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Abstract

Wireless body area networks are wireless sensor networks whose adoption
has recently emerged and spread in important healthcare applications, such
as the remote monitoring of health conditions of patients. A major issue
associated with the deployment of such networks is represented by energy
consumption: in general, the batteries of the sensors cannot be easily re-
placed and recharged, so containing the usage of energy by a rational design
of the network and of the routing is crucial. Another issue is represented by
traffic uncertainty: body sensors may produce data at a variable rate that is
not exactly known in advance, for example because the generation of data is
event-driven. Neglecting traffic uncertainty may lead to wrong design and
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routing decisions, which may compromise the functionality of the network
and have very bad effects on the health of the patients. In order to address
these issues, in this work we propose the first robust optimization model for
jointly optimizing the topology and the routing in body area networks un-
der traffic uncertainty. Since the problem may result challenging even for a
state-of-the-art optimization solver, we propose an original optimization al-
gorithm that exploits suitable linear relaxations to guide a randomized fixing
of the variables, supported by an exact large variable neighborhood search.
Experiments on realistic instances indicate that our algorithm performs bet-
ter than a state-of-the-art solver, fast producing solutions associated with
improved optimality gaps.

Keywords: Body Area Networks, Wireless Sensor Networks, Network
Design, Integer Linear Programming, Robust Optimization, Traffic
Uncertainty, Metaheuristics, Exact Large Variable Neighborhood Search.

1. Introduction

In the last decade, wireless sensor networks have attracted a lot of attention
and have represented a major research topic both from a theoretical and an
applied point of view. Real-life applications of such networks have greatly
enlarged and now span from environmental monitoring to preventive ma-
chinery maintenance and from security applications to intelligent building
management, just to make a very few examples.

A Wireless Sensor Network (WSN) is a network of small portable wire-
less devices, the sensors, which are distributed over an area to (cooper-
atively) collect data about some phenomena and then forward the data
through wireless links to one or more collectors, commonly called sinks.
The sinks can store the data or transmit them to other networks, where
the data are then processed. For an exhaustive introduction to theory and
applications of WSNs, we refer the reader to the survey [36].

Thanks to recent technology advances in the field of portable medical
sensors, WSNs have been also adopted in healthcare applications: besides
the remote monitoring of health conditions of hospital inmates, WSNs can
also support remote assistance of patients and can be used for evaluating
sport training or conducting large in-field medical studies (see [28] for an
overview).

In this work, we focus attention on a topic related to healthcare appli-
cations of WSNs: the design of body area networks. A Body Area Network
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Figure 1: An example of BAN - the circles represent biosensors and the triangles represent
sinks

(BAN) (also called body sensor network or wireless body area sensor net-
work) is a WSN where a number of wireless sensors (biosensors) are placed
over or inside the body of a person to collect biomedical data. The biosen-
sors transmit the data to one or more sinks to be stored and/or processed
and/or be transmitted to another network. An example of BAN is depicted
in Figure 1. Designing a BAN essentially consists in deciding the topology
of the network and how data are routed from the biosensors to the sinks.

BANs are not confined just to healthcare applications, but are used
also in other contexts, such as sport and military training and interactive
gaming. For a detailed introduction to BANs, we refer the reader to the
survey [14]. Here we recall major features of a BAN that are relevant to our
study. Though being a WSN, the design and the management of a BAN
pose specific challenges coming from the use of sensors on the human body
and require solutions and approaches that are sensibly different with respect
to the traditional ones used for general WSNs [14]. A major question in a
BAN is represented by propagation conditions of wireless signals along and
through the human body, which are very peculiar and associated with high
propagations losses (see [11] for a detailed discussion). High propagation
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losses could in principle be tackled just by increasing the power emitted by
the transmitting devices, like usually done in the design of wireless networks
[16]. However, this cannot be done in a BAN for two main reasons:

• power emissions must be kept low to strictly respect Specific Absorp-
tion Rates (SARs) imposed by health regulatory bodies, to avoid dam-
ages to human tissues caused by radio signals and related overheating
(see, e.g., [34]);

• higher power emissions imply higher energy consumption, which in
turn leads to shorter lifetime of the batteries in BAN devices. Pre-
serving the charge of batteries is a crucial objective in BANs, since the
batteries are not easily replaceable and rechargeable as this negatively
impacts on the comfort of patients (in the case of in-body sensors, for
example, a surgical operation would be required) [11, 14].

These two points highlight a major challenge in the design of a BAN: mini-
mizing the total energy consumed for wireless transmission and sensor func-
tioning. We note that this challenge is also peculiar to the design of other
WSNs, but in the case of BANs is really crucial.

In order to reduce energy consumption, a common solution in BANs and
generally in WSNs is to introduce relays, which are wireless devices acting
as intermediate nodes between the sinks and the sensors. The relays support
transmissions over shorter distances and thus reduce energy consumption.
As pointed out in many publications, such as [11, 25, 24, 23], relays allow
to greatly overcome the energy inefficiency of single-hop routing, where all
sensors directly transmit to the sink, and of multi-hop routing, where some
sensors act as hotspots receiving and retransmitting data. We refer the
reader to Figures 2 and 3 for a visualization of the differences between the
three types of routing.

Though there is a conspicuous technical literature about BANs, con-
cerning in particular the characterization of propagation conditions and the
definition of routing protocols (see, for example, [14, 24, 11]), the problem of
optimally designing a BAN through the solution of an optimization model
has been practically neglected. To the best of our knowledge, [23] is the
only work that has used mathematical optimization to model and solve a
BAN design problem. This fact is stressed by the same author of [23], where
the design problem is formulated as a mixed integer linear program where
multiple-path routing and relay placement is established in order to mini-
mize the total cost of deployment of a BAN. The resulting problem is solved
by direct application of a commercial Mixed Integer Linear Programming
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Figure 2: Visualization of the same BAN using single-hop routing (A) and multi-hop
routing.
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Figure 3: The figure shows the potential topology of a BAN using relay nodes, represented
as circle of smaller sizes, and the realized topology, where just a subset of relays has been
activated.
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(MILP) solver and no new algorithm is proposed to specifically improve the
performance of the solver. In contrast to [23], a critical objective of our
work has been to develop a new solution algorithm for BAN design having
a better performance than a state-of-the-art solver.

Within the limited work available about BAN design, we also stress
that traffic uncertainty, that is the fact that the volume of data that must
be routed through the network is in general not known a priori, has been
totally neglected. However, this is a relevant topic, as pointed out in [14]
and as we discuss in more detail in Section 3. Data uncertainty in BANs can
be due, for example, to event-driven biosensors, which generate data only
under some specific conditions, so that their data rate is not constant and
not exactly known in advance [27]. If we neglect data uncertainty, we risk
to produce solutions that are actually infeasible and thus totally useless in
practice [6]: in the case of event-driven biosensors, if the actual data rates
result higher than expected, the capacity of the BAN could be insufficient
to manage the produced data and we could lose a part of them. This would
evidently have dramatic effects for patients, when sensors produce vital data,
such as a cardiac sensor installed for early detecting ischemia. The design
under data uncertainty is also relevant for WSNs in general, as pointed
out for example in [25], where a min-max regret optimization framework is
adopted to protect the WSN design from variations in the expected data
rate of sensors.

