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Abstract

The extension of traditional data mining methods to time series has been effectively applied to a wide range of domains such
as finance, econometrics, biology, security, and medicine. Many existing mining methods deal with the task of change points
detection, but very few provide a flexible approach. Querying specific change points with linguistic variables is particularly useful
in crime analysis, where intuitive, understandable, and appropriate detection of changes can significantly improve the allocation of
resources for timely and concise operations. In this paper, we propose an on-line method for detecting and querying change points
in crime-related time series with the use of a meaningful representation and a fuzzy inference system. Change points detection is
based on a shape space representation, and linguistic terms describing geometric properties of the change points are used to express
queries, offering the advantage of intuitiveness and flexibility. An empirical evaluation is first conducted on a crime data set to
confirm the validity of the proposed method and then on a financial data set to test its general applicability. A comparison to a
similar change-point detection algorithm and a sensitivity analysis are also conducted. Results show that the method is able to
accurately detect change points at very low computational costs. More broadly, the detection of specific change points within time
series of virtually any domain is made more intuitive and more understandable, even for experts not related to data mining.

Keywords: change points detection, qualitative description of data, time series analysis, fuzzy logic, crime analysis

1. Introduction

The analysis of time series naturally arises in crime analysis
as well as in any data-driven domain. Finding sudden changes
in criminal activities is a particular task known as change points
detection. In this paper, a flexible on-line change points de-
tection method for helping crime analysts to easily and under-
standably monitor changes is proposed. Change points are de-
tected in two steps: the segmentation of the time series and the
querying of points with a fuzzy inference system.

1.1. Motivation
Knowledge extraction of time series can be viewed as an ex-

tension of traditional mining methods with an emphasis on the
temporal aspect. Among these, Change points detection meth-
ods focus on finding time points at which data suddenly change
(in contrast to slow changes). Many studies have shown in-
teresting applications of change points detection in various do-
mains. These methods are based on neural networks, regres-
sions, or other statistical models, with an emphasis on the ef-
ficiency of these methods. However, only a few consider ap-
proaches with these two properties: a meaningful and expres-
sive subspace representation of the time series, and a dynamic
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segmentation process without fixed-sized windows, linked to-
gether flexibly.

In the domain of crime analysis, such flexible and intuitive
approaches for change points detection are particularly sought,
especially for crime trends monitoring. Previous studies from
the authors ([1], [2], [3], and [4]) emphasize on the usefulness
of crime trends monitoring activities and advocate the use of ap-
propriate methods for considering the specificities and the con-
straints of the crime analysis domain, that is basically dealing
with uncertainties. The automated process of change points de-
tection is considered as a major step in the production of intelli-
gence, supporting the activity of crime analysis (also sometimes
referred to crime intelligence).

Flexible change points detection methods are critical for sup-
porting analysts in their daily tasks, especially for the monitor-
ing of serial and high-volume crimes (e.g., burglaries). Most
of the time, crime analysts have no particular background in
time series analysis, but still need to analyze and monitor crime
trends. These trends are drawn into the whole activities and are
not always perceived by police forces. As for example, query-
ing criminal activities about a particular increase in crime trends
for targeted police interventions, as well as querying patterns of
changes for the general understanding of crime phenomena are
common tasks.

Finding changes in crime trends assumes two conditions: (a)
the actual existence of a trend, and (b) its detection within the
data. The first condition is far from obvious, but as crime anal-
ysis is founded on environmental criminology theories, a justi-
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fication for the existence of crime trends appears ([4], [5], and
[6]). The second is generally simply assumed, but difficult to
detect in massive data sets and needs intuitive and understand-
able analytical methods.

Although the proposed method is a specific answer for the
domain of crime analysis, we believe that it has great potential
applications in several domains. As an example, in the financial
domain, it proves very useful to find and query change points
in real-time, giving the investors flexible means to detect trends
indicating the right moment for selling or buying stocks.

1.2. Contribution of this paper

The method proposed in this paper, for the Fuzzy Change
Points Detection in crime-related time series (FCPD), aims to
focus on flexibility and intuitiveness. To achieve this purpose,
the method combines a segmentation step and a querying step.
Moreover, the following characteristics make FCPD unique:

• a meaningful and expressive representation of the time se-
ries is used ;

• the segmentation is dynamic, that is, segments are set ac-
cording to the underlying shapes of the time series, without
using a fixed-size window parameter;

• changes are queried with linguistic terms, using a fuzzy
inference system;

• the method does not rely on training sets;

• the method is on-line and iterative, i.e., change points can
be detected with past values only and there is no need to
compute the entire model at each new observed value. The
computational cost is very low; it is related to the size of
the approximating polynomials (instead of the number of
the observations).

Indeed, with the use of a meaningful representation and a
dynamic segmentation, change points can be more easily de-
scribed and identified. The segments found in a time series,
reflecting change points, are described with meaningful estima-
tors such as the average, the slope, the curvature, etc. Then,
with the use of a fuzzy inference system, a query can be speci-
fied using linguistic terms describing the geometric estimators.
It becomes then easier, for instance, to query a time series about
the most abrupt changes in terms of slope. In the example “IF
average is low AND slope is very high, THEN pertinence is
HIGH”, the inference system would return a high score on seg-
ments representing shapes of the given description. This ap-
proach makes the querying of change points particularly intu-
itive and flexible, especially for domain experts.

1.3. Structure of this paper

The remainder of this paper is structured as follows: in Sec-
tion 2, a literature review in the mining of time series is pro-
vided; Sect. 3 introduces some concepts in the preparation, rep-
resentation, and analysis of time series; Sect. 4 details FCPD,
a step-by-step method for the fuzzy querying and detection of

change points in crime-related time series; an empirical valida-
tion on synthetic and real-world data is conducted in Sect. 5;
results are discussed in Sect.6; and finally in Sect. 7 a conclu-
sion is drawn from the experiments and some tracks for future
work are suggested.

