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Abstract

An essential task for operation and planning of biogas plants is the optimization of substrate feed mixtures. Optimizing
the monetary gain requires the determination of the exact amounts of maize, manure, grass silage, and other substrates.
Accurate simulation models are mandatory for this optimization, because the underlying chemical processes are very
slow. The simulation models themselves may be time-consuming to evaluate, hence we show how to use surrogate-
model-based approaches to optimize biogas plants efficiently. In detail, a Kriging surrogate is employed. To improve
model quality of this surrogate, we integrate cheaply available data into the optimization process. Doing so, multi-
fidelity modeling methods like Co-Kriging are employed. Furthermore, a two-layered modeling approach is employed
to avoid deterioration of model quality due to discontinuities in the search space. At the same time, the cheaply
available data is shown to be very useful for initialization of the employed optimization algorithms.

Overall, we show how biogas plants can be efficiently modeled using data-driven methods, avoiding discontinuities
as well as including cheaply available data. The application of the derived surrogate models to an optimization process
is shown to be very difficult, yet successful for a lower problem dimension.
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1. Introduction

Optimizing the operation of biogas plants is and will
be one of the main challenges in the field of anaerobic
digestion (AD) in the near future. Due to a steady de-
crease in funding and increasing substrate costs only op-
timal operating biogas plants will be economically ad-
vantageous.

The operation of biogas plants is very sensitive to the
mixture of the used substrates. Hence, optimizing the
mixture is an important task to run or plan such plants
efficiently. Due to the very slow processes involved,
optimizing the plants in real-time would consume too
much time. Models like the Anaerobic Digestion Model
No. 1 (ADM1) allow to compute a good prediction of a
biogas plant’s process variables, based on the used sub-
strates [4]. Thus, ADM1 can be used as a substitute in
the optimization process instead of a real plant.
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While such models are much cheaper to evaluate than
their real-world counter-part, they do take some time to
evaluate. Hence, methods that use the smallest amount
of evaluations possible are of interest. This situation
motivated the central question that will be tackled in this
study:
(Q-1) How can the precision of simulation models be

improved without increasing the number of evalu-
ations?

Surrogate modeling techniques are therefore a
promising choice. Besides the expensive information
derived from ADM1, additional performance informa-
tion is available. A rough performance estimate can be
determined based on the biogas potential of the used
substrates and their associated costs. This additional
knowledge can be integrated into the optimization pro-
cess, by bolstering the quality of the chosen surrogate-
modeling technique. This approach of integrating dif-
ferent levels of granularity or cost has previously been
called multi-fidelity optimization [14]. It is worth in-
vestigating whether these approaches are applicable to
real-world settings. This can be formulated as the sec-
ond question to be analyzed in this study:
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(Q-2) What are the benefits and limitations of multi-
fidelity modeling approaches?

In this paper, several multi-fidelity modeling ap-
proaches are compared, and the best are tested for their
performance in an optimization process. Section 2 gives
an overview of relevant previous work. The specific
problem to be solved is introduced in Section 3. In
Section 4, methods that were used in this study are de-
scribed. Section 5 presents experiments, in which vari-
ous multi-fidelity approaches are tested for their model-
ing quality, whereas Section 6 tests the best of these for
their success in solving the actual optimization problem.
A concluding summary of findings as well as an outlook
on future research is given in Section 7.

