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Abstract. Urban water distribution systems hold a critical and strategic position in preserving public 

health and industrial growth. Despite the ubiquity of these urban systems, aging infrastructure, and 

increased risk of terrorism, decision support models for a timely and adaptive contamination emergency 

response still remain at an undeveloped stage. Emergency response is characterized as a progressive, 

interactive, and adaptive process that involves parallel activities of processing streaming information and 

executing response actions. This study develops a dynamic decision support model that adaptively 

simulates the time-varying emergency environment and tracks changing best health protection response 

measures at every stage of an emergency in real-time. Feedback mechanisms between the contaminated 

network, emergency managers, and consumers are incorporated in a dynamic simulation model to 

capture time-varying characteristics of an emergency environment. An evolutionary-computation-based 

dynamic optimization model is developed to adaptively identify time-dependant optimal health 

protection measures during an emergency. This dynamic simulation-optimization model treats perceived 

contaminant source attributes as time-varying parameters to account for perceived contamination source 

updates as more data stream in over time. Performance of the developed dynamic decision support model 

is analyzed and demonstrated using a mid-size virtual city that resembles the dynamics and complexity of 

real-world urban systems. This adaptive emergency response optimization model is intended to be a 

major component of an all-inclusive cyberinfrastructure for efficient contamination threat management, 

which is currently under development. 
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1. Introduction 

Safe and reliable drinking water is vital to every community. Approximately 90% of the U.S. population 

receives water from one of 170,000 public water utilities. These drinking water distribution systems 

(WDSs) are inherently vulnerable to natural or malicious contamination because of their ubiquity, 

multiple points of access, the aging infrastructure, and the increased risk of terrorism. The plethora of 

past contamination incidents and foiled attempts further demonstrates the vulnerability of municipal 

water supply systems [1, 2]. Title IV of the Public Health Security and Bioterrorism Preparedness and 

Response Act of 2002 [3] mandates all community water systems that serve more than 3,300 people to 

prepare or revise emergency management plans. 

WDS contamination emergency management is based on risk assessments and includes four major 

phases of hazard mitigation, emergency preparedness, emergency response, and disaster recovery [4]. 

This study is particularly more focused on emergency response phase. A contamination emergency 

response phase is initiated when an actual (or potential) injection of contaminant is propagated (or will 

propagate) over a WDS, and it extends until the situation is stabilized (e.g., when the risk of health 

consequences has returned to normal conditions). Emergency response decision aid tools have been 

devised in previous studies to assist water utility operators in making better decisions for public health 

protection against contamination events. Genetic algorithms (GA), decision trees, and heuristic 

approaches have been used for guiding contaminant containment and flushing operations [5-7]. Agent-

based models have been developed and coupled with a GA to optimize routing of siren vehicles to best 

warn and protect consumers from exposure [8, 9]. Multiobjective simulation-optimization has been 

applied to help utility operators achieve conflicting response objectives such as health protection and 

WDS service interruption prevention [10-14]. 

Previous studies have generally applied static optimization approaches to find optimal response 

protocols on the implicit assumption that the optimization problem is fixed during the course of an 

emergency. From an optimization perspective, this assumption implies that the response optimization 

fitness functions (e.g., minimization of ultimate health impacts) are temporally constant. In other words, 

fitness of a particular response protocol is not changing during the optimization process once it is started. 
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In reality, however, the fitness functions are feedback-influenced by many uncertain and dynamic factors, 

i.e., projected spread of contaminant and actions taken by the utility operators and consumers [15, 16]. 

Under the effect of these unpredictable factors, the search domain may repeatedly change over time, and 

the current best response protocol might be no longer optimal moments later. The decision support model 

should thus explicitly account for this unpredictably time-varying system behavior to accurately 

reproduce the reality and identify best contamination impact reduction decisions in a timely manner. 

Dynamic optimization has been successfully applied in different disciplines for solving optimization 

problems in changing environments. Dynamic optimization methods methodically exploit and transfer 

useful knowledge from older environments and maintain adaptability to guide and speed up the 

exploration in emergent environments [17, 18]. Some recent successful applications include products 

pricing [19], contaminant source characterization [20], vehicle routing [21], military mission planning 

[22], electric power supply optimization [23], video-based face recognition [24], and dynamic traveling 

salesman problem [25]. Despite this rich record of successful applications, however, dynamic 

optimization has not been employed to solve the crucial problem of dynamic water contamination 

emergency management yet. This study focuses on this unexplored research area and develops dynamic 

simulation-optimization models for adaptive management of drinking water networks contamination 

emergencies. 

We investigate the application of dynamic modeling for adaptive emergency response to disasters in 

the scope of drinking WDS contamination events. A dynamic simulation-optimization scheme is 

developed to identify and track time-dependant optimal response protocols to provide emergency 

managers with adaptive decision support in real-time. The adaptive simulation model accounts for 

multiple uncertainty factors that contribute to the unpredictable time-varying system behavior, including 

time-dependant perceived contamination source attributes, consumers’ actions, and emergency response 

operations. This dynamic optimization scheme uses an evolutionary-computation-based multiobjective 

approach, which methodologically preserves diversity in the search process for enhanced adaptation 

against the effect of changes.  
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In what follows, the structure and elements of the dynamic simulation model developed to simulate 

the dynamic emergency environment are first described. This is followed by the formulation of the time-

varying optimization fitness function and decision variables and a brief overview of existing dynamic 

optimization techniques. The evolutionary-computation-based algorithm used here for the dynamic 

optimization of health protection response protocols is then described. The proposed adaptive simulation-

optimization model is then evaluated and discussed on a virtual city, Mesopolis, which possesses the 

spatial and temporal complexity of real-world cities. The results are analyzed to illustrate the system 

behavior during an emergency and investigate model performance. The paper concludes with a number 

of recommendations for enhancing applicability and efficiency of the proposed decision support model in 

the future. 

