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Abstract

This paper is concerned with the problem of macroscopic road traffic
flow model calibration and verification. Thoroughly validated models are
necessary for both control system design and scenario evaluation purposes.
Here, the second order traffic flow model METANET was calibrated and
verified using real data.

A powerful optimisation problem formulation is proposed for identifying
a set of model parameters that makes the model fit to measurements. For
the macroscopic traffic flow model validation problem, this set of parameters
characterise the aggregate traffic flow features over a road network. In traf-
fic engineering, one of the most important relationships whose parameters
need to be determined is the fundamental diagram of traffic, which models
the non-linear relationship between vehicular flow and density. Typically, a
real network does not exhibit the same traffic flow aggregate behaviour ev-
erywhere and different fundamental diagrams are used for covering different
network areas. As a result, one of the initial steps of the validation process
rests on expert engineering opinion assigning the spatial extension of fun-
damental diagrams. The proposed optimisation problem formulation allows
for automatically determining the number of different fundamental diagrams
to be used and their corresponding spatial extension over the road network,
simplifying this initial step. Although the optimisation problem suffers from
local minima, good solutions which generalise well were obtained.

The design of the system used is highly generic and allows for a num-
ber of evolutionary and swarm intelligence algorithms to be used. Two UK
sites have been used for testing it. Calibration and verification results are
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discussed in detail. The resulting models are able to capture the dynamics
of traffic flow and replicate shockwave propagation.

A total of ten different algorithms were considered and compared with
respect to their ability to converge to a solution, which remains valid for
different sets of data. Particle Swarm Optimisation (PSO) algorithms have
proven to be particularly effective and provide the best results both in terms
of speed of convergence and solution generalisation. An interesting result
reported is that more recently proposed PSO algorithms were outperformed
by older variants, both in terms of speed of convergence and model error
minimisation.

Keywords: Traffic flow models, model validation, parameter estimation,
Intelligent Transportation Systems, particle swarm optimisation, genetic
algorithms, cuckoo search.

1. Introduction and Background

Traffic modelling is an essential element of traffic planning and manage-
ment systems. Traffic models are mainly used for evaluation and system
design purposes. Intelligent Transportation Systems (ITS) operating in mo-
torway networks require the use of valid models for tasks like traffic predic-
tion, state and travel time estimation, and real time model based predictive
control. Automatic incident systems also make use of such models. Irrespec-
tive of their purpose, models have to be valid for the specific road network
they are used for.

This paper is concerned with the problem of macroscopic traffic flow
model validation and, hence, microscopic and mesoscopic models are beyond
its scope. For a more detailed discussion on modelling approaches, see [1].

Macroscopic models describe the traffic flow as a liquid using aggregate
variables. At point x on the road and time t, these are the vehicular den-
sity ρ(x, t) (veh/km), mean speed v(x, t) (km/h) and flow (or volume) q(x, t)
(veh/h). The macroscopic description of traffic along a motorway was intro-
duced in the seminal papers of Lighthill and Whitham [2] and Richards [3],
resulting to the LWR model.

The LWR model employs the vehicle conservation equation to calculate
densities and flows, which reads

∂ρ(x, t)

∂t
+
∂q(x, t)

∂x
= 0. (1)
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Figure 1: Example of the Fundamental Diagram.

In order for eqn. (1) to be solved, the relationship between flow and density
must be explicitly considered. In the LWR theory it is given in the form

q(x, t) = ρ(x, t)V [ρ(x, t)] (2)

where V [ρ(x, t)] (km/h) is an equilibrium relationship between density and
mean speed, i.e. the so-called Fundamental Diagram (FD) of traffic. The
FD models the traffic flow’s tendency to settle to the equilibrium mean speed
V [ρ(x, t)] for a given density level ρ(x, t). The typical shape of the density-
flow FD, i.e. the way the quantity (ρ(x, t)V [ρ(x, t)]) changes with respect
to ρ(x, t) is shown in Fig. 1. The FD accounts for the fact that until the
critical density ρcr is observed, the vehicular flow increases with increasing
density. The flow is maximised at ρcr, and when the density increases past
that level, the number of vehicles contained per unit of length is such that
drivers are forced to slow down, reaching to zero speed at jam density level
ρmax. Different functional expressions for the FD have been proposed in the
literature, see [4, 5, 6].

Typically, a space and time discretised version of eqn. (1), along with
the FD constitute the basic elements of a first order macroscopic traffic flow
model, [2, 3, 7, 8, 9, 10, 11].

Payne-type second order models result from coupling (1) with an empir-
ical equation governing the mean speed v(x, t) dynamics, [12]; this equation
has the form

∂v(x, t)

∂t
+ v(x, t)

∂v(x, t)

∂x
+

1

ρ(x, t)

∂P (x, t)

∂x
=

1

τ
{V [ρ(x, t)]− v(x, t)} (3)

where τ is a relaxation constant and P (x, t) a pressure term, which gives rise
to a range of different models, [13].
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Irrespective of the model’s order, a number of parameters characteris-
ing the aggregate driver-vehicle-infrastructure behaviour are used. For any
practical purpose the values assigned to them are based on real data col-
lected from the road network. Using data sets of traffic counts and vehicle
speeds, typically obtained by means of inductive loop detectors embedded
in the motorway, a rigorous model validation procedure needs to take place,
for identifying an optimal set of parameters, [14]. The validation process
consists of two parts, model calibration and model verification.

The calibration phase aims at determining an optimal set of model pa-
rameters that minimises the error for a specific data set. Verification is then
performed to corroborate the model’s accuracy using a different set of data,
not used during calibration. Model validation is a difficult procedure due
to the sensitivity and the non-linear nature of the traffic flow process. Fur-
thermore, the resulting optimisation problem has numerous local minima,
[15].

Here, the second order model Modéle d’Écoulement de Trafic sur Au-
toroute (META) [16] and its extension to networks, META-NETworks (ME-
TANET) [17], is used as a modelling tool. The METANET simulator and its
predecessors have been successfully validated for networks of various sizes. A
more extensive model validation exercise for the META model was conducted
for the Paris ring road in [18]. The validation of the large scale network of
the Amsterdam peripheral network is described in [16]. For the modelling
of the Paris and Amsterdam sites, the deterministic search algorithm of Box
[19] was used. A simplex based algorithm was used by [20] to validate various
numerical schemes.

In [21] a method calculating the model parameters by comparing the
congestion pattern of the data and model output aiming at avoiding incorrect
data forms, was used. A cross entropy method is used in [15] to validate the
model used in [21] for a 10km section of a UK highway. A comparative study
of the first order Cell Transmission Model (CTM) [7, 8] and METANET for
a motorway in Greece based on the Nelder-Mead algorithm [22] is provided
in [23]. The use of a genetic algorithm to validate METANET on a simple
site in the UK is reported in [24]. In [25] a METANET model parameter
identification algorithm is discussed using data from a 4.65 km stretch of
a California highway; the original expression used for FD in METANET is
replaced with a two-regime model and the resulting optimisation problem is
solved using a sequential quadratic programming algorithm.

Motivated by the requirements generated for designing autonomic traffic
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management systems, i.e. systems that exhibit self-∗ (e.g. self-optimising,
self-healing, self-configuring and so forth) properties, the model validation
problem’s scope was extended to automate elements that traditionally are
based on engineering expert opinion [26]. This is one of this paper’s con-
tributions. The proposed problem formulation is able to replace expert
engineering opinion and judgement by automatically selecting the spatial
extension of the application of a FD along with its parameters. This ex-
tra requirement increases the problem complexity but removes the need for
prior expert knowledge about congestion patterns. Bottleneck identification
as used in [27, 28] or choosing an arbitrary (based on educated opinion) point
for a change in the FD parameter set [16] is not explicitly required. These
are left to the optimisation algorithm to deal with, aiming at avoiding over-
parametrisation as well. Within this setting, this paper aims at providing
the details of mainly particle swarm optimisation (PSO) performance when
used for the METANET model validation problem.