2. Literature review

Change points detection has numerous application domains,
as for example finance, biology, ocean engineering, medicine,
and crime analysis. It is considered as a final objective in
the whole process of time series analysis among classification,
rules discovery, prediction, and summarization. Almost all of
these mining tasks require data preparation, namely the rep-
resentation of the time series, its indexing, its segmentation,
and/or its visualization. In this section, we propose a review
of these steps, before comparing existing methods for change
points detection. An extensive review of the analysis of time
series can be found in [7], as well as a general methodology in
[8].

2.1. Representation of time series

Many representation models of time series have been dealt
with in the literature, each claimed with relative advantages and
drawbacks. Two main categories are symbolic representations
and numeric representations. Symbolic representations are less
sensitive to noise and are usually computationally faster. For
the last decade, the community has been paying particular atten-
tion to the Symbolic Aggregate Approximation (SAX) repre-
sentation ([9] and [10]), with the main advantages to reduce the
original dimensionality of the data, being on-line, and having a
robust distance measure. However, it does not cover all needs.
In [11], a numeric representation —which differs from SAX
and many others by giving a meaning to the representation— is
used to perform several mining tasks. This shape space repre-
sentation uses coefficients as shape estimators of the time series
it represents, leading to an intuitive description.

2.2. Segmentation of time series

Most mining methods use subsequences (or segments) of
time series as input to the analysis. Segmentation algorithms
with the approach of a sliding window are simple to use but
present the main drawback of being static, i.e., segmenting the
time series according to a fixed and exogenous parameter (e.g.,
the length of the window) without considering the observed val-
ues. Other algorithms, based on a bottom-up or a top-down
approach are considered as dynamic (e.g., by using some er-
ror criteria as segmentation thresholds) but need the whole data
set to operate. These off-line algorithms usually perform bet-
ter in terms of accuracy but have higher computational costs
and are not suitable for real-time applications. A combination
of the aforementioned algorithms, namely the SWAB segmen-
tation algorithm, is presented in [12]. A study [13] provides
benchmarks on these claims and as a result suggests that SWAB
is empirically superior to all other algorithms discussed in the
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literature. As we believe there is no silver bullet, each applica-
tion has its own requirements. A more flexible approach is the
SwiftSeg algorithm [14], providing a dynamic and on-line ap-
proach to segmentation, with the possibility of a mix between
growing and sliding window. Another interesting segmentation
approach [15], specific to stock mining and described as dy-
namic, is based on the identification of perceptually important
points (PIP).

2.3. Fuzzy analysis of time series

A small subset of temporal mining methods takes advantage
of the characteristics offered by fuzzy logic and fuzzy sets. The
concept of fuzzy time series has first been defined by Song
and Chissom in [16] and [17], with an application in class en-
rollment forecasting. Soon followed multiple variations and
improvements of the basic method (e.g., [18], [19], [20], or
[21]), with their own types of fuzzy inference systems (FIS).
Two common FIS, namely the Mamdani inference system [22]
and the Takagi-Sugeno inference system [23], can be intuitively
used to deal with uncertain and flexible data. In [24], an appli-
cation in finance uses an FIS for pattern discovery. In [25],
prediction of long shore sediments is also dealt with the use of
an FIS. In parallel, a combination of FISs and neural networks
have found an origin in [26]. As for examples, the prediction
of time series is performed with dynamic evolving neuro-fuzzy
inference systems [27], the classification of electroencephalo-
grams [28], as well as the prediction of hydrological time series
[29].

2.4. Change points detection

Change points detection in time series analysis has been thor-
oughly investigated, mainly using statistical models (see [30]
for a general introduction). Reeves et al. [31] attempt to re-
view and compare the major change points detection methods
for climate data series.

More specifically, related approaches for change points de-
tection have been investigated in a relatively limited set of stud-
ies. For example, a statistical based approach using fuzzy clus-
tering is described in [32, 33]. Verbesselt et al., in [34] and [35],
detect breaks for additive seasonal and trends (BFAST), with a
principal application is phenology. To deal with imprecise ob-
servation in time series, changes are analyzed with fuzzy vari-
ables in [36]. In [37], a contextual change detection algorithm
addresses relative changes with respect to a group of time se-
ries. In [38] and [39], the utility of a framework for outliers de-
tection of time series prediction is highlighted. In [21], the need
to use linguistic values for comprehensible results is advocated,
where fuzzy time series mining is used for association rules be-
tween data points (but not between segments) with fixed-size
window. A qualitative description of multivariate time series
with the use of fuzzy logic is presented in [40]. Yu et al. [41]
propose a fuzzy piecewise regression analysis with automatic
change points detection. In [42], DoS attacks are monitored
with a change point approach based on the non-parametric Cu-
mulative Sum (CUSUM) method.

3. Time series representation and fuzzy concepts

In the following subsections, a review of a time series rep-
resentation using polynomials is presented and their main ad-
vantages are explained. Then a dynamic segmentation method
is described. Finally, concepts of fuzzy time series and fuzzy
inference systems, which are useful to analyze segments, are
introduced.

3.1. A polynomial shape space representation

Let us consider a time series defined by the sequence

s = (y0, y1, . . . , yN), yi ∈ R (i = 0, 1, . . . ,N) (1)

of N + 1 points measured over the equidistant points in time
x0, x1, . . . , xN . Basically, our set of points s can be modeled by
a parametrized function f (x), which is obtained with a linear
combination of basis functions fk:

f (x) =
K∑

k=0

wk fk(x) . (2)

The properties of this approximation depend on the choice of
the basis functions fk and their weights. Given some appro-
priate basis functions, an optimal approximation can be found
with the vector of weights w∗ ∈ RK+1,w∗ = (w0,w1, . . . ,wk)T ,
which minimizes the approximation error in the least-squared
sense. Fuchs et al., in [14], claim that these weights show inter-
esting properties when using some specific of these K + 1 basis
functions. Indeed, when particular conditions are met, these
weights describe the shape of the considered time series intu-
itively. As a corollary, an efficient similarity measure can be
defined based on the extracted features.