2. Dynamic Emergency Environment Simulation  

A WDS contamination emergency threat starts with an actual (or potential) release of contaminant that 

propagates across the network, and it extends until the risk of health impacts has returned to pre-event 

levels. Under an unfolding contamination threat, the system might exhibit an uncertain and irregular 

behavior that could radically deviate from normal operation conditions. Knowledge of contaminant 

source attributes that dictate emergency response decisions evolves as more information streams in over 

time. As the event progresses, emergency managers take response actions based upon their current 

knowledge of the state of the system and these actions change the state of the contamination in the WDS 

and alert consumers. Alerted and exposed consumers may subsequently alter their water consumption 

choices, which consequently affect network hydraulics and contaminant plume spread [15]. 

Conceptualizing and modeling these different sources of variability is crucial for realistic simulation of 

system behavior and effective reduction of contamination impacts. 

 This section first defines a contamination scenario and how the emergency managers’ perception of 

an occurred scenario evolves as more information streams in over time. Then, it describes the two 

particular emergency response mechanisms considered in this study (i.e., contaminant flushing through 

opening hydrants and public warning through food-grade dye injection) and how their implementation 

contributes to the system dynamics. It is followed by a description of consumers’ behavior during a 
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contamination emergency and its influence on the state of the contamination and health consequences. 

The last part of this section describes the hydraulic model used in this work to simulate WDS hydraulics 

and contaminant propagation during a contamination event. 

2.1. Perceived Contamination Scenario Updates 

A contamination scenario is defined by a set of attributes (e.g., contaminant injection location and 

duration) and corresponds to a specific level of ultimate consequences [26]. The attributes of a 

contamination scenario are estimated through integrated assessment of different system observations and 

evidence. This information may stream from physical security alarms, supervisory control and data 

acquisition (SCADA) system, and consumers’ complaints. Bayesian and optimization models can be 

applied to process the streaming data in real-time and update estimated scenario attributes using existing 

and incoming information [20, 27-30]. 

Since the perceived contamination scenario dictates the effectiveness of the health protection 

strategies taken, the optimization process needs to adapt to scenario updates to be capable to continuously 

track the optimum in a time-varying search space. Perceived scenario attributes are thus treated here as 

time-varying parameters opposed to past studies that assume the perceived contamination scenario is 

fixed while the optimization is being performed. It should be emphasized that the true contamination 

scenario has already occurred and is thus not time-varying, but it remains unknown to the emergency 

managers. During the course of an emergency, the streaming data is processed adaptively at every stage 

and perceived contamination scenario is updated to better estimate the true scenario. 

Development of an adaptive scenario characterization model is not the focus of this study and the 

proposed dynamic response optimization model is thus demonstrated on an arbitrary scenario update 

timeline without loss of generality. The adaptive simulation-optimization scheme proposed here should 

be ideally coupled with a dynamic source identification model [20] that continuously updates the 

perceived contamination scenario using streaming data. A general framework for dynamic integration of 

these analytical modules for development of an adaptive cyberinfrastructure for threat management is 

described in [31].    

2.2. Water Utility Operations 
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In the event that a contaminant is introduced to a WDS, water utility operators may take different 

preventive and protective actions to protect public health. Preventive actions operate on the system to 

reduce impacts and may include discharging contaminated water through opening fire hydrant or 

isolating contaminated areas via closing valves. Protective actions require action by the consumers to 

protect themselves from contaminant exposure and might consist of broadcasting various protective 

action recommendations such as boil-water advisory through the media [32]. 

The decisions on timing and frequency of response actions are made with consideration of threat 

observations credibility and unintended adverse response side effects (e.g., system service interruptions 

and false public warnings). The actions taken by the utility managers would change the normal hydraulic 

conditions, and thus the propagation of the contaminant plume in the system. Implementation of response 

actions thus alters ultimate public health consequences and affects efficacy of future response decisions. 

Moreover, effectiveness of consequence reduction measures expectedly degrades as time passes due to 

wider contaminant spread and prolonged public exposure to the contaminant. The simulation model 

developed here adaptively reevaluates response actions considering the increasing response execution 

time delay and the effect of actions that are already executed or being executed on system behavior. 

Without loss of generality, two particular response mechanisms of hydrant operation for contaminant 

flushing and food-grade dye injection for public warning are included in the model. 

 Contaminant flushing is most commonly performed through opening fire hydrants to discharge a large 

volume of contaminated water from the system. Flushing operations should be arguably performed at 

locations where contaminant concentration is relatively higher. Otherwise, it may possibly worsen the 

consequences through unintentionally diverting the contaminant plume to uncontaminated regions 

[United States Environmental Protection Agency [33, 34]. This urges utilization of a methodological 

optimization model to inform contaminant flushing decisions and prevent inadvertent increase in health 

consequences. 

 Food-grade dye injection is a novel emergency response mechanism for WDS contamination 

consequence management [33]. It acts as a warning mechanism that discourages public consumption of 

contaminated drinking water and has been computationally demonstrated as a potentially effective 
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response mechanism for public health protection [14]. Allura Red dye (also known as “Red 40” and 

“E129”) is chosen in this study among different available food-grade dyes because it has an intense red 

color and is approved by the U.S. Food and Drug Administration [35]. Food-grade dye injection has 

certain inadvertent side consequences such as false public alarms and ruined laundry and thus should be 

implemented when contamination trigger events are credible enough. A complete description of this 

response strategy and a detailed discussion on its advantages and limitations are provided in Rasekh et al. 

[14] and is thus not repeated here. 