In this manner many different categories of algorithms have been applied
to various engineering problems. An application of differential evolution
to constrained combinatorial problems is shown in [29]. A multi-objective
genetic algorithm has been used to optimise electrical drives [30]. A grav-
itational search is conducted to optimise a fuzzy servo controller in [31].
Particle swarm optimisation has been used for reservoir optimisation [32],
and hydrothermal scheduling [33].

In this paper three classes of algorithms are evaluated, Particle Swarm
Optimisation (PSO), Genetic Algorithm (GA) and Cuckoo Search (CS). The
emphasis of this paper is on the particle swarm optimisation and a variety of
PSOs are used. The GA used is a simple one and is included as a baseline.
The CS algorithm, is included because it has been shown to outperform PSO
for some problems, [34, 35].

The suggested system has been applied to two UK sites that have their
own congestion patterns. The data were obtained from the Highways Agency
owned system Motorway Incident Detection and Automated Signalling (MI-
DAS).

The rest of this paper is organised as follows. Section 2 provides an
overview of the METANET model. Section 3 provides the optimisation prob-
lem formulation. Section 4 provides the used site descriptions. Section 5 is
concerned with the details of the algorithms used. Results are provided and
discussed in section 6. Section 7 concludes this paper.
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Figure 2: Link discretisation.

2. METANET Model Overview

The METANET simulator is a discrete form of Payne’s model (3) and is
able to model arbitrary motorway networks of any topology. A network is
represented as a directed graph consisting of nodes and links. With links rep-
resenting homogeneous road sections, where the number of lanes is a constant,
and there is no significant change of curvature or gradient. Furthermore, no
traffic sources or sinks (junctions) exist within a link. Nodes connect the
links and are used at places where the geometry of the motorway changes
or at on-/off-ramp junctions. Each node has at least one incoming and one
outgoing link. Traffic enters via origin links and leaves through destination
links.

Time is discretised globally by a time step T and there are K steps in
the time horizon. Each motorway link m is discretised into Nm segments of
equal length Lm as shown in Fig. 2. The traffic variables describing traffic
conditions in segment i of link m, at time instant t = kT , k = 0, 1, . . . , K, are:
(a) the traffic density ρm,i(k) (veh/km/lane), which represents the number of
vehicles in the segment divided by Lm and the link’s number of lanes λm; (b)
the mean speed vm,i(k) (km/h) representing the mean speed of the vehicles
in segment i at time kT ; (c) the traffic flow qm,i(k) (veh/h), which is the
number of vehicles leaving segment i of link m during interval [kT, (k+ 1)T ],
divided by T .

By discretising equations (1) and (3), [18, 17, 36], the discrete time mo-
torway traffic flow model is the following.

ρm,i(k + 1) = ρm,i(k) +
T

Lmλm
[qm,i−1(k)− qm,i(k)] (4)
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qm,i(k) = ρm,i(k)vm,i(k)λm (5)

vm,i(k + 1) = vm,i(k) +
T

τ
{V [ρm,i(k)]− vm,i(k)}

+
T

Lm
vm,i(k)[vm,i−1(k)− vm,i(k)]

− νT

τLm

ρm,i+1(k)− ρm,i(k)

ρm,i(k) + κ
(6)

where ν is an anticipation constant and κ a numerical stability constant;
V [ρm,i(k)] is the FD and the functional expression used is the following.

V [ρm,i(k)] = vf,m · exp

[
− 1

αm

(
ρm,i(k)

ρcr,m

)αm]
(7)

where ρcr,m is the critical density of link m and αm a parameter. Parameters
vf,m, ρcr,m, αm, define a link’s FD and the model validation process aims at
identifying their values.

In order to account for speed drops due to on-ramp inflow and merging
phenomena the term −δTqµ(k)vm,1(k)/(Lmλm(ρm,1(k) + κ)) is added at the
right hand side of (6), where δ is a constant parameter, µ the merging link
and m is the leaving link. This term is included only when the speed equation
is applied to the first segment of the downstream link m. Speed decreases
due to weaving at locations where the total number of lanes is reduced is
accounted for by adding the term −φT∆λρm,Nm(k)vm,Nm(k)2/(Lmλmρcr,m)
to the right hand side of (6), where ∆λ is the reduction in the number of
lanes and φ is another parameter. This term is only applied to the last
segment of the link upstream the lane drop.

Constraints are imposed on the mean speed to ensure that it can not be
lower than a network-wide minimum speed vmin and on the density to ensure
it is not larger than a maximum ρmax. This means that after executing the
calculation of eqns. (4) and (6), the following rules are applied

ρm,i(k + 1) := min {ρm,i(k + 1), ρmax} (8)

vm,i(k + 1) := max {vm,i(k + 1), vmin} (9)

METANET employs a simple queuing model for collecting the demand
during period k at origin o, and subsequently forwarding it into the main-
stream. This is used for the calculation of the origin link’s o outflow qo(k)
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into the motorway. However, for the model validation problem, qo(k) is a
direct measurement from the loop detectors. Hence, the queueing model is
bypassed, since the measurement is directly fed into the model and there is
no need for it.

In order for the speed equation to be applied at every exit location s,
the density trajectories ρs(k) over the entire time horizon are provided as
boundary conditions.

Finally, a node model is used to assign flows at motorway junctions.
Let In and On denote the set of incoming and outgoing links to and from,
respectively, node n. Then the sum of all flow entering the node n during
time period k, Qn(k) is given by

Qn(k) =
∑
µ∈In

qµ,Nµ(k) ∀n. (10)

The turning rate βmn (k) is defined as the percentage of Qn(k) that leaves
through out link m ∈ On during period k. This means that qm,0(k) required
by eqn. (4) when i = 1 is calculated as

qm,0(k) = βmn (k) ·Qn(k) ∀m ∈ On. (11)

For a full description of the METANET, see [17] or Appendix A of [36]. By
substituting (5), (10), (11) into (4); and the calculation of velocities and
densities acting over nodes as in [17, 36] into (6) the model can be expressed
as the following discrete dynamic state-space system

x(k + 1) = f [x(k),d(k); z] . (12)

The state vector consists of the density and mean speed of every link segment,
i.e.

x =
[
ρ1,1 v1,1 . . . ρ1,N1 v1,N1 . . . ρ1,M1 v1,1 . . . ρ1,NM1

v1,NM1

]T
(13)

where M1 is the number of motorway links in the network.
The disturbance vector d consists of (a) the inflows qo entering the sys-

tem from entry points (origin links) like on-ramps or the upstream main
site boundary and optionally the speeds vo at these locations; (b) the densi-
ties ρs at the exit locations (destination links) like off-ramps or downstream
main site boundary; and (c) the turning rates at every split junction. These
quantities are organised into vector

d =
[
q1 v1 . . . qM2 vM2ρ1 . . . ρM3β

µ1

1 β
µM4
M4

]T
(14)
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where M2 is the number of origins, M3 the number of destinations, M4 the
number of split junctions and µn ∈ On is the index of the destination link
sending flow out of the network at split junction node n.

Vector z consists of the model parameters as encountered in the dynamic
density (4), speed (6) and fundamental diagram (7) equations. Hence, z
includes the following network-wide global parameters: the maximum density
ρmax; the minimum speed vmin; and the mean speed equation (6) parameters
τ , ν, φ, δ and κ. It also contains parameters related to the fundamental
diagram; vf , α, ρcr.

3. The Calibration Problem Formulation

From a known initial state x0 and known disturbance trajectories d(k),
k = 1, . . . , K, a forward integration of (12) results to a full profile of the
traffic conditions in the network over the same time horizon. When x0 and
d are given as measurements, the model output can be compared with mea-
surements taken from locations inside the motorway. The model accuracy
in this case depends on the selection of the parameter vector z. A set of
measurements x̂ from a number of locations along the motorway, can be
used for comparison between reality and model output. The resulting error
minimisation problem takes the form

min
z
J [x(k), x̂(k)] (15)

subject to

x(k + 1) = f [x(k),d(k); z] , x(0) = x0 (16)

zmin ≤ z ≤ zmax (17)

where J [x(k), x̂(k)] is a suitable error function and zmin and zmax are the
lower and upper bounds, respectively, of z’s elements. Hence, the objective
function’s dependence on the decision variables z is implicitly considered
through the constraints (16). The evaluation of J for a particular feasible
value of z requires the forward integration of (16) given as input the measured
x0 and d(k). After this integration, i.e. a simulation run, the model state
trajectories are used for obtaining J ’s value.