Let us now describe these particular approximating polyno-
mials, as in [14], with

p(x) =
K∑

k=0

αk pk(x) , (3)

where p(x) is the approximating polynomial, the polynomials
pk are the basis functions fk and the coefficients αk are the
weights wk, relating to Equation 2. These coefficients are de-
fined as

αk =
1
∥pk∥

2

N∑
n=0

yn pk(n) , (4)

where

p−1(x) = 0 ,
p0(x) = 1 ,

pk+1(x) = (x − ak) pk(x) − bk pk−1(x) .

Then, by defining α as the vector of coefficients

α = (α0, α1, . . . , αK)T , (5)
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any time series can be characterized by these coefficients only,
given some polynomials. The interesting property is that the
ith coefficient represents the ith derivative of the approximated
time series; i.e., the first coefficient α0 is an optimal estimator
(in the least-squared sense) for the average of the considered
N + 1 data points, α1 an estimator for the slope, α2 an estimator
for the curvature, etc.

The parameter K of the orthogonal expansion (Eq. 3) has to
be carefully chosen in accordance with the desired description
of the time series. As depicted in Figure 1, setting K = 0 defines
a single polynomial term in Eq. 3 with a maximum degree of
0 and a corresponding vector coefficient α ∈ R1, representing
a time series according to its average only; setting K = 1 adds
the estimator of slope; setting K = 2 adds on top the estimator
of curvature; and so on. Choosing this parameter is a trade-off
between computational costs and representation accuracy.

0 2 4 6 8

0

2

4

6

8

10

12

α0

α1

α2

x

t(x)
p(x)

Figure 1: A time series t(x) and its polynomial approximation p(x) with K = 2,
and their coefficients. The coefficients α0 = 8.18 (estimator for the average),
α1 = 1.09 (estimator for the slope), and α2 = −0.02 (estimator for the curva-
ture) are depicted with the first term only of their respective polynomials. It
should be noticed that the approximation can only start from K + 1 data points.

In order to hold these desired properties, each of the given
polynomials pk defining the orthogonal expansion of the ap-
proximation must:

• have different ascending degrees 0,1,...,K;

• have a leading coefficient of 1;

• be orthogonal with respect to the inner product

⟨pi|p j⟩ =

N∑
n=0

pi(xn) p j(xn), i , j . (6)

For instance, the discrete Chebyshev’s polynomials reveal
these criteria. Defined in a recursive way, the first Chebyshev’s
terms are:

p0(x) =1,

p1(x) =x −
N
2
,

p2(x) =x2 − Nx +
N2 − N

6
,

p3(x) =x3 −
3N
2

x2 +
6N2 − 3N + 2

10
x

−
N(N − 1)(N − 2)

20
.

More generally, a term of the series is defined as

pk+1(x) =
(
x −

N
2

)
pk(x) −

k2((N + 1)2 − k2)
4(4k2 − 1)

pk−1(x) , (7)

and their squared norms are given by

∥pk∥
2 =

(k!)4

(2k)! (2k + 1)!

k∏
i=−k

(N + 1 + i) ,

k = 0, 1, . . . ,K . (8)

Based on these definitions, it is now possible to redefine our
time series s from Eq. 1. As the vector α contains the estimators
up to degree K for the considered time series, it is said that s is
approximated by α with the statement

s = (y0, y1, . . . , yN) ∼ α , (9)

where s ∈ RN+1, α ∈ RK+1, K ≪ N.

3.2. Segmenting time series
Segmenting time series is useful for analyzing and compar-

ing subsets of data points. The considered segmentation ap-
proach in this paper is dynamic, meaning segmentations are
performed in accordance with the intrinsic shapes underlying
in the data, in contrast to other segmentation approaches that
only depend on an artificial window size or with equal size seg-
ments. To do so, the sequence s from Eq. 1 is split into the set
of contiguous windows

W(s) =
⋃
s(i)∈s

s(i) , i ∈ {0, 1, . . . ,N/2} , (10)

where W is a partition of s, and s(i) is the ith segment contain-
ing two or more elements. To be dynamic, the partitioning
is done by detecting change points x̂ within our time domain
x = (x0, x1, . . . , xN), relating to the concept of abrupt changes
detection [30].

Let us consider a small example. Within the sequence
s = (y0, y1, . . . , y10), the change points x̂ detected are x3 and
x7; then x̂ = (3, 7), W(s) = {s(1), s(2), s(3)}, with s(1) =

(y0, y1, y2, y3), s(2) = (y4, y5, y6, y7), s(3) = (y8, y9, y10). It has
to be emphasized that these contiguous windows do not need to
have the same size. In fact, their underlying estimators α only

4



depend on the shape of the segment. Therefore, primitives, or
basic shapes are more accurately represented by these estima-
tors, as the deviation of the predicted values (the sum of the
residuals) is low within the considered segment (i.e., the esti-
mators do not significantly change within a segment while the
windows is growing). This property justifies why an adaptive
way of segmenting the time series with change points is pre-
ferred to fixed-size window segmentation methods, considering
the objective of this study.

As part of an iterative process, the first segmentation step
starts with a window from the first point of the segment, setting
x = 0. The corresponding orthogonal expansion is computed,
holding the α coefficients. Then, specific criteria based on the
coefficients are derived (such as the deviation of the predicted
value or the count of sign switches of the slope) and compared
to thresholds. If the thresholds are exceeded, the growing pro-
cess is stopped, a change point is detected and a new segment
starts with the next available data point; otherwise, the window
keeps growing to the next point, the expansion is updated and
the new coefficients are again compared. Figure 2 depicts an
example of this segmentation.

This segmentation method is based on the SwiftSeg algorithm
from Fuchs et al. [14]. Their study describes an on-line al-
gorithm for updating the values of the coefficients, where the
computation only depends on the last point added to the win-
dow, leading to effective computational costs; in contrast to off-
line algorithms that need the entire window to update the coef-
ficients. Combinations of growing and fixed-length window are
also documented and experimented.