In this work, our main original contributions are:

1. the first mathematical programming model for the joint optimization
of single-path routing and relay deployment in BAN design. This
model adopts binary variables to represent single-path routing decision
and installation of relays and corresponds to a binary linear program.
Our model better highlights the strong connections of the BAN design
problem with classical capacitated network design problems dealing
with flow optimization and capacity installation;

2. the first robust optimization approach for dealing with traffic uncer-
tainty in BAN design. Specifically, we adopt a scenario-based min-max
approach (see [1, 6]), where we aim to identify the solution having the
best performance in the worst-case scenario. We think that this is
a particularly appropriate form of robustness for BANs, since we are
dealing with biomedical data and is thus crucial to have strict guar-
antees about the robustness of design solutions;

3. an original optimization algorithm that is based on the combination
of 1) a heuristic exploiting ideas from randomized algorithms [31] and

7



from ANTS - Approximate Nondeterministic Tree-Search - [29], a re-
finement of classical ant colony optimization [22]; 2) an exact large
variable neighborhood search that is formulated as a binary linear
program, which is solved exactly by using a state-of-the-art optimiza-
tion solver. A peculiarity of our algorithm is to exploit the precious
information coming from suitable linear relaxations of the considered
BAN design problem. Such information can be used to guide the fix-
ing of variables during the heuristic construction of feasible solutions.
Furthermore, by using linear relaxations, we are able to derive an op-
timality gap, i.e. a quality measure of solutions that indicates how
far the produced solutions are from the optimum. This of course con-
stitutes a major advantage of our algorithm with respect to “simple”
heuristics, which do not provide any quality guarantee. We decided
to investigate the combination of a variant of ANTS and of an exact
search on the basis of our direct and successful experience in the con-
text of other telecommunication network design problems, namely the
design of cooperative wireless networks [17] and the multiperiod de-
sign of fixed telecommunications networks involving flow optimization
problems [18, 19];

4. computational experiments considering a set of realistic BAN instances,
showing that our optimization algorithm can fast compute solutions of
better quality and associated with better optimality gaps w.r.t. those
produced by a state-of-the-art optimization solver.

The remainder of this paper is organized as follows: in Section 2, we in-
troduce an optimization model for the design of BANs; in Section 3, we
introduce the new formulation for the scenario-based robust optimization of
BANs; in Sections 4 and 5, we present our original optimization algorithms
and computational results.

2. The Body Area Network Design Problem

In this section, we first provide a description of the elements of a BAN
that are relevant for our new mathematical optimization model, then we
proceed to describe the model, pointing out its strong connection with flow
optimization problems in networks.

2.1. System elements

For modeling purposes, a BAN can be essentially described as a set of biosen-
sors B that generate biomedical data intended to be collected by a set of
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sinks S. The location of the biosensors and the sinks over/in the body is
commonly pre-established. This is especially true for the biosensors, which
must be usually positioned in specific body points for correctly measuring
and generating the data. For each sink s ∈ S, each biosensor b ∈ B gener-
ates a volume of data dbs ≥ 0, commonly expressed as a bitrate measured in
bits per second (bit/s).

The biosensors transmit data to the sinks according to a multi-hop rout-
ing, which exploits a number of relays, i.e. devices whose task is to forward
received data to another relay or to a sink. As pointed out in the previ-
ous section, the relays make the communications in the BANs more energy
efficient. The network created by the relays can be actually viewed as a
backbone network that transports the biomedical data from the biosensors
to the sinks.

In contrast to the biosensors and the sinks, the location of the relay nodes
can be chosen and a rational positioning of the relays can further improve the
energy efficiency of the BAN. So a critical decision that we must take when
designing a BAN is where to locate the relays: we are typically given a set
of candidate locations and a maximum number of deployable relays and we
must decide the number of deployed relays and their locations. We denote
by R the set of potentially deployable relays and by U > 0 the maximum
number of relays that can be deployed in the BAN. Each potential relay
r ∈ R is characterized by a unique position over/in the body and we must
decide whether installing it or not. Additionally, each relay is characterized
by a capacity cr ≥ 0 representing the maximum bitrate that it may handle.

The transmission of data from any BAN device (biosensor, relay node or
sink) to another BAN device is based on a directional wireless link. Similarly
to [23], we assume that the devices share the frequency band on which they
operate according to a time division multiple access protocol that avoids in-
terference. When any device transmits or receives data, it consumes energy
and a crucial aim of our decision process is to design the BAN in order to
minimize the total energy consumption so to increase the BAN lifetime. As
in [11] and [24], we consider only transmitting and receiving energy con-
sumption, which are dominant with respect to other forms of consumptions
like sensing and processing. To express the total transmission energy ETX

and the total receiver energy ERX (both expressed in joules) of any device
of the BAN, we use the formulas proposed in [11]:

ETX(v, δ) = ETXCIRC
· v + ETXAMP

(λ) · δλ · v
ERX(v) = ERXCIRC

· v (1)

where we have highlighted the fact that ETX and ERX are functions of
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the volume of transmitted/received data v (expressed in bits) and of the
distance δ (expressed in meters) between the transmitter and the receiver.
In the formulas: ETXCIRC

and ERXCIRC
are the energy consumed by the

circuits to transmit and receive a single bit, respectively; λ is the path loss
exponent of the path loss formula regulating wireless signal propagation
(see [33] for a general introduction to signal propagation and losses in a real
environment and [11] for a discussion about path losses for the specific case
of BANs); ETXAMP

(λ) is the energy consumed by the transmitting amplifier
and depends on the path loss coefficient. As in [24], we can assume that the
devices operate power control and thus they consume minimal energy when
transmitting to a receiver.

2.2. BAN Design as a Flow Optimization Problem

The optimal design of a BAN with relays can be naturally traced back to a
flow optimization problem in a network, in particular a Multicommodity Flow
Problem (MCFP): in an MCFP, we want to route a number of commodities
through a network, while not exceeding the capacity of network elements
and optimizing an objective function of the routing. We refer the reader
to the book [3] for an exhaustive introduction to network optimization and
MCFPs.

Since we are dealing with a network, it is natural to model the BAN by
a directed graph G(V,A) where:

• the set of vertices V contains one element for each wireless device
(biosensor, relay or sink) of the network. The set V is thus the union
of three disjoint sets of vertices:1

1. the set B of vertices corresponding to biosensors;

2. the set R of vertices corresponding to potentially deployable re-
lays;

3. the set S of vertices corresponding to sinks;

Thus V = B ∪ R ∪ S. Each device can transmit to other devices
that are positioned within its transmission range. The transmission
range depends upon the propagation conditions and the power of the

1In order to be completely and rigorously formal, we should denote the three sets
of vertices by VB , VR, VS , distinguishing them from the corresponding sets of wireless
devices B,R, S. However, this would complicate the notation and decrease readability.
So we denote the (sets of) vertices by the symbols of the corresponding (sets of) devices
of the wireless system.
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transmitting device (see [11, 33]). We denote the subsets of devices
that are within transmission range of any device as follows:

1. for each biosensor b ∈ B, we distinguish the subsets Rb ⊆ R, and
Sb ⊆ S representing the relays and sinks within the range of b,
respectively;

2. for each potential relay r ∈ R, we distinguish the subsets Rr ⊆ R,
and Sr ⊆ S representing the relays and sinks within the range of
r, respectively;

3. more generally, given a vertex i ∈ V , representing any type of
BAN device, we denote by Vi ⊆ V the subset of vertices repre-
senting devices within the transmission range of i.

Remark 1. We assume that each biosensor b ∈ B only generates
and transmits data and is never a receiver. So it is not necessary to
characterize the subsets Br, Bs ⊆ B of biosensors within range of a
relay r or a sink s. Analogously, we assume that each sink s only
receives data and is never a transmitter. So it is not necessary to
introduce the subsets Bs ⊆ B, Rs ⊆ R of biosensors and relays within
range of a sink s;

• the set of arcs A contains one element for each wireless link that can
be established between a pair of wireless devices of the network. A
link between two generic devices can be established if the receiving
device is within the transmission range of the transmitting device.

