
TrackGen: An Interactive Track Generator for TORCS

and Speed-Dreams

Luigi Cardamone, Pier Luca Lanzi, and Daniele Loiacono

Dipartimento di Elettronica, Informazione e Bioinformatica
Politecnico di Milano, Milano, Italy.

Abstract

TrackGen is an on-line tool for the generation of tracks for two open-source
3D car racing games (TORCS and Speed Dreams). It integrates interactive
evolution with procedural content generation and comprises two components:
(i) a web frontend that maintains the database of all the evolved popula-
tions and manages the interaction with users (by collecting users evaluations
and providing access to the evolved tracks); (ii) an evolutionary/content-
generation backend that runs both the evolutionary algorithm and generates
the actual game content that is available through the web frontend. The
first prototype of the tool was presented in July 2011 but advertised only to
researchers; the first official version which generated tracks only for TORCS
was released to the game community in September 2011; due to the many
requests, we released a new version soon afterwards, in January 2012, with
support for Speed Dreams (the fork of TORCS focused on visual realism and
graphic quality) that has been on-line since then. From January 2012 until
July 2014, TrackGen had more than 7600 unique visitors who visited the web-
site around 11500 times and viewed 85500 pages; it was employed to evolve
more than 8853 tracks, and it was used to download 12218 tracks. Some
of the tracks evolve by our system have been also included in the TORCS
distribution.

Keywords: Evolutionary Computation, Video Games, Interactive
Evolution, Procedural Content Generation

∗pierluca.lanzi@polimi.it

Preprint submitted to Applied Soft Computing August 4, 2014



1. Introduction

Procedural Content Generation (PCG) dates back to the early 1980s when
it was introduced to overcome the memory limitations of existing platforms
and employed to distribute large amounts of pre-designed game content. Af-
ter several decades, although the limitations that originated it have long
gone, procedural content generation maintains its crucial role in the game
industry as a mean to design, produce, and deliver huge amounts of game
content, that would be unbearable for human designers (e.g., the infinite uni-
verses of Eve Online1). At the same time, procedural content generation has
now become an advertised feature of commercial games as in the Borderlands
franchise2, Spore3, Tiny Wings4, and many others [1].

Search-Based Procedural Content Generation (SB-PCG) [2] is a branch of
PCG that applies stochastic search algorithms to generate high-quality game
content (e.g., levels, rules, weapons). In this paper, we present TrackGen, a
tool that applies SB-PCG, more precisely interactive evolution, to the realm
of car racing games, a popular genre in which the content plays a key role
for the commercial success of the title (see for instance, Trackmania5 and
rFactor 6).

TrackGen is an on-line SB-PCG tool that evolves tracks for two open-
source 3D car racing games (TORCS [3] and Speed Dreams [4]). TrackGen
is inspired by the early work of Togelius et al. [5, 6], who applied SB-PCG to
a simple 2D game to evolve racing tracks which could fit a target player pro-
file [5, 6]. It is also inspired by our previous work on the automatic evolution
of TORCS tracks [7] which could provide a large degree of diversity. Both
[5, 6] and [7] evaluate the quality of game content using several statistics col-
lected during one or more races involving non-player characters. In contrast,
TrackGen let users state what they consider interesting game content and
employs an interactive genetic algorithm to search for the better tracks; in
this respect, TrackGen has been strongly inspired by the work on Galactic
Arms Race7 [8].

1http://www.eveonline.com/
2http://www.borderlandsthegame.com/ & http://www.borderlands2.com/
3http://www.spore.com/
4http://www.andreasilliger.com/
5http://www.trackmania.com
6http://www.rfactor.net
7http://gar.eecs.ucf.edu/

2



TrackGen was first shown in its prototypical form during CIG-2011 and
GECCO-2011, when a seminal paper about the tool was presented [9]. The
first official version was released later in September 2011 to the TORCS com-
munity and received much feedback. In particular, we were asked to extend
the tool to Speed Dreams [4], a fork of TORCS focused on visual realism
and high-quality graphics. The second version that could produce tracks
both for TORCS and Speed Dreams was released in January 2012 and has
been on-line since then. The new version is also connected to a Twitter
account (http: // twitter. com/ POLIMIVGR ) and tweets an announcement
every time new tracks are generated. Four tutorial videos available at the
TrackGen website8 and YouTube demonstrate TrackGen main features and
show examples of the high-quality tracks that the system is able to generate.
So far, TrackGen had more than 7600 unique visitors who visited the web-
site around 11500 times and viewed 85500 pages; it was employed to evolve
more than 8853 tracks, and it was used to download 12218 tracks. Some
of the tracks evolve by our system have been also included in the TORCS
distribution in an additional package of extra tracks.

2. Related Work

Procedural Content Generation (PCG) dates back to the early 1980s when
simple algorithmic procedures were applied to generate huge, potentially un-
limited, amount of game content with very limited resources. Some of the
early examples in this area are represented by the games Rogue9, Elite10,
and MidWinter 11. Nowadays, although the memory limitations are long
overcome, procedural content generation is still widely used both to reduce
the design costs and to generate those immense scenarios which would be in-
feasible for human designers. Recent examples include [1], the Diablo series
in which maps are procedurally generated; Spore makes heavy use of PCG for

8TrackGen tutorial videos:
http://trackgen.pierlucalanzi.net/about.htm

http://www.youtube.com/watch?v=YFOa7L3oBwM

http://www.youtube.com/watch?v=0_W4jHN2h2Q

http://www.youtube.com/watch?v=3AzjMtRDnBo

http://www.youtube.com/watch?v=Si_u_43HJnM
9http://en.wikipedia.org/wiki/Rogue_(computer_game)

10http://en.wikipedia.org/wiki/Elite_(video_game)
11http://en.wikipedia.org/wiki/Midwinter_(video_game)

3



animations, FarCry2 uses PCG for vegetation; Borderland and Borderland2
use PCG for weapons; and Eve Online involves a universe generated using
fractal methods.