2.3. Consumer Behavior 

Different consumers ingest varying amounts of contaminant depending upon time-dependant 

concentration of the contaminant and dye in their tap water, and the water consumption choices they 

make under an unfolding contamination incident. The exposure model used here assumes consumers 

ingest tap water at the typical starting times for the three main meals (7:00, 12:00, and 18:00) and times 

halfway between these meals (9:30 and 15:00). Alternative probabilistic ingestion timing models [15, 36] 

may be used to more accurately reproduce the real ingestion behaviors. The tap water ingestion rate for 

every consumer is set to 0.93 L/day here based upon comprehensive studies performed by USEPA [37].  

Consumers cease drinking tap water when they become aware that their tap water is contaminated. 

This happens when they are sickened and assume tap water is the cause or when they observe intense dye 

color in their tap water. A series of rules needs to be defined for modeling consumers’ reactions and their 

water usage changes. A consumer will experience symptoms once a threshold dose (i.e, toxic dose (TD)) 

has been ingested. It is assumed that the exposed consumer changes water usage patterns and stop 

drinking water within a time period, which is set to one hour here, after TD has been consumed. The 

contaminant agent used here is arsenic with minimum, average, and maximum estimated TD of 2.45, 3.5, 

and 4.97 mg for a body weight of 70 kg [38]. Consumers may also become alerted through observation of 

dye. It is presumed that they become alerted and cease drinking water for the rest of contamination 

incident once the dye concentration exceeds a relatively high threshold. This threshold is set here to the 

concentration of Allura Red in commercial soft drinks – roughly 25 mg/L as reported by Lopez-de-Alba 
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et al. [39]. The simulation model checks this observation of high-intensity dye only at the daily ingestion 

times described in the time-of-ingestion model.  

These water usage reduction choices made by the alerted consumers influence the hydraulic state of 

the network, and thus the spread of the contaminant plume in the system. Consumers may suspend 

contact uses, such as hand washing, dishwashing, and bathing after they become alert to the 

contamination. Other non-consumptive uses, however, may continue, such as toilet flushing, landscape 

watering, and pipe leaks. Such uses are assumed to comprise on average 60%, 51%, and 43% of the total 

demand for low, medium, and high density residential demands, respectively, using the information 

reported by Vickers [40] for urban water use. It is assumed the residential users reduce their water usage 

to these fractions after they are alerted. Industrial users are assumed to maintain 96% of their total water 

usage. A more complex model may be developed to more realistically reproduce system’s behavior 

through incorporation of consumers’ mobility and word-of-mouth communication [15, 41-43]. A more 

realistic modeling, however, would be often achieved at the price of longer simulation time. 

2.4. WDS Hydraulic Simulation 

EPANET software is used for hydraulic simulation of the WDS. It is an open-source hydraulic and water 

quality modeling program developed by USEPA [44]. EPANET provides an integrated computational 

environment for an extended-period hydraulic and quality simulation of WDSs within pressurized pipe 

networks.  

Demand-driven analysis (DDA) hydraulic modeling approach is used in this study. A basic premise of 

DDA models is that nodal water demands are fully satisfied during the simulation so that nodal head and 

pipe flow rates can be estimated through solving a system of quasi-linear equations [45]. This premise 

holds true in this study due to the fact that considered response strategies of hydrant operation and food-

grade dye injection do not cause significant increase in demands or disconnection of demand nodes from 

pressurized water supply. No pressure-deficit conditions were also occurred during model application 

phase. Implementation of other response strategies (e.g., valve closure), however, may lead into 

abnormal pressure-deficit conditions where accuracy of DDA results is questionable. Under such 
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conditions, replacement of the DDA network solver with a pressure-driven solver [13, 46] is 

recommended.  

EPANET toolkit may be coupled with EPANET multi-species extension [47] to more realistically 

simulate contaminant and dye propagation in the network. This is performed through consideration of 

decay, density effects, and reaction with wall materials and other dissolved species. In this study, these 

detailed aspects are not considered and the contaminant and dye transport in the network are modeled as 

a perfect tracer to avoid associated extra computational time. Besides, there might be noticeable 

dissimilarities between different preset parameters (e.g., nodal demands) of hydraulic model and the real 

system during the course of an event. Real-time data provided by the SCADA system can be 

systematically communicated with the hydraulic model to calibrate and update its parameters [48].     

3. Dynamic Evolutionary Optimization 

The optimum of a time-dependant optimization problem is a time-varying solution. Therefore, solving a 

time-dependant optimization problem requires optimization algorithms to not only search for the 

optimum, but also continuously track the optimum over time. This section first describes the time-

dependant optimization problem of identifying time-varying optimal contamination response protocols 

during an emergency. This includes a description of the time-dependant objective function of minimizing 

ultimate health impacts and optimization decision variables of contaminant flushing and public warning. 

It is followed by a brief introduction of four different groups of dynamic optimization algorithms. The 

particular dynamic evolutionary algorithm applied in this study is finally described in detail. 

3.1. Time-varying Fitness 

Emergency response decisions of hydrant operation and food-grade dye injection should be optimized for 

effective reduction of the public health consequences. The health impacts are expressed here 

mathematically as the ultimate total ingested mass (UTIM) of contaminant by all consumers during the 

course of a contamination incident: 


 


p I

N

i

N

j

jiji CVUTIM
1 1

,,min  (1)
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where pN  = size of population served by the WDS, IN  = number of water ingestion events for each 

individual, jiV ,  = volume of water ingested by individual i  at ingestion event j , and jiC ,  = 

concentration of contaminant in water volume ingested by individual i  at ingestion event j . jiV ,  is 

assumed to be zero after an individual is alerted or gets sick. The clock time at which a consumer is 

alerted is determined by the EPANET toolkit extended-period hydraulic and quality run for simulation of 

dye propagation in WDS. Spatial and temporal distribution of contaminant concentration ( jiC , ) is the 

output of EPANET toolkit extended-period run that simulates contaminant propagation in WDS. 