A generic arc a = (i, j) ∈ A is an ordered pair of vertices representing
a directional wireless link from a device i ∈ V to another device j ∈ Vi
within the range of i. We refer to vertices i, j of an arc a = (i, j) as
the tail and the head of arc a, respectively. The set A is the union of
four disjoint sets of arcs:

1. the set AB→S of arcs (i, j) such that the tail is a biosensor and
the head is a sink within the range of the biosensor, i.e. i ∈ B,
j ∈ Si. They represent transmissions of biomedical data directly
to sinks;

2. the set AB→R of arcs (i, j) such that the tail is a biosensor and
the head is a relay within the range of the biosensor, i.e. i ∈ B,
j ∈ Ri. They represent transmissions from a biosensor to a relay;

3. the set AR↔R of arcs (i, j) such that both the tail and the head
are relay nodes, i.e. i, j ∈ R with j ∈ Ri. They represent wireless
links between relay nodes;
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4. the set AR→S of arcs (i, j) such that the tail is a relay node and
the head is a sink within the range of the relay, i.e. i ∈ R, j ∈ Si.
They represent transmissions from a relay to a sink;

Thus A = AB→S ∪AB→R ∪AR↔R ∪AR→S .

Remark 2. Following the assumption that biosensors B only transmit
data, there are no arcs in A that have biosensors as head (i.e., @ (i, j) ∈
A : (i ∈ S ∨ i ∈ R) ∧ j ∈ Bi). In other words, biosensors do not
have ingoing arcs. Analogously, following the assumption that sinks S
only receive data, there are no arcs in A that have sinks as tail (i.e.,
@ (i, j) ∈ A : i ∈ S ∧ (j ∈ Bi ∨ j ∈ Ri)). In other words, sinks do not
have outgoing arcs. Additionally, we note that there are no arcs from
biosensors to biosensors and from sinks to sinks.

The transmission of data over a link represented by an arc a = (i, j) ∈
A implies consuming an amount of energy that is the sum of the energy
consumed by i to transmit and the energy consumed by j to receive. We
denote by Eij ≥ 0 the total amount of energy that is consumed to send one
unit of data from i to j. This quantity can be computed by referring to
the energy formulas (1) for the case of a single data unit transmitted (i.e.,
v = 1):

Eij = ETX(1, δij) + ERX(1)

=
[
ETXCIRC

+ ETXAMP
(λij) · δ

λij
ij

]
+ ERXCIRC

(2)

where λij , δij are the path loss coefficient and the distance between i and j,
respectively.

We can now provide a first informal statement of the Body Area Network
Design Problem (BAND): given a BAN modeled by a graph G(V,A) defined
as above and the bitrate of each biosensor for each sink, we must decide
which are the relays that are deployed in the BAN and how to route the
data from the biosensors to the sinks through the deployed relays, so that
the capacity of each relay is not exceeded and the total energy consumed
for transmitting and receiving data is minimized. In a more formal way, we
can state the BAND as follows.

Definition 1 (The Body Area Network Design Problem - BAND).
Given:

• a BAN represented by a directed graph G(V,A), where V = B∪R∪S
is the set of vertices and A = AB→S ∪ AB→R ∪ AR↔R ∪ AR→S is the
set of arcs;
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• the bitrate dbs ≥ 0 of data generated by each biosensor b ∈ B for each
sink s ∈ S - note that this actually corresponds to a commodity of
a MCFP that must be routed from an origin node b to a destination
node s in the network represented by the graph G(V,A);

• the capacity cr ≥ 0 of each relay r ∈ R;

• the energy coefficients Eij ≥ 0 expressing the total energy consumed
to send 1 data unit from i to j;

the BAND consists in choosing which relays are activated and which single-
paths are used to route the flow of data generated by each biosensor for each
sink, in order to minimize the total energy consumption.

We note that the BAND constitutes a peculiar version of a capacitated net-
work design problem involving an unsplittable MCFP problem (see [3, 19] for
an introduction to capacitated network design) where: 1) the data of each
couple (b, s) generated by a biosensor b ∈ B for a sink s ∈ S corresponds to a
commodity; 2) commodities must be routed on a single path and cannot be
split over a multiplicity of paths; 3) capacity installation decisions concern
the vertices and not the arcs (deciding to deploy a relay is equivalent to get
the corresponding vertex capacity - under the interference-free assumption
made in the previous section, the capacity of the arcs representing wireless
links is not relevant for the problem); 4) the objective function of the prob-
lem pursuing minimization of energy is a function of the routing decisions
(routing flow on an arc corresponds to a transmission on a wireless link that
make both the transmitter and the receiver consume energy).

We now proceed to derive an optimization model for the BAND.

2.3. A Binary Linear Program for the BAND

In the BAND, we must take two kind of decisions: 1) which are the single-
paths used to route all data generated by each biosensor for each sink; 2)
which are the deployed relays. These two decisions can be modelled by
introducing two families of binary decision variables:

• binary unsplittable flow variables xbsij ∈ {0, 1} ∀ b ∈ B, s ∈ S, (i, j) ∈ A
such that:

xbsij =


1 if all the data generated by biosensor b for sink s

are routed on arc (i, j)
0 otherwise,
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• binary relay deployment variables yr ∈ {0, 1} ∀ r ∈ R such that:

yr =

{
1 if relay r is deployed
0 otherwise

Using these variables we then introduce several families of constraints that
model the feasible solutions of the decision problem.

First of all, since we model transmissions through a flow problem on a
graph, we must enforce flow conservation constraints. Assuming convention-
ally that outgoing flows of a vertex have negative value and ingoing flows
have positive value, the flow conservation constraint of a generic node i ∈ V
can be written as: ∑

(j,i)∈A

fji −
∑

(i,j)∈A

fij = bali

where fji, fij are the flows on a generic ingoing arc and outgoing arc of i,
respectively, and bali is the flow balance of i. A vertex creating flow (source)
has a negative balance bali < 0, whereas a vertex storing flow (sink) has a
positive balance bali > 0. In a (transit) vertex that is neither a source nor
a sink, the ingoing flow must equal the outgoing flow and the balance must
be null (i.e., bali = 0).

In the case of the BAND, we distinguish three flow balance cases, one for
each type of device/vertex: 1) biosensors b ∈ B, which only transmit data,
have a negative flow balance; 2) relays r ∈ R, which are transit vertices
and thus retransmit all the received data, have a null flow balance; 3) sinks
s ∈ S, which only receive data, have a positive flow balance. In each of these
vertex, the flow balance must be considered for the data flow generated by
each biosensor b ∈ B for each sink s ∈ S. The three corresponding families
of flow conservations constraints are defined below.

For each biosensor b ∈ B, we have only outgoing arcs to relays and sinks
and we must consider the flow balance for the data sent from b to each sink
s ∈ S, which is equal to the bitrate dbs, namely:

−
∑

(b,j)∈
AB→R∪AB→S

dbs x
bs
bj = − dbs ∀ b ∈ B, s ∈ S (3)

Note that since we must route the entire data flow of b for s on a single path,
the unsplittable flow variables xbsij must be multiplied by the corresponding
bitrate dbs.

For each relay r ∈ R and for each data flow from a biosensor b ∈ B to
each sink s ∈ S, the total ingoing and outgoing flow of r must be equal, so
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we have:∑
(j,r)∈

AB→R∪AR↔R

dbs x
bs
jr −

∑
(r,j)∈

AR↔R∪AR→S

dbs x
bs
rj = 0 ∀ b ∈ B, s ∈ S, r ∈ R (4)

Finally, for each sink s ∈ S, the ingoing data flow from each biosensor b ∈ B
on each edge entering s must be equal to the data flow dbs, so we have:∑

(j,s)∈
AB→S∪AR→S

dbs x
bs
js = dbs ∀ b ∈ B, s ∈ S (5)

After having introduced the flow conservation constraints, we need to intro-
duce a family of constraints expressing the capacity of the relays:∑

(r,j)∈
AR↔R∪AR→S

dbs x
bs
rj ≤ cr yr (6)

Note that for each relay r, the constraint has a right-hand-side with variable
value: if r is deployed, i.e. yr = 1, then the constraints activates and the
right-hand-side is equal to cr. Otherwise, the right-hand-side is equal to
0 and forces to zero also the left-hand-side, thus preventing data flows to
be received by or transmitted to r. Note that similar constraints must not
be introduced for the biosensors and sinks, since we have assumed that the
biosensors do not receive and the sinks do not transmit and that they have
sufficient capacity to handle the traffic that they respectively transmit and
receive.