As mentioned earlier the parameter vector z consists of two parts, a set of
network-wide parameters and those pertaining to the fundamental diagram.
Typically, expert engineering opinion is used for pre-setting the number of
distinct fundamental diagrams that are going to be used and the spatial
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extension of their application. In other words, prior to the solution of the
optimisation (15)–(17), there has to be a decision based on knowledge of
the network’s congestion dynamics, e.g. bottleneck location, related to the
number of FDs to be used and for each one the list of motorway links using
them. During the validation process, these two features change only manually
and it is based on their specification that problem (15)–(17) is solved. Hence,

if N̂ is the number of FDs used, each ones parameters ρcr, α and vf need to
be included in z, which then takes the form

z =
[
τ κ ν ρmax vmin δ φ v

1
f α

1 ρ1
cr . . . v

N̂
f α

N̂ ρN̂cr

]T
. (18)

Notice the superscript number on the FD parameters is the index of the FD
and is different from the numbers on the same symbols appearing as sub-
scripts in the modelling section; the latter refer to link and segment indices.
When N̂ = 1 then a single fundamental diagram is used for the site where
the model is calibrated. If N̂ = M1 then every link has its own FD. From
a modelling perspective the former is preferred to the latter, since having
a unique FD for every link is a case of over-parametrisation. However, the
different physical properties of the road network resulting to different aggre-
gate traffic behaviour due to narrower lanes, upgrades, downgrades, changes
of curvature, bottlenecks, junction merging and merge lane length, cannot
be overlooked. Hence, there is a natural need for using a minimal number of
different FDs. In the approach suggested here, these decisions become part
of the solution of problem (15)–(17).

This is done firstly by introducing into z a new FD parameter l`, which is
defined as the number of links FD ` is applied to; secondly by using a simple
rule for mapping FD onto the list of motorway links. The revised vector of
model parameters is now

z =
[
τ κ ν ρmax vmin δ φ v

1
f α

1 ρ1
cr l

1 . . . vN̂f α
N̂ ρN̂cr l

N̂
]T

(19)

where l` ∈ [0,M1 + 1], ` = 1, . . . , N̂ .
The mapping of FD to motorway links for the unidirectional flow sites

considered here is a simple rule that assigns the first FD to the most upstream
motorway link, which conventionally is assigned the number 1. Subsequently,
the remaining FDs are assigned to links in an iterative manner. This rule is
applied for a given z prior to the forward integration of (16) for the evaluation
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of the corresponding value of J . Hence, when the METANET executable is
invoked, the motorway links have been assigned to FDs.

In order to describe this rule when applied to a particular solution z, let

Az =
{

1, 2, . . . , N̂
}

denote the set of FD indices in ascending order. Let B`
z

and E`
z denote the starting and the end link index, respectively for which FD

` is applied. Let Fz ⊆ Az denote the ordered set of FD indices with non-zero
extension, i.e.

Fz =
{
` ∈ Az : l` > 0

}
. (20)

Let us define DFz(j) as the mapping that returns the list element at position
j in the ordered set Fz. Then the following rule is applied for assigning FDs
to motorway links.

initialise with
BDFz (1) = 1
EDFz (1) = lDFz (1)

and then iteratively for j = 2, . . . , |Fz|
BDFz (j) = EDFz (j−1) + 1
EDFz (j) = BDFz (j) + lDFz (j).

(21)

Subsequently, the triplets (`, B`, E`), ` = 1, . . . , N̂ are used to configure ME-
TANET’s input file describing network configuration and link features (an
ASCII file) using a simple script. Because the l` are considered as continuous
variables in the optimisation problem, in the final mapping l` := bl`c.

The solution of optimization problem (15)–(17), (21) provides an optimal
set of model parameters and the optimal number and spatial extension of FD
to be used. The model error minimisation as well as the preference towards
minimum use of FDs are incorporated into the structure of the objective
function (15), which depends on the available loop detector measurements.

Table 1: Variable limits

Variable τ κ ν vmin ρmax δ φ αm vf,m ρcr,m

Maximum 60 90 90 8 190 4 3.0 5.00 130 40.0
Minimum 1 5 1 5 160 0.001 0.1 0.40 80 18.0

Let us assume that there areM5 loop detectors on the motorway providing
flow and speed measurements for segment i of link m. The measurements

11



vector x̂ to be used in (15) takes the form

x̂ = [y1,q y1,v . . . yM5,q yM5,v]
T (22)

where yj,q and yj,v are the flow and speed measurements, respectively, from
sensor j, j = 1, . . . ,M5. A global list is retained assigning each sensor to
the corresponding motorway link it belongs to. Hence, if sensor j is installed
at segment ij of link mj, then the discrepancy between yj,q(k) and qmj ,ij(k),
and yj,v(k) and vmj ,ij(k) gives a measure of the model’s accuracy.

This comparison needs to be performed properly along the time dimen-
sion. Typically, the sensors’ measurement sample time Ts is larger than the
model sample time T . For example, for the data used here, Ts = 60 sec-
onds whereas T = 8 seconds. The assumption followed is that the real flow
and speed during the minute the measurements were taken, are constant.
Hence, for each model time period k the measurement sample period it be-
longs to is identified and the model outputs are compared to the same set of
measurements.

Given the measurements yj,q(k) and yj,v(k) the model’s flow square error
Jj,q(x, x̂) from sensor j is given by

Jj,q(x, x̂) =
K∑
k=1

[
yj,q(k)− qmj ,ij(k)

]2
(23)

and the speed square error from

Jj,v(x, x̂) =
K∑
k=1

[
yj,v(k)− vmj ,ij(k)

]2
. (24)

Based on them, the weighted total error Je is

Je(x, x̂) =

M4∑
j=1

[AqJj,q(x, x̂) + AvJj,v(x, x̂)] (25)

where Aq and Av are scaling factors accounting for the fact that the flow
and speed have different orders of magnitude; under stationary conditions,
the flow may vary at 5000 veh/h and the speed at 80 km/h. The weights’
values used here are Aq = 0.001 and Av = 1 and they are those reported
in [14] where a similar error function is used. As has been observed in [23],
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the flow and speed error terms are not antagonistic in the sense that if the
model mean speed is correct then the flow will also be correct by virtue of
the density equation, which accounts for the vehicle conservation, hence, the
Aq = 0 in the objective function in [23].

In order to achieve the automatic assignment of FDs by taking advantage
the extension to z given by (19), the following penalty term Jp(z) is included
in the total objective function.

Jp(z) =
N̂−1∑
`=1

N̂∑
r=`+1

[
wv
(
v`f − vrf

)2
+ wρ

(
ρ`cr − ρrcr

)2
+ wα

(
α` − αr

)2
]

(26)

where wv, wρ and wα are weighting parameters penalising the variance of FD
parameters accounting for variable magnitude and they are set to 0.4, 0.5,
10.0, respectively. The problem’s objective function (15) takes the form

J (x, x̂, z) = Je(x, x̂) + wpJp(z) (27)

where wp a weighting parameter applied on the total penalty term. The
weight wp depends on the problem size and properties, but a default value of
200 is used here, which is appropriate for the size of the sites considered. The
inclusion of Jp in (27) aims at driving the minimisation algorithm towards
solutions that minimise the distance between FD, hence, resulting implicitly
to a minimum number of different FD in the optimal solution. This process
results to what is termed here as Automatic Assignment of Fundamental
Diagrams (AAFD).

The resulting optimization problem (15)–(17), (21), (27) is not trivial to
solve and traditional gradient based approaches cannot be used. Due to their
ability to efficiently search the space of solutions and find global minima, evo-
lutionary and swarm intelligence algorithms are particularly suitable for this
task, especially since there is no strong real-time computation requirement.
There is ample time for the model validation, as once calibrated it remains
valid for a sufficient amount of time. The data ageing problem does occur,
but at considerably larger time scales compared to the computation time
required to converge to a good solution.