3.3. Fuzzy time series

The concept of fuzzy time series as first defined by Song and
Chissom in [16] is here resumed. Let us consider the universe
of discourse

U = {u1, u2, . . . , um} (11)

and the set

Ai = µAi (u1)/u1 + . . . + µAi (um)/um . (12)

Ai is a fuzzy set of U, where ’/’ indicates the separation be-
tween the membership grades and the elements of the universe
of discourse U, ’+’ is the union of two elements, and the fuzzy
membership function

µAi (u j) : U → [0, 1] (13)

expresses the grade of membership of u j in Ai.
Let the elements of our time series (yt)(t = 0, 1, . . . ,N), a

subset of R, be the universe of discourse replacing U on which
the fuzzy sets Ai(i = 1, 2, . . .) are formed and let ft be a collec-
tion of µAi (t)(i = 1, . . . ,m). Then, ft(t = 0, 1, . . . ,N) is called a
fuzzy time series on yt(t = 0, 1, . . . ,N).

A fuzzy relationship between one point at time (t) and its
successor is represented by:

ft =⇒ ft+1 . (14)

We suggest a slightly more generic definition that can deal
with segments. Indeed, we will consider fuzzy relationships
between any element at time (t) and its successor, with ft being
the segment s(t) and ft+1 its segment s(t+1) (i.e., ft describes the
entire segment, instead of a specific point of the time series).

3.4. Fuzzy inference systems

Fuzzy inference systems (FIS) can model uncertain and
complex human reasoning tasks. FISs use “IF antecedent
THEN consequent” rules as inference mechanism, where the
antecedent and the consequent of the rule are linguistic terms
that can handle multi-valued logic.

Different types of fuzzy inference systems exist. Two of them
are widespread in the literature, namely the Takagi-Sugeno [23]
and the Mamdani [22] type. The main difference between these
two is that the latter uses output membership functions to de-
scribe linguistic terms, whereas the former uses output mem-
bership functions to describe crisp values. In this paper, the
Mamdani inference system is considered because of its relative
simplicity.

A fuzzy inference system is defined (see Fig. 3) by a rule
base containing the set of “IF-THEN” rules; a database with the
fuzzy sets and their membership functions; a decision-making
unit performing inference based on the rules; a fuzzification in-
terface transforming the crisp inputs into degrees of match with
linguistic values; and a defuzzification interface transforming
the fuzzy results of the inference into numbers.

On top of this structure, the inference process is defined ac-
cording to the 5 following stages:

1) fuzzification of the inputs;
2) combination of the antecedents with conjunction or disjunc-

tion functions;
3) rules firing and implication of the consequent;
4) aggregation of the consequent; and
5) defuzzification of the output.

4. The proposed method for the fuzzy detection of change
points in crime-related time series

In this section, a novel method for the Fuzzy Change Points
Detection in crime-related time series, FCPD, is proposed.
Based on the particular shape space representation and the dy-
namic segmentation method described in Sect. 3, a unique ap-
proach is proposed.

FCPD consists of 2 steps:

1) the segmentation of the time series by the means of the shape
space representation (represented in pseudo-code by Algo-
rithm 1);

2) the fuzzy querying, by the use of linguistic variables, of
change points based on the discovered segments (repre-
sented in pseudo-code by Algorithm 1).
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Figure 2: Illustration of the segmentation of a time series with its shape-space representation.
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(a) A real time series of 72 samples. The time series
has been normalized (µ = 0, σ2 = 1). From the pretty
chaotic shape of the series, many change points are sup-
posed to be found.
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(b) Segmentation of the time series, with K = 3. Twelve
different segments are found (represented by vertical
lines). The segmentation here is based on the number
of sign changes of the slope and the deviation of the pre-
dicted value.
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(c) Segments depicted with their shape space represen-
tation (only the first two coefficients are shown). The
segments 1 and 7 are easily identified as with the lowest
and highest average (α0) and the segments 5 and 6 with
the lowest and highest slope (α1).

input output

crisp crisp
fuzzification

interface
defuzzification

interface

knowledge base

database rule base

Decision-making unit
fuzzy fuzzy

Figure 3: Structure of a fuzzy inference system.

These 2 steps are performed on-line. Algorithm 1 starts with
the very first observation of a time series and grows a window
at every new observation. Every time a new segment is set (de-
fined by some error criteria), Algorithm 2 can be run to answer
queries bases on the discovered segments (i.e., the outputs of
Alg. 1). The FIS structure (i.e., the membership functions, the
linguistic variables and the rules) and the query are defined by
the user in accordance with the use case and do not change over
time.

Step 1: Finding the segments W(s) of the time series

Starting with a time series represented by s = (y0, y1, . . . , yN)
as in Eq. 1, the parameter K (i.e., the degree of the polynomi-
als), and the thresholds, the segmentation process (Sect. 3.2) is
iteratively applied. First, a growing window is positioned on the
first element (y0), the polynomial expansion is computed and its
coefficients α are extracted according to the chosen degree K.
Based on these coefficients some segmentation criteria can be
defined. Two of them are hereafter suggested.

The first threshold is the deviation of the predicted value:

cDPU =

{
1, if |p(xt) − yt | > thDPU ,
0, otherwise, (15)

where p(xt) is the predicted value of the regression, y(xt) the
actual value at time t (the last point of the growing window),

Algorithm 1: segmentation, for on-line segmenting
input : s = (y0, y1, . . . , yn), the time series

K, the degree
th, the thresholds

output: α, the coefficients
begin

w←− initWindow(s[0..K])
c←− initCoe f s(w,K)
i←− K + 1
while i <= n do

w←− growWindow(w, s[i])
c←− updateCoe f s(c,w,K)
if newS egment(c, th) then

remove s[0..i] from s
add c to α
β←− query(α)
goto begin

i←− i + 1

and thDPU the value of the threshold. The second is the counting
of the sign switches of the slope:

cSSS =

{
1, if SSS > thSSS,
0, otherwise, (16)

where SSS counts the number of sign switches of the slope
within the window, that is, SSS is incremented if a change in the
sign of the slope is observed, and thSSS the value of the thresh-
old. A new segment s(i) is added to W(s) if these criteria are
met (one single criterion can be enough), and the segment is
then represented by the last α computed, α(t). Otherwise, the
window is grown by adding the next point and the same steps
are repeated until the end of the time series (i.e., α is updated
and the new criteria are again compared to the same thresholds).
The result of this step is the set of continuous windows W(s),
their respective coefficients α(i) and their change points x̂(i).
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Algorithm 2: query, for on-line change points querying
input : q, the query (global variable)