It is practically reasonable to assume that the number of deployable
relays in a BAN is limited by some value U > 0. This can be easily expressed
by a constraint limiting above the sum of the activation variables:∑

r∈R
yr ≤ U (7)

We complete the modeling of the BAND as an optimization problem, by
introducing the following objective function that expresses the minimization
of the total energy consumption:

min
∑
b∈B

∑
s∈S

∑
(i,j)∈A

Eij dbs x
bs
ij (8)

The function sums the energy consumed by each arc (i, j) when used for the
transmission from i to j of the entire data flow dbs sent from a biosensor b to
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a sink s. This consumption is expressed as the product of the data flow and
the energy Eij consumed on (i, j) to transmit and receive 1 unit of data.

Summarizing what has been presented above, the BAND can be mod-
elled by the following Binary Linear Program that we denote by BAND-
BLP:

min
∑
b∈B

∑
s∈S

∑
(i,j)∈A

Eij dbs x
bs
ij (BAND-BLP)

−
∑

(b,j)∈
AB→R∪AB→S

xbsbj = −1 b ∈ B, s ∈ S (9)

∑
(j,r)∈

AB→R∪AR↔R

xbsjr −
∑

(r,j)∈
AR↔R∪AR→S

xbsrj = 0 b ∈ B, s ∈ S, r ∈ R (10)

∑
(j,s)∈

AB→S∪AR→S

xbsjs = 1 b ∈ B, s ∈ S (11)

∑
(r,j)∈

AR↔R∪AR→S

dbs x
bs
rj ≤ cr yr r ∈ R (12)

∑
r∈R

yr ≤ U (13)

xbsij ∈ {0, 1} b ∈ B, s ∈ S, (i, j) ∈ A
yr ∈ {0, 1} r ∈ R .

Remark 3. Note that we have simplified constraints (9-11) by dividing
both sides of the inequalities by dbs.

3. Robust Body Area Network Design

In the previous section, we have assumed that the data rate dbs associated
with each biosensor-sink couple (b, s) is precisely known when the optimiza-
tion problem BAND-BLP is solved. However, this assumption may not be
true in practice: data generation of sensors may be event-driven, so that the
data rate is not constant and not known in advance [27]. To reduce energy
consumption, some body sensors can be also configured to only generate
data when an unusual situation arises, rather than to operate a continuous
transmission of all readings. More in general, it is natural to assume that
the data rate generated by wireless sensors is not exactly known, as also
explained in [14] and [25].
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If the actual data rate of a biosensor-sink couple is lower than expected,
we are not really facing an issue: we have installed enough capacity to deal
with a higher data rate, so the network will be able to deal with lower traffic
volumes. On the other hand, we would have possibly designed a less costly
and more energy efficient network, deploying a lower number of relays.

Troubles are instead going to arise if the actual data rates result higher
than expected: deployed relays could indeed be insufficient to manage the
higher rates and we could thus lose important biomedical data. This of
course is a risk that we cannot run in BANs, especially in the case of biosen-
sors that provide vital data, such as cardiac sensors installed for the early
detection of ischemia.

The presence of data uncertainty in an optimization problem, namely the
fact that a subset of the input data is not exactly known when the problem
is solved, may result really tricky not just practically but also theoretically:
as it is well-known from sensitivity analysis, even small deviations in the
value of the input data may completely compromise the feasibility and op-
timality of produced solutions. Solutions supposed to be feasible may result
infeasible and thus totally useless in practice, while solutions supposed to
be optimal may result instead of mediocre quality. We refer the interested
reader to [6, 7] for a thorough discussion about the issues associated with
data uncertainty in optimization. Here we provide a simple example to
clarify how infeasibility may arise in the BAND case.

Example 1 (Infeasible BAN design due to data rate variations).
Suppose to have a BAN including a relay node with a capacity of 250 kbit/s.
Furthermore, suppose that the relay processes a total data flow that is pro-
duced by many biosensors and that is made up of two parts: a constant rate
and exactly known part equal to 200 kbit/s and a variable rate part that
may vary between 0 and 100 kbit/s (this could be for example produced
by event-driven biosensors). When the variable rate exceeds 50 kbit/s, the
capacity of the relay is exceeded and data are lost. We would thus have an
infeasible design solutions that is not admissible in a BAN. It is thus nec-
essary to deploy additional relays and/or modify the routing to guarantee
protection from data uncertainty.

In order to tackle the issues coming from data uncertainty, over the years
many methods have been proposed: after Dantzig’s pioneering study about
uncertain linear programs [20], many studies about optimization under un-
certainty have been conducted and have in particular focused on Stochastic
Programming (SO) methods, where it is in general necessary to characterize
the probability distribution of the uncertain data and typically solve very
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large-scale programs that produce probabilistically feasible and optimal so-
lutions [35]. More recently, Robust Optimization (RO) has attracted a lot of
attention as a very effective and efficient alternative to SO, especially due to
its computational tractability and accessibility, pointed out in the seminal
works about ellipsoidal uncertainty by Ben-Tal and Nemirovski (see e.g., [6])
and Γ-Robustness by Bertsimas and Sim [8]. RO produces so-called robust
solutions that are deterministically feasible and optimal with respect to the
worst case that uncertain data may assume in a domain specified by the de-
cision maker. The reader is referred to [6, 7] for an exhaustive introduction
to theory and applications of RO and for a comparison with SO pointing
out determinant advantages of RO.

In this work, we adopt so-called min-max robustness (Min-Max) [1], also
known as absolute robustness (e.g. [13]), a form of robust optimization that
results particularly suitable in the case of critical applications where it is
crucial to have high level of protection against data uncertainty. Recalling
the example made before, about cardiac data that are collected by a body
sensor for early ischemia detection, it is easy to understand that this ap-
proach looks really appropriate for an application like the BAND, where
traffic volume uncertainty could even lead to the death of a non-correctly
monitored patient. Another example of application is provided by the de-
tection of contaminants in water networks (see [13]), where not having high
level of protection against data uncertainty may have fatal consequences for
large communities of people. Such kind of robustness is also appropriate
when dealing with a very risk-averse decision maker, that requires full pro-
tection against simultaneous occurring of all the worst realization of each
uncertain data of the decision problem (e.g., [4], which considers the unit
commitment problem with uncertain market prices for a price-taker energy
producer). In the context of the BAND, assuming the perspective of a highly
risk-averse decision maker, who wants to guarantee a fully trustable moni-
toring of health conditions even under data uncertainty, looks appropriate.

To rigorously define the robust (Min-Max) version of an optimization
problem, let us consider a generic uncertain binary linear program of the
form:

V ∗ = min c′ x (BLP)

x ∈ F =

{
Ax ≥ b
x ∈ {0, 1}n

}
which consists in minimizing an objective function identified by a coefficient
vector c ∈ Rn over a feasible set of solutions F . The set F includes those
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n-dimensional binary vectors x that satisfy a system of linear constraints
identified by a coefficient matrix A ∈ Rm×n and a right-hand side vector
b ∈ Rm. The problem BLP is uncertain in the sense that the values of the
cost vector c and of the coefficient matrix A are just a reference and could
vary in a way that is not known exactly when BLP is solved. However, we
are able to identify a finite set Σ of possible data scenarios, such data each
scenario σ ∈ Σ specifies the entries of cσ and Aσ representing a complete
valorization of the uncertain cost vector c and of the coefficient matrix A.

