateau objectspo1,po2 ∈ φ(α) with pok =
〈(ok,1,mk,1), . . . ,(ok,nk ,mk,nk), ok〉 for k∈ {1,2}. Then the operationfintersectionis defined as

fintersection(po1,po2) = 〈〉⊙
⊙

1≤i≤n1
1≤ j≤n2

(o1,i ⊗o2, j ,min(m1,i ,m2, j))

This definition (like the others) uses an incremental strategy by starting with the empty spatial plateau
object〈〉 and incrementally adding local results from the intersections of component object pairs. As said
before, this local view is sufficient here since each point ofthe result can be only obtained by the intersection
of exactly one pair of component objects.

The operationfunion is defined as

funion(po1,po2) = 〈〉⊙
⊙

1≤i≤n1
1≤ j≤n2

(o1,i ⊗o2, j ,max(m1,i ,m2, j))

⊙
⊙

1≤i≤n1

(o1,i ⊖ (o1⊗o2),m1,i)

⊙
⊙

1≤ j≤n2

(o2, j ⊖ (o1⊗o2),m2, j)

The first subexpression of the three-part expression represents the local view on the common part (in-
tersection) of any pair of component objects. Each common part is annotated with the higher membership
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value of the component objects. The second and third subexpressions represent the global view. From each
component object we subtract the intersection of both unionobjects and maintain its membership value.

The operationfdifferenceis defined as

fdifference(po1,po2) = 〈〉⊙
⊙

1≤i≤n1
1≤ j≤n2

(o1,i ⊗o2, j ,m1,i−̇m2, j)

⊙
⊙

1≤i≤n1

(o1,i ⊖ (o1⊗o2),m1,i)

The first subexpression represents the local view on the common part of any pair of component objects.
Each common part is annotated with the difference of the membership values of both component objects.
The operator ˙− has been defined in Section 4.1.1. Ifo1,i ⊗o2, j =∅ or m1,i−̇m2, j = 0 should hold, we obtain
an empty component object, and the construction operator⊙ will prevent its insertion into the resulting
spatial plateau object. The second subexpression represents the global view and determines the unshared
part of each component object of the first spatial plateau object by preserving the original membership value.

4.2 Other Spatial Plateau Operations

Apart from the spatial plateau set operations in Section 4.1, a few other spatial plateau operations are of inter-
est. Some of these operations cannot be found in the purely crisp domain but only in the fuzzy domain. We
classify them intofuzzy spatial object construction operations(Section 4.2.1),fuzzy spatial range operations
(Section 4.2.2),containment and overlap predicates(Section 4.2.3), andmembership value changing opera-
tions(Section 4.2.4). Further, we define an order relation< on the spatial data types:point< line< region.

4.2.1 Fuzzy Spatial Object Construction Operations

The operations of this category construct a new spatial plateau object from one or two existing spatial
plateau objects. We first discuss a variation of the operation fintersectionthat is here applied to heteroge-
neous type combinations. Letα ∈ {point, line}, β ∈ {line, region}, andα < β . The operations have the
signaturefintersection: φ(α)×φ(β )→ φ(α) and share the same definition as the operationfintersectionin
Section 4.1.3. The⊗ operation takes a component point or line object as well as a component line or region
object as operands and computes their geometric intersection. From the two membership values, it assigns
the smaller one to the resulting component object.

The operationfcontour takes a plateau region object as an operand and stores its fuzzy boundary as a
plateau line object. It has the signaturefcontour: fregion→ fline. Its definition makes use of the crisp spatial
operationcontour: region→ line [41] that yields the boundary of a crisp region object as a crisp line object.
Let pr ∈ fregionwith pr = 〈(r1,m1), . . . ,(rn,mn), r〉. Then the operationfcontour is defined as

fcontour(pr) = 〈〉⊙
⊙

1≤i≤n

(contour(r i),mi)

The operationfverticesreturns the fuzzy corner points (fuzzy vertices) of a plateau line or region object
and keeps them in a plateau point object. It has the signaturefvertices: φ(α)→ fpoint for α ∈ {line, region}.
We begin with the case that the operand object is a plateau line objectpl = 〈(l1,m1), . . . ,(ln,mn), l〉. Each
line objectl i consists of a set of linear segments defined by two end points or vertices. A main problem that
impedes the definition of this operation is that only collecting the fuzzy vertices ofpl is insufficient. The
reason is that according to our definition of plateau line objects in Section 3.3, the component lines ofpl
may meet or overlap in single points. Since different component lines have different membership values, we
must cater for assigning the highest membership value to each common meeting or overlapping point.

In a meeting situation, we have to distinguish two cases. Thefirst case is that two fuzzy end points
(p,m) and(q,m′) of different component lines coincide. That is,p= q andm 6= m′ holds. We handle this

21



situation by keeping both points(p,m) and(p,m′) temporarily in a sequence (collecting phase represented
by the auxiliary functioncollectFPoints1 below) and by removing the pair with the lower membership value
later (reducing phase represented by the auxiliary function reducebelow). For this purpose, we leverage
the crisp spatial operationvertices: α → point for α ∈ {line, region} [41] that yields the corner points of
a crisp line or region object. The second case is that a fuzzy end point of one component line touches a
fuzzy interior point of another component line. The fuzzy interior point is not a vertex or corner point of the
second component line. Hence, we use the operationcommonPoints: line× line→ point [41] to identify all
touching points.