2. Former Research

2.1. Biogas Plant Simulation
Islam et al. [19] analyze the impact of different fac-

tors on production of biogas in different biogas plants
of Bangladesh. The data was collected from 18 poultry
farms. Their analysis is based on collected data from
survey, Internet, and other sources. To obtain further in-
sight in the behavior of biogas plants, simulation models
such as the ADM1 can be used. ADM1 is very popular
and the nowadays most complex mathematical model
used to simulate the anaerobic digestion process (for a
review see [3]). In several publications it is utilized to
dynamically model full-scale agricultural and industrial
biogas plants [5, 23, 29]. ADM1 is a structured model
incorporating disintegration and hydrolysis, acidogen-
esis, acetogenesis, and methanogenenesis steps. The
ADM1 is implemented as a stiff differential equation
system in a MATLAB R© toolbox for biogas plant model-
ing, optimization and control published by Gaida et al.
[16]. In this toolbox, a model of a full-scale agricultural
biogas plant is developed that is used in the empirical
part of this publication. The simulation model of the
biogas plant includes the ADM1 and furthermore mod-
els of electrical and thermal energy sinks and sources
as well as models for performance and stability criteria.
Typical criteria include cost vs. benefit (with respect to
the Renewable Energy Sources Act (EEG 2009) in Ger-
many [6]), stability of substrate degradation processes
and operating constraints such as upper and lower pH
limits, maximum VFA/TA [33] value, maximum total
solids content in the digester, and minimum methane
concentration of the biogas.

2.2. Biogas Substrate Feed Optimization
Biogas plant substrate feed mixtures have previously

been optimized with a Genetic Algorithm and Particle

Swarm Optimization by Wolf et al. [35]. More recently
Ziegenhirt et al. [39] used state of the art evolution
strategies like Covariance Matrix Adaption Evolution
Strategy (CMAES) [18, 17] or Differential Evolution
(DE) [34] to reduce the number of needed simulations.
They also used the Sequential Parameter Optimization
Toolbox (SPOT) [2] to tune the employed algorithms.
In our work, we directly use SPOT on the substrate feed
optimization problem. That is, we support the optimiza-
tion procedure with surrogate-models.

Both previous studies used a biogas plant model
based on the MATLAB R© Simulink R© Toolbox SIMBA,
developed by ifak system GmbH1. The herein presented
research on the other hand is based on the MATLAB R©

Toolbox for Biogas Plant Simulation [16]. In contrast
to earlier works by Wolf et al. [35] and Ziegenhirt et
al. [39] our approach is not limited to the ADM1. A
simple estimate of a substrate mixtures quality is de-
rived from the biogas potential of each ingredient.

2.3. Surrogate Modeling in Optimization

Especially when the evaluation of target functions is
expensive, it is a well established approach to exploit
surrogate models of the target function to save expen-
sive function evaluations.

A methodical framework for surrogate model based
optimization of noisy and deterministic problems is Se-
quential Parameter Optimization (SPO) introduced by
Bartz-Beielstein et al. [2]. SPO has been developed for
solving expensive algorithm tuning problems but can
be directly employed for solving real world engineering
problems as well.

One of the most often used surrogate-models is Krig-
ing, which is an especially promising model for continu-
ous, smooth problem landscapes. Besides its prediction
performance, it is often employed because it provides
an estimator of the local certainty of the model, which
can be used to calculate the Expected Improvement (EI)
of a new sample over the best known sample. Jones
et al. [22] introduced this concept to balance exploita-
tion and exploration in expensive optimization, terming
it Efficient Global Optimization (EGO).

Other models include Artificial Neural Networks
(ANN) or Support Vector Regression (SVR) [11]. Non-
continuous problem landscapes, or problems which are
not that expensive, may be tackled with approaches like
Random Forest (RF) [8] or Multivariate Adaptive Re-
gression Splines (MARS) [15].

1www.ifak-system.com
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A comprehensive overview of surrogate model as-
sisted optimization was provided by Jin [20], focusing
on single objective problems.

Extensions of the above concepts to multi-objective
problems are available (e.g., multi objective EGO [25,
30, 12] and SPO [37, 38]). Since multi-objective prob-
lems are not in the focus of this paper, we refer to the
overview by Knowles and Nakayama [26] for further
information.

2.4. Multi-fidelity Optimization

Multi-fidelity optimization [14] deals with problems
where the target function can be evaluated at different
levels of fidelity. That is, the actual target function rep-
resents the highest level of fidelity, yielding the most
accurate but also most expensive fitness estimate. At
the same time, one or several cheaper, less accurate esti-
mates can represent the lower fidelity levels. The actual,
expensive target function will be referred to as the fine
function, whereas the cheaper and less accurate function
will be referred to as coarse function, respectively.