Under these assumptions, if we denote by c′σx the value of a feasible
solution x in scenario σ, the Min-Max version of problem BLP for the set
of scenarios Σ is the following:

V R = min
x

max
σ

c′σx : x ∈ Fσ = {Aσ x ≥ b, x ∈ {0, 1}n} ∀σ ∈ Σ

which finds a robust optimal solution, namely a solution that is feasible in
all the scenarios and have the best value under the worst scenario. The
problem can be equivalently written as (see e.g., [6]):

V R = min γ (Rob-BLP)

c′σ x ≤ γ σ ∈ Σ

Aσ x ≥ b σ ∈ Σ

x ∈ {0, 1}n

which is commonly called robust counterpart of the original problem BLP.
We remark that in general the optimal value of the robust counterpart is
worse than that of the original problem, i.e. V ∗ ≤ V R. The deterioration
in the optimal value commonly goes under the name of price of robustness
[8], as it represents the “price” that we have to “pay” in order to guarantee
protection against the data uncertainty specified by the scenarios in Σ.

We can adapt these results to the robust BAND case by introducing a
set of scenarios σ ∈ Σ such that each scenario σ is associated with a vector
dσ = (dσ11 · · · dσbs · · · dσ|B||S|) specifying the value of the bitrate between each
biosensor-sink couple in σ. Such data uncertainty influences the coefficient
matrix - specifically the relay-capacity constraints (12) - and the objective
function and can be tackled as in the problem Rob-BLP, thus leading to the
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following robust counterpart of the problem BAND-BLP:

min E (Rob-BAND-BLP) (14)∑
b∈B

∑
s∈S

∑
(i,j)∈A

Eij d
σ
bs x

bs
ij ≤ E σ ∈ Σ (15)

−
∑

(b,j)∈
AB→R∪AB→S

xbsbj = −1 b ∈ B, s ∈ S (16)

∑
(r,j)∈

AR↔R∪AR→S

xbsrj −
∑

(j,s)∈
AB→R∪AR↔R

xbsjr = 0 b ∈ B, s ∈ S, r ∈ R (17)

∑
(j,s)∈

AB→S∪AR→S

xbsjs = 1 b ∈ B, s ∈ S (18)

∑
(r,j)∈

AR↔R∪AR→S

dσbs x
bs
rj ≤ cr yr r ∈ R, σ ∈ Σ (19)

∑
r∈R

yr ≤ U (20)

xbsij ∈ {0, 1} b ∈ B, s ∈ S, (i, j) ∈ A
yr ∈ {0, 1} r ∈ R .

where we have introduced a single new decision variable E to represent an
upper bound on the total energy consumed by routing decisions over all the
scenarios Σ. Furthermore, we have introduced robust versions of the relay-
capacity constraints (19), taking into account the bitrate of the specific
scenario σ.

In the next paragraph, we proceed to describe the original optimization
algorithm that we devised to solve problem Rob-BAND-BLP.

4. A fast optimization algorithm for the Rob-BAND-BLP

The optimization problem Rob-BAND-BLP is a binary linear program and
in principle can be solved by any commercial Mixed Integer Programming
(MIP) solver like IBM ILOG CPLEX [15]. However, the problem may actu-
ally result challenging even for a state-of-the-art solver like CPLEX, whose
performance may result not satisfying and not sufficiently fast for practical
application, as pointed out in the computational section. Our aim was thus
to develop an algorithm able to deliver solutions of better quality and in less
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time than CPLEX. Providing better solutions in less computational time was
pointed out as a critical objective in discussions with medic professionals.
The original algorithm that we propose is based on the combination of a
heuristic variable fixing strategy based on randomized algorithms consider-
ations and ant-colony-like procedures [31, 29] with an MIP heuristic used to
repair and improve solutions. The ant-like part is partially inspired by ANTS
(Approximate Nondeterministic Tree-Search) [29], a refined ant colony al-
gorithm that attempts at exploiting information about bounds available
for the problem. The MIP heuristic is based on executing an exact large
variable neighborhood search [26], where the exploration is formulated as a
mixed integer program solved exactly by using CPLEX (the formulation as
a program and the solution by CPLEX is the reason for which the search
is defined exact - in what follows we will also refer to it as an exact MIP
heuristic).

We decided to investigate the combination of a variant of ANTS with an
exact MIP heuristic on the basis of our direct and successful past experience
in the context of other telecommunication network design problems, namely
the design of cooperative wireless networks [17] and the multiperiod design
of fixed telecommunications networks involving flow optimization problems
[18, 19].

We stress that a distinctive feature of our original algorithm is that,
though feasible solutions are built by heuristic approaches, we strongly found
the construction on polyhedral information coming from suitable linear re-
laxations of the problem, namely formulations obtained by relaxing the in-
tegrality requirement of the variables (i.e., instead of considering x ∈ {0, 1}n
we allow x ∈ [0, 1]n). Using such information, we obtain lower bounds on the
value of the optimal solutions that, when combined with the upper bound
provided by a feasible solution, allow us to derive a so-called optimality gap,
i.e. a measure of how far the solution is from the optimum. Our original
algorithm can be viewed as a hybrid algorithm that combines a heuristic
and an exact approach and has the desirable feature of providing quality
guarantees about the solutions. For an introduction to hybrid heuristic, we
refer the reader to the recent survey [10].

Before proceeding to describe our original optimization algorithm, we con-
cisely review the main features of general ant colony algorithms and of the
refined algorithm ANTS that we have taken as reference.

4.1. A concise introduction to ant colony optimization and ANTS

Ant Colony Optimization (ACO) is a metaheuristic inspired by the be-
haviour of ants searching for food that was originally proposed for com-
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binatorial optimization problems by Dorigo, Maniezzo and Colorni [21] and
later generalized to other classes of problems (see, e.g., [22, 29]). We refer the
reader to [9] and [10] for an overview of theory and applications of ACO. The
essential structure of an ACO Algorithm (ACOA) is commonly described as
in Algorithm 1. The algorithm includes a main ant construction loop that is
executed until an arrest condition is satisfied (e.g., reaching a computational
time limit). During each execution of the loop, a number of ants, actually
corresponding to a set of computational agents, attempts to build a set of
of feasible solutions, one for each ant, by probabilistically fixing the value
of integral variables using a function that resembles pheromone trails. At
the end of the construction phase, the pheromone levels of the trails are up-
dated, generally rewarding good fixing and penalizing bad fixing, and a new
execution of the loop starts. When the arrest condition is satisfied, so-called
daemon actions take place, trying to improve the quality of the produced
solution, typically by a local search procedure that identifies local optima.

Algorithm 1 General ACO Algorithm (ACOA)

1: while an arrest condition is not satisfied do
2: ant-based solution construction
3: pheromone trail update
4: end while
5: daemon actions

In the rest of the subsection, we provide more details about the main features
of the construction and of the pheromone update phases of the ACOA,
referring anyway the reader to [21, 22, 29] for an exhaustive introduction
to ACO algorithms. A detailed description of our algorithm, included the
exact MIP heuristic adopted as daemon action, is provided in Paragraph
4.2.

4.1.1. Ant-based solution construction.

During each execution of the loop of the ACOA, m ≥ 0 ants iteratively
construct m feasible solutions. At a generic iteration of the construction
phase, an ant is in a state corresponding to a partial solution for the op-
timization problem and can further complete the solution by executing a
move, namely fixing the value of a variable that is not yet fixed. The choice
of the fixing follows a probability function derived by combining an a-priori
and an a-posteriori measure of the efficacy of the fixing. More specifically,
the canonical formula for computing the probability of an ant k making a
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move that fixes a variable j after having fixed a variable i is:

pkij =
τβij + ηδij∑
f∈F τ

β
if + ηδif

, (21)

where τij is the so-called pheromone trail value, which represents the a priori
measure of efficacy, and ηij is the so-called attractiveness, which represents
the a-posteriori measure of efficacy. In this formula, the measures are influ-
enced by two parameters β, δ that should be chosen by the decision maker
for the specific considered problem.