F, the FIS structure (global variable)
α, the coefficients

output: β, the sorted segments
begin

FIS ←− initFIS (F)
scores←− in f erFIS (FIS ,α, q) ’see Fig. 3
β←− sortS egments(scores)

Step 2: Querying the existence of particular change points
with a fuzzy inference system

A query consists of the expression of geometric properties
with linguistic values related to the coefficients, and the result
of the query is the corresponding “relevance score” of each seg-
ment regarding the query. The query is specified with a fuzzy
“IF-THEN” rule. To evaluate the query, features related to the
coefficients from the subspace representation are given as input
to the FIS, the query is added to the rule base, and the system
infers the output. The defuzzification of the output is the an-
swer to the original query. The membership functions of the
FIS have to be specified at the beginning. In fact, linguistic
variables and membership functions are part of the query, spec-
ified by the user to detect change points with regard to their
applications. These parameters should not change over time,
unless if the query itself changes. Setting the FIS amounts to:

a) Choosing the input(s) and the output(s) of the fuzzy infer-
ence system in relevance of the query.
Inputs constitute the antecedent part of the rules and outputs
the consequent. As initial intuition, inputs could be the coef-
ficients α(i). The use of these coefficients enables the expres-
sion of linguistic terms concerning the average, the slope, or
the curvature of the segments in the antecedent part of the
rules.
However, to handle queries considering more aspects, other
input variables can be considered to get different expres-
sions. Relations between two elements (as in Eq. 14, where
ft =⇒ ft+1), can also be inputs. For instance, if the ele-
ment is a segment, the input of the FIS is then the coefficient
variation between two segments, defined as:

vαk (s(t), s(t+d)) =
α(t+d)

k − α(t)
k

α(t)
k

, (17)

where s(i) is the segment of index i in W(s), α(i)
k the coeffi-

cient of order k of this segment, and d the delay operator of
segments, typically set to 1. For the sake of simplicity, these
variations will be referred to as

vi−>i+d
αk

. (18)

In other words, the use of variations, instead of the coeffi-
cients input to the FIS, enable to express relative changes
between two periods instead of absolute changes of value
only.

Other inputs to consider are for instance the size of each seg-
ment, the variation of the size, or a set of primitive shapes.
A combination of these is also possible.
The output of the FIS is more straightforward. Given the
rules, the FIS outputs the degree of similarity of each input
to the geometric properties specified in the query. Therefore,
only one output —the relevance of the query— is assumed
to be necessary in most cases. A FIS with several outputs is
nonetheless possible.

b) Defining the linguistic terms and their membership func-
tions.
Each input/output of the inference system is generally
defined by multiple fuzzy sets. For example, (LOW),
(MEDIUM), and (HIGH) can be fuzzy sets for the coeffi-
cients as input, whereas (DECREASE), (CONSTANT), and
(INCREASE) are sets of variations between elements. For
these terms we need membership functions that can be val-
ued, as part of the fuzzification and defuzzification process.

c) Defining the inference rules.
The rules added to the inference system are the heuristics
that guide the search to find the appropriate change points.
These heuristics use the geometric estimators from the coef-
ficient to express visual criteria of the researched segments.
These inputs are evaluated in the antecedent of the rule and
the output in the consequent. A weight can be added to each
rule, giving different degrees of importance in accordance
with the confidence of the heuristic.

d) Inferring the output(s).
Infer the output(s) of the FIS (as described in Sect. 3.4).
According to the rules, the segments which are the most rel-
evant to the query output a higher membership of the conse-
quent.

5. Empirical Evaluation

This section provides an empirical evaluation of the proposed
method, with a focus on crime data. For the sake of an overall
evaluation, different types of time series with different objec-
tives are analyzed.

First, qualitative analyses, representing illustrated case stud-
ies helping practitioners to better evaluate the method, are con-
ducted (with a total of 4 time series):

1) the analysis of cyclic data, to illustrate the use of the pro-
posed method in a simple environment;

2) a case study of crime trends monitoring, to support the va-
lidity and applicability of flexible change points detection
and querying according to the domain of crime analysis;

3) the analysis of the TOPIX time series (financial real-world
data), in a financial case study, to test the domain-free appli-
cability of FCPD;

Second, quantitative analyses, each time systematically com-
pared with two comprehensive data sets (with a total of 96 time
series):

4) a comparison with a similar change points detection algo-
rithm, BFAST, is performed on both the CICOP and the
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SWX data sets for assessing the accuracy and the complex-
ity of FCPD;

5) a sensitivity analysis on both the CICOP and SWX data sets
is carried on for measuring the impact of the parameters on
the results of the proposed method.

These two data sets used in the quantitative part are the fol-
lowing:

A) the CICOP data set (crime real-world data), consisting of
32 time series each with 70 observations. These time series
describe monthly events for a period of 6 years (2009-2014)
of serial- and itinerant-related crimes (such as burglaries);

B) the SWX data set (financial real-world data), consisting of
64 time series each with 120 observations. These time se-
ries describe monthly stock data for a period of 10 years
(2005-2014) from the small and medium capitalizations of
the SWX (Swiss Exchange Market).

For these experiments, a MATLAB version of FCPD has
been implemented by the authors. Time series were normalized
(µ = 0, σ2 = 1) before analysis. The only reason for normal-
izing time series is to make comparison between different data
sets easier: indeed, normalizing time observations leads to con-
sistent thresholds throughout all time series (i.e., thresholds in
accordance with the mean and the variance of the time series).

5.1. Simulation with cyclic data

This first experiment aims to detect simple change points
within the cycle time series. For that purpose, we generated
a normalized sinusoidal time series of 2000 data points, rep-
resenting a cyclical activity. We introduced two “anomalies”,
the first between the x-interval [500, 600] by adding noise with
a standard normal distribution (N(0, 1)) to the observed values
and the second between [1400, 1600] by replacing the observed
values with y = 0.5 + u/2, where u is a noise factor with a
standard normal distribution.
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Figure 4: The cycle time series. (Top) Segmentation of the time series, 31
change points detected. (Bottom) Output of the FIS for each segment, repre-
senting the relevance of the query.