In an overlap situation, we consider intersection points asvertices and hence as part of the result. Again
we use the operationcommonPointsto compute them. All intersection points are collected (seefunction
collectFPoints1 below), and duplicate single points with different membership values are removed (see
function reducebelow).

More formally, collecting fuzzy vertices, touching points, and intersection points is performed by the
functioncollectFPoints1 as follows:

collectFPoints1(pl) = pp= 〈(p1,m1), . . . ,(pk,mk), p〉
= 〈〉 ⊙

⊙

1≤i≤n

(vertices(l i),mi)

⊙
⊙

1≤i≤n−1
i+1≤ j≤n

(commonPoints(l i , l j),min(mi ,mj))

Note that the result of the functioncollectFPoints1 is, in general,not a plateau point object. Letpp=
〈(p1,m1), . . . ,(pi ,mi), . . . ,(pk,mk), p〉 be the result of this function. The⊙ operator already ensures that
duplicate(pi ,mi) elements delivered by both functionsverticesand commonPointsare merged and that
mi < mj holds for all 1≤ i < j ≤ k. However,pp may still keep elements(pi ,mi) and(p j ,mj) with i 6= j
such thatpi ⊗ p j 6= ∅. This means there are single points that are annotated with different membership
values. This contradicts the definition of the data typefpoint. Only the highest membership value of a point
should be maintained inpp. The functionreducesolves this problem and eliminates for a single component
point (p,m) all those single component points(p,m′) in pp with m′ < m. It is defined as

reduce(pp) = ×
1≤i≤n−1
i+1≤ j≤n

if pi ⊗ p j 6=∅ thenreplace(pp,mi, pi ⊖ (pi ⊗ p j))

The result is now a correct plateau point object. The function makes use of an auxiliary functionreplace
that replaces elements in a sequencein situ. The replacement function is defined as

replace(pp,mi , p′i) = 〈(p1,m1), . . . ,(p′i ,mi), . . . ,(pk,mk), p〉

We are now able to define the operationfverticeson a plateau line objectpl as follows:

fvertices(pl) = reduce(collectFPoints1(pl))

The definition of the operationfverticeson a plateau region objectpr is given as

fvertices(pr) = fvertices(fcontour(pr))

The next spatial plateau operation we discuss is the operation fcommonPoints. It takes two plateau line
objects, or two plateau region objects, or a plateau line object and a plateau region object as operands
and computes their shared single fuzzy points as a plateau point object. That is, it has the signature
fcommonPoints: φ(α)× φ(β ) → fpoint for α ,β ∈ {line, region} with α ≤ β . We first consider the case
of two plateau line objects. Letpl1 = 〈(l1,1,m1,1), . . . ,(l1,n,m1,n), l1〉,pl2 = 〈(l2,1,m2,1), . . . ,(l2,s,m2,s), l2〉 ∈
fline. We collect all fuzzy touching points and intersection points by the functioncollectFPoints2 as follows:
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collectFPoints2(pl1,pl2) = pp= 〈(p1,m1), . . . ,(pk,mk), p〉
= 〈〉 ⊙

⊙

1≤i≤n
1≤ j≤s

(commonPoints(l1,i , l2, j),min(m1,i ,m2, j))

The result of the functioncollectFPoints2 is, in general,not a plateau point object. The reason is the
same as above for the functioncollectFPoints1. Let pp be the result of this function. We use the function
reducefrom above to preserve only single point results with their highest membership value. This enables
us to define the operationfcommonPointson pl,pl1,pl2 ∈ fline andpr,pr1,pr2 ∈ fregionas follows:

fcommonPoints(pl1,pl2) = reduce(collectFPoints2(pl1,pl2))
fcommonPoints(pl,pr) = fcommonPoints(pl, fcontour(pr))
fcommonPoints(pr1,pr2) = fcommonPoints(fcontour(pr1), fcontour(pr2))

The operationfcommonBordercomputes the shared boundary line parts of two plateau region objects as
a plateau line object. That is, it has the signaturefcommonBorder: fregion× fregion→ fline. Let pr1,pr2 ∈
fregion. Then the operationfcommonBorderis defined as

fcommonBorder(pr1,pr2) = fintersection(fcontour(pr1), fcontour(pr2))

4.2.2 Fuzzy Spatial Range Operations

The operations of this category take a single spatial plateau object and perform afuzzy spatial range opera-
tion based on chosen membership values. Hence, they compute afuzzy spatial selection. For this purpose,
based on a typereal for representable real numbers (for example, float or doublevalues), we define the data
typemv= {m|m∈ real,0< m≤ 1} to denote single membership values.