The overall system structure is depicted in Fig. 3. A simple interface
allows the population based optimisation algorithm to automatically set up
all the necessary input files for METANET to run using any vector z in
view of rule (21). The fitness value (27) is calculated based on the out-
put files created by METANET. Notice that in the suggested approach, the

13



METANET simulator is used as a black box. As a consequence, the discreti-
sation scheme followed does not depend on the sensors’ location. Once the
algorithm provides a solution, it is verified using data that were not used
during calibration.

In total ten different optimisation algorithms are considered and their
results are compared here. A brief overview is provided in section 5.

Start

Run Model

Inputs

Output

Traffic Model
i.e. METANET

NO

YES

YES

NO

EA

End

Create Population
of solutions

Update Pop.
using EA

Create model
input files

Calculate Objective
Function

Is
convergence criteria
or max iterations

reached?

Apply calibrated
parameters to different

data sets

Is model
accurate?

Figure 3: Overall validation system.

4. Site Descriptions and Data Availability

The first site considered here is a motorway stretch near Heathrow Airport
and consists of the eastbound M4 linking London to Reading and Bristol.
This site serves large traffic volumes due to the connection with London’s
M25 orbital and parts of Heathrow Airport. The modelled motorway stretch
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covers a length of 7.8 km and the METANET model consists of 5 links as
shown in Fig. 4.

The model calibration was carried out using data from Monday 8th, 15th

and 22nd of February 2010. To test the AAFD, the maximum number of FDs
allowed to be used is set to be equal to the number of links, i.e. N̂ = 5 (the
maximum possible) resulting to a 27-dimensional optimisation problem.

Reading,
Swindon,
Bristol

J4b
M25

J4
Heathrow
Hillingdon

West
London

Link 1
2.0km

Link 3
1.2km

Link 5
1.4km

Link 4
1.2km

Link 2
2.0km

Figure 4: Schematic of Heathrow site.

The second site is the Northbound M1 motorway as it enters Sheffield. It
is larger than the Heathrow site extending over 21.9 km and the METANET
model consists of 20 links, Fig. 5. Typically, recurrent congestion has the
form of a shock wave originating at the centre. Usually it occurs at the end
of the link 6 where the off-ramp of Junction 33 is short and unable to cope
with the demand of exiting flow, resulting to congestion backing up into the
mainstream.

For this site, data was used from Monday the 1st, 8th and 15th of June
2009. Again, the number of possible different FDs allowed to be used is set
equal to the maximum, i.e. N̂ = 10, resulting to a 47-dimensional optimisa-
tion problem.

The MIDAS data are collected from loop detectors installed on the mo-
torways and the on-/off-ramps. They provide flow, speed, and occupancy
measurements per lane averaged over one minute intervals. It is well known
that vm,i in eqn. (5) is the space mean speed, which for a small area cen-
tred around a loop detector is estimated by the harmonic mean of individual
vehicle speeds passing over the detector. A simple calculation allows the
estimation of the space mean speed for the whole cross-section. There is no
need for any other transformations like those used in [21].
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Figure 5: Schematic of Sheffield site.

The provided data are used to create the required model inputs, i.e. the
initial state vector of eqn. (13) x(0), d as defined in eqn. (14) as well as for
populating the measurements’ vector x̂ as defined in eqn. (22).

Examples of these data are shown in Fig. 6. The turning rate trajectory
for Heathrow’s off-ramp at junction J4b. is shown in (a). The density profile
at the most downstream site boundary is shown in (b). The inflow and speed
profiles, also used as boundary conditions, at the motorway entrance of the
Heathrow site are shown in (c). With the exception of the main motorway
entrances, the speed is not given for on-ramps as the measured data may be
of vehicles that are still accelerating and have not yet adjusted their speed
to that of the main carriageway.

5. Optimisation Algorithms

5.1. The Problem Set-up

The system designed and developed for this work has been based on the
METANET traffic simulator. The optimisation problem formulation in con-
junction with population based search methods result in a very flexible and
versatile system where the search algorithms and the simulator executable
can be replaced with other functionally similar components without much
effort, as long as the model parameter vector is defined appropriately. As
discussed in section 3 the formulated optimisation problem is concerned with
minimising (27) subject to (15)–(17) and (21) by varying the parameter vec-
tor z (19). As shown in Fig. 3, the objective function value calculation is
treated as a black box by invoking a call to the simulator executable. All
ten algorithms discussed here are based on the same procedure for objective
function value evaluation. The search algorithms used adjust z and extract
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Figure 6: Samples of measurement trajectories given to the METANET: (a) Turning rates
for Heathrow site J4b. (b) Density at the main end motorway exit of the Sheffield site.
(c) Origin input flow and speed at the main entry point of the Heathrow.
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x(k), k = 1, 2 . . . K, from the simulator output, and manipulate the popu-
lation of solutions according to their own specific rules. A brief overview of
those algorithms is given next.

5.2. Baseline Genetic Algorithm Optimisation

The nature of optimisation problem dictates the use of derivative-free
population based algorithms for solving it. The first choice in this study
was the implementation of a simple and straightforward GA based on a real-
coding scheme [37], where each member of the population is a parameter
vector z. The GA used here is based on [38] and employs three key operators,
selection, crossover and mutation.

At every iteration individuals that are far away from the current optimum
are disregarded by use of a sigma truncation scheme [39]. In the selection
operation solutions are are drawn from this reduced set by use of remainder
stochastic sampling without replacement, [39]. This method is used to create
a mating pool of equal size to the population. Solutions within the mating
pool are paired randomly and passed to the crossover operation.

For each pair of solutions in the mating pool there is probability of
crossover occurring. If crossover occurs then the two parent solutions are
combined to create child solutions that are passed to the next generation. If
crossover does not occur then the parents are passed to the next generation.
Various operators have been proposed for the crossover, in this algorithm sin-
gle point, mask, whole arithmetical and heuristic crossover are investigated,
see [38] for details.

Once crossover is complete each solution has a probability to mutate.
If a solution mutates it is adjusted in accordance to the uniform or non-
uniform mutation operator, [38]. The mutation scheme to be used is selected
randomly with the methods weighted equally.

Trials runs were done and the probability of mutation was set at 0.7
and the probability of mutation at 0.05. These values were selected as they
allowed for a diverse range of solutions to be maintained without disrupting
convergence.

The initial results revealed that the AAFD is possible through the pro-
posed problem formulation. Having verified the idea, a brief investigation
was conducted for evaluating different GA crossover operators. In [40] a
method is proposed that uses a variety of crossover functions to increase the
GA’s ability to search the solution space effectively.
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Figure 7: GA crossover operators comparison for Heathrow model calibration.

Figure 7 depicts the evolution of the objective function against the num-
ber of function evaluations required by the GA for the Heathrow site for the
different crossover schemes as well as a combination of all the investigated op-
erators. The best results were obtained when real coded operators are used,
arithmetical and heuristic crossover. Single point and mask crossover per-
form the worst and a combination of all schemes did not improve convergence.
Therefore, further investigations will use a GA using just the arithmetical
crossover operator.

5.3. Particle Swarm Optimisation (PSO)

PSO [41, 42] algorithms employ the notion of particles for searching the
Γ dimensional solution space C ⊂ RΓ having knowledge of the best previous
solutions found by themselves and by other particles in their neighbourhood.
This information is used to update a velocity vector governing each particles’
new position resulting to a flock converging towards the current best solution
and evaluating the objective function at points along its flight path. An
inertia weight [43] allows for the particles’ velocity to have a momentum
resulting to overshooting over the current optimum and explore more of the
solution space.