2.1. Search-Based Procedural Content Generation (SB-PCG)

SB-PCG extends traditional procedural content generation by replacing
the handcrafted human design with search-based (usually evolutionary com-
putation) methods [2]. Early examples in this area include the work of Hast-
ings et al. [10] who applied a modified version of NEAT [11], named NEAT
Particles, to interactively evolve complex and interesting graphical effects to
be embedded in computed games so as to enrich their content. The work was
extended in [8] where the authors introduced the game Galactic Arms Race
and provided the first demonstration of evolutionary content generation in
an on-line multi-player game.

Marks and Hom [12] were the first to evolve a set of game rules to obtain a
balanced board game which could be equally hard to win from either side and
rarely ended with a draw. Togelius and Schmidhuber [13] evolved complete
rule sets for games. The game engine was capable of representing simple Pac-
Man like games, and the rule sets described what objects were in the game,
how they moved, interacted (with each other or with the agent), scoring
and timing. Later, Browne [14] developed the Ludo system to evolve rules
for abstract connect games and published one of the evolved games, namely
Yavalath12

Togelius et al. [5, 6] combined procedural content generation principles
with an evolutionary algorithm to evolve racing tracks for a simple 2D game
which could fit a target player profile. Avery et al. [15] developed a tower
defense game using experience driven procedural content generation. Car-
damone et al. [16] evolved maps for the Cube2 13 first-person shooter that
maximizes fighting time.

Frade et al. [17] applied Genetic Programming to the evolution of terrains
for games which would attain the aesthetic feelings and desired features of the
designer. The approach is currently employed in the game Chapas14. More
recently, Togelius et al. [18] applied multi-objective evolution to evolve maps

12http://www.cameronius.com/games/yavalath/
13http://sauerbraten.org/
14https://forja.unex.es/projects/chapas

4



for StarCraft using a set of fitness functions evaluating the player’s entertain-
ment. The work was later extended in [19] where also an imaginary generic
strategy game based on height maps (a rather common representation) was
considered. Raffe et al. [20, 21] presented an evolutionary algorithm for
the in-game generation of terrains based on a set of height-map patches ex-
tracted from sample maps whose layout was optimized through evolution.
The same authors also developed a third-person action game in which levels
are tailored to the players’ preferences and skill.15

Sorenson and Pasquier [22] presented a generative approach for level cre-
ation following a top-down approach and validated it using Super Mario Bros.
and a 2D adventure game similar to the Legend of Zelda.16 Shaker et al. [23]
applied Grammatical Evolution to generate levels for Mario Bros. Friberger
et al. [24] introduced the concept of data games as a way to make sense of
the data through a game and applied PCG to evolve Monopoly boards based
from economic and social indicator data for local governments in the UK.

Jordan et al. [25] developed a mobile game in which music (selected
from a pool of songs) was analyzed and its features were used to guide the
procedural generation of levels. Plans and Morelli [26] outlined the use of
experience driven procedural music generation using user gameplay metrics.

2.2. Interactive Evolution

Interactive evolution has been applied to a wide range of domains includ-
ing the generation of HTML styles [27]; fashion design [28]; generation of
facial composites [29]; semi-supervised learning [30]; voice quality conversion
[31]; ergonomic design [32]; the generation of terrains and landscapes [33],
synthetic images [34], music [35], and art in general. To the best of our knowl-
edge, Galactic Arm Race [8] is the first application of interactive evolution for
the generation of game content. Galactic Arms Race is a multiplayer on-line
video game driven by methods of automatic content generation. It features
a unique weapon systems that automatically evolves based on players’ be-
havior through a specialized version of the NEAT evolutionary algorithm
called cgNEAT (content-generating NeuroEvolution of Augmenting Topolo-
gies) [8]. Risi et al. [36] developed the first Facebook game, Petalz 17, that
applies interactive evolution to breed procedurally generated flowers.

15http://goanna.cs.rmit.edu.au/~wraffe/ExperimentHome.html
16https://en.wikipedia.org/wiki/The_Legend_of_Zelda
17http://petalzgame.com/

5



3. TORCS and Speed Dreams

The Open Racing Car Simulator (TORCS) [3] is a state-of-the-art open-
source car racing simulator which provides a sophisticated physics engine,
full 3D visualization, several tracks, car models, and game modes (practice,
quick race, championship, etc.). The car dynamics is accurately simulated
and the physics engine takes into account many aspects of racing cars such
as traction, aerodynamics, fuel consumption, etc.

Speed Dreams [4] is a fork of TORCS focused on visual and physics
realism. While its core consists in a large portion of the original TORCS
code base, Speed Dreams aims at providing better playing experience by
introducing several features including more and visually improved car models
and tracks, experimental physics engine, better AI bots, better menus, on-
line multiplayer, great visual effects, etc.