The simplest operation of this category is namedfsliceand has the signaturefslice: φ(α)×mv→ φ(α)
for α ∈ {point, line, region}. For a given spatial plateau objectpo and a membership valuem, it returns
the component object ofpo whose membership value is equal tom. This makes it possible to answer a
query like “Find all regions where English speaking residents account for 50% of the entire population”.
Let po= 〈(o1,m1), . . . ,(on,mn),o〉 ∈ φ(α) for somen∈ N. Then the operationfslice is defined as

fslice(po,m) =

{

〈(oi ,mi),oi〉 if ∃1≤ i ≤ n : mi = m

〈〉 otherwise

The next operation we consider is an extension of the operation fslice to a range or interval of member-
ship values. The operation is calledfsliceByRangeand has the signaturefsliceByRange: φ(α)×mv×mv×
bool×bool→ φ(α) for α ∈ {point, line, region}. The two values of typemvindicate the start and end value
of the membership interval. The two Boolean values indicatewhether the start value and the end value,
respectively, are included (true) or excluded (false) from the membership interval. This operation helps a
user answer a query like “Find all regions where English speaking residents account for 50% to 70% of the
entire population”. The operationfsliceByRangeis defined as
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fsliceByRange(po,m1,m2,b1,b2) =

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〈(oi1,mi1), . . . ,(oik ,mik),o
′〉 if the following conditions hold:

(i) ∃1≤ k≤ n ∃ i1, . . . , ik ∈ {1, . . . ,n} : 1≤ i1 < .. . < ik ≤ n

(ii) if b1 ∧ b2 thenm1 ≤ mi1 < .. . < mik ≤ m2

else if¬b1 ∧ b2 thenm1 < mi1 < .. . < mik ≤ m2

else ifb1 ∧ ¬b2 thenm1 ≤ mi1 < .. . < mik < m2

elsem1 < mi1 < .. . < mik < m2

(iii) ∀ j ∈ {1, . . . ,n}−{i1, . . . , ik} :

if b1 ∧ b2 thenmj < m1 ∨ mj > m2

else if¬b1 ∧ b2 thenmj ≤ m1 ∨ mj > m2

else ifb1 ∧ ¬b2 thenmj < m1 ∨ mj ≥ m2

elsemj ≤ m1 ∨ mj ≥ m2

(iv) o′ =
⊕

i1≤ j≤ik o j

〈〉 otherwise

Note thatfslice(po,m) = fsliceByRange(po,m,m, true, true) holds. This shows that the operationfslice
is a specialization of the operationfsliceByRange.

Finally, we propose another specialization of the operation fsliceByRange. This operation is called
fplateauCutand has the signaturefplateauCut: φ(α)×mv×bool×bool→ φ(α). It is defined as

fplateauCut(po,m,u,b) =

{

fsliceByRange(po,m,1,b, true) if u

fsliceByRange(po,0,m, false,b) if ¬u

This means that this operation takes a membership valuem as a separation value and returns either
the complete upper part (u= true) or the complete lower part (u = false) of a spatial plateau objectpo by
including (b= true) or excluding (b= false) the objectpoat the membership valuem. In the case ofu= true
andb= true, we obtain the concept of anα-cut in fuzzy set theory [56, 42]. Ifu= trueandb= falseholds,
we obtain astrongα-cut. In our spatial context, we speak about (strong) spatialα-cuts.

4.2.3 Containment and Overlap Predicates

This category only includes the two topological predicatesfin for fuzzy containmenttesting andfisectfor
fuzzy intersection testing. Both predicates are defined in an ad hoc manner3. The predicatefin checks
whether a spatial plateau object is located within another spatial plateau object. Its signature isfin : φ(α)×
φ(β )→ bool for all α ,β ∈ {point, line, region} with α ≤ β . We assume two spatial plateau objectspo1 ∈
φ(α) andpo2 ∈ φ(β ) with pok = 〈(ok,1,mk,1), . . . ,(ok,nk ,mk,nk), ok〉 for k∈ {1,2}. Then the operationfin is
defined as

fin(po1,po2) = (∀1≤ i ≤ n1 ∃1≤ j ≤ n2 : o1,i insidec o2, j ∧ m1,i ≤ m2, j)

This operation makes use of thetopological cluster predicate insidec : α ×β → boolon complex spatial
objects [44] withα andβ as defined and constrained above. The predicateinsidec checks here whether a
crisp component object is located within another crisp component object; it is independent of the spatial
data type combination considered. The predicatefin further requires that for each containment relationship

3We will present thorough and systematically developed concepts offuzzy topological relationships(like fuzzy overlap, fuzzy
meet) andfuzzy directional relationships(like fuzzy north, fuzzy southeast) in future publications.
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found for two component objects, the membership value of thefirst component object must not be larger
than the membership value of the second component object.

The predicatefisecttests whether any two spatial plateau objects intersect geometrically. Its signature is
fisect: φ(α)×φ(β )→ bool for all α ,β ∈ {point, line, region} with α ≤ β . We assume two spatial plateau
objectspo1 andpo2 as defined above. Then the operationfisectis defined as

fisect(po1,po2) = overlapc(o1,o2)

The predicateoverlapc : α ×β → bool is also a topological cluster predicate on complex spatial objects.
It tests here whether the union objectso1 ando2 intersect. Then the two spatial plateau objectspo1 and
po2 intersect too. Membership values do not play a role in the definition. The reason is that a test for
intersection implies the existence of a common part shared by both spatial plateau objects. For such a
common part, the membership values must be larger than 0 in both spatial plateau objects. If the intersection
of the union objects is non-empty, this requirement is ensured. Hence, alternatively, we could define that
fisect(po1,po2) = (o1⊗o2 6=∅) must hold. The degree of existence is not relevant here.