In our algorithm, we do not refer to (21), but we rely on the following
improved probability formula that has been proposed in the algorithm ANTS
- Approximate Nondeterministic Tree-Search [29]:

pkij =
α τij + (1− α) ηij∑
f∈F α τif + (1− α) ηif

, (22)

We base part of our original algorithm for solving Rob-BAND-BLP on fea-
tures of ANTS. We consider ANTS attractive since it proposes a number
of smart refinements for the canonical ant algorithms that allow to bet-
ter exploit polyhedral information about the problem. In particular, [29]
sketches some ideas about how alternative formulations of the original prob-
lem could be exploited to define the pheromone trail and the attractiveness
values. Specifically, the ideas that we use are to set the attractiveness values
ηij equal to fast computable lower bounds on the optimal value of the prob-
lem, whereas the initial pheromone trail values τij(0) are set equal to lower
bounds of better quality that however require more time to be computed.

The formula (22) of ANTS adopts more computationally efficient oper-
ations, replacing powers with products, and relies on a single parameter α,
which is used to combine the a-priori and a-posteriori measures and replaces
β and δ. The parameter α ∈ [0, 1] indicates the relative importance of the
a-priori and the a-posteriori measures in the combination. As explained and
discussed in [29], the values τij and ηij should be provided by suitable lower
bounds of the considered optimization problem. In the case of our BAND:
1) τij is derived from the values of the variables in the solution associated
with the linear relaxation of the robust counterpart Rob-BAND-BLP; 2) ηij
is equal to the value of a (good) linear relaxation of BAND-BLP, where the
value of a subset of the decision variables is fixed due to fixing decision that
have been taken in previous steps of the algorithm.
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4.1.2. Pheromone trail update

At the end of each ant-construction phase h, the ACOA provides for the
update of the pheromone trail values, on the basis of how effective the ant
moves have resulted. The canonical formula is:

τij(h) = ρτij(h− 1) +
m∑
k=1

∆τkij

where ρ is the persistence factor of the pheromone trail and ∆τkij is the
amount of pheromone that ant k deposits when using move (i, j). The
ANTS algorithm proposes to refine the previous formula with the following
one, which we also adopt:

τij(h) = τij(h− 1) +

m∑
k=1

∆τkij with ∆τkij = τij(0) ·
(

1− zcurr − LB
z̄ − LB

)
. (23)

Here, zcurr is the value of the last solution produced, z̄ is a moving average
of the values of the last w solutions produced and LB is a lower bound
on the value of the optimal solution of the problem. This formula does
not contain the persistence factor ρ, whose setting is in general tricky, but
depends on the width w of the moving average, whose setting is less delicate.
Furthermore, the definition of ∆τkij is connected to the quality of the last
w solutions produced, expressed by the moving average z̄ of their value,
compared to the quality of the last solution produced, indicated by its value
zcurr (see [29] for a detailed discussion of the formula).

We now proceed to describe in detail our original algorithm for solving Rob-
BAND-BLP.

4.2. An optimization algorithm for the fast and robust design of BANs

A major challenge for a heuristic solving the problem BAND-BLP or its
robust counterpart Rob-BAND-BLP is represented by the definition of the
routing paths, identified by fixing the value of the unsplittable flow variables
xbsij for each relevant biosensor-sink couple (b, s). Once that the routing paths
are defined, we can derive a possibly feasible activation of relay nodes that
will support the routing.

To explain how we build the routing paths, we define the set of biosensor-
sink couples C ⊆ B × S containing couples (b, s) for which there exists at
least one data scenario with non-zero bitrate, i.e. C = {(b, s) ∈ B × S :
∃σ ∈ Σ with dσbs > 0}, and we introduce the concept of routing state.
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Definition 2 (Routing state - RS). Consider a subset of biosensor-sink
couples C̄ ⊆ C. We define routing state a fixing of the unsplittable flow
variables xbsij ∀(i, j) ∈ E for each (b, s) ∈ C̄ such that the fixing is feasible
for the flow conservation constraints (16-18).

A routing state can be interpreted as an assignment of a single routing path
to each couple (b, s) ∈ C̄. We say that a routing state is partial when C̄ ⊂ C
(i.e., only a subset of data flows is routed) and complete when C̄ = C (i.e.,
all data flows are routed).

We remark that the definition of routing state made above is indepen-
dent from relay capacity considerations. A complete routing state may thus
result infeasible for the overall routing problem that includes the node ca-
pacity constraints: this may happen if we have built a routing state where
many paths are using the same relay and the sum of the data that must
be processed by the relay exceeds its capacity. Because of this possible in-
feasibility, the construction of a complete routing state must be followed
by a check-and-repair phase, in which the feasibility of the routing state is
checked and, if not verified, is repaired to become feasible. We attempt to
repair an infeasible solution by using the same exact MIP heuristic based on
variable neighborhood search that we adopt to improve a feasible solution
(see Subsection 4.4 for details about the MIP heuristic for the reparation
and the improvement).

Checking the feasibility of a complete routing state for Rob-BAND-BLP
is straightforward: we activate all relays along routing paths used in the
routing state (this corresponds to fix to 1 the values of the corresponding
relay deployment variables yr and to 0 all the other variables yr) and we
check if there exists any relay-capacity constraint (19) that is violated for
some data scenario σ ∈ Σ. Moreover, we check whether the number of acti-
vated relays exceeds the limit imposed by constraint (20). If no constraint
is violated, then we have characterized a feasible solution for Rob-BAND-
BLP: we have indeed determined a fixing of the unsplittable flow variables
x and derived a fixing of the deployment variables y that respect the flow
conservation constraints in each scenario and the activation constraints. On
the contrary, if any capacity or activation constraint is violated, then we
have produced an infeasible routing and we must repair it. We note that
the fact that produced routing states may be infeasible requires to develop
an algorithm that is deeply different from those that we have proposed in
[18, 19], where no infeasibility issue was faced.

The complete algorithm is presented in Algorithm 2 and we call it
RobuBAND. We remark that we denote the energy value of a solution
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(x̄, ȳ) by E(x̄, ȳ). The algorithm is based on two nested loops: the outer
loop is executed until a time limit is reached and provides for the execution
of an inner loop where m feasible solutions are built according to an ANTS-
like procedure. More in detail, the algorithm starts by solving the linear
relaxation of Rob-BAND-BLP that represents, according to the principles
of ANTS, the tighter linear relaxation used to initialize the a-priori measure
of attractiveness τij(0). A solution (x∗, y∗) is also introduced to denote and
store the best solution found during the entire execution of RobuBAND. In
each execution of the inner loop, the first step is to build a complete rout-
ing state by procedure BuildRouting described in Subsection 4.3. The
complete routing state specifies the values of the variables x̄ and is used to
derive a relay installation ȳ, as explained before. This leads to the definition
of a solution (x̄, ȳ) that, however, is not necessarily feasible and may need
to be repaired by running the heuristic MIP-VNS (described in detail in
Subsection 4.4). If the solution (x̄, ȳ) is feasible and better than the best
solution found (xB, yB) until the current execution of the inner loop, we
update (xB, yB). Then we iterate the inner loop.