4. Track Representation

The encoding of game content is a central issue for Search-Based Pro-
cedural Content Generation [2]. In this section, we briefly illustrate the
representation of tracks in TORCS/Speed Dreams, and the encoding used in
TrackGen.

4.1. Track Representation in TORCS/Speed Dream

TORCS and Speed Dreams share a large part of the code base. In partic-
ular, Speed Dreams uses an extended version of the track representation in
TORCS with additional features that improve the rendering and the special
effects. Tracks are represented as ordered list of segments. Each segment is
either a straight or a turn: A straight is defined just by its length; A turn is
defined by (i) the direction (i.e., left or right); (ii) the arc it covers measured
in radians; (iii) its start radius and (iv) its end radius. In addition, the track
must be feasible, i.e., it must be closed, and therefore the last segment must
overlap the first segment.

4.2. Track Representation in TrackGen

The direct encoding of a track representation into a genotype is infeasi-
ble as it would result in a huge search space (thus leading to the curse of
dimensionality) containing only a tiny fraction of feasible (closed) tracks [5].
Accordingly, TrackGen applies the same indirect encoding we employed for

6



the automatic evolution of TORCS tracks in [7], which was inspired by the
work of Togelius et al. [5]. In TrackGen, a track is encoded as a sequence
of control points ~p = {p1, . . . pn}, each one consisting of three parameters ri,
θi, and si; ri and θi identify the position of the control point pi in a polar
coordinate system (ri is the radial coordinate, θi is the angular coordinate); si
controls the slope of the track tangent line in pi. Figure 1 shows an example
of our encoding: control points are depicted as solid dots; the central empty
dot represents the origin of the polar coordinate system; the curve that con-
nects the solid dots is generated from the genotype (i.e., ) what generated by
the genotype to phenotype mapping process, discussed in the next section.

Given a sequence of control points ~p, a list of track segments in the
TORCS/Speed Dreams format can be generated using the same procedure
we used in [7]. At first, a range of feasible slopes for each control point
pi is generated; if none exists, the track is eliminated from the population;
next, the actual slopes are generated from the feasible ones using a recursive
procedure; finally, a specific algorithm is applied to compute the last slope
that must close the track (see [7] for details).

si
ri

θi

Figure 1: Track encoded as a set of control points (the solid dots) that are represented in
a polar coordinate system; the central empty dot is the system origin; the solid line shows
an example of a feasible slope generated by the genotype to phenotype mapping.

7



5. TrackGen

Our tool comprises two main components hosted on two separate servers
(Figure 2). The frontend hosts the webpages, manages the database contain-
ing the evolved populations, collects user evaluations, maintains the request
queue for the evolutionary backend, and finally sends the requests for down-
loadable content to the track and scenery generator. The backend runs both
the evolutionary algorithm and all the tasks related to the generation of the
actual game content including the mapping procedures between genotypes
and phenotypes, the rendering of the track thumbnails, the generation of the
downloadable tracks that are uploaded to the web frontend. This partition
between a web/database dedicated frontend and an evolutionary/content-
generation dedicated backend was mainly introduced to decouple the web
applications from the TORCS/Speed Dreams-specific applications so to im-
prove the system portability to other hosting services. In fact, the content-
generation tasks require several TORCS and Speed Dreams executables that
use libraries (e.g., SDL18) typically not available from most web hosting ser-
vices.

5.1. The Frontend User Interface

TrackGen can be accessed using any cookie-enabled browser at http://

trackgen.pierlucalanzi.net. The homepage (Figure 3) shows a random
selection of ten tracks from the underlying evolving population; for each
track, the system depicts a thumbnail of the track shape and the track unique
name selected from a public database containing the names of 100000 places
from all over the planet; if the page is refreshed another set of tracks is shown.
Users can express their opinion about the track shape by pressing either the
thumb up button to state that they like the track shape or the thumb down
button to state that they dislike the track shape; otherwise, they can remain
neutral by not pressing any of the above. TrackGen exploits browser cookies
to track users that previously visited the page and remembers their previous
evaluations; users can thus change their evaluation deciding for instance to
dislike a track they previously liked or to remain neural by pressing the
button between the two thumbs to clear a previous evaluation. By pressing
the green arrow below a track thumbnail, users are sent to the download
page (Figure 4) where they can request the download of the track rendered

18http: // www. libsdl. org/

8



FRONTEND

(WEB & DB SERVER)

BACKEND

(GA & TORCS SERVER)

request

queue

...

d
o
w

n
lo

ad
 p

ag
e

...

browser

browser

...

browser

browser

population

m
ai

n
 p

ag
e

scenerey

generator

as
se

t 
re

p
o
ri

to
ry

 

downloadable

tracks

genetic

algorithm

TORCS

Speed-dreams

Figure 2: Architecture of TrackGen.

using one of five possible sceneries: city, desert, hill, mountain, and snow.19

All the download requests are queued to the track and scenery generator
hosted on the backend that will build the tracks for TORCS and Speed
Dreams using methods of procedural content generation and proper assets
(see Section 5.3). When a download request is queued, a countdown based on
the estimated preparation time is started; when the track has been uploaded
to the frontend, a download link appears. Note that, all the previously
generated tracks are stored on the frontend server, so that if the requested
track is already available for download (because another user requested the
same track before), the download link will immediately appear. Two tutorial
videos, available at the TrackGen website20 and YouTube, show the frontend

19A video showing the five scenarios is available at http://www.youtube.com/watch?

v=Si_u_43HJnM
20TrackGen tutorial videos:

http://trackgen.pierlucalanzi.net/about.htm

http://www.youtube.com/watch?v=YFOa7L3oBwM

http://www.youtube.com/watch?v=0_W4jHN2h2Q

9



user interface in action.
The TrackGen homepage has also a link to the Hall of Fame showing

the ten tracks that received the highest score and a link to the Latest page
showing the ten most recently evolved tracks. The latest evolved tracks
are also advertised on the Twitter page of our research group, http: //

twitter. com/ POLIMIVGR , where a tweet appears every time a new track
has been generated by the evolutionary process.