4.2.4 Membership Value Changing Operations

The operationrelabelwith the signaturerelabel: φ(α)×mv×mv→ φ(α) makes it possible to change the
membership value of a component object of a spatial plateau object. If the new membership value is not
among the membership values of the other component objects,the old membership value of the component
object is replaced, and the order of the component objects has to be updated if necessary. However, if the new
membership value already exists among the other membershipvalues, a geometric union of the respective
component objects has to be performed. Letpo∈ φ(α) with po= 〈(o1,m1), . . . ,(on,mn),o〉 ∈ φ(α) for
somen∈ N, and letm,m′ ∈ mv. Then we define the operationrelabelas

relabel(po,m,m′) =
{

〈(o1,m1), . . . ,(oi−1,mi−1),(oi+1,mi+1), . . . ,(on,mn),o⊖oi〉⊙ (oi,m′) if ∃1≤ i ≤ n : mi = m

po otherwise

4.3 Context-Dependent Spatial Plateau Operations

Several binary spatial plateau operations in the previous sections map two membership values stemming
from two component objects of different spatial plateau objects into a single membership value. For this
purpose, they apply thestandard fuzzy membership operations min, max, and−̇. The operationfintersection
uses the minimum functionmin. The operationsfunion, fvertices, andfcommonPointsleverage the maximum
function max. Finally, the operationfdifferencemakes use of the “positive subtraction” function ˙−. The
standard fuzzy membership operations behave precisely as the corresponding operations for crisp sets when
the range of membership values is restricted to the set{0,1}. In this way, the standard fuzzy membership
operations are generalizations of the classical set operations.

However, the presented generalizations are not the only possible interpretations of fuzziness, contrary
to their crisp counterparts. For each of the three standard fuzzy membership operations above, there exists
a broad class of functions whose members qualify as fuzzy generalizations of the classical operations as
well and could be of interest for spatial applications. Since the three standard fuzzy membership operations
are not unique, different functions may be suitable to represent these operations in different contexts. This
means that not only the membership functions of fuzzy sets but also the operations on fuzzy sets arecontext-
dependent. Functions that qualify as fuzzy membership intersectionsand fuzzy membership unions are
usually referred to in the literature ast-normsandt-conormsrespectively [32]. But their application-specific
selection and usage requires expert knowledge.

A t-norm T is a functionT : [0,1]× [0,1]→ [0,1] with the following four properties for alla,b,d ∈ [0,1]:
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(i) T(a,1) = a (boundary condition, identity element)
(ii) T(a,b) = T(b,a) (commutativity)
(iii) b≤ d impliesT(a,b) ≤ T(a,d) (monotonicity)
(iv) T(a,T(b,d)) = T(T(a,b),d) (associativity)

Condition (i) ensures that the fuzzy membership intersection becomes the classical set intersection when
the interval[0,1] is reduced to the crisp set{0,1} since we obtainT(0,1) = 0 andT(1,1) = 1. Condition (ii)
states that the fuzzy membership intersection is symmetric, that is, indifferent to the order in which the sets
to be combined are considered. Further, we can conclude thatT(1,0) = 0 holds. Condition (iii) expresses
that a decrease in the degree of membership cannot lead to an increase in the degree of membership in the
intersection. Incorporating Condition (ii),T is non-decreasing in both arguments. Further, we can see that
0≤ 1 impliesT(0,0)≤ T(0,1) = 0 andT(0,0) = 0. Condition (iv) allows us to take the intersection of any
number of membership values in any order of pairwise grouping desired; this enables us to extend the fuzzy
membership intersection operation to more than two membership values.

The following examples show somet-norms that are frequently used as fuzzy membership intersections
(each defined for alla,b∈ [0,1]).

Tm(a,b) = min(a,b) (standard intersection, minimum t-norm, Gödel t-norm)
Tb(a,b) = max(0,a+b−1) (bounded difference, Lukasiewicz t-norm)
Tp(a,b) = ab (algebraic product, product t-norm)

T∗(a,b) =











a if b= 1

b if a= 1

0 otherwise

(drastic intersection, drastic t-norm)

One can easily show that for alla,b∈ [0,1] holds that

T∗(a,b) ≤ Tb(a,b) ≤ Tp(a,b) ≤ Tm(a,b)

In fact, if T is anyt-norm, then for alla,b∈ [0,1] holds that

T∗(a,b) ≤ T(a,b) ≤ Tm(a,b)

Hence, a geoscientist could make use of one of the aforementionedt-norms, or apply othert-norms like

Tnm(a,b) =

{

min(a,b) if a+b> 1

0 otherwise
(nilpotent minimum)

Tw(a,b) = 1−min(1, [(1−a)w+(1−b)w]1/w) (w> 0) (Yager t-norms)
Ts(a,b) = (max(0,ap+bp−1))1/p (p 6= 0) (Schweizer & Sklar t-norms)