Such situations often arise, especially in engineer-
ing problems. There, the evaluation of the actual prob-
lem may be an expensive real-world evaluation mea-
surement, or a time consuming Computational Fluid
Dynamics (CFD) simulation. In these cases, a simpli-
fied physics-based model may yield an inexpensive but
less accurate quality estimate. For some models, fi-
delity may even be scalable. For instance, simplified
meshes with less density can be employed with CFD,
or if available pre-converged simulation results may be
harnessed. To exploit information from different fi-
delity levels in model-based optimization, several meth-
ods exist, including Co-Kriging. Forrester et al. [14]
show how this can be applied to engineering problems.
Co-Kriging exploits correlation between coarse and fine
function to generate a better surrogate model of the fine
function.

Several more simple surrogate modeling approaches,
e.g. where the surrogate tries to model the error of the
coarse function, thus correcting it, are possible, some of
which are used in this work. The details of the applied
methods will be described in Sec. 4.

3. Problem Description

In this paper we deal with a problem where two fi-
delity levels are available. The optimization objective
as well as its two fidelity levels are described in this
section.

3.1. The Objective

The objective of the optimization is to maximize the
monetary gain (in Euros per day) of a biogas plant. The
decision space is spanned by the amount of each sub-
strate in the mixture which is fed into the plant. The
objective is composed of several related contributions:

• revenue from selling electrical energy produced in
combined heat and power plants

• revenue from selling thermal energy produced in
combined heat and power plants

• cost of energy used in plant operation, e.g., stirring
the digester content, substrate transportation, heat-
ing the digesters, etc.

• cost of substrates.

All these are more or less dependent on the specific
substrate mixture, and of course dependent on plant-
specific parameters which can be assumed to be con-
stant, e.g., size of fermenters or outside temperature.
The maximal possible gain is limited by the maximum
load of the combined heat and power plant, as well as
the limits of the anaerobic digestion process itself.

3.2. The Fine Function

Here, the fine objective function is the complete bio-
gas plant simulation, based on the ADM1. The mod-
eled biogas plant contains two digesters and produces
an electrical power of 500 kW. As mentioned above,
the used implementation is the MATLAB R© toolbox de-
veloped by Gaida et al. [16].

This toolbox is able to yield information about all rel-
evant process variables, as well as calculates the mon-
etary gain for a given setting. Depending on the exact
setup, the model will take at least 30 seconds, with an
average of about 1 minute to compute the daily mone-
tary gain for a certain substrate mixture in equilibrium
state. Simulations may fail, or are stopped if they do
not yield a result after 10 minutes. These cases have to
be dealt with during optimization, as discussed in Sec-
tion 4.3.

The volume of each available substrate in the in-feed
mixture is varied during the optimization process. That
means, the dimension of the decision space depends
on the number of available substrate types. The term
”available” can refer to physical availability of a sub-
strate at the plant, or the availability of calibration data
for that substrate. Only substrates with known parame-
ters can be represented by the ADM1.

In this study, two cases will be tested.
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• Two-dimensional case: It is assumed that only the
substrates maize and pig manure are available. The
resulting optimization problem is that of finding
the best mixture of both. The low dimensionality
allows for visual analysis thus providing an intu-
itive understanding of the problem.

• Five-dimensional case: Here, three additional
substrates are available, namely cow manure, grass
and corn-cob-mix. This is a realistic scenario for
many plants.

The exact limits of the optimized parameters are sum-
marized in Table 1.

Table 1: Lower and upper boundaries for the optimized parameters,
that is the amount of substrates in the mixture.

Substrates Lower [ m3

d ] Upper [ m3

d ]

Maize 5.00 40.00
Pig Manure 5.00 60.00
Grass Silage 0.00 20.00
Corn-Cob-Mix 0.00 10.00
Cow Manure 0.00 10.00

3.3. The Coarse Function

The coarse, more simple objective function is mostly
based on the biomethane potential of each substrate,
hence called biomethane potential (BMP) model. The
BMP can be calculated for each substrate using the
Buswell equation [9].