Therefore, every simulation for the determination of UTIM requires two EPANET toolkit runs; one for 

dye propagation and one for contaminant transport. 

As described in the previous section, there exist multiple time-varying system parameters whose 

changing patterns are not known a priori because they are influenced by previous system states. Thus, 

Equation (1), which indicates the “predicted” value of ultimate health impacts at every stage of the 

emergency, represents a time-varying fitness function. Static optimization algorithms are insufficient for 

dealing with such changing objective functions. They need to be modified to adapt rapidly to changes in 

environment for generation of effective response protocols at every phase of the emergency. Obviously, 

the simplest approach to respond to a change in the environment is to consider each change as the 

emergence of a new optimization problem that needs be solved from scratch. Given sufficient time, this 

is obviously a feasible approach. However, the time available for re-optimization is normally short during 

an emergency and changes may occur frequently or even continuously. Moreover, this approach 

presumes that a change in the environment can be identified, which is not always true. Dynamic 

optimization techniques systematically reuse information from previously explored environments to 

accelerate optimization process in emerging environments. 

Decision variables that should be optimized to minimize UTIM are the elements of response 

mechanisms of contaminant flushing and dye injection. In this paper, they include the locations for 

opening hydrants and injecting dye across the city and this will be called a response protocol. Hydrants of 

Mesopolis network are located on the intermediate nodes (i.e., zero-demand nodes that may connect to a 
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series of terminal demand nodes) and are treated here as a possible location for contaminant discharge or 

food-grade dye injection. Total number of flushing and dye injection locations is set a priori, and depends 

on availability of labor and equipments. 

3.2. Dynamic Optimization Algorithm 

Evolutionary algorithms (EAs) resemble natural biological evolution, and since evolution is a continuous 

adaptation process in nature, they are promising candidates for tackling dynamic optimization problems 

[49]. To solve dynamic optimization problems, static EAs should be modified to adapt and recover from 

the changes during the evolution process. Major modifications in the static EAs are necessary for a 

timely adaptation to the changing environment to balance between convergence and exploration. 

Compared to static EAs, higher emphasis should be placed on exploration after a change occurs, so that 

the algorithm can react rapidly to the change and track the moving optimum. Different methods have 

been proposed to deal with this issue, which can be classified into four groups [22, 49]: 

1) Boost diversity after a change: the EA is initially run in standard fashion. As soon as a change in the 

environment is identified, explicit strategies are implemented to generate diversity in the population. A 

common technique is hypermutation [50], where the mutation rate is significantly increased for a limited 

number of generations after the change event is detected and then decreased over time. A very high 

mutation rate essentially results in a re-initialization of the population, whereas a very low mutation rate 

does not boost sufficient diversity of the population.  

2) Maintain diversity throughout the run: convergence is limited through constant diversification hoping 

that a diverse population is more promising to adapt to time-varying changes. Thermodynamic genetic 

algorithm [51], where the original objective function is replaced with an entropy-based value, and 

multiobjective-based method [52], where an artificial objective is used to promote diversity, are 

representatives of this approach. The multiobjective-based approach is used in this current study and is 

described in detail in Section 3.2 below. 

3) Memorize good solutions: the algorithm retains good solutions from past generations. This strategy 

provides diversity and helps the algorithm retrieve the optimum in repetitive environments. Diploidy 
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approach [53], where redundant representations are used to generate solutions, is a popular instance of 

memory-based approaches.  

4) Use multiple subpopulations: the population is clustered into multiple subpopulations that evolve 

together to explore multiple promising regions of the decision making space. Some representative 

methods are self-organizing scouts [54] and finder-tracker multi-swarm particle swarm optimization [55]. 

This study employs the multiobjective-based diversity preservation approach, which has been 

demonstrated as a robust and efficient method by previous research [52, 56]. The main advantage of this 

technique is that it eliminates the need for defining a priori the proper diversity preservation parameter. 

The proper balance between convergence and exploration is systematically preserved during the process 

through treating diversity as a secondary (artificial) objective, which is optimized simultaneously with 

the main (true) optimization objective, as schematically illustrated in Figure 1.  

The multiobjective-based diversity preservation approach used here multiobjectivizes [57] this classic 

single-objective optimization problem to a bi-objective optimization problem. Health impacts are 

minimized with simultaneous maximization of diversity hoping this increased diversity of the GA 

population helps tracking the time-dependant optimum. Once the multiobjectivization is performed, a 

traditional multiobjective optimization algorithm may be used to solve the constructed bi-objective 

optimization problem. 

The artificial diversity-preservation metric may be mathematically expressed in different ways. Three 

following formulations are examined here: 

1) Distance from the nearest neighbor (DNN): The artificial objective for a solution ix  is defined as the 

distance from ix  to its nearest neighbor in the optimization decision space. Therefore, a pair of 

individuals that are very similar in the decision space will have a relatively poor artificial objective value, 

and thus diversity in population is encouraged over the search space. 

ijNjxxdxDNN gpjii  ,...,1),,(min)(  (2)

where gpN   is the GA population size and ),( ji xxd  is the distance between two GA solutions (response 

protocols) in the optimization decision space. As each response protocols is defined by a string of 
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locations for opening hydrants and injecting dye, sum of differences between geographical coordinates of 

these corresponding locations is used to calculate the distance between each response protocols pair. 

Selection of DNN as the artificial objective function implies that the model increases diversity through 

maximizing the minimum distance between solutions. 

2) Average distance from all solutions (ADS): Diversity is quantified as the average distance of ix  to all 

other individuals in the GA population. This formulation prefers solutions at the edge of population to 

boost the spread of the population over the search space. 





gpN

j

ji
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i xxd
N
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1
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3) Distance from the best solution in the current population (DBS): The diversity metric is expressed as 

the distance from ix  to the current best solution in the GA population (with respect to the true objective 

function) to avoid any likely trap caused by local optima.  