THp(a,b) =

{

0 if a= b= 0
ab

a+b−ab otherwise
(Hamacher product)

or invent ownt-norms tailored to respective spatial applications. We define a settnorm that contains the
shortcuts of the names of all listedt-norms:

tnorm = {Tm,Tb,Tp,T∗,Tnm,Tw,Ts,THp}

T-conorms are dual tot-norms under the order-reversing operation which assigns 1− x to x on the
interval [0,1]. Given at-norm T and the complementaryt-conormC, we obtain the following two dual
relationships:

T(a,b) = 1−C(1−a,1−b)
C(a,b) = 1−T(1−a,1−b)
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It follows that at-conorm satisfies similar conditions like at-norm. These conditions can be used for an
equivalent definition oft-conorms independently oft-norms. At-conorm Cis a functionC : [0,1]× [0,1]→
[0,1] with the following four properties for alla,b,d ∈ [0,1]:

(i) C(a,0) = a (boundary condition, identity element)
(ii) C(a,b) =C(b,a) (commutativity)
(iii) b≤ d impliesC(a,b) ≤C(a,d) (monotonicity)
(iv) C(a,C(b,d)) =C(C(a,b),d) (associativity)

A comparison of these conditions with the conditions fort-norms shows that they only differ in the
boundary condition. Conditions (i) to (iii) ensure that thefuzzy membership union becomes the classical set
union when the interval[0,1] is reduced to the crisp set{0,1}. We obtainC(0,0) = 0, C(0,1) =C(1,0) =
C(1,1) = 1. Otherwise, the conditions have the same rationale as those for t-norms.

The following examples show somet-conorms that are frequently used as fuzzy membership unions
(each defined for alla,b∈ [0,1]).

Cm(a,b) = max(a,b) (standard union, maximum t-conorm)
Cb(a,b) = min(a+b,1) (bounded sum)
Cp(a,b) = a+b−ab (algebraic sum, probabilistic sum)

C∗(a,b) =











a if b= 0

b if a= 0

1 otherwise

(drastic union, drastic t-conorm)

Tm andCm, Tb andCb, Tp andCp, andT∗ andC∗ are pairwise dual. One can easily show that for all
a,b∈ [0,1] holds that

Cm(a,b) ≤Cp(a,b) ≤Cb(a,b) ≤C∗(a,b)

If C is anyt-conorm, then for alla,b∈ [0,1] holds that

Cm(a,b) ≤C(a,b) ≤C∗(a,b)

Also the other aforementionedt-normsTnm, Tw, Ts, andTHp have dualt-conormsCnm, Cw, Cs, andCEs:

Cnm(a,b) =

{

max(a,b) if a+b< 1

1 otherwise
(nilpotent minimum)

Cw(a,b) = min(1,(aw+bw)1/w) (w> 0) (Yager t-conorms)
Cs(a,b) = 1− (max(0,(1−a)p+(1−b)p−1))1/p (p 6= 0) (Schweizer & Sklar t-conorms)
CEs(a,b) = a+b

1+ab (Einstein sum)

We define a settconormthat contains the shortcuts of the names of all listedt-conorms:

tconorm = {Cm,Cb,Cp,C∗,Cnm,Cw,Cs,CEs}

For fuzzy membership difference, we have so far specified themembership function ˙−. An alternative
is the membership functionmdiff defined for alla,b∈ [0,1] as

mdiff(a,b) = min(a,1−b)

This function can be explained as follows: For two fuzzy setsÃ and B̃ on R
2, the complement of̃A

is cÃ = {(p,µcÃ(p)) | p ∈ R
2,µcÃ(p) = 1− µÃ(p)}, and the fuzzy difference betweeñA andB̃ is Ã− B̃=

Ã∩ cB̃= {(p,µÃ∩cB̃(p)) | p ∈ R
2,µÃ∩cB̃(p) = min(µÃ(p),1− µB̃(p))}. We collect the two alternatives for

fuzzy membership difference in the setdiff = {−̇,mdiff}.
Besides thet-norms, thet-conorms, and thediff functions, we also provide the two additional special

functionsfirst,second: [0,1]× [0,1]→ [0,1] that give priority either to the first or to the second membership
argument. They are defined for alla,b∈ [0,1] as
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first(a,b) = a
second(a,b) = b

For example, assume that a polluted river modeled as a fuzzy line flows across a city modeled as a fuzzy
region, and an environmental science expert wants to know the length of the river inside this city in order
to calculate the amount of decontamination liquid that needs to be poured into the river to cope with the
polluted water. Then the membership values of the fuzzy lineare relevant and should be preserved while the
membership values of the fuzzy region can be ignored. Hence,the functionfirst would be used.

For the extension of the operationsfintersection, funion, fvertices, fcommonPoints, andfdifference, we
introduce the three typesitype (intersection type),utype(union type), anddtype(difference type). Note
that these three types do not contain the functions themselves but only function identifiers. Depending on
a selected function identifier, the corresponding membership function is called in one of the five spatial
plateau operations.

itype = tnorm∪{first,second}
utype = tconorm∪{first,second}
dtype = diff ∪{first,second}

Besides the standard form of each operation given in Section4.1.3, we offer each operation also in a
version with one additional parameter of typeitype, utype, or dtypeso that we obtain the following extended
signatures forα ,β ∈ {point, line, region} with α ≤ β :

fintersection: φ(α)×φ(α)× itype → φ(α)
funion: φ(α)×φ(α)×utype → φ(α)
fvertices: φ(α)×utype → fpoint
fcommonPoints: φ(α)×φ(β )×utype → fpoint
fdifference: φ(α)×φ(α)×dtype → φ(α)

The definition of the operations is as before but depending onthe last parameter the corresponding
t-norm,t-conorm,diff function,first function, orsecondfunction respectively is selected and evaluated.