Thus, the BMP model estimates that the amount of
produced gas rises linearly with the amount of each sub-
strate feed into the plant. The estimate of produced en-
ergy is limited by the maximum load of the block heat
and power plant. One evaluation takes two hundred mi-
croseconds or less. Hence, ten thousands of coarse func-
tion evaluations could be made during one evaluation of
the fine objective function.

The BMP model is able to yield basic information
like amount of methane gas produced or daily monetary
gain. However, it can not yield the complete set of pro-
cess variables that are available with the ADM1 and is
less accurate.

3.4. Advantages of the Coarse Function

In the case of this application, the optimization pro-
cess can profit in two different ways from the data avail-
able in form of the coarse function. First, the low fi-
delity models optimum can be used to enhance the ini-
tial experimental design created by SPOT, or used as

a starting guess for non-set-based approaches. Sec-
ond, the surrogate model of the global landscape can
be enhanced by the low-fidelity model, e.g., using Co-
Kriging or similar methods.

4. Methods

4.1. Modeling

4.1.1. Co-Kriging
Kriging is a method for interpolation and regression

based on Gaussian process modeling. The following no-
tation is adopted from Forrester et al. [13]. Given a set
of n solutions X = {x(i)}i=1...n in a k-dimensional con-
tinuous search space with observations y = {y(i)}i=1...n,
Kriging is a method to find an expression for a pre-
dicted value at an unknown point by interpreting the
observed responses y as if they are realizations of a
stochastic process. The following set of random vec-
tors Y = {Y(x(i))}i=1...n is used to define this stochastic
process. The correlation of the random variables Y(·) is
modeled as follows [13]:

cor
[
Y(x(i)),Y(x(l))

]
= exp

− k∑
j=1

θ j|x
(i)
j − x(l)

j |
p j

 . (1)

The matrix that collects correlations of all pairs {(i, l)} is
called the correlation matrixΨ. It is used in the Kriging
predictor

ŷ(x) = µ̂ + ψTΨ−1(y − 1µ̂), (2)

where ŷ(x) is the predicted function value of a new sam-
ple x, µ̂ is the maximum likelihood estimate of the mean
and ψ is the vector of correlations between training sam-
ples X and the new sample x. The width parameter
θ =

(
θ1, . . . , θ j, . . . , θk

)T
determines how far the influ-

ence of each sample point x spreads. The parameter p j

is usually fixed at p j = 2, and defines the shape of the
correlation function.

As an extension of Kriging, Co-Kriging may in-
clude information of a coarse function into the model.
To that end, Co-Kriging exploits correlation between
the different fidelity levels. According to Forrester et
al. [14], Co-Kriging can be understood to regress the
coarse function while coinciding with the fine func-
tion. We now have two vectors with n f samples from
the fine function and nc samples from the coarse func-
tion, i.e., X f = {x( j)

f } j=1...n f and Xc = {x(i)
c }i=1...nc in a k-

dimensional continuous search space with observations
yc f = {y(i)

c , y
( j)
f }i=1...nc, j=1...n f . Accordingly, the stochastic

process can now be defined by the set of random vec-
tors Yc f = {Yc(x(i)

c ),Y f (x( j)
f )}i=1...nc, j=1...n f . Then, we get
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the covariance matrix C

C =

(
σ2

cΨc(Xc,Xc) ρσ2
cΨc(Xc,X f )

ρσ2
cΨc(X f ,Xc) ρ2σ2

cΨc(X f ,X f ) + σ2
dΨd(X f ,X f )

)
(3)

where we have the same correlation function, but with
two sets of model parameters for Ψd and Ψc respec-
tively. An additional parameter ρ is introduced as a
constant scaling factor. While Ψc does represent the
correlation structure in the coarse function, Ψd captures
the difference between the Gaussian process represent-
ing the cheap function (scaled by ρ) and the unknown
Gaussian process representing the fine function. The
Co-Kriging predictor for the fine function is

ŷ f (x) = µ̂ + cT C−1(y − 1µ̂), (4)

where the c is the vector of covariances between the
known solutions (fine and coarse) Xc f =

(
X f
Xc

)
and the

solution to be predicted x and 1 denotes a vector of ones.
We refer to Forrester et al. [14] for further information.
The model we use in this work is a re-implementation
in R based on MATLAB R© code of Forrester et al. [13].