),()( bestii xxdxDBS   (3)

A major difference between DBS and the two other metrics is that it accounts for the dissimilarities in 

the objective space through comparing ix  with the solution with minimum true objective space.  

The bi-objective optimization problem defined by Equation (1) and any of Equations (2)-(4) may be 

solved using a multiobjective optimization algorithm. Non-dominated Sorting Genetic Algorithm II 

(NSGA-II) [58] is among the most popular algorithms for solving both classic water resources problems 

and emergent dynamic optimization problems [59-64]. NSGA-II is an elitist multiobjective evolutionary 

algorithm, which uses a fast strategy for non-dominated sorting and does not need any user-defined 

parameter for preservation of diversity in solutions. On the basis of the general concept of dominance in 

multiobjective optimization [65], response protocol x1 dominates x2 if two conditions are met: (1) x1’s 

UTIM is smaller than or equal to x2’s UTIM and x1’s diversity is greater than or equal to x2’s diversity, 

and (2) x1’s UTIM is smaller than x2’s UTIM or x1’s diversity is greater than x2’s diversity or both. The 

best response protocol in each time step that is reported to the emergency managers is the minimum-

UTIM solution in that time step. The particular algorithm applied in this study uses simulated binary 

crossover [66], and polynomial mutation [65] for reproduction of offspring response protocols (i.e., 
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contaminant flushing and dye injection locations). To explore new locations, reproduction operation is 

performed on coordinates of the parent solutions and the closest intermediate node in the WDS is chosen 

for the offspring solution. 

4. Application Example 

A virtual city, Mesopolis, with a population of nearly 147,000 is used to demonstrate the proposed 

dynamic framework [67]. In what follows, a general description of Mesopolis, considered contamination 

scenario and updates, and model settings are provided at first. Dynamic simulation-optimization model is 

then applied to identify and track time-dependant optimal response protocols. The performance of the 

three different diversity preservations metrics and response mechanisms of contaminant discharge and 

food-grade dye injection are evaluated and compared. A thorough analysis is then performed to 

understand how the different factors that contribute to the unpredictable time-varying system behavior 

affect the time-dependant optimal response protocols during an emergency individually and in 

combination.   

4.1. WDS, Contamination Scenario, and Model Settings 

Mesopolis is developed using a historical development timeline to incorporate as many attributes of a 

true city as possible. The WDS includes one reservoir, two water treatment plants (WTP), 13 tanks, 65 

pumps, 876 hydrants, and 2,062 water mains and is shown in Figure 2. The East WTP distributes water 

across almost the entire city, while the West WTP supplies water only to western Mesopolis. Different 

types of consumers exist in Mesopolis such as residential, commercial, and industrial consumers. Water 

demands associated with different consumers fluctuate during the day. This temporal variability in 

demand is incorporated through defining distinct diurnal demand patterns for different consumers, as 

shown in Figure 3.  

An arbitrary contamination emergency timeline is defined and used here as shown in Figure 4. It is 

assumed that the true contamination scenario is accurately identified at time 10:00, and perceived 

scenario is updated twice until then as described in Table 1. This updating practice is performed to 

analyze the effect of changes in perceived source attributes. Consideration of only two updates of 

perceived scenario attributes in this application example is for the sake of a more clear and 
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understandable assessment and discussion. Without a need for any modifications, this model could be 

equally applicable when scenario is updated more frequently or even continuously.  

The EPANET hydraulic time step is set to one hour. The simulation duration is 24 hours and the 

dynamic optimization model run starts after a 6-hour response delay after the injection starts, i.e. at 

06:00. The underlying assumption here is that public exposure becomes comparatively negligible after 

the first day as the emergency managers take a comprehensive set of response actions including 

contaminant containment, discharge, public warning, etc.  

The UTIM values associated with the time-varying perceived contamination scenario are reported in 

Table 2 for the conditions that consumers’ reactions are ignored or considered. The observation that the 

ingested contaminant mass over injected load ratio is very small is explained by the fact that only an 

extremely small fraction of total urban water consumption is used for drinking. Table 2 indicates that 

smaller TD reduces the UTIM more because the individuals become sick earlier and cease drinking 

contaminated water, and this consequently decreases the ingested amount of contaminant by every 

individual and the entire population as a whole.  

The values of UTIM listed in Table 2 indicate the ultimate value of total ingested mass (TIM) of 

contaminant by the entire population. In other words, as the optimization fitness function represented by 

Equation (1) also indicates, UTIM is equal to TIM at the end of emergency period, i.e. at 24:00. This 

projected accumulation of TIM over time for the contamination scenarios perceived at different time 

periods during the emergency is shown in Figure 5. Figures 5 (a), (b), and (c) show the projected time 

series of TIM at time periods of 06:00-08:00, 08:00-10:00, and 10:00-24:00, respectively, using the 

perceived scenarios associated with each period. It is observed that no contaminant mass is ingested until 

after hour 06:00 although the injection starts at 00:00. This is because the first daily water ingestion event 

happens at 07:00, as described in Section 2.3 above. The decreases in perceived injected contaminant 

mass from 300 kg to 250 kg during the emergency causes the UTIM and the overall slope of the TIM 

time series to decrease as observed in Figure 5 (a) to Figure 5 (c). The uncertainty bound of TIM due to 

the uncertainty in TD also widens as the perceived injected mass decreases. 
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The number of hydrants and dye injectors depend upon availability of resources and personnel during 

an emergency and are each set to 3 in this study. Sensitivity analyses on the effect of these two 

parameters on the effectiveness of response measures are provided in [13, 14]. Hydrants remain open for 

5 hours once they are opened for flushing and are closed afterwards. The emitters section of the EPANET 

toolkit is utilized to realistically model the hydrants within the WDS. During the contaminant discharge 

period, the emitter discharge coefficient is set to 166.5 gpm/psi0.5, which is associated with a 3-inch 

diameter connection fire hydrant. The amount of dye injected per each injector is set to 100 kg and the 

injection duration is 1 hour based upon conclusions made by [14] that shorter injection durations are 

more effective for reducing the impacts. The NSGA-II population size is set to 50. Crossover and 

mutation rates are 0.85 and 0.04, and simulated binary crossover distribution and polynomial mutation 

indices are set to 15 and 10, respectively. 