5.2. The Evolutionary Algorithm

The evolutionary algorithm behind TrackGen is a simple steady-state
real-coded genetic algorithm that runs on the backend as a listener pro-
cess that is always active. When the evolutionary algorithm is initialized or
restarted from scratch (Algorithm 1) all the tables on the web fronted are
cleared (line 2), a new random population is generated and loaded on the
web frontend (line 3), and the tables containing all the statistics about the
population and the process are initialized (line 4).

The evolutionary process (Algorithm 2) works as follows. At fixed time
intervals, the process query the database on the web frontend to check the
number of new evaluations received for the current population (line 3); if a
sufficient number of new evaluations since the last activation of the evolution-
ary algorithm has been received, the process runs an evolutionary cycle (lines
6 to 18). At first, the current population is retrieved from the database on
the web frontend (line 6) as a table containing the individuals (represented
as a vector of real values) and their current fitness values; the fitness of a
track is computed as the difference between number of positive evaluations
received (the number of thumbs up) and the number negative evaluations it
received (the number of thumbs down); next, two pairs of tracks are ran-
domly selected from the population using tournament selection of size two
(lines 9 and 10); Then, crossover (line 11) and mutation (lines 12 and 13) are
applied to generate two offspring tracks (o1 and o2) from the parents (p1 and
p2). Next, TORCS/Speed Dreams specific procedures are run (line 15) (i) to
check whether the new tracks are feasible (see Section 4), (ii) to compute sev-
eral track statistics, and finally (iii) to generate the thumbnails needed by the
web interface. In this phase, infeasible tracks are discarded while the feasible
ones are inserted in the population (line 18) replacing the worst tracks (line
17) so as to update the remote database accordingly. If both offsprings are
infeasible, the process is repeated up to ten times; if the system was not able

10



to generate at least one feasible track after ten trials (which rarely happened
so far), the population is not modified (line 16); Since TORCS executables
tend to be CPU and disk intensive, the evolutionary process schedules the
number of active TORCS/Speed Dreams invocations based on the number of
cores available and on the number of download requests (which also require
separate TORCS/Speed Dreams invocations) to avoid overloading the server.
The implementation of the evolutionary algorithm is based on Kumara Sas-
try’s C++ toolbox available from [37] and on the track representation we
introduced in [7] (see Section 4)

Algorithm 1 The Genetic Algorithm - Initialization

1: procedure InitGeneticAlgorithm
2: ClearTheRemoteDatabase(); . eliminate existing population
3: InitTables(); . generate initial random population
4: InitStats(); . init all server statistics
5: end procedure

5.3. The Scenery Generator

The scenery generator (Algorithm 3) is also implemented as a listener
process (line 2), hosted on the backend server, that checks the queue of
download requests (line 3); when a user requests the download for a track
with a selected scenario (Figure 4), the scenery generator builds the actual
TORCS/Speed Dreams package (lines 4 to 8), then, it uploads the package
to the web frontend where the user can download it (line 9). The scenery
generator is organized in a pipeline of three main procedures: (i) the eleva-
tion heuristic (line 5), (ii) the terrain generator (line 7), and (iii) the track
decoration (line 8).

The Elevation Heuristic takes as input a user request consisting of a track
name, its genotype and the name of one of the five available sceneries (city,
desert, hill, mountain, snow). At first, it uses the genotype (a vector of
real values) to generate a basic TORCS/Speed Dreams track with no assets
and no elevation information, represented as a sequence of track segments
using the standard XML format. Next, it scans the track and adds elevation
information to each segment based on an elevation range which depends on
the target scenery: for the city and the desert sceneries, the range is rather
narrow so that players will not experience much change in elevation when

11



Algorithm 2 The Genetic Algorithm - Steady State Evolution

1: procedure SteadyStateGA
2: while true do . runs forever as a server
3: if CanSteadyStateEvolve() then
4: . if enough new users evaluations
5: . runs one cycle of steady state GA
6: P ← RetrievePopulationFromDB()
7: trials←0
8: repeat
9: p1 ← TournamentSelection(P )

10: p2 ← TournamentSelection(P )
11: o1, o2 ← Crossover(p1, p2)
12: Mutation(o1)
13: Mutation(o2)
14: trials ← trials + 1
15: until (Feasible(o1) and Feasible(o2)) or trials>10
16: if trials≤10 then
17: DeleteTwoIndividualFromDB()
18: AddOffspringToDB(o1,o2)
19: end if
20: end if
21: end while
22: end procedure

12



Algorithm 3 The Scenery Generator

1: procedure SceneryGenerator
2: while true do . runs forever as a server
3: if not isRequestQueueEmpty() then . if there is a download

request
4: t,s ← GetNextRequestedTrack() . t is the track genome . s

is the scenery type
5: et ← ElevationHeuristic(t,s) . generate the plain track
6: . only with elevation information
7: tt ← AddTerrain(et,s) . add the terrain
8: ct ← AddGameElements(tt,s) . add the terrain
9: UploadContentToServer(ct)

10: end if
11: end while
12: end procedure

racing; for the hill scenery, a mid elevation range allows the generation of
a track with some nice and smooth elevation transitions; for the mountain
and snow sceneries, the elevation range is quite large so that players can
experience a wide variety of elevation change while driving. The resulting
XML representation of the track (enriched with elevation information) is
given to a tool we developed from existing TORCS/Speed Dreams code which
generates a 2D gray-scale shape of the requested track (Figure 5a); lighter
colors identify track sections with higher elevations; darker colors identify
sections with lower elevation.