4.4 Mapping Operations between the Spatial Plateau Algebraand the Spatial Algebra 2D

The Spatial Plateau Algebra, as it has been defined so far, is closed under operations. This means that its
operations do not leave the algebra or type system. But this can be useful in applications. In particular,
the mapping of objects between the Spatial Plateau Algebra and our Spatial Algebra 2D is of interest. The
Spatial Algebra 2D provides a comprehensive collection of spatial data types, spatial operations, and spatial
(topological and directional) predicates for two-dimensional geometric data. The Spatial Plateau Algebra
offers the operationslabel, select, anddetachto move from one algebra to the other.

The operationlabel has the signaturelabel : α ×mv→ φ(α) for α ∈ {point, line, region}. This means
it takes a spatial object and a membership value as operands and constructs a corresponding spatial plateau
object. Leto∈ α andm∈ mv. Then we define the operationlabel as

label(o,m) = 〈(o,m),o〉 ∈ φ(α)

By using the operationfunion, larger spatial plateau objects can be assembled from spatial objects. For
example, foro1,o2 ∈ α andm1,m2 ∈ mv, the termfunion(label(o1,m1), label(o2,m2)) constructs the spatial
plateau object〈(o1⊖o2,m1),(o2,m2),o1⊕o2〉 if m1 < m2, 〈(o2⊖o1,m2),(o1,m1),o1⊕o2〉 if m2 < m1, or
〈(o1⊕o2,m1),o1⊕o2〉 if m1 = m2. Note thato1 ando2 could intersect.

The operationcomponenthas the signatureφ(α)×mv→ α . It takes a spatial plateau object and a
membership value as operands and returns the component object with this membership value if it exists. Let
po∈ φ(α) with po= 〈(o1,m1), . . . ,(on,mn),o〉 ∈ φ(α) for somen ∈ N andm∈ mv. Then we define the
operationcomponentas
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component(po,m) =

{

oi if ∃1≤ i ≤ n : mi = m

〈〉 otherwise

The operationdetachhas the signaturedetach: φ(α) → α . It removes all labels of a spatial plateau
object and returns the union object obtained from the geometric union of the component objects as a spatial
object. Geometric operations and predicates can then be applied to this spatial object. Letpo∈ φ(α) with
po= 〈(o1,m1), . . . ,(on,mn),o〉 ∈ φ(α) for somen∈N. Then we define the operationdetachas

detach(po) = o∈ α

5 Embedding Spatial Plateau Algebra Concepts into Query Languages

In the previous section we have defined a number of operationson fuzzy spatial objects that are represented
as spatial plateau objects. In this section, we will show howspatial plateau data types can be integrated into
a database schema and how spatial plateau operations can be embedded into an extension of the Structured
Query Language (SQL), which is the standard query language for object-relational databases. In the follow-
ing, we present three simplified scenarios that illustrate Spatial Plateau Algebra concepts and their possible
embedding into table schemas and SQL-like queries.

5.1 Scenario 1: Homeland Security

Secret services are interested in the prevention of terroristic activities. Important information about each
terrorist is which refuges they have had, which routes they have taken, and which areas have been their
focus of operation. It is evident that this information is afflicted with spatial fuzziness or vagueness since
the knowledge of the terrorist’s presence at a certain location is often not fully known but incomplete. We
use fuzzy spatial objects to represent the inherent vagueness of these locations. From a database perspective
we deploy our spatial plateau data typesfpoint, fline, andfregionasattribute data typesin the same way as
we use standard data types likeintegeror dateas attribute data types. This allows us to store the above in-
formation about terrorists in all database models that support the concept of attributes to describe properties
of entities, and leads thus to a database model independence. Examples of such models are the relational,
nested relational, object-oriented, and object-relational data models. In a relational table schema, we can
model the information about terrorists as follows:

terrorist(id: integer, name:string, refuge:fpoint, route:fline, activearea:fregion)

The attributerefugemodels all locations that a terrorist has used as a refuge to some extent. The routes
a terrorist has definitely or possibly taken to move between refuges are modeled in the attributeroute. Areas
of potential terroristic operation are stored in the attributeactive area.

Looking at the table schema, we observe the equal treatment of all standard and non-standard data types.
This is possible for non-standard data types since they are modeled asabstract data types. This means that
the internal, complex structure of fuzzy spatial objects (spatial plateau objects) is hidden from the user and
that information about these objects can only be obtained byhigh-level operations, which are deployed in
fuzzy spatial queries.