All model runs in this application example are performed using a single core of a Dell Precision 

T5500 Workstation with Xeon® CPU running at 2.40 GHz and 6 GB RAM. Application of a 

supercomputer equipped with multi-level parallel processing software might significantly improve the 

computational efficiency, which helps identifying better response protocols at every time during an 

emergency. In this study, however, use of an ordinary desktop computer is preferred to account for the 

fact that most water utilities do not posses such advanced computational resources. 

4.2. Optimization Results and Discussions 

As described earlier, changes in emergency environment are due to multiple contributing factors 

including perceived scenarios updates, actions implemented by the utility operators, and reactions made 

by the alerted or sick consumers. The effect of these factors is neglected at first to investigate how 

performance of the identified optimal response protocol degrades as time passes. The effect of other 

contributing factors will be taken into account in later sections. 

Fig. 6 indicates the UTIM time series associated with the best response protocol that is identified and 

updated recurrently by the dynamic simulation-optimization model as the emergency proceeds. This can 

be interpreted as the evolution plot of the optimal (i.e., minimum-UTIM) response protocol during the 

optimization process as the emergency proceeds. As the formulation of the true objective function 
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(Equation (1)) explains, these time series indicate the ultimate value of total ingested mass after the 

emergency ends and not the value of total ingested mass during the emergency. This explains why the 

no-response UTIM time series shown in Figure 6 is a flat horizontal line. The response time series 

indicates how much UTIM can be reduced at every time during the event if the optimal response protocol 

identified at that time is implemented. Because the last daily water ingestion event happens at 18:00 and 

UTIM thus remains constant afterwards, the horizontal axis is cut at 18:00. The distinctive behavior of 

this evolution plot when compared with the common plots for static minimization problems (where the 

objective function exhibits a constant decreasing trend) is due to the fact that the global optimal response 

protocol here is a time-varying and generally degrading solution. 

The horizontal axis in Figure 6, which denotes time, starts from 06:00 because the response delay is 

set here to 6 hours. In other words, the model run is started with a lapse of 6 hours after the contaminant 

intrusion starts to account for the time that it takes the emergency managers to learn about the 

contamination threat. Some contaminant mass has been thus ingested by the consumers before the 

managers respond. After the dynamic optimization model is run, the quality of optimal response 

protocols suggested by the model changes over time. Longer time allows the model to better explore the 

search domain and converge to the current global optimal solution more. This extended time, however, 

may reduce the effectiveness of the current global solution because of the prolonged exposure of the 

public to the contaminant and wider spread of the contamination. As time passes, public are more 

exposed to the contaminant and this degrades effectiveness of the current global solution. The 

observation that UTIM decreases during the first hour implies that model convergence outstrips global 

optimal solution degradation during the very early stages.  

The UTIM time series follow a stepwise pattern with 1-hour increment jumps. This is because the 

hydraulic analysis time step is set to one hour in the EPANET hydraulic simulation model. A shorter time 

step favorably increases simulation accuracy and leads to a smoother curve but adversely increases 

computational time. Convergence of model to better solutions during the emergency may be clearly 

observed during every 1-hour time increment where UTIM gradually and consistently decreases. Hourly 
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sudden jumps in UTIM indicate the reduction in response protocol performance as contaminant spreads 

more and the smooth decreasing trends are evidence of increased convergence to current optimum.   

To analyze the performance of different diversity measures, separate model runs are performed using 

DNN, DBS, and ADS measures one for each complete run. The UTIM time series shown in Figure 6 

visually demonstrate that DNN can most effectively reduce the UTIM at each time step. Numeric 

comparison may be also performed through calculating the area confined by each time series and the no-

response line – a larger area indicates a better performance. The calculated areas associated with ADS, 

DBS, and DNN are 153.2, 129.4, and 189.5 gram-hours, respectively. Conclusively, both quantitative 

and visual comparisons indicate that DNN outperforms ADS and DBS and will be thus used for the 

remaining analyses in this study. The number of function evaluations is slightly different for different 

cases. Total number of function evaluations for the DNN, DBS, ADS cases in Figure 6 are equal to 

14,950 (299 generations × 50 solutions), 14,850, and 15,000, respectively. Total runtime of the 

optimization process, however, is dictated by the emergency response time period and is thus the same 

(12 hours here) for all the cases in this paper regardless of their complexity. The average function 

evaluation time is thus approximately 2.9 seconds for DNN case, as an instance.  

The performance of the hydrant operation and dye injection response mechanisms can be compared 

individually in the dynamic model. Figure 7 shows the time series for the minimum-UTIM response 

protocol offered by the optimization model using hydrant operation, dye injection, or both. The 

minimized health impacts reduce during the first hour and generally increase afterwards for all three 

cases. Visual inspection shows dye injection outperforms hydrant operation, and best performance is 

achieved when both strategies are implemented in combination. The areas confined by no-response and 

the response UTIM time series are 71.0, 147.8, and 189.5 gram-hours for time series corresponding to 

hydrant operation, dye injection, and both strategies, respectively. This quantitatively confirms the visual 

judgment outcome. This finding is specific to the particular response protocol settings described earlier 

(e.g., injected mass of dye and flushing duration) and may not be necessarily generalizable. 