Each particle ι is characterised by its position zι ∈ C that defines a
solution of the problem, and its velocity θι ∈ RΓ. At iteration ξ particle ι
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is at position zξι = [zξι,1, z
ξ
ι,2, . . . , z

ξ
ι,Γ] within C and has directional velocity

θξι = [θξι,1, θ
ξ
ι,2, . . . , θ

ξ
ι,Γ]. Particle ι’s directional velocities and positions are

updated according to the rule

θξ+1
ι,γ = ωθξι,γ + c1r1

[
πξι,γ − zξι,γ

]
+ c2r2

[
zξhι,γ − z

ξ
ι,γ

]
(28)

zξ+1
ι,γ = zξι,γ + θξ+1

ι,γ (29)

where ω is the inertia weight, c1, c2 the acceleration coefficients, r1, r2 are
random numbers in the domain [0, 1], πι

ξ = [πξι,1, π
ξ
ι,2, . . . , π

ξ
ι,Γ] is the best

position previously found by particle ι until iteration ξ and hι is the index
of the best particle within the neighbourhood of particle ι.

PSO algorithms use different topologies for determining a particle’s neigh-
bourhood. In Global-PSO [44] (GPSO) all of the particles communicate with
each other, hence hι is the best particle within the swarm and returns the
same index for all particles ι. Local-PSO (LPSO) [45] uses a ring structure
where each particle has two neighbours, for convenience the neighbours are
set to those as in the computer memory array list. Hence, hι is best current
point of particle ι or its two neighbours in memory.

In Adaptive-PSO-09 (APSO-09; the 09 indicates year of publication) [46]
the parameters ω, c1, c2, which are constant in LPSO and GPSO, are changed
in a controlled manner. The change is based on the state of search and it-
eration number. Fuzzy logic based Evolutionary State Estimation (ESE)
is applied to ascertain the state of the search resulting to the appropriate
parameters’ adjustments. An added feature helping to avoid premature con-
vergence is to have an Elitist Learning Strategy (ELS) mutating the best
solution in an attempt to encourage the occurrence of jumping out a local
minimum [46].

Two other independent versions of APSO where proposed in subsequent
papers, APSO-12 [33] and APSO-14 [32]. In APSO-12 the parameters w, c1,
c2 are changed following a simple rule, based on current and the maximum
number of iterations. A slightly more complex procedure is used in APSO-14,
whereby metrics estimating the convergence speed and population diversity
are used to adapt the inertia weight w.

The Chaos-Enhanced-Accelerated PSO (CEPSO) algorithm proposed in
[47] is also considered here. In this variant, the velocity eqn. (28) is dropped
and a revised version of (29) is used. The algorithm’s parameters change
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over time following a chaotic mapping in order to have a robust convergence
strategy. The convergence of this simplified PSO has been proved, although
it may suffer in highly non-linear multi-modal problems [48]. Here, the si-
nusoidal chaotic mapping proposed in [47] is used for updating the position
equation parameters.

The final PSO variant investigated is the High Exploration PSO (HEPSO)
[49], which combines elements of artificial bee colony and GA. In this case,
the inertia weight is adapted in the same manner as APSO-09 and the ac-
celeration coefficients are updated using the same method as APSO-12. The
main method for updating the particles’ position is based on a GA crossover
technique as described in [49]; at the initial stages, however, a particle’s
position may be updated based on an artificial bee colony algorithm.

5.4. Cuckoo Search

Cuckoo search [50] utilises Lévy flights to update a population of solu-
tions, referred to as nests. Each nest is a version of the parameter vector z
that needs to be identified. At each iteration new solutions (eggs) are cre-
ated for each nest. An egg is generated by perturbing every dimension of
the nest solution by adding a scalar (characteristic step length) multiplied
by a random number drawn from the Lévy distribution. If egg is an improve-
ment over the solution at a randomly chosen nest then that nests solution
is replaced by the egg, otherwise the egg is discarded. At the end of every
iteration a proportion of the worst nests are abandoned and replaced with
new ones by a random walk. This simple algorithm has few parameters, the
number of nests (population), the proportion of nests to abandon and the
characteristic step length. For a full description of CS see [50].

This simplicity of CS may result in an inadequate search of the solution
space [35]. In order to address this, a Modified Cuckoo Search (MCS) [35]
was proposed, with two adjustments to the original algorithm. First, the
characteristic length is now dynamic and reduced over iterations allowing
for a gradually refined search. The second modification is to allow for infor-
mation to be shared between current solutions, which is not present in the
original CS. This is done by selecting a fraction of the best nests to form a
pool from which new nests are spawned. Two nests are selected from the
pool and a new nest is generated along the line connecting them. The nest is
placed on this line using the inverse of the golden ratio (1 +

√
5)/2 so that it

is closer to the fitter solution. The new nest replaces the current worst nest
in the search. For a full overview of the MCS see [35].
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5.5. Algorithm Parameters

All algorithms were initialised using Latin hypercubes. Each variable is
assumed to have a uniform distribution within its range, as defined in Table 1.
The limits in the table are simply handled by moving solutions that move
outside the domain to the boundary. For the PSO algorithms the velocity
component for dimensions that are adjusted in this manner is multiplied by
−0.5. This prevents the solution from attempting to leave the space on the
next iteration. For the PSO and GA optimisation algorithms the population
size was set to 30. For CS and MCS a population of 25 was used as this is
what is used in [50]. The GA parameters were previously discussed and the
probability of crossover is set at 0.7 and the mutation probability at 0.05.
In CS and MCS the percentage of nests to be abandoned in each iteration
was set equal to 25% and 75%, as suggested in [34] and [35]. For CS the
characteristic step length was set to 1/100 of the variable search range as
shown in Table 1 as it is in [50]. For MCS the characteristic length is the
same as proposed in [35]. The parameters for the various PSOs is typically
inherited from the papers they were proposed in, and shown in Table 2. In
the table ξ is the search iteration number and Ξ is the maximum number of
iterations which was set at 5000. f is defined in [46, 49] is the evolutionary
factor that defines the spread of particles relative to the current optimum.
For CEPSO the sinusoidal map which performed best in the benchmarks
in [47] is used for the chaotic map. The probabilities for the artificial bee
colony and GA operators used by HEPSO are the same as those in [49]. For
GPSO and LPSO better results were obtained by using the parameter values
suggested in [51] rather than the typically used c1 = c2 = 2.0.

Table 2: PSO parameters

Variant c1 c2 ω Reference

APSO-09 ESE ESE 1
1+1.5e−2.6f [46]

APSO-12 (1.2−2.8) ξ
Ξ

+2.8 (2.8−1.2) ξ
Ξ

+1.2 (0.75−0.35)e0.001ξ+0.35 [33]
APSO-14 2.0 2.0 Based on solution

diversity
[32]

HEPSO (0.5−2.5) ξ
Ξ

+2.5 (2.5−0.5) ξ
Ξ

+0.5 1
1+1.5e−2.6f [49]

CEPSO-12 N/A N/A N/A [47]
GPSO 1

2
+ ln(2) 1

2
+ ln(2) 1

2 ln(2)
[51]

LPSO 1
2

+ ln(2) 1
2

+ ln(2) 1
2 ln(2)

[51]
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Table 3: Summary of best objective value for each algorithm (H stands for Heathrow and
S for Sheffield)

H 8th H 15th H 22nd S 1st S 8th S 15th

GA 5384538 5858308 6739297 6595545 7024323 7619637
GPSO 3792653 3142996 2466972 4387156 5644626 3913927
LPSO 3785607 1997553 1893783 3956224 4399481 3902504
APSO-09 5108443 2613920 1882825 4530514 5542426 4414949
APSO-12 6541304 2934669 3478906 4841882 7178995 5257622
APSO-14 4357332 5823782 4222196 4366692 7530088 5295245
HEPSO 2585451 2389230 1928796 3797889 4453520 4061613
CEPSO 3801993 3215278 2092989 4567079 5299468 4881406
CS 5733080 3806055 6468042 6273483 6293645 6649381
MCS 5440922 3988003 6483786 7278220 6840414 7581395

6. Results

6.1. Algorithmic Performance

As mentioned in section 5, ten different algorithms have been tested for
solving optimisation problem (15)–(17), (21), (27) aiming at calibrating the
METANET simulator for the Heathrow and Sheffield sites. Although this pa-
per aims at highlighting the capability of automatically assigning fundamen-
tal diagrams along the site by solving the optimisation problem formulated,
an important aspect of the approach is the search algorithm’s performance.
Selecting an algorithm to use and setting it up optimising its behaviour is
a whole different task altogether. Here, a comparison is performed for a
number of algorithms with the parameters given in the previous section.