The Terrain Generator starts from the gray-scale shape of the track pro-
duced by the previous process (Figure 5a) and generates an elevation map
of the terrain surrounding the track. At first, it applies a heuristic to add
dramatic elements to the track (e.g., peaks, mountains, gorges, etc.). For
instance, it may add an area of relatively high elevation in the center of the
map (Figure 5b) so that nearby sections of the track are not visible or, in
mountain/snow scenarios, it may add a gorge on the side of a narrow bend
(Figure 5b). Then, it applies a series of graphic filters and procedures to
compute the final elevation map based on the elevation of the track segments
and the added dramatic elements. The terrain generator initially expands
the elevation information available in the track shape and in the dramatic
elements (e.g., the gorges, the mountain) to fill the empty (white) areas of

13



the 2D image received as input (Figure 5c) and blurs the resulting image
to generate smoother transitions (Figure 5d), i.e., thus smoother meshes.
Next, it generates some Perlin noise [38] to increase the scenario diversity
(Figure 5e). Perlin noise [38] is a computer-generated visual effect that is
used to represent clouds, fog and other visual effects. In this case, it is used
to introduce small random modifications to the previously generated height
map. As a results, the smooth surfaces generated during the previous steps
will show some small random irregularities that will make the final terrain
more realistic. Then, it creates a distance map (Figure 5f) in which each
pixel color represents a weight proportional to its distance from the track
(the darker the pixel, the nearer to the map). Finally, the tool uses the
weights in the distance map to merge the current map (Figure 5d) with the
Perlin noise (Figure 5e). The final results is an elevation map with all the
information needed to generate the terrain mesh (Figure 5g).

The Positioning of Game Elements. At the end, the tool adds several
types of game elements to decorate the track (e.g., vegetation, buildings,
signs, etc.) based on the selected scenery (Section 5.1). This phase outputs
a list of assets to be inserted in the track, their position, and the occupancy
map (Figure 5h) which identifies the occupied areas in the final track and
it is needed by TORCS/Speed Dreams tools to generate the final package.
Figure 5h shows an example of occupancy map where all the white rectan-
gles identify areas occupied by game elements, e.g., trees (the small white
dots), buildings (the larger white rectangles), and signs (crossing the track).
The tool applies specific placement heuristics for each type game element.
For instance, the procedure that positions vegetation elements starts from a
central point and identifies three directions and three end points (Figure 6);
then, it repeats the same heuristic so as to generate a forest of vegetation
elements using the end points. signs are uniformly distributed orthogonally
along the track; buildings in city scenarios are positioned using an algorithm
similar to the one used for vegetation while in hill scenarios few buildings are
randomly positioned to be visible from the track. All the heuristics perform
specific checks to avoid nonuniform distributions of game elements (e.g., with
all the building in the same area) or overcrowded areas (e.g., area too many
buildings or too many trees, track sections with too many signs).

Track Generation and Upload. When all the information and the data
needed to generate the final track are ready, scenery-specific textures are
added and TORCS/Speed Dream specific tools are run to generate the actual

14



track that is zipped and uploaded to the web frontend. Two videos available
at the TrackGen website21 and YouTube show how the scenery generation
works and examples of the generated scenarios.

6. Statistics

TrackGen has been on-line since January 2012 with only few short peri-
ods of downtime due to maintenance. We tracked the access to the service
both using scripts we developed and Google Analytics22. From January 2012
until July 2014, according to our data, TrackGen has evolved around 8853
tracks and had around 12218 download requests for 3869 unique tracks; thus,
TORCS/Speed Dreams packages have been created for 40% of the tracks for
one or more scenarios. Note that, after a track is generated its link remains
valid forever and we are unable to track the downloads occurring through
the direct links. Our statistics show that 1619 different users (tracked using
browser cookies) cast their vote for one or more tracks, 4246 distinct users
requested the download of a track (i.e., each user downloaded an average of
two tracks), and around 6542 votes were submitted. Note that the number of
preferences is rather low with respect to the number of generation requests.
In fact, the system has no mechanism to enforce voting so it appears that
several visitors downloaded tracks but did not leave any vote.