The first query asks for the locations where any two terrorists have definitely or possibly taken the same
refuge. It makes use of the topological predicatefisectand the spatial plateau set operationfintersection.
Common locations are stored with the minimum degree of membership in the new attributecommonrefuge.

select A.id, B.id,fintersection(A.refuge, B.refuge)ascommonrefuge
from terroristasA, terroristasB
where A.id 6= B.id and fisect(A.refuge, B.refuge)

29



The following query determines the names of terrorists and the locations where their routes have def-
initely or possibly crossed each other. The term〈〉 denotes the empty spatial plateau object (here empty
spatial plateau point).

select A.name, B.name,fcommonPoints(A.route, B.route)ascrossing
from terroristasA, terroristasB
where A.id 6= B.id and fcommonPoints(A.route, B.route)6= 〈〉

The next query finds out the known sphere of all terrorists on the basis of their refuges.

select label(convex hull(detach(fplateauCut(aggr funion(refuge),1.0, true, true))),1.0)
asknown sphere

from terrorist

The functionaggr funion is a newfuzzy spatial aggregation functionthat here computes the fuzzy ge-
ometric union of a collection of spatial plateau point objects from the columnrefuge. Since we are only
interested in the known refuges having the membership value1.0, we use the operationfplateauCutwith
appropriate parameters to identify these. We interpret theconvex hull of the remaining refuge locations as
the known sphere where the terrorists have been definitely active. For a given set of points, its convex hull
is the smallest convex polygon that encloses all points. Since the operationconvexhull is a crisp spatial
operation, we first detach all membership values from the spatial plateau point object obtained from the
operationfplateauCut. We use the operationlabel to lift the crisp region object obtained from the operation
convexhull to a spatial plateau region object of typefregion.

The final query for this scenario asks for the areas of activity whereall terrorists have been with a
membership value between 0.12 and 0.78.

select aggrfintersection(restrictedarea) ascommonrestrictedarea
from (select fsliceByRange(active area,0.12,0.78, true, true) asrestrictedareafrom terrorist)

For each terrorist, by using the operationfsliceByRange, the nested SQL query determines the area
of activity with membership values between 0.12 and 0.78 as aspatial plateau region. The outer SQL
query applies the new fuzzy spatial aggregation operationaggr fintersectionthat here computes the fuzzy
geometric intersection of a collection of spatial plateau region objects from the columnrestrictedarea. Two
main cases are possible. First, the nested SQL query produces a tuple with an empty spatial plateau region
〈〉. Then the aggregation will inevitably produce the empty spatial plateau region〈〉. Second, all tuples have
non-empty spatial plateau regions. Then the fuzzy spatial aggregation function yields either an empty (not
all terrorists have been at the same location) or a non-emptyspatial plateau region (there is a common area
of terroristic activity).

5.2 Scenario 2: Ecological Application

This scenario assumes an ecological database about weatherand soil data with the following table schemas:

weather(climate:string, area:fregion)
soil(quality: string, area:fregion)

The relationweatherhas a column namedarea containing spatial plateau region values for various
climatic conditions given by the columnclimate. The relationsoil describes the soil quality for certain
regions.

The first query asks for the driest areas with a membership value of more than 95% where a lack of
water is a problem for cultivation.
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select fplateauCut(area,0.95, true, false) asextremedry area
from weather
where climate = “dry”

The next query is supposed to find out all regions of bad ecological conditions, that is, all locations
where a lack of water or a bad soil quality is a hindrance for cultivation.

select funion(dry area,bad soil) asbad region
from (select aggrfunion(area) asdry areafrom weatherwhereclimate = “dry”),

(select aggrfunion(area) asbad soil from soil where quality = “bad”)

In the from clause, we create two temporary relations that contain the aggregated areas of dry climate
regions and bad soil quality regions respectively. Each table contains a single tuple with a single attribute
value of typefregion. In theselectclause, we compute the fuzzy union of the two attribute values of both
tuples. The larger membership values prevail for each point.

For each kind of climate, the last query for this scenario determines the numerical area measures of those
weather zones that we can definitely classify and that we can only vaguely classify.

select climate,
area(detach(fslice(aggr funion(area),1.0))) asdefinite area,
area(detach(fplateauCut(aggr funion(area),1.0, false, false))) asvaguearea

from weather
group by climate

Note that the operationarea is a crisp operation on the spatial data typeregion and that for the empty
crisp region〈〉 holds thatarea(〈〉) = 0. Further, for the termdetach(fslice(aggr funion(area),1.0)) we
could also write the simpler termcomponent(aggr funion(area),1.0).