Table 3 provides the best objective function values (including the penalty
terms) found when performing the optimisation three times from randomly
selected initial populations. The table contains results from both sites and
all calibration dates. For brevity the table columns are labelled as Hdate
and Sdate for Heathrow and Sheffield, respectively; thus, H8th refers to the
data of the Heathrow site collected on the 8th of February 2010 whereas S8th

refers to the data collected from the Sheffield site on the 8th of June 2009.
Each row gives the minimum found by each of the ten algorithms using the
data from the corresponding site and date indicated by the column.

It can be seen that the PSO family of algorithms outperforms both the
simple GA and the two CS variants. Comparing CS and GA, CS outperforms
the latter for the problem generated using the H15th and H22nd data. The
GA solution is superior only for the H8th set of data. For the Sheffield site,
CS consistently performs better than both GA and MCS. Interestingly, the
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unmodified CS performs better than the MCS for all Sheffield and for two of
the three Heathrow sets of data. Hence, it can be concluded that the original
CS is more efficient from the modified one and the baseline GA.

The PSO family of algorithms is generally the most efficient one. Com-
paring with the GA, the worst performance by any PSO algorithm is that
of APSO-12 for the H8th and S8th sets of data, where the solution is 21.48%
and 7.2%, respectively, worse than the corresponding GA solution. For the
rest data sets, the worst PSO outperforms the GA, with a marginal improve-
ment for the H15th. For the rest, the PSOs show at least a 25% improvement
over the GA. Hence, it is clear that the PSO algorithms provide the best
performance.

Narrowing our discussion around PSO, Table 4 provides the full set of
results from all repeated runs for the PSO algorithms. These data are rep-
resented in Fig. 8, where all results are normalised by subtracting the best
objective function value achieved for the corresponding dataset (the high-
lighted values in Table 3). In Fig. 8 the same convention for labelling is used
as in Table 4 with an extension to include the run number; e.g. Hdate-run
refers to the Heathrow calibration of date and the repeat number is run, and
so on. Each bar in Fig. 8 represents the difference to the best objective func-
tion value obtained by any algorithm for that dataset. The bars are grouped
by algorithm, with each group containing 18 bars (3 datasets from 2 sites
with 3 repeated runs); a gap (bar of zero height) represents the best solution
found for that particular dataset. Different datasets and sites are represented
in Fig. 8 by the bar style. The best results in Fig. 8 are represented by small
bars as these are closest to the best objective value found.

Fig. 8a and Table 4 indicate that the worst performing PSO variant is
APSO-14. Apart from a single reasonable result found using S1 in the third
run, which is close to solutions found by the other variants, there are sub-
stantial differences to the rest. APSO-12 performs slightly better for this
problem but is the second worst of the PSOs tested. GPSO, APSO-09 and
CEPSO show similar performance characteristics. On occasion these algo-
rithms find very good solutions that are close to the best optimum found.
In fact APSO-09 found the optimal solution for the Heathrow site for the
dataset of the 22nd (H22-3). However, these algorithms lack consistency.
The standard deviation of the bar heights in Fig 8a for GPSO, APSO-09
and CEPSO are 1.74e+06, 1.78e+06, and 1.53e+06, respectively. This com-
pares to 1.01e+06 for LPSO and 0.99e+06 for HEPSO. Not only are LPSO
and HEPSO the most consistent optimisers tested but they also find the
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Table 4: Objective function values for each run of the PSO algorithms: (a) Heathrow site
(b) Sheffield site

(a)

H 8th H 15th H 22nd

GPSO 4028385 3785726 3792653 3142996 3327233 4519245 2467040 2466881 2466972
LPSO 3785607 3785613 3785625 3115172 1997553 2104353 2466580 2466638 1893783
APSO-09 5108443 5218619 4481143 4195910 2793755 2613920 3100260 3145655 1882825
APSO-12 6581623 7987618 6541304 2934669 5412505 5058233 4017077 3596675 3478906
APSO-14 7753486 7392129 4357332 6879063 5962253 5823782 4990201 4222196 4891807
HEPSO 2585451 2732771 2997313 2409576 3270954 2389230 2474337 1928796 2814655
CEPSO 3807770 3804409 3801993 4520900 4521772 3215278 2092989 2496649 2467525

(b)

S 1st S 8th S 15th

GPSO 9615250 4697883 4387156 6564409 5644626 6029178 4762856 3913927 4735089
LPSO 3990011 4077664 3956122 5488522 4399481 4843245 3902504 3904656 4034818
APSO-09 9627157 5572121 4530514 6056519 6320857 5542426 4414950 5874789 5296917
APSO-12 5339753 4841882 5325566 7201900 7385578 7178995 6109701 5257622 5313983
APSO-14 6084220 5692574 4366692 7544100 8745415 7530088 5295245 10706332 10368168
HEPSO 3797889 4455714 4115981 4453520 4651302 5078914 4726428 4181375 4061613
CEPSO 4567079 4609269 5329183 8637544 5299468 6081886 4881406 5017779 5664702

best solutions. Apart from the previously discussed H22 (optimum found by
APSO-09) the best solution for all the remaining datasets is found by either
one of these algorithms. Even for the H22 dataset LPSO finds a solution
that is only 0.01e+06 worse than the optimal found by APSO-09.

Figure 8b, depicts the average best point achieved for the three runs, nor-
malised as in Fig. 8a where each bar now represents a single dataset. Again,
it can be seen that APSO-12 and APSO-14 are the worst performing PSOs
and LPSO and HEPSO are still the best. Another interesting point from
Fig. 8b is the performance of HEPSO for the H8 dataset. LPSO, GPSO and
CEPSO all found similar objective function values on average for this dataset
but HEPSO was able to find better solutions. Apart from this dataset, LPSO
and HEPSO show a similar performance.

Figs. 8a and 8b provide a general overview of the PSO algorithms across
all datasets and sites. To further assess their performance, the S1 dataset,
which shows good generalisation properties (see section 6.3), was used to run
three more randomly initialised searches. The extra results obtained for each
algorithm combined with those from the initial three runs are shown in and
Fig. 8c. Figure 8c shows the result of the six repeated runs normalised as
before to the best solution found. LPSO and HEPSO are still the most con-
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sistent and best performing algorithms. The best result overall was achieved
by LPSO but similar objective values were obtained by GPSO and APSO-09,
showing that these two algorithms are good candidates worth considering for
solving the model validation problem.

Figures 9 and 10 depict the convergence profiles, i.e. the optimum value
over the number of function evaluations, with a function evaluation requir-
ing a separate METANET model run. Function evaluations were explicitly
counted as calls to the model to obtain a more comparable set of convergence
results, see also [52]. After a short initial period of rapid decrease the GA,
CS and MCS settle on a bad minimum, whereas the PSO algorithms bundle
around smaller values.

LPSO’s behaviour is consistent in the sense that it tends to settle to the
minimum quite early on and then improve it. HEPSO manages to find similar
points but displays slower convergence. PSO algorithms have shown superior
behaviour to GA and CS for this particular problem. The best performing
PSO variants are LPSO and HEPSO. The rest of the more recent modifica-
tions suggested in the literature of PSO do not provide strong evidence of
substantial improvement over the earlier LPSO variant.

The results shown in Table 3 and Figure 8 are somewhat surprising, since
it is the basic variant of the PSO using local information that performs best in
terms of the calibration problem. The modifications suggested for the more
recent variants are not able to provide the expected level of performance,
with the exception of HEPSO. This observation calls for a more focused
investigation on the efficiency of the more recent algorithms. Such an inves-
tigation would aim at finding ways to set them up and select parameters,
which improve convergence properties for the problem formulated here. For
a more detailed discussion on the issue of comparing different population-
based derivative-free stochastic search algorithms, see [53, 54]. Developing
a procedure for selecting and setting up the most appropriate optimisation
algorithm is beyond the scope of this paper. It would prove, though, a very
important system component in a traffic control centre’s information infras-
tructure. Since our emphasis is on the solution properties in terms of the
traffic flow modelling problem, the site specific optimal solutions achieved
are discussed next.