Google Analytics shows that TrackGen was visited around 11500 times
(sessions) from around 7600 unique visitors for a total of around 85500 page
views; each visit lasted for an average of 4 minutes which is coherent with
the time required to generate a track (2-3 minutes when the request queue is
empty). Figure 7 reports the monthly number of visits (i.e. sessions) (a), the
average duration of a visit (b), the number of pageviews (c), the percentage
of new users (d), and the number of users including new and returning (f).
As can be noticed, there are some peaks. The first one at the beginning when
the service was launched and then the activity remains quite stable slowly
decreasing until October/December 2012 when there is a peak. The same
happens at the beginning of January 2013,23 in April 2013, in August 2013,

21Scenery generator videos:
http://www.youtube.com/watch?v=3AzjMtRDnBo

http://www.youtube.com/watch?v=Si_u_43HJnM
22http: // www. google. com/ analytics/
23The small bump is hardly visible using a monthly statistics but it is clearly visible

15



and October/December 2013 which interestingly seem related to relevant
activities on the official TORCS page: the publication of the new TORCS
distribution, v1.3.4 (in October 2012), the preliminary announcement of the
new TORCS Endurance World Championship24 (in December 2012), the
showcase of the previous edition of the competition (in January 2013), and
the announcement of the “TORCS Endurance World Championship 2013”
in (April 2013).

Google Analytics shows that the page visited the most is the download
page (accounting for the 25% of the overall traffic corresponding to 24900
visits), followed by the home page (22% or 19550 visits); the pages of the most
voted tracks and the latest evolved tracks collect 4% of the total pageviews
each. The data from Google Analytics suggest that TrackGen users like to
browse: in fact, around 10% of the visitors of the homepage browse up to six
pages of evolved tracks, thus viewing around 60 tracks.

Figure 8 shows the two tracks with the highest score, Pinneo (8a) and
Akkarampalle (8b), and the two tracks with the lowest score Dongjyun (8c)
and Catmon (8d). Pinneo (Figure 8a) is also the most downloaded track and
Akkarampalle is the second most downloaded tracks.

7. Conclusions

We presented TrackGen, an on-line tool for the creation of tracks for
TORCS and Speed Dreams, two very popular open-source 3D car racing
games. TrackGen combines interactive evolution with procedural content
generation to evolve tracks based on users’ preferences. Visitors can explore
the available tracks, score them, and download tracks rendered using one of
the five available scenarios (city, desert, hill, mountain and snow). To our
knowledge, TrackGen is the first on-line collaborative tool for a game com-
munity to create content for their game using procedural content generation
and interactive evolution.

TrackGen has been on-line since January 2012 and by July 2014 it had
7600 unique visitors, received more than 12218 download requests, and 85500
pageviews in total. The analysis of the TrackGen traffic shows peaks corre-
sponding to relevant activity in the TORCS community, which suggest that

using a finer resolution
24http: // www. berniw. org/ trb/

16



the tool is used also outside the research community. This was recently con-
firmed by a request we received from the maintainers of the TORCS project
who asked us permission to include some of the tracks evolved by TrackGen
in the next TORCS distribution.

Unfortunately, TrackGen cannot collect statistics about gameplay (e.g.,
how long a track was played by the users who downloaded it); these statistics
could be available only if the tool was integrated with the official TORCS
and Speed Dreams distribution, which represents a possible future direction
for the TrackGen project.

The framework underlying TrackGen is general and could be extended
to any task where users’ opinions provide a better feedback than an ad-
hoc fitness function. In this respect, we plan to extend the framework to
the interactive evolution of crowds behavior (a fundamental aspects of many
massive online games) whose quality is better evaluated by humans [39, 40,
41].

References

[1] Procedural Content Generation, 2014. http://pcg.wikidot.com/.

[2] J. Togelius, G. N. Yannakakis, K. O. Stanley, C. Browne, Search-based
procedural content generation, in: C. D. Chio, S. Cagnoni, C. Cotta,
M. Ebner, A. Ekárt, A. Esparcia-Alcázar, C. K. Goh, J. J. M. Guervós,
F. Neri, M. Preuss, J. Togelius, G. N. Yannakakis (Eds.), EvoApplica-
tions (1), volume 6024 of Lecture Notes in Computer Science, Springer,
2010, pp. 141–150.

[3] The open racing car simulator website, 2014. http://torcs.

sourceforge.net/.

[4] Speed Dreams - A free Open Motorsport Sim and Open Source Racing
Game, 2014. http://www.speed-dreams.org/.

[5] J. Togelius, R. De Nardi, S. Lucas, Towards automatic personalised
content creation for racing games, in: Proc. IEEE Symposium on
Computational Intelligence and Games CIG 2007, 2007, pp. 252–259.
doi:10.1109/CIG.2007.368106.

17



[6] J. Togelius, S. M. Lucas, R. D. Nardi, Computational intelligence in
racing games, in: N. Baba, L. C. Jain, H. Handa (Eds.), Advanced In-
telligent Paradigms in Computer Games, volume 71 of Studies in Com-
putational Intelligence, Springer, 2007, pp. 39–69.

[7] D. Loiacono, L. Cardamone, P. L. Lanzi, Automatic track generation
for high-end racing games using evolutionary computation, IEEE Trans.
Comput. Intellig. and AI in Games 3 (2011) 245–259.

[8] E. J. Hastings, R. K. Guha, K. O. Stanley, Automatic content gen-
eration in the galactic arms race video game, IEEE Transactions on
Computational Intelligence and AI in Games 4 (2009) 245–263.

[9] L. Cardamone, D. Loiacono, P. L. Lanzi, Interactive evolution for
the procedural generation of tracks in a high-end racing game, in:
N. Krasnogor, P. L. Lanzi (Eds.), GECCO, ACM, 2011, pp. 395–402.