5.3 Scenario 3: Environmental Application

Pollution is nowadays a central environmental problem and causes an increasing number of environmental
damages. Important examples are air pollution, oil soiling, and radioactive contamination. Pollution con-
trol institutions, ecological researchers, and geographers usually use maps for visualizing the expansion of
pollution. We assume an environmental database with the twoself-explaining relations

pollution(type:string; zone:fregion)
land use(use:string, area:fregion)

The first query asks for inhabited areas which are air polluted. In order to accentuate heavily polluted
areas and largely inhabited areas and to understate hardly polluted areas and hardly inhabited areas, we make
use of the productt-norm (see Section 4.3).

select fintersection(aggr funion(zone),aggr funion(area),Tp)
from pollution, land use
where use = “inhabited”and type = “air”

Finally, we pose the query to determine all areas where people are endangered by pollution.

select aggrfunion(fintersection(zone,area,Tp)) asendangeredarea
from pollution, land use
where use = “inhabited”and fisect(zone, area)
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6 Implementation

Due to our concept of executable specifications (see Section3.2), the implementation of the Spatial Plateau
Algebra only requires high level calls to an underlying crisp spatial type system implementation. This min-
imizes the needed implementation effort. Available crisp spatial algebra implementations are, for example,
ESRI’s Spatial Database Engine (ArcSDE), Oracle Spatial, Informix’s Geodetic Data Blade, DB2’s Spatial
Extender, PostGIS, MySQL Spatial Support, the Java Topology Suite (JTS), and the Geometry Engine Open
Source (GEOS) (see Section 2.3). However, the concepts, interfaces, functional range, and implementations
of these spatial type systems as well as the storage techniques for spatial objects are rather different from
each other and depend on the database system used. This meansthat different implementations of the Spatial
Plateau Algebra would be required for different database systems with their specific spatial type systems.
Some of the aforementioned spatial type systems additionally offer interfaces based on theOpenGIS Simple
Features Specifications For SQLof the Open Geospatial Consortium (OGC). But even these interfaces are
not generic and unique since they are only informally specified.

We have therefore decided to go another, longer way and aim ata novel and general solution to complex
object management in databases that enables thetype system implementer(TSI) to define, implement, and
integrate new type systems forcomplex application objectsinto database systems on her own. These type
systems and the whole framework that enables their implementation are database independent. That is,
they are reusable and can be embedded into several database systems. The framework that enables their
implementation is based on two pillars. The first pillar is a generalized method, namedtype structure
specification(TSS), for representing and interpreting the structure of complex application objects. Such a
specification provides an interface for the TSI to describe the structure of complex objects at a conceptual
and high level of abstraction by means of special TSS grammars. In addition, it provides a generic interface
for high-level retrieval, storage, and update operations on complex objects and their components.

The second pillar is a generalized framework, namedintelligent binary large objects(iBLOBs), for
the efficient and high-level storage, retrieval, and updateof hierarchically structured complex objects in
databases. iBLOBs store complex objects by utilizing the unstructured storage capabilities of a DBMS
and provide component-wise access to them. In this sense, they serve as a communication bridge between
the high-level abstract type system and the low-level binary storage. Low-level binary storage is usually
provided by the built-in type forbinary large objects(BLOBs). BLOBs themselves are not well suited for
structured object management. They have originally been designed for storing unstructured data as byte

Extensible DBMS

Crisp Spatial Algebra

Spatial Plateau Algebra 

Client Application

TSS Component

iBLOB Component

Generic BLOB Interface

DBMS specific BLOB

Figure 9: Integration of the Spatial Plateau Algebra into anextensible database system.
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sequences and offer a low-level interface for simple read/write access to byte ranges. Thus BLOBs do not
understand the semantics of the internal structure of the application objects stored in them and therefore
do not include methods to access internal components of them. This makes the access to a component
of an application object rather expensive since the entire object needs to be loaded into main memory to
understand its structural semantics and get access to the component of interest. Further, BLOBs typically
allow data to be appended, truncated, and modified through the overwriting of bytes. However, general data
insertions and deletions are not supported unless the user explicitly shifts data, which is expensive. Since the
implementations and access operations of the BLOB type varylargely between different database systems,
we have designed aGeneric BLOB Interfacethat has to be implemented for each database specific BLOB
implementation.

Figure 9 illustrates the proposed system architecture. A more detailed description of the TSS concept
and the iBLOB concept, which are beyond the scope of this article, can be found in [10]. This research
effort is ongoing work. We are currently implementing the TSS component and the iBLOB component and
are beginning with the TSS specification and implementationof a crisp spatial type system calledSpatial
Algebra. The implementation of the Spatial Plateau Algebra on top ofthe Spatial Algebra will follow these
implementation efforts.

7 Conclusions and Future Work

In this article, we have dealt with the problem of implementing spatial objects and operations afflicted with
the feature of spatial vagueness in a database context.Spatial vaguenessor spatial fuzzinessis inherent
to many database applications in the geosciences and in geographical information systems. Our solution
presented in this article is the Spatial Plateau Algebra that implements a fuzzy spatial algebra (like one
of those described in [18, 42]) and can be embedded into any extensible and commercially or publicly
available database system and its query language SQL. This algebra is a type system that provides the spatial
plateau data typesfpoint, fline, and fregion together with a comprehensive collection of spatial plateau
operations. A special characteristic of our approach is that these data types and operations rest on well
known concepts, data structures, algorithms, and implementations of their crisp counterparts. This leads to
executable specifications that can be directly implementedwith minimal effort. Further, spatial plateau data
types are closed under spatial plateau operations. To the author’s knowledge, the Spatial Plateau Algebra
provides the first approach to an implementation of a fuzzy spatial algebra in general and in a database
context in particular.

For future work, we plan to extend the Spatial Plateau Algebra by metric operationsand topological
predicates on spatial plateau objectsas the implementation of their counterparts on fuzzy spatial objects.
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