Once that the inner loop is concluded, we update the values of τij ac-
cording to the ANTS formula (23) and we check whether the best solution
of the inner loop (xB, yB) is better than the global best solution (x∗, y∗), op-
erating an update if necessary. Finally, once that the time limit is reached,
we execute the heuristic MIP-VNS for improving the best solution found
and at the end of the execution we return (x∗, y∗).
In the next subsections, we describe in detail how we build a complete
routing state and the features of the heuristic MIP-VNS.

4.3. Construction of a complete routing state

We construct a complete routing state by considering the assignment of
paths to biosensor-sink couples in a pre-established order. Specifically, we
sort couples (b, s) ∈ C in descending order w.r.t. their highest bitrate value
dσbs over all the scenarios σ ∈ Σ. For each couple (b, s), we assign the entire
data flow to a path p connecting b to s defined according to the procedure
BuildRouting showed in Algorithm 3.

In Algorithm 3, the construction of a complete routing state is based
on an outer loop that, following the ordering of couples, at each execution
assign a path p∗ to a couple c = (b, s) connecting b to s. The path is
chosen from a set of candidates Pc, which is built in the following way:
1) we solve the linear relaxation of Rob-BAND-BLP, where we have fixed
the value of variables of couples c ∈ C̄ for which a path has been assigned
in previous executions of the loop; 2) using the solution (xRB, yRB) of the
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Algorithm 2 RobuBAND

1: compute the linear relaxation of Rob-BAND-BLP and initialize the val-
ues τij(0) through it

2: let (x∗, y∗) denote the best solution found by RobuBAND
3: while a global time limit is not reached do
4: let (xB, yB) denote the best solution found in the inner loop
5: for k := 1 to m do
6: build a complete routing state x̄ by procedure BuildRouting
7: derive a relay installation ȳ using x̄
8: if (x̄, ȳ) is not feasible for Rob-BAND-BLP then
9: run MIP-VNS(x̄, ȳ) for repairing (x̄, ȳ)

10: end if
11: if (x̄, ȳ) is feasible and E(x̄, ȳ) < E(xB, yB) then
12: update the best solution found (xB, yB) := (x̄, ȳ)
13: end if
14: end for
15: update τij(t) according to (23)
16: if E(xB, yB) < E(x∗, y∗) then
17: update the best solution found (x∗, y∗) := (xB, yB)
18: end if
19: end while
20: run MIP-VNS(x∗, y∗) for improving (x∗, y∗)
21: return (x∗, y∗)
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relaxation, we derive a graph Hc(V,Amod) from G(V,A) as follows: the set
of vertices is the same, while in Amod we maintain only arcs (i, j) ∈ A such

that x
RB c=(b,s)
ij 6= 0, i.e. arcs associated with flow variables having non-zero

(fractional) values. Additionally, for each arc (i, j) ∈ Amod we introduce a

weight wij = x
RB c=(b,s)
ij . We derive L candidate paths for couple c = (b, s)

on graph Hc(V,Amod) by iteratively modifying Hc(V,Amod): in an inner
loop, at each iteration we find the shortest path p w.r.t. the weights wij
in Hc(V,Amod), then we add p to the set Pc and we delete the arc of p
with lowest weight from Hc(V,Amod). This is a simple yet fast and effective
procedure to find candidate paths. We delete the arc with lowest weight
since, if we interpret a fractional value of a binary variable as the probability
of fixing to 1 the variable in a good solution, then lower fractional values
should lead to fixing to 1 of lower quality (see [31] for a discussion about
the interpretation of fractional binary solutions as probability in randomized
rounding algorithms). After having established the set of candidate paths Pc
for c, we compute the probability of choosing each path p ∈ Pc to route the
entire flow of couple c. This is done according to formula (22), where ηij is set
equal to the optimal value of the linear relaxation of BAND-BLP, whereas
τij is obtained as the sum of the current values of the a-priori measure τij
for the edges in path p. We remark that computing ηij as the value of the
linear relaxation of the non-robust problem BAND-BLP is in line with the
principles of ANTS, suggesting to derive ηij from a lower bound that can
be fast computed at the price of a lower quality of the bound. Moreover, we
note that the way we compute τij privileges the selection of paths composed
by arcs with higher a-priori measures, a criterion that should lead to better
variable fixing decisions. Once that a path p∗ ∈ Pc has been probabilistically
chosen according to formula (22) computed as we detailed above, we derive
a fixing of variables xbs, where xbsij = 1 if (i, j) belongs to p∗ and xbsij = 0

otherwise. Finally, we add the couple c to the set of processed couples C̄ for
which the routing has been established.

After executing |C| times the external loop, following the ordering of the
couples, a complete routing state is then available. Assuming an ANTS point
of view, we note that each iteration of the outer loop of BuildRouting can
be interpreted as an ant moving from a partial routing state to a more
complete partial routing state.

4.4. MIP-VNS - an exact large variable neighborhood search

In order to either repair the infeasibility of a solution (x̄, ȳ) produced in the
inner loop of RobuBAND or to improve a feasible solution available at the
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Algorithm 3 BuildRouting

1: sort (b, s) ∈ C in descending order of max {dσbs ∀σ ∈ Σ}
2: C̄ = ∅
3: for (sorted c ∈ C) do
4: compute the linear relaxation of Rob-BAND-BLP for C̄ and let (xRB , yRB)

be the corresponding solution
5: let Pc be the set of candidate paths for couple c (initially empty)
6: build the graph Hc(V,Amod) with arc weights given by xRB

7: for `:= 1 to L do
8: find the shortest path p for couple c in Hc(V,Emod)
9: Pc = Pc ∪ {p}

10: exclude the arc of p with minimum weight from Hc(V,Emod)
11: end for
12: compute the probability of using p ∈ Pc as path for routing data of c

according to formula (22)
13: choose probabilistically a path p∗ ∈ Pc for routing data of c
14: fix variables xbs activating arcs in p∗ and deactivating arcs not in p∗

15: C̄ = C̄ ∪ {c}
16: end for

end of the outer loop, we rely on an exact MIP heuristic based on a large
variable neighborhood search: besides combining the principles of large [2]
and variable neighborhood search [30], our heuristic has the feature of being
exact, that is we formulate the search as a binary linear program exactly
solved through a state-of-the-art MIP solver. Specifically, given a (feasible
or infeasible) solution (x̄, ȳ) to the problem, we consider the neighborhood
N (x̄, ȳ) including all the feasible solutions of Rob-BAND-BLP that can be
obtained from (x̄, ȳ) modifying at most Γ > 0 components of ȳ and leaving
x̄ free to vary. This can be expressed by a version of Rob-BAND-BLP where
we impose the additional hamming distance constraint :

HD(ȳ, y) =
∑

r∈R: ȳr=0

yr +
∑

r∈R: ȳr=1

(1− yr) ≤ Γ

which counts the number of variables changing values in y w.r.t. y′. Fur-
thermore, we impose an optimality constraint:

E(x, y) ≤ E(x∗, y∗)− ε

expressing that we must find a feasible solution in N (x̄, ȳ) that is better
than the current best global feasible solution (in particular, we request a
minimum improvement of ε > 0). The resulting modified problem, denoted
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by MOD-Rob-BAND-BLP, can then be solved by a solver like CPLEX.
Note that this constitutes an exact local search (the search is formulated
as an optimization problem solved exactly by CPLEX) in a large variable
neighborhood (including all the feasible solutions that are within distance Γ
w.r.t. variables ȳ). The presence of the optimality constraint is particularly
useful for CPLEX: we observed that CPLEX can fast recognize a problem as
infeasible, thus certifying that the neighborhood contains no better solution
and thus allowing to not waste time in useless searches. It is also wise
to impose a time limit to the solution of MOD-Rob-BAND-BLP: CPLEX
may take a remarkable amount of time to close the optimality gap and, on
the other hand, is generally able to fast find good solutions for problems
of reduced size. We embed the solution of the problem MOD-Rob-BAND-
BLP in the procedure that we denote by MIP-VNS, which is executed for
reparation and improvement in Algorithm 2. The steps of MIP-VNS are
detailed in Algorithm 4.