[10] E. Hastings, R. Guha, K. Stanley, NEAT particles: Design, represen-
tation, and animation of particle system effects, in: Proc. IEEE Sym-
posium on Computational Intelligence and Games CIG 2007, 2007, pp.
154–160. doi:10.1109/CIG.2007.368092.

[11] K. O. Stanley, R. Miikkulainen, Evolving neural network through aug-
menting topologies, Evolutionary Computation 10 (2002) 99–127.

[12] J. Marks, V. Hom, Automatic design of balanced board games, in:
J. Schaeffer, M. Mateas (Eds.), AIIDE, The AAAI Press, 2007, pp. 25–
30.

[13] J. Togelius, J. Schmidhuber, An experiment in automatic game de-
sign, in: P. Hingston, L. Barone (Eds.), CIG, IEEE, 2008, pp. 111–118.
doi:10.1109/CIG.2008.5035629.

[14] C. Browne, Evolutionary Game Design, Springer Verlag, 2011. doi:10.
1007/978-1-4471-2179-4.

[15] P. Avery, J. Togelius, E. Alistar, R. P. van Leeuwen, Com-
putational intelligence and tower defence games, in: IEEE
Congress on Evolutionary Computation, IEEE, 2011, pp. 1084–
1091. URL: http://ieeexplore.ieee.org/xpl/mostRecentIssue.

jsp?punumber=5936494. doi:10.1109/CEC.2011.5949738.

18



[16] L. Cardamone, G. N. Yannakakis, J. Togelius, P. L. Lanzi, Evolving
interesting maps for a first person shooter, in: C. D. Chio, S. Cagnoni,
C. Cotta, M. Ebner, A. Ekárt, A. Esparcia-Alcázar, J. J. M. Guervós,
F. Neri, M. Preuss, H. Richter, J. Togelius, G. N. Yannakakis (Eds.),
EvoApplications (1), volume 6624 of Lecture Notes in Computer Sci-
ence, Springer, 2011, pp. 63–72. URL: http://dx.doi.org/10.1007/
978-3-642-20525-5_7. doi:10.1007/978-3-642-20525-5_7.

[17] M. Frade, F. F. de Vega, C. Cotta, Modelling video games’ landscapes
by means of genetic terrain programming - a new approach for improv-
ing users’ experience, in: M. Giacobini, A. Brabazon, S. Cagnoni, G. D.
Caro, R. Drechsler, A. Ekárt, A. Esparcia-Alcázar, M. Farooq, A. Fink,
J. McCormack, M. O’Neill, J. Romero, F. Rothlauf, G. Squillero,
S. Uyar, S. Yang (Eds.), EvoWorkshops, volume 4974 of Lecture Notes
in Computer Science, Springer, 2008, pp. 485–490.

[18] J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Hagelbäck, G. N. Yan-
nakakis, Multiobjective exploration of the starcraft map space, in: G. N.
Yannakakis, J. Togelius (Eds.), Proceedings of the 2010 IEEE Confer-
ence on Computational Intelligence and Games, CIG 2010, Copenhagen,
Denmark, 18-21 August, 2010, IEEE, 2010, pp. 265–272.

[19] J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Hagelbäck, G. N.
Yannakakis, C. Grappiolo, Controllable procedural map generation via
multiobjective evolution, Genetic Programming and Evolvable Machines
14 (2013) 245–277.

[20] W. L. Raffe, F. Zambetta, X. Li, A survey of procedural
terrain generation techniques using evolutionary algorithms, in:
IEEE Congress on Evolutionary Computation, IEEE, 2012, pp. 1–
8. URL: http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?

punumber=6241678. doi:10.1109/CEC.2012.6256610.

[21] W. L. Raffe, F. Zambetta, X. Li, Evolving patch-based terrains for use
in video games, in: N. Krasnogor, P. L. Lanzi (Eds.), GECCO, ACM,
2011, pp. 363–370. doi:10.1145/2001576.2001627.

[22] N. Sorenson, P. Pasquier, Towards a generic framework for automated
video game level creation, in: C. D. Chio, S. Cagnoni, C. Cotta,
M. Ebner, A. Ekárt, A. Esparcia-Alcázar, C. K. Goh, J. J. M. Guervós,

19



F. Neri, M. Preuss, J. Togelius, G. N. Yannakakis (Eds.), EvoApplica-
tions (1), volume 6024 of Lecture Notes in Computer Science, Springer,
2010, pp. 131–140.

[23] N. Shaker, M. Nicolau, G. N. Yannakakis, J. Togelius, M. O’Neill,
Evolving levels for Super Mario Bros using grammatical evolution, in:
2012 IEEE Conference on Computational Intelligence and Games, CIG
2012, Granada, Spain, September 11-14, 2012, IEEE, 2012, pp. 304–
311. URL: http://ieeexplore.ieee.org/xpl/mostRecentIssue.

jsp?punumber=6361518. doi:10.1109/CIG.2012.6374170.

[24] M. G. Friberger, J. Togelius, Generating interesting monopoly boards
from open data, in: 2012 IEEE Conference on Computational
Intelligence and Games, CIG 2012, Granada, Spain, September 11-
14, 2012, IEEE, 2012, pp. 288–295. URL: http://ieeexplore.

ieee.org/xpl/mostRecentIssue.jsp?punumber=6361518.
doi:10.1109/CIG.2012.6374168.