Besides the response execution delay, the effectiveness of optimal response protocols identified at 

every time step depends on the perceived scenario updates, previous response protocols executed by 
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emergency managers, and changes in alerted or sick consumers’ water demands. Fig. 8 shows how the 

UTIM time series changes as the effects of these contributing factors are taken into account individually 

or in combination.  

Figure 8(a) indicates the UTIM time series when only the effects of perceived scenario updates, which 

are explained in Tables 1 and 2, are considered. Scenario updates significantly change the optimization 

search domain and the model adapts to these changes to track the moving optimum. This is evidenced by 

the observation that the drops and jumps in the no-response and response UTIM time series match each 

other. Further insight may be obtained through the illustration of moving optimum in the decision space 

as the perceived scenario is updated. Fig. 9 shows the spatial distribution of ultimate ingested 

contaminant mass at 07:59 (i.e. right before the first update) and 11:05 (i.e. two hours after the first 

update). At 07:59 (when UTIM is 195.4 g), the East WTP is perceived as the contaminant injection 

location and this explains why the projected impact area is larger than 11:05 (when UTIM is 186.7 g) 

when the perceived injection location is Node IN654, which is an intermediate node. Figure 9 also shows 

that the currently identified optimal response protocol significantly changes in response to the perceived 

scenario updates. Suggested optimal locations for contaminant discharge and dye injection noticeably 

match the projected impact areas at each of considered clock times.  

As it was shown in Figure 4, the managers execute the current best minimum-UTIM response 

protocols at clock times 09:00 and 12:00 for the emergency timeline example application presumed here. 

Consequences of these actions are manifested in the UTIM time series shown in Figure 8(b) by a 

decreasing trend in UTIM starting from each execution time. Observation of extended decrease rather 

than a sudden drop is because the response protocols are implemented over a period of time – dye is 

injected over 1 hour and hydrants are open for 5 hours. The adaptive model takes into account the effect 

of these actions when later actions are evaluated. This means the response protocol is now optimized 

given one or more optimal response protocols are already executed or are being implemented. In other 

words, the model superposes current response protocols onto the previously executed ones. The reason 

no-response curve is different from Fig. 8(a) is that the effects of perceived scenario updates are not 

considered in Fig. 8(b). 



20 

 

Compared to Figures 6 and 7, Figure 8(b) shows that the originally increasing trend of the time series 

transforms into a flat line after the response protocols are executed at 09:00 and 12:00. This is because 

the contaminant concentrations are much reduced in the WDS due to previous contaminant discharge and 

public warning actions that together reduce public exposure risk. This also may imply that the increased 

quality of solutions due to convergence now neutralizes the degradation in solutions performance due to 

the prolonged contaminant spread time.  

Figure 8(c) indicates the UTIM time series when the effect of changes in consumers’ water 

consumption behavior, i.e. ceasing drinking tap water and reducing water demands, is taken into account. 

UTIM time series are presented for three different TD estimations for both when response is taken or not. 

In general, the UTIM time series are very similar in trend to when the demand changes effects are not 

considered (Figure 7). Consideration of changes in consumers’ behavior lowers the ultimate health 

impacts because ceasing to drink tap water reduces the possibility of ingesting more amount of the 

contaminant. This is also in agreement with the observation that setting TD to smaller values leads to a 

larger reduction in UTIM. When TD is smaller, the ingested contaminant mass exceeds TD for a larger 

number of consumers faster. This subsequently reduces UTIM as more consumers stop drinking 

contaminated water. Reduction in water use by different residential, commercial, and industrial 

consumers also alters WDS hydraulics, and thus contaminant and dye propagation. This effect 

consequently changes the global optimal response protocol at different times during the event. 

The UTIM time series for the most realistic representation of the system dynamics is shown in Figure 

8(d). This time series accounts for all the contributing factors including temporal variability of perceived 

contaminant spread, response actions taken by the emergency managers, and water ingestion and demand 

changes by the alerted or sick consumers. This inclusive time series is understandably similar in trend 

and intensity to a time series that one may envision through the superposition of the time series 

associated with each of the contributing factors individually (Figures 8(a)-(c)). Sudden changes in UTIM 

at times 08:00 and 10:00 are due to updates made to the perceived contamination scenario at these times. 

Implementation of optimal response protocols at 09:00 and 12:00 reduces the UTIM as expected. This is 
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accompanied by general decrease in UTIM throughout the entire time period as more alerted and sick 

consumers stop drinking contaminated water. 

5. Conclusions and Future Work 

An innovative modeling approach to contamination threat management in drinking water networks was 

presented by taking into account the unpredictable time-varying factors such as perceived contaminant 

source attributes and the feed-back mechanisms between the hydraulic network, consumers, and 

managers. Through the incorporation of these random factors, the dynamic simulation provides a more 

realistic picture of the uncertain contamination emergency environment than the static approaches that 

presume complete knowledge about present and future conditions. Once integrated with a dynamic 

optimization algorithm that methodologically preserves adaptation, the resulting dynamic simulation-

optimization model was able to identify and track time-varying optimal health-protection measures to 

serve the needs of utility operators during the course of an emergency. Demonstration of the proposed 

adaptive scheme on a virtual city using a regular desktop computer indicates this model can be used as a 

helpful decision support tool by water utilities to reduce water contamination health impacts. 

There is no claim that the response protocols identified by the proposed dynamic optimization scheme 

are globally optimal as with any static or dynamic EA-based model. Nevertheless, because EAs mimic 

natural evolution and evolution is an adaptation process in nature, they are fitting candidates for solving 

nonlinear optimization problems in changing environments. Future studies may examine performance of 

other types of dynamic EA-based schemes described in this paper for a more efficient optimization of 

response protocols during a contamination emergency. 