6.2. Heathrow Site

Focusing on the results obtained for the Heathrow site, Table 5 gives
the optimal values of the global model parameters and Table 6 the used FD
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Figure 9: Convergence profiles for calibration of Heathrow model: (a) H8th (b) H15th (c)
H22nd.
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Figure 10: Convergence profiles for calibration of Sheffield model: (a) S1st (b) S8th (c)
S15th.
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Table 5: Optimal solutions found for Heathrow site model calibration.

τ κ ν vmin ρmax δ φ

8th 39.74 5.12 70.26 7.56 160.00 1.06 0.01
15th 14.42 5.04 43.49 8.00 161.77 4.00 0.17
22nd 31.078 5.00 48.59 6.39 189.75 0.002 0.44

Table 6: Heathrow optimal solutions of FD parameters.

ρcr vf α Start link End link

8th

FD 1 19.65 126.42 1.5192 1 1
FD 2 34.36 126.36 1.4474 2 4
FD 3 20.76 122.35 2.2059 5 5

15th

FD 1 22.26 122.65 1.4733 1 1
FD 2 31.96 125.17 1.4244 2 4
FD 3 23.75 111.87 1.8305 5 5

22nd

FD 1 21.79 129.72 1.2579 1 1
FD 2 30.07 129.20 1.3122 2 4
FD 3 20.06 126.33 1.1600 5 5

parameters and spatial extension. The calibration process identified for each
of the three days sets of data that three different FD should be used. These
are shown in Fig. 11, where it can be seen that they are arranged into two
bundles. The motorway capacity pattern identified in all three cases is that
of a low-high-low level, with the area of links 2–4 having high capacity.

The extension of the FD is also the same for all solutions. The reason for
this kind of assignment is the fact that link 1 (see Fig. 4) experiences a spill
back effect from junction’s J4b off-ramp. Congestion spilling back from an
off-ramp, either due to reduced capacity or traffic lights at the surface net-
work further downstream, results in an aggregate local behaviour different
from the rest of the motorway, hence the need for a dedicated FD, covering
the affected area. The critical density of this FD is significantly lower than
that of links 2–4 FD, reflecting the different and more cautious behaviour of
drivers leaving the system via J4b off-ramp. The spill back effect is inter-
preted by the optimisation as a reduced capacity area, although geometrically
the road is fairly similar.

The second region’s FD covering a length of 4.4 km (links 2–4) has higher
critical density reflecting the fact that the flow continuing past the first off-
ramp is no longer impeded by any spill back.
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Figure 11: Optimal FD for the Heathrow site model; in the legend, the first number
indicates the date of data and the second the link number it applies to.

The final link’s FD has also small capacity following the trend of the first
FD. At the end of this final link the main boundary condition of the motorway
exit is applied, which is a main influence on the system behaviour. However,
there is no congestion there during the entire time horizon, hence the full
range of possible traffic conditions are not provided as local information to the
optimisation problem. Furthermore, link 5 has an on-ramp at its beginning,
which means there are inflows to the mainstream and therefore a reduction
of the mean speed due to merging. This should be viewed in conjunction
with the use of the merging term added explicitly to the speed equation
(6). The optimisation just considers the measurements and converges to a
solution where a change in the FD parameters for reproducing the drop and
recovery of speed is preferred to a solution that changes one of the global
model parameters, i.e. δ. This can be seen from the solutions shown in Tables
5 and 6. For the two data sets H8th and H22nd where the optimal critical
density of link 5 FD is about 20 veh/km/lane, the optimal δ has a low value;
for the solution based on H15th the critical density is 23.75 veh/km/lane but
the drop of speed is compensated by assigning δ the maximum value allowed.

The overall result, however, is the desired one, as shown in Fig. 12 where
the model flow and speed trajectories are compared to the corresponding
MIDAS measurements. The model outputs are obtained by using the optimal
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Table 7: Heathrow verification total square error.

8 15 22

Calibrated 8 2539830 3060580 4057189
Calibrated 15 7404680 1967917 3080164
Calibrated 22 6614281 3517627 1867561
22 adjusted 4023508 2395942 2421725

parameter set determined by either HEPSO or LPSO as indicated in Table
3. Analysis is based on the results of these algorithms as they show the most
consistent behaviour. Fig. 12 depicts the calibrated model output for the
data set used to calibrate it.

The flow and speed trajectories shown are from the last segment of link
4 and the first segment of link 5, where there is a change in the FD. When
the optimal parameter sets are used, the model is able to capture accurately
the dynamics of congestion in terms of predicting its onset and the subse-
quent speed recovery. The resulting total square error, i.e. the values of the
objective function without the penalty terms, for the calibrated models are
given by the diagonal elements of Table 7.

The off-diagonal elements of the table are the total square error when the
optimal parameter set determined using the data from the date indicated at
the row (found by the corresponding algorithm mentioned in Table 3) is ap-
plied to the METANET model of Heathrow using input boundary conditions
from the date indicated by the columns. In other words, Table 7 provides a
measure of how the calibrated model based on a particular data set is gen-
eralised to the rest of the available data. Reading the table row-wise the
quality of the corresponding optimal parameter set can be evaluated.

It can be seen there that best and most consistent set of parameters is the
one identified by HEPSO with the calibration running with data from H8th.
The second best in that respect is the solution based on H22nd. Figure 13
compares the model flow and speed trajectories to measurements when the
model inputs are from H15th and the model parameters used are the optimal
solutions identified using data sets H8th and H22nd. These should also be
compared with Fig. 12(b), i.e. the calibration case of H15th. As expected,
the METANET model with model parameters based on H15th is the best
fit, since it is calibrated with them, however, performance of the other two
parameter sets is quite good and the main elements of congestion dynamics
are captured, as can be visually confirmed from Fig. 13. This is also reflected
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Figure 12: Sample of time profiles for the calibrated Heathrow model: (a) H8th (b) H15th

(c) H22nd.

33



0
1000
2000
3000
4000
5000
6000
7000

06:00 07:00 08:00 09:00

0
20
40
60
80
100
120
140

F
lo

w
(v

eh
/
h

)

V
el

o
ci

ty
(k

m
/
h

)

Upstream of FD change: Link 4

0
1000
2000
3000
4000
5000
6000
7000

06:00 07:00 08:00 09:00

0
20
40
60
80
100
120
140

F
lo

w
(v

eh
/
h

)

V
el

o
ci

ty
(k

m
/
h

)

Time (mins)

Downstream of Fd change: Link 5

Model flow
Model velocity

Meas. flow
Meas. velocity

0
1000
2000
3000
4000
5000
6000
7000

06:00 07:00 08:00 09:00

0
20
40
60
80
100
120
140

F
lo

w
(v

eh
/
h

)

V
el

o
ci

ty
(k

m
/
h

)

Upstream of FD change: Link 4

0
1000
2000
3000
4000
5000
6000
7000

06:00 07:00 08:00 09:00

0
20
40
60
80
100
120
140

F
lo

w
(v

eh
/
h

)

V
el

o
ci

ty
(k

m
/
h

)

Time (mins)

Downstream of FD change: Link 5

Model flow
Model velocity

Meas. flow
Meas. velocity

(a) (b)

Figure 13: Verification of the Heathrow model using input data from set H15th and using
the optimal parameter set based on (a) the H8th data set and (b) the H22nd data set.

in the corresponding error values in Table 7.
A further issue Table 7 raises is the fact that the best calibration result

does not provide the most general solution. The solution identified by LPSO
using the H22nd data set for calibration is outperformed by the solution found
by HEPSO using the H8th data set. The H22nd based optimal parameter set
provides a good accuracy, with the exception of the latency of recovering the
speed at links 4 and 5 at the last half hour of the time horizon, as shown in
Fig. 13(b).