[25] A. Jordan, D. Scheftelowitsch, J. Lahni, J. Hartwecker, M. Kuchem,
M. Walter-Huber, N. Vortmeier, T. Delbrügger, Ü. Güler, I. Va-
tolkin, M. Preuss, BeatTheBeat music-based procedural content
generation in a mobile game, in: CIG, IEEE, 2012, pp. 320–327.
URL: http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?

punumber=6361518.

[26] D. Plans, D. Morelli, Experience-driven procedural music generation
for games, IEEE Trans. Comput. Intellig. and AI in Games 4 (2012)
192–198.

[27] N. Monmarche, G. Nocent, M. Slimane, G. Venturini, P. Santini,
Imagine: a tool for generating html style sheets with an interactive
genetic algorithm based on genes frequencies, in: Systems, Man,
and Cybernetics, 1999. IEEE SMC ’99 Conference Proceedings. 1999
IEEE International Conference on, volume 3, 1999, pp. 640 –645 vol.3.
doi:10.1109/ICSMC.1999.823287.

[28] H.-S. Kim, S.-B. Cho, Application of interactive genetic algorithm to
fashion design, Engineering Applications of Artificial Intelligence 13
(2000) 635 – 644.

20



[29] C. J. Solomon, S. J. Gibson, J. J. Mist, Interactive evolutionary genera-
tion of facial composites for locating suspects in criminal investigations,
Applied Soft Computing 13 (2013) 3298 – 3306.

[30] X. Sun, D. Gong, W. Zhang, Interactive genetic algorithms with large
population and semi-supervised learning, Applied Soft Computing 12
(2012) 3004 – 3013.

[31] Y. Sato, Voice quality conversion using interactive evolution of prosodic
control, Applied Soft Computing 5 (2005) 181 – 192.

[32] A. Brintrup, J. Ramsden, H. Takagi, A. Tiwari, Ergonomic chair design
by fusing qualitative and quantitative criteria using interactive genetic
algorithms, Evolutionary Computation, IEEE Transactions on 12 (2008)
343 –354.

[33] P. Walsh, P. Gade, Terrain generation using an interactive genetic algo-
rithm, in: IEEE Congress on Evolutionary Computation, IEEE, 2010,
pp. 1–7.

[34] J. Secretan, N. Beato, Picbreeder: evolving pictures collaboratively
online, in: M. Czerwinski, A. M. Lund, D. S. Tan (Eds.), Proceedings
of the 2008 Conference on Human Factors in Computing Systems, CHI
2008, 2008, Florence, Italy, April 5-10, 2008, ACM, 2008, pp. 1759–1768.
doi:10.1145/1357054.1357328.

[35] B. Xu, S. Wang, X. Li, An emotional harmony generation system, in:
IEEE Congress on Evolutionary Computation, IEEE, 2010, pp. 1–7.
doi:10.1109/CEC.2010.5586210.

[36] S. Risi, J. Lehman, D. B. D’Ambrosio, R. Hall, K. O. Stanley, Com-
bining search-based procedural content generation and social gaming
in the Petalz video game, in: M. Riedl, G. Sukthankar (Eds.), Pro-
ceedings of the Eighth AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, AIIDE-12, Stanford, California, Oc-
tober 8-12, 2012, The AAAI Press, 2012. URL: http://eplex.cs.ucf.
edu/papers/risi_aiide12.pdf.

[37] K. Sastry, Single and Multiobjective Genetic Algorithm Toolbox in
C++, Technical Report, Illinois Genetic Algorithms Laboratory, Uni-

21



versity of Illinois at Urbana-Champaign, IlliGAL Report No. 2007016,
2007.

[38] K. Perlin, An image synthesizer, in: P. Cole, R. Heilman, B. A. Barsky
(Eds.), SIGGRAPH, ACM, 1985, pp. 287–296.

[39] Y. P. Chen, Y. Y. Lin, Controlling the movement of crowds in computer
graphics by using the mechanism of particle swarm optimization, Appl.
Soft Comput. 9 (2009) 1170–1176.

[40] G. Vigueras, M. Lozano, J. Ordua, F. Grimaldo, A comparative study
of partitioning methods for crowd simulations, Applied Soft Computing
10 (2010) 225 – 235.

[41] M. Thida, H.-L. Eng, D. N. Monekosso, P. Remagnino, A particle swarm
optimisation algorithm with interactive swarms for tracking multiple
targets, Applied Soft Computing 13 (2013) 3106 – 3117.

22



Figure 3: The TrackGen homepage displaying ten tracks randomly selected from the
underlying population.

23



Figure 4: The download screen where users can select one of the five available scenarios.

24



(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5: Scenery generation: (a) track shape with elevation information; (b) enriched
with dramatic elements; (c) expanded elevation information to fill the whole map; (d)
blurred elevation information; (e) randomly generated Perlin noise; (f) distance map; (g)
final elevation map; (h) occupancy map. In figures (a) to (f), light grey identify higher
areas of the map while dark grey represent lower areas; in figure (h), white areas are
occupied by game elements.

25



(a) (b)
(c)

Figure 6: Placement of vegetation elements.

(a)

(b)

(c)

(d)

(e)

Figure 7: TrackGen statistics from Google Analytics (January 2012 - July 2014) plotted
per month: number of visits (a), average visit duration (b), pageviews (c), percentage of
new users (d), number of users visiting (e).

26



(a) Pinneo
(b) Akkarampalle

(c) Dongjyun

(c) Catmon

Figure 8: Tracks with the highest score (a) & (b) and with the lowest score (c) & (d).

27