For the segmentation step, we set the maximum degree of the
polynomial regression K equals to 5 and a single threshold for
the switches of the sign slope (thSSS) to the value of 1. As a
result, 31 change points were detected (top of Fig. 4). We then
used as input to the FIS the coefficient matrix for the average
(i.e., the coefficients of degree 0 for each segment). The input
is described with 3 different linguistic terms, namely negative,
zero, and positive, respectively represented by a Z-shaped, a
Gaussian, and a S-shaped membership function as depicted in
Fig. 5. The output membership is a triangular-shaped func-
tion, using low, medium, and high as fuzzy sets to denote the
relevance of the queried geometric properties (Fig. 6). For the
inference part, we chose the min function for the implication,
the max function for the aggregation, and the centroid function
for the defuzzification. The query for identifying change points
in the cycle is then modeled through the following rules:

a) IF (average is not zero), THEN (score is high)
b) IF (average is zero), THEN (score is low).

These two basic rules use the average of each segment to
determine the degree of change within the cycle. The output of
the FIS (bottom of Fig. 4) describes a score within the [0, 1]
interval for each segment of the time series. High scores are
produced for the values where some noise was added (segments
3 to 11, and segments 16 to 30), which confirms the expected
results.
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Figure 5: Input membership functions of the cycle time series.
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Figure 6: Output membership functions of the cycle time series.

5.2. Case study: crime trends monitoring

The objective of crime trends monitoring is to automati-
cally detect change points within the development of crime.
This case study shows how crime analysts can monitor sudden
changes in the number of crimes, allowing them better to allo-
cate resources (e.g., by sending dedicated patrols when a rise is
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detected). We want to emphasize that the proposed method is
used on-line, meaning that we do not need the entire time series
to perform these analyses and the results only depend on past
values.

For this purpose, we illustrate the detection of change points
with two time series from the CICOP data set. The first time
series describes evening burglaries of individual houses or flats,
with 72 monthly data points for a period of 6 years (top of Fig.
7). The second time series represents ATM break-ins, with the
same sampling (top of Fig. 8). A more detailed description of
this data set can be found in [3]. The segmentation settings are
identical for both time series of the data set: values are nor-
malized, two disjunctive thresholds are set (thDPU = 0.05 and
thSSS = 2; only one threshold need to be exceeded to set a new
segment), and K is set to 5. The input of the FIS is the co-
efficient variation between two consecutive segments (vi−>i+1

αk
,

as in Eq. 18) of the average coefficient, with 5 fuzzy sets (the
membership functions are shown in Fig. 9).
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Figure 7: Evening burglaries time series from the CICOP data set. (Top) Seg-
mentation of the time series, with 6 change points detected. (Bottom) Output of
the FIS for each segment, representing the relevance of the query (i.e., changes
in trend).

The same three inference rules for both time series were
given as heuristics to querying changes in the trend:

a) IF (var average is large decrease), THEN (score is high)
b) IF (var average is large increase), THEN (score is high)
c) IF (var average is constant), THEN (score is low).

The highest score for both time series is observed in segment
4. Indeed, both time series are suggesting a high variation of
the average after segment 3; in the next segments, the trends
remain pretty stable and the score remains low.

5.3. Case study: change points detection on the financial
TOPIX time series

To assess the general applicability of the method in a different
domain, we used the TOPIX time series to detect and query
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Figure 8: ATM break-ins time series from the CICOP data set. (Top) Segmen-
tation of the time series, with 6 change points detected. (Bottom) Output of the
FIS for each segment, representing the relevance of the query (i.e., changes in
trend).
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Figure 9: Input membership functions of both evening burglaries and ATM
burglaries time series.
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change points. The weekly values consist of 522 data points
(years 1985 to 1994) from the TOPIX index (TPX:IND, i.e.,
the Tokyo Stock Exchange Price Index). We also compare our
results with the work of Yamanishi and Takeuchi in [38] and
[39], which have used the same time series for change points
and outliers detection.

The purpose of this case study is to detect change points con-
sidered as the steepest slopes of the considered time-frame. In
the financial domain, it proves very useful to find change points
in real-time, giving the investors a trend indicating the right mo-
ment for selling or buying stocks.
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Figure 10: The TOPIX time series. (Top) Segmentation of the time series,
with 27 change points detected. (Bottom) Output of the FIS for each segment,
representing the relevance of the query (i.e., finding the steepest slopes).

For the segmentation process, we set K to 5 and two inde-
pendent thresholds (thSSS = 2 and thDPU = 0.05 respectively for
the switches of the sign slope and the deviation of the predicted
value). Figure 10 (top) shows the 27 change points detected.

The querying step is used for identifying steep slopes. As
input to the FIS, the slope coefficient is used. The fuzzy sets
describing the input are negative, zero, and positive (Fig. 11).
The output membership is the same as for the cycle time se-
ries (Fig. 6). Three inference rules were given as heuristics to
describe a steep slope shape:

a) IF (slope is negative), THEN (score is high)
b) IF (slope is positive), THEN (score is high)
c) IF (slope is zero), THEN (score is low).

Segments #7, #25, #14, and #16 have the highest score with
FCPD (see Table 1). We want to emphasize that these results
depend on the segmentation method, as the slope of the segment
is the average of the slopes of the data points belonging to the
segment.

In their experiment [38], Yamanishi and Takeuchi highlight
4 significant changes, occurring in our resulting segments #8,
#2, #14, and #25. These results are very similar to ours (i.e.,
segment #7 from FCPD occurs in segment #8 with Yamanishi
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Figure 11: Input membership functions of the TOPIX time series.

Table 1: Top 4 segments in the TOPIX time series identified as the significant
changes with the proposed method. Segment intervals are specified by values
on the x-axis.

Rank Number Interval Score

1 7 [112,125] 0.856
2 25 [458,468] 0.829
3 14 [259,270] 0.789
4 16 [291,307] 0.748

et al., segment #24 in segment #25, segment #14 is identical,
and segment #16 has no direct correspondence).