Investigating further, the critical density of link 5 in the parameter set
of the H22nd was manually increased from 20.06 to 20.56 veh/km/lane. The
outcome of this adjustment is summarised at the last row of Table 7. When
the new parameter set is again applied to the three data sets the adjusted
solution is more relevant. This improvement can also be seen in Fig. 14,
where now the speed recovery in link 5 is restored for the last half hour.
This result demonstrates the increased model sensitivity with respect to the
critical density, something which is reported in the literature as well, [18]. It

34



0
1000
2000
3000
4000
5000
6000
7000

06:00 07:00 08:00 09:00

0
20
40
60
80
100
120
140

F
lo

w
(v

eh
/
h

)

V
el

o
ci

ty
(k

m
/
h

)

Upstream of FD change: Link 4

0
1000
2000
3000
4000
5000
6000
7000

06:00 07:00 08:00 09:00

0
20
40
60
80
100
120
140

F
lo

w
(v

eh
/
h

)

V
el

o
ci

ty
(k

m
/
h

)

Time (mins)

Downstream of FD change: Link 5

Model flow
Model velocity

Meas. flow
Meas. velocity

Figure 14: Verification of Heathrow 15th using manually adjusted model from the 22nd

also shows that there is scope for revising the form of the objective function
(27) to an expression that considers the generalisation property of a solution
more explicitly, something that is noted as future research. The current
method calibrates a specific data set so it is possible as seen by the manual
adjustment here to compromise the models accuracy to the calibration data
for increased generality. Finally, it is interesting to note that it is HEPSO
that provides better quality solutions, rather than LPSO.

Part of future work is the development of a method for averaging and fine
tuning the resulting optimal parameter sets based on different calibration
data sets, considering the model’s sensitivity to its parameters.

6.3. Sheffield Site

The optimal parameter sets identified from the calibration process using
the three data sets collected from the Sheffield site are given in Tables 8
and 9. The more extended Sheffield site allows for a larger variety of FD
assignments. Out of the possible ten different FDs that can be used, the
optimisation algorithms converge to solutions that make use of only three.
However, their spatial extension is different. As can be seen from Table 9
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Table 8: Optimal solutions found for Sheffield site model calibration.

τ κ ν vmin ρmax δ φ

1st 32.34 28.63 55.90 7.48 183.13 0.844 0.038
8th 10.22 20.06 20.00 7.99 184.24 0.001 0.360
15th 19.09 5.89 23.39 8.00 173.38 0.001 0.122

there is always a separate FD for the final link 10. The other two FDs are
applied from link 1 to 7 and 8 to 9 for the calibration solutions based on S1st

and S15th; the solution based on S8th assigns a single FD from link 1 to 3 and
then a different one from link 4 to 9. The resulting optimal FDs are shown
in Figure 15. It can be seen that the site is split into high and low capacity
areas. However, the calibration results follow different patterns. Based on
S1st data the site split follows a low-high-low pattern; using S8th data results
to a high-low-high pattern whereas S15th to a low-high-high.

This is a problematic result, since there is a fundamental disagreement
between the capacity patterns emerging from the S8th data set and the other
two. The difference between the capacity pattern in the results based on
S1st and S15th is last link’s capacity. Just as in the case of Heathrow, there
is no congestion in the measured speed trajectories at link 10, hence, the
discrepancy is attributed to the lack of information of the full spectrum of
traffic conditions, critical and congested.

The low-high-low and low-high-high capacity patterns are not very dif-
ferent as suggested by Table 10, where the total square error is shown for all
the calibration and verification cases. The calibration error for the S1st and
S15th is comparable and when the calibrated parameters based on S1st are
applied using S15th input data and vice-versa, the results are again similar.
This is not the case for the S8th data set, which generally shows larger error.
The results based on S8th are not consistent with the rest of the data and do
not generalise well.

Fig. 16 provides samples of the calibration results comparing model out-
puts with measurements. It allows for the accuracy of the solutions reported
in Tables 8 and 9 to be appreciated, including the good behaviour of the
solution based on S8th. However, the verification results shown in Fig. 17
show its poor quality generalisation.

Fig. 17 shows the model output and corresponding measurements, when
S15th is used for providing the model’s input data and the optimal solutions
obtained from S1st and S8th are used as model parameters. The model with
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Table 9: Sheffield optimal solutions for FD parameters.

ρcr vf α Start link End link

1st

FD 1 27.23 122.36 2.6760 1 7
FD 2 30.19 105.35 2.3494 8 9
FD 3 26.68 109.75 1.1386 10 10

8th

FD 1 31.53 122.22 2.5587 1 3
FD 2 28.50 113.77 1.8865 4 9
FD 3 38.02 104.72 1.0724 10 10

15th

FD 1 28.43 115.96 2.1077 1 7
FD 2 31.88 103.43 2.0904 8 9
FD 3 35.17 104.73 1.1459 10 10

Table 10: Sheffield verification total square error.

S1st S8th S15th

Calibrated 1 3782550 9741511 7764030
Calibrated 8 14388131 4382314 20064014
Calibrated 15 7578581 10574672 3858505

the parameter set based on S1st is able to correctly reproduce the traffic con-
ditions of the 15th. This is not true when the optimal parameter set based
on S8th is used by the model. The mean speed shown in Fig. 17(b) does not
follow measurements in a satisfactory way. This result shows the difficult
nature of the calibration problem. It is difficult, if not impossible, in view of
the noisy nature of the available measurements, to formulate an optimisation
problem that does not suffer from local minima. Hence, a learning mecha-
nism, specific to the macroscopic traffic flow modelling context, needs to be
in place in order to appreciate the suitability of data sets and relevance of
solutions identified.

As a final comment, it should be noted that it is the solution provided
by HEPSO, using the S1st data set, just as in the case of the Heathrow
site provides the best generalised model. This calls for further investigation
researching this particular algorithm’s behaviour for the specific calibration
problem.

7. Conclusions and Future Work

This paper has presented a study on the application of population based
optimisation methods to the problem of macroscopic traffic flow model cali-
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Figure 15: Optimal FDs for the Sheffield site model; in the legend, the first number
indicates the date of data and the second the link number it applies to.

bration and verification. The suggested problem formulation treats the traffic
simulator as a black box and therefore the METANET program used can eas-
ily be replaced by another executable. The network’s spatial and temporal
discretisation is model dependent and does not depend on the location of the
sensors. A simple geographic mapping is sufficient for the followed approach
to deliver excellent solutions given an appropriate algorithm.

Furthermore, the results demonstrate the feasibility of achieving AAFD
through the suggested problem formulation. This way, expert engineering
opinion is removed from the calibration effort. It has been shown that the
derived solutions are able to detect the capacity pattern of a particular net-
work, although some cautious analysis needs to take place. These benefits
have become possible to be realised thanks to the nature of the optimisation
algorithms used.

Ten different algorithms have been implemented and evaluated in this
paper. A simple GA acting as baseline, two Cuckoo Search variants and
seven PSO algorithms. It is clear that the PSO family outperforms the
rest. Surprisingly, one of the most efficient PSO algorithms is LPSO, which
manages to converge to very good solutions for the stand alone calibration
problem faster than more recently proposed PSO variants. However, it is
the solutions provided by HEPSO that generalise better for the particular
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Figure 16: Sample of time profiles for the calibrated Sheffield model: (a) S1st (b) S8th (c)
S15th.
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Figure 17: Verification of the Sheffield model using input data from set S15th and using
the optimal parameter set based on (a) the S1st data set and (b) the S8th data set.

verification problem. The reasons for this result are unclear and are subject
to further investigation.

Future research will also focus on investigating different ways of incor-
porating the generalisation property of a solution directly into the problem
formulation. An automatic way of identifying appropriate values for the
weighting parameters in the objective function is also something that needs
further development. In fact, the suggested problem formulation implies
a multi-objective problem, aiming concurrently at error minimisation, FD
number and parameter variance minimisation, and maximum optimal solu-
tion generalisation. Explicit multiobjective optimisation methods can pro-
vide an alternative approach to the one adopted here. A learning module
able to reason about the quality of data used for calibration and the solution
obtained is another viable research direction.

The overall objective is a system that combines modelling, optimisation
and learning capabilities to automate the process of delivering relevant and up
to date model parameter sets with minimum interference from the operator.
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