Two experimental designs are evaluated for Co-
Kriging, one is a large experimental design which cov-
ers the design space of the coarse function. Hence, all
points in this design are evaluated with the coarse func-
tion. The second design is the smaller set of points
evaluated on the fine function. It is nested in the
larger design, that means, each point evaluated on the
fine function is also evaluated on the coarse function.
Both designs should optimize some criterion of space-
fillingness. In this work, we create designs that maxi-
mize the minimum distance between the samples.

4.1.2. Alternative multi-fidelity models
Several simplified alternatives to Co-Kriging can be

used to integrate information from both coarse and fine
function into the modeling process. The following
methods are all compared to Co-Kriging in a prelimi-
nary investigation of model quality.

Diff. Model A very intuitive idea is to assume that the
coarse function is able to model the general struc-
ture correctly. The remaining error can then sim-
ply be corrected by modeling the difference be-
tween coarse and fine function ( fc, f f ). The resid-
uals of the coarse function are used as training data
for a data-driven model. That is, the surrogate
model M̂ is build with design X and observations
f f (X) = y f , fc(X) = yc and

M̂di f f = g
(
X, y f − yc

)
. (5)

A new prediction is then always based on the result
of the model, as well as the result of the coarse
function:

ŷ f = f̂ f (x) = f̂di f f (x) + fc(x), (6)

where ŷ f is the predicted fine function value and
f̂di f f represents the prediction of the surrogate
model M̂di f f . This model will be referred to as
the Difference Model (Diff. Model).

Ratio Model The Ratio Model works in a very similar
way. Instead of differences, i.e., residuals, the ratio
between fine and coarse function is modeled.

M̂ratio = g
(
X,

y f

yc

)
(7)

The prediction of the Ratio Model M̂ratio is given
as

ŷ f = f̂ f (x) = f̂ratio(x) fc(x) (8)

Input Model The input model takes a slightly different
approach. The response of the coarse target func-
tion is used as an additional input parameter of the
model, e.g., Kriging.

M̂input = g({X, yc}, y f ), (9)

with prediction:

ŷ f = f̂ f (x) = f̂input({x, fc(x)}). (10)

These three simple approaches can all be applied to
arbitrary models, e.g., Neural Networks or Support Vec-
tor Machines. They require the coarse function during
prediction. Of course, if the coarse function itself is
somewhat costly, although cheaper than the fine func-
tion, it can again be replaced by a separate surrogate
model.

4.1.3. Two-layer Modeling
One problem in surrogate modeling of biogas plants

is that the modeled landscape is not continuous, as illus-
trated in Fig. 1. In this example, the actual gain function
has a saltus at x = 30%. In fact, the optimum is often
in the vicinity of a saltus in decision space, which can
also be seen in Fig. 2. This behavior is caused by the
so called manure bonus, which is a fixed bonus paid to
biogas producers. This bonus is paid, if more than 30%
of the substrate contains specific manures [6].

Models like Kriging are best suited for continuous
landscapes. To some extend, they are able to deal with
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Figure 1: Illustration of the two different modeling layers in the Two-
layer surrogate model. Here, only the percentage of manure for a fixed
amount of other substrates is assumed to vary. The discontinuity in the
curve arises at exactly 30 percent manure.

discontinuities, at least globally. Still, a Kriging model
will always deteriorate in regions close to the disconti-
nuities. This is especially problematic due to the fact
that the optimum may often be close to the 30 percent
bonus limit. The model quality would therefore be de-
teriorated in the vicinity of the optimum. To avoid this
problem, two approaches are eligible for this applica-
tion.

1. While the modeled landscape is that of the actual
monetary gain, the simulation does provide addi-
tional information. This could be exploited by
modeling the exact amount of produced gas (e.g.,
with Co-Kriging), and calculating the monetary
gain on-the-fly during prediction. The amount of
produced gas would be continuous over the whole
design space, thus yielding a reasonable surrogate
model. The drawback is, that at least two models
would need to be trained: the first, which models
the amount of produced methane gas, and the sec-