Besides, we also want to illustrate that FCPD is not limited
to change points detection. Indeed, the shape space representa-
tion can be used to perform other types of analysis based on the
meaningful distance computed with the shape space representa-
tion, such as clustering. In our example, we attempt to discover
basic/primitive shapes in the time series. For that, we apply the
K-means algorithm to the slope and curvature coefficients of
the segments (i.e. the output of step 1 of the proposed method,
Sect.4), with the number of clusters set to 4 (with the objective
to delineate both negative and positive clusters of slopes and
curvatures). The centroids are depicted in Fig. 12. The closest
segments to the centroids, identified as the 4 potential primitive
shapes, are shown in Fig. 13. One should notice that in this
case the slope variable contains more information on the shape
than the curvature variable.

Figure 12: Clustering of the segments from the TOPIX time series. The seg-
ments are described with their slope and their curvature.
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Figure 13: Primitive shapes of the TOPIX time series, resulting from the clus-
ters

5.4. Comparison with the BFAST algorithm

Our proposed method is compared to the “break for additive
seasonal and trend” (BFAST) algorithm ([34] and [35]) in terms
of similarity of the three most important change points detected
by each method. BFAST has originally been developed for de-
tecting changes in phenology, more precisely for climatic vari-
ations from remote sensor data. The method is however not
specific to a particular data type. It uses the seasonal-trend de-
composition procedure based on Loess (STL) and an estimation
of breaks based on [43] with least-squares. It basically performs
two steps, each being off-line, requiring access to past and fu-
ture values in the computation window: first, the seasonal com-
ponent is computed and removed from the observed data and
second, the breakpoints are estimated.

We used the implementation of the R package
bfast with standard parameters (h = 0.15, max.iter = 1,
season = ”harmonic”, breaks = 3) to find a maximum of 3
significant change points in both the CICOP and the SWX data
sets.

The settings in FCPD are the same for both data sets, as the
nature of these two data sets are similar and the objectives are
identical. We set a threshold for the deviation of the predicted
value (thDPU) of 0.11 and K to 5. Fig. 14 depicts the uniform
membership functions for the input variables and Fig. 15 for
the output variable. The rules are simply relating the degree of
variation to the degree of change, considering both the average
and the slope:

a) IF (var average or var slope is very large decrease), THEN
(score is very high)

b) IF (var average or var slope is large decrease), THEN
(score is high)

c) IF (var average or var slope is medium decrease), THEN
(score is medium)

d) IF (var average or var slope is small decrease), THEN
(score is low)

e) IF (var average or var slope is constant), THEN (score is
very low)

f) IF (var average or var slope is small increase), THEN
(score is low)

g) IF (var average or var slope is medium increase), THEN
(score is medium)

h) IF (var average or var slope is large increase), THEN
(score is high)

i) IF (var average or var slope is very large increase), THEN
(score is very high)
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Figure 14: Input membership functions for the FIS of the CICOP and SWX
data set.
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Figure 15: Output membership functions for the FIS of the CICOP and SWX
data set.

For the comparison, the 3 most significant points detected
by BFAST are compared to the 3 most significant points de-
tected by FCPD, and the offset in the occurrence of the detec-
tion (measured in number of data points from the time domain)
is reported. The offsets are the difference between each signifi-
cant points from BFAST and FCPD (as illustrated in Fig. 16).

For the 32 time series of the CICOP data set (the data set
actually contains 60 time series, but we only used the time se-
ries in which at least one change was detected by BFAST for a
consistent comparison), the offsets are shown in Fig. 17 (left).

For the 64 time series of the SWX data set (the data set con-
sists of 70 time series, but we only considered time series where
all values were defined for the concerned period), the offsets are
shown in Fig. 17 (right).

Table 2 summarizes this comparison. It shows that the aver-
age offset for the CICOP data set is about 4.02 data points, and
about 8.15 for the SWX data set.

Table 2: Offset statistics for the 3 most significant changes (O1, O2, O3), com-
pared with BFAST, in absolute values.

O1 O2 O3 µ σ

CICOP 4.66 3.89 3.50 4.02 0.48
SWX 7.09 5.88 11.49 8.15 2.41

The average observed absolute offsets of 4 data points for
CICOP and 8 data points for SWX with BFAST are considered
as pretty good results in terms of similarity, especially when
we know that FCPD is on-line and therefore only past values
are used to detect change points, which is not the case with
BFAST. Because of that, in the context of crime trends moni-
toring, BFAST cannot be used in a real environment. The dis-
tributions of the offsets from Figure 17 show that very few time
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Figure 16: Illustration of the comparison of the 3 most significant changes between the BFAST algorithm and the proposed method.
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(a) The 3 most important change points detected by BFAST.
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data count

(b) The 3 most important change points detected by FCPD. (c) Calculation of the occurrence offset (red areas, from left to
right): the 1st offset is reported as +3 data points in the x-axis
for FCPD, the 2nd as +1, and the 3rd as +2.

Figure 17: Distribution (histogram) of the offsets of the 3 most significant segments of the CICOP and the SWX data sets. A negative offset indicates that the FCPD
algorithm detected the point before the BFAST algorithm.
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(b) Distribution of the SWX data set.

series present an offset exceeding the absolute value of 10 in
data points, and also suggest that the offsets are equally dis-
tributed in terms of lag or of lead.

As an attempt to mimic the BFAST behavior and for com-
parison only, we used an automated method to fine-tune the FIS
parameters, that is the settings of the membership functions, the
linguistic variables and the rules. The MATLAB implementa-
tion of an adaptive-network-based fuzzy inference system (AN-
FIS, see [26]) was used with both the CICOP and the SWX data
set to compare the results from Table 2, also with 5 member-
ship functions for the same inputs. A single FIS was trained
with both data sets. The consequent average offsets are higher
than the “manual” version, that is 7.00 for CICOP and 11.72 for
SWX.

This difficulty to extract more suitable parameters can have
multiple causes. First, selecting the target of the ANFIS method
(i.e., the supervised observations for the learning part) is far
from obvious because many ways can be used to defined it.
In our experiment, we decided to encode the score “1” when
the discovered segment was within a region of ±2 data points
of a BFAST detected point, and “0” otherwise. Second, both
data set might not have enough observations for ANFIS to ac-
curately learn the parameters from a machine learning perspec-
tive. And last, most of the ANFIS implementations only sup-
port Takagi-Sugeno inference types, as a result having less flex-
ibility in the parameters and a different defuzzification method.

Besides, FCPD presents a huge advantage in terms of com-
plexity. For comparison only, the most computational consum-
ing step of BFAST, that is, the detection of breaks based on [43],
is of O(N2); whereas in FCPD, for the regression, the complex-
ity is of O(K2), where N is the number of observation and K
the degree of the regression (K ≪ N). As illustration, the run-
ning time for the SWX data set is 42 seconds for BFAST and 4
seconds for FCPD on the same computer.

5.5. Sensitivity analysis
In this part the sensitivity of the proposed method in regard

to its parameters is evaluated. The variation of the score of a
query are observed with regard to changes in the parameters of
the segmentation step (i.e., K, the degree; thDPU and thSSS, the
thresholds) and the querying step (i.e., the membership func-
tions of the inputs). Default parameters are the ones used in
the crime trends monitoring case study (Subsection 5.2). These
variations are measured by computing the mean upper bound
(i.e., the mean of the best 3 scores of the data set), the mean
lower bound (i.e., the mean of the worst 3 scores of the data
set), and the mean number of segments on both the CICOP and
the SWX data sets.

These singular changes are introduced either on the param-
eter K, either on the threshold thDPU , either on the threshold
thSSS, either in the introduction of an offset in the x-axis, or in
the input membership functions (Fig. 18).
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Figure 18: (From top to bottom) Effects of a change in the parameter K, thDPU , thSSS; on the introduction of an offset (OFFSET); and on the input membership
functions of the query (MF TYPE). The effects are measured on the mean lower bound and the mean upper bound of the CICOP data set (left-hand) and the SWX
data set (right-hand). Lower bounds and upper bounds are calculated as the average of the 3 worst/best scores. Score values are the mean of all time series of the
data set. The blue regions (K = 5, thDPU = 0.05, thSSS = 2, OFFSET = 0, and MF TYPE = 1 ) are the reference values for the comparisons.
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The membership functions are depicted in Fig. 19. For mem-
bership functions TYPE 3 and TYPE 4, the rules have been
consequently adapted (the number of membership having de-
creased, they need to be adapted according to the output vari-
ables):

a) IF (var average or var slope is large decrease), THEN
(score is very high)

b) IF (var average or var slope is small decrease), THEN
(score is medium)

c) IF (var average or var slope is constant), THEN (score is
very low)

d) IF (var average or var slope is small increase), THEN
(score is medium)

e) IF (var average or var slope is large increase), THEN
(score is very high)

To better understand these results, let us take an example
with a change of the degree on the CICOP data set (top-left
of Fig.18). The reference value, denoted by the blue region, is
shown as K = 5, meaning that 3 best/worst scores are defined
as reference segments. Then, by modifying the value of K only,
the score of these 6 reference segments will be compared with
their mean lower bounds and mean upper bound. More gener-
ally, we can interpret these measures by saying that the bigger
the difference between the lower and upper bound is, the higher
the method is sensitive to the considered parameter. The ef-
fect on the mean number of segments should also be taken into
account.

The first interesting observation is that the method does not
seem particularly sensitive to the change of a singular effect.
Indeed, the difference between the mean lower and mean upper
bounds are relatively constant in most settings and for both data
sets. We however denote a slightly higher difference with the
thresholds.

Second, if we consider the mean upper bound, it remains high
under most conditions, excepted for changes in the input mem-
bership functions. However, the mean lower bound seem to be
pretty high. This could be explained by the mean number of
segments, when it comes close to 6, i.e., the total number of
change points considered only for the upper and lower bound.

Besides these singular changes, let us consider the interde-
pendence of the parameters, that is between the segmentation
step and the query step. The parameter K and the segmentation
thresholds impact the segmentation results. If more segments
are considered (i.e., by decreasing K or the thresholds, as seen
in Fig. 18), the coefficients will describe the segments more
precisely, but very local changes will be reported with respect
to the query. On the other hand, settings parameters that cre-
ate fewer segments (i.e., by increasing K or the thresholds), the
coefficients will not be able to precisely describe the segment,
resulting in inappropriate changes reported with respect to the
query. Interdependence between the degree K and the thresh-
olds thDPU and thS S S are shown in Fig. 20. The score is
computed as the mean of the top 1 segment for both the CICOP
and SWX data set. The variability seems to be relatively low, in
the sense that modifying one parameter does not have a marked
effect on the other.

6. Discussion

As mentioned in the previous sections, the proposed method
presents three main advantages: (a) an intuitive and meaningful
representation of the time series, (b) a dynamic and on-line seg-
mentation method, and (c) a flexible and understandable query-
ing system.

These claims are supported by our experiments: the two case
studies illustrate the flexibility and the feasibility of the intuitive
querying of change points; the comparison with the BFAST al-
gorithm show similar results in terms of accuracy; the sensibil-
ity analysis show that the parameters of the segmentation part
can be consistently determined; and in terms of computational
complexity, FCPD is much more efficient than BFAST.

7. Conclusions

A method for the detection of change points within crime-
related time series was described and tested with different data
sets. The combination of a meaningful representation, a dy-
namic segmentation, and a fuzzy inference system delivers the
possibility, even for experts not related to data mining, to intu-
itively find change points by describing geometric properties in
linguistic terms. More broadly, the considerable flexibility of
the method makes possible the use of the method in any appli-
cation domain, with a great potential in crime analysis.

Future work suggest further investigation on the use of min-
ing methods to automatically discover the most appropriate
membership functions of the inference system in order to mimic
the behavior of existing algorithms. This alternative could
present a gain in the accuracy of the detected change points,
however, the opposing view is a loss in the understanding of
the inference system.

Also, an implementation of a crime trends monitoring pro-
cess in a real environment should be tested and the results as-
sessed in real time by crime analysts.
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