Hypothetical contamination events were used in this study to investigate the applicability of proposed 

adaptive framework for protecting public health against contamination threats. Although complete 

validation of the model is not feasible because data is not available about real intentional WDS 

contamination incidents, the proposed modeling framework is useful for analyzing what-if scenarios to 

enhance the state of preparedness. Knowledge about the degradation of the optimal response protocols 

performance over time for different intrusion scenarios can be obtained and illustrated as time series of 

optimal reduction in ultimate health impacts. These informative plots are useful for estimation of the 
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added value of rapid response once an intrusion scenario occurs and identification of critical scenarios. 

They can be utilized to guiding risk mitigation and emergency preparedness decisions.  

The multiobjective-based dynamic optimization algorithm used in this study defines and maximizes 

an artificial objective function for preserving diversity to enhance adaptability to changing environments. 

The performance of three different diversity preservation measures (distance from the nearest neighbor, 

average distance from all solutions, and distance from the best solution in the current population) were 

investigated. Visual and quantitative comparisons indicated the distance from the nearest neighbor 

measure would provide higher quality response protocols during an emergency. 

Relatively simple rules were used in this study to simulate the complex interactions between the 

hydraulic system and consumers that change the emergency environment conditions. Advanced agent-

based models and sociotechnical simulation frameworks [15, 43] may be used to better capture system 

dynamics, such as word-of-mouth communication between consumers and their mobility, and provide a 

more realistic picture of an emergency environment. Due to the increased computational intensity, 

however, the applicability of such compute-intensive complex models during the course of an emergency 

is subject to the availability of more advanced hardware and software computational resources than the 

regular desktop computers used in this study. 

The adaptive simulation-optimization model described in this paper is intended to be a major 

component of a cyberinfrastructure for drinking water network contamination threat management. This 

cyberinfrastructure will include multiple modules such as real-time SCADA data processing schemes, 

adaptive contaminant source identification models, graphical user interfaces, among others. Work is 

underway to construct and embed these modules. This adaptive cyberinfrastructure can be used both as a 

realistic emergency simulator for training the water utility operators during the preparedness phase and 

also as a valuable decision support system for an intelligent and informed emergency response in the 

event of a real contamination threat.  
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Table 1. Time-varying perceived contamination scenario attributes 

Period Injection 

location 

Load (kg) Demand multiplier Start time Duration (hr) 

06:00 to 08:00 East WTP 300 1.00 00:00 5 

08:00 to 10:00 IN0654 280 1.00 00:00 4 

10:00 to 24:00 IN0654 250 1.00 00:00 5 

 

 

Table 2. Ultimate health impacts associated with time-varying perceived contamination scenario. The 

results are for the entire simulation period of 24 hours. 

Period UTIM (consumers do not react) (grams) UTIM (consumers react) (grams) 

  Min TD Average TD Max TD 

06:00 to 08:00 220.0 211.8 217.6 220.0 

08:00 to 10:00 186.2 156.6 170.5 178.7 

10:00 to 24:00 192.7 157.5 167.6 191.7 
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Figure captions 

Figure 1 Diversification of GA solutions in multiobjective-based dynamic optimization algorithm for 

methodological balance between exploitation and exploration. Non-dominated response protocols are 

illustrated as filled circles. 

Figure 2 Water distribution system of Mesopolis virtual city 

Figure 3 Water consumption patterns for three different types of consumers in Mesopolis virtual city 

Figure 4 The example emergency timeline used for model application 

Figure 5 Accumulation of TIM over time projected based on the contamination scenario perceived at 

different time periods (see Tables 1 and 2). The ultimate projected value of TIM at the end of emergency 

period, i.e. 24:00, denotes UTIM (see Equation (1) and Table 2). 

Figure 6 The UTIM time series for different diversity measures ignoring the effects of perceived 

scenario update, response protocol execution, and consumers’ demand changes 

Figure 7 The UTIM time series for different response strategies ignoring the effects of perceived 

scenario updates, response protocol executions, and consumers’ demand changes 

Figure 8 The UTIM time series for combined hydrant and dye injection operation and considering the 

effects of (a) perceived scenario updates only (see Table 1), (b) response protocol executions only (see 

Figure 4), (c) consumers’ reactions only, and (d) all factors together (using average TD estimate) 

Figure 9 Spatial distribution of projected ultimate ingested contaminant mass associated with the optimal 

response protocols at (a) 07:59 and (b) 11:05. Effect of perceived scenario updates is considered only 

(see Table 1 and Fig. 8(a)). Pipes are removed from the map for better readability 
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Figure 1 Diversification of GA solutions in multiobjective-based dynamic optimization algorithm for 

methodological balance between exploitation and exploration. Non-dominated response protocols are 

illustrated as filled circles. 
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Figure 2 Water distribution system of Mesopolis virtual city 
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Figure 3 Water consumption patterns for three different types of consumers in Mesopolis virtual city 
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Figure 4 The example emergency timeline used for model application 
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Figure 5 Accumulation of TIM over time projected based on the contamination scenario perceived at 

different time periods (see Tables 1 and 2). The ultimate projected value of TIM at the end of emergency 

period, i.e. 24:00, denotes UTIM (see Equation (1) and Table 2). 
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Figure 6 The UTIM time series for different diversity measures ignoring the effects of perceived 

scenario update, response protocol execution, and consumers’ demand changes 
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Figure 7 The UTIM time series for different response strategies ignoring the effects of perceived 

scenario updates, response protocol executions, and consumers’ demand changes 
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Figure 8 The UTIM time series for combined hydrant and dye injection operation and considering the 

effects of (a) perceived scenario updates only (see Table 1), (b) response protocol executions only (see 

Figure 4), (c) consumers’ reactions only, and (d) all factors together (using average TD estimate) 
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Figure 9 Spatial distribution of projected ultimate ingested contaminant mass associated with the optimal 

response protocols at (a) 07:59 and (b) 11:05. Effect of perceived scenario updates is considered only 

(see Table 1 and Fig. 8(a)). Pipes are removed from the map for better readability. 
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