Algorithm 4 MIP-VNS

1: let (x̄, ȳ) be a given incumbent solution
2: let (xΓ, yΓ) denote the best feasible solution found by MIP-VNS for Γ > 0
3: while a global time limit is not reached do
4: solve MOD-Rob-BAND-BLP for (x̄, ȳ) and Γ > 0 with time limit τ > 0
5: if E(xΓ, yΓ) < E(x∗, y∗) then
6: update the best solution found (x∗, y∗) := (xΓ, yΓ)
7: update the value of the optimality constraint
8: update the incumbent solution (x̄, ȳ) := (xΓ, yΓ)
9: end if

10: Γ := Γ + ∆

11: end while

Given an incumbent solution, we solve MOD-Rob-BAND-BLP a number of
times until a global time limit is reached. Every time that a problem MOD-
Rob-BAND-BLP is solved, we impose a local time limit. When the time
limit of a single problem is reached or the problem is solved, we enlarge the
neighborhood by increasing the hamming distance limit by a step ∆ > 0
(i.e., we impose Γ = Γ + ∆ with ∆ > 0) and start a new exact search until
the global time limit is reached.

After having detailed the entire algorithm, we finally proceed to present
computational experiments in the next section.
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5. Experimental results

We assessed the performance of our new optimization algorithm for the ro-
bust design of BANs by considering a set of 30 instances that we defined
taking as reference past literature about the topic (in particular [11, 24, 23],
which have analyzed the design of BANs with relays) and on the basis of
discussions with medical professionals from a major Italian medical institu-
tion. All the 30 instances consider a BAN including a total of 16 biosensors
(i.e., |B| = 16) and 2 sinks (i.e., |S| = 2) placed in pre-established positions
over the reference body. Moreover, we consider 400 potential sites for the
location of relays (i.e., |R| = 400), chosen randomly over the human body
excluding head, hands and feet. As in [11, 24, 23] we assume that: a) the de-
vices within a distance of 0.3 meters are able to communicate; b) the path
loss coefficient λij is equal to 3.38 for line-of-sight propagation and equal
to 5.90 for non-line-of-sight wireless links (i, j) ∈ A; c) the BAN adopts
Nordic nRF2401 transceivers [32], which are often used in WSNs, and the
corresponding energy consumption parameters are ETXCIRC

= 16.7 nJ/bit,
ETXAMP

(λij = 3.38) = 1.97 nJ/bit, ETXAMP
(λij = 5.90) = 7990 nJ/bit,

ERXCIRC
= 36.1 nJ/bit.

As in Section 2, we assume that the biosensors and sinks possess all the
necessary capacity to process the data that they are supposed to transmit
and receive, respectively. In the case of relays, we assume instead a capacity
of cr = 250 kbit/s. The set of traffic scenarios was generated randomly as-
suming that 50% of the biosensors generate and transmit data at a constant
rate in {100,150,200} bit/s, whereas the rest of biosensors have a variable
rate lying in the range [100,200] bit/s. For each instance, we generated 25
possible data rate scenarios that form the set Σ.

We performed all the experiments on a 2.70 GHz machine with 8 GB. The
code was written in the C/C++ programming language and the optimization
problems were solved by IBM ILOG CPLEX 12.5 interfaced with the code
through Concert Technology and running with a time limit of 2400 second.
All the instances led to the definition of Rob-BAND-BLP problems that
proved challenging even for a state-of-the-art MIP solver like CPLEX. As
it is clearly shown in Table 1, when CPLEX reaches the time limit, it gives
feasible solutions that are still sensibly far from the optimum, as indicated by
the measure GapBLP%. GapBLP% is the optimality gap, which indicates
how far the best feasible solution found is far from the best lower bound
produced for the optimal value (if V ∗ is the value of the best solution and
LB the value of the best bound then we compute the gap as Gap% =
|V ∗−LB|/V ∗ · 100). In contrast, our original algorithm RobuBAND is able
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to deliver solutions that are associated with much better optimality gap.
Concerning RobuBAND, we first conducted preliminary tests that brought

us to adopt the following setting of the parameters: the number L of can-
didate paths considered in BuildRouting is set equal to 5, whereas we set
α = 0.5 to balance the combination of the a-priori and a-posteriori mea-
sures. We adopted m = 20 computational agents/ants and the width w of
the moving average was set equal to 4. In order to solve the linear relax-
ation of Rob-BAND-BLP and of BAND-BLP we used CPLEX. In the case
of BAND-BLP, which must run many times, we improve the speed of solu-
tion by selecting a truncated primal simplex algorithm for computing good
relaxations in small amount of time. Concerning the parameters influencing
the MIP heuristic MIP-VNS, we used a tolerance ε = 10−1, a maximum
hamming distance Γ = 0.1|R| and a time limit of 10 minutes for MIP-VNS
when used for improvements and of 1 minute for MIP-VNS used for solu-
tion reparation. The main cycle of RobuBAND ran with a time limit of 30
minutes, which added up to the time reserved for MIP-VNS thus matched
the time limit of CPLEX.

The complete set of results is presented in Table 1, where we show the
performance of RobuBAND, denoted by the acronym BR, and of CPLEX
when applied directly to solve Rob-BAND-BLP, denoted by the acronym
BLP. For both RobuBAND and CPLEX, we report the measures related
to the best solution found within the time limit for each instance identified
by its ID. Specifically, EAV G is the average value of the energy consumed
(in µJ/bit) while Gap% is the optimality gap computed as explained above.
Finally, ∆Gap% is the percentage increase of the optimality gap of CPLEX
w.r.t. that of RobuBAND. In the case of RobuBAND, the optimality gap
is derived comparing the value of the linear relaxation of Rob-BAND-BLP
computed by CPLEX with the value of the best feasible solution found by
RobuBAND within the time limit.

It is clear that in most cases RobuBAND performs much better than
CPLEX reaching a final optimality gap and average energy consumption
values that are sensibly smaller than that of CPLEX. In the vast majority
of cases, CPLEX return solutions associated with average energy values and
optimality gaps that are at least 10% higher and thus worse than that of
RobuBAND (remember that larger gaps are associated with higher dis-
tances of the best solution from the optimum, thus implying a worse cer-
tificate of quality of the solution). In particular, the average percentage
increase in the optimality gap is about 25%. The higher performance of
RobuBand is particularly evident in the case of instances I6, I26 and I29,
where the ∆Gap% indicates a performance that is dramatically better than
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that of CPLEX and is accompanied by a similar behaviour of the average
energy consumption. At the same time, we notice that there are also two
cases (I17 and I24) in which RobuBAND performs worse than CPLEX, but
the difference is anyway contained. These experimental results thus support
the conclusion that RobuBAND represents a competitive alternative to
CPLEX to get better solutions in less time.

6. Conclusion and future work

In this paper, we have presented the first robust optimization model for ad-
dressing traffic uncertainty in the design of body area networks with relays
and adopting single-path routing. Our work has been aimed at extending the
use of optimization models and algorithms in the design of BANs, which has
received very little attention. Since the resulting robust optimization prob-
lem may result challenging even for a state-of-the-art optimization solver,
we have proposed an original optimization algorithm exploiting linear relax-
ations to guide a heuristic fixing of variables, combined with an exact large
variable neighborhood search. Experiments on realistic instances show that
our optimization algorithm performs much better than a solver like CPLEX
in the vast majority of cases, fast finding solutions of better quality and
associated with lower optimality gaps. We plan to aim future research at
further improving the performance of the algorithm and refining the repre-
sentation of traffic uncertainty by more advanced models, such as Multiband
Robust Optimization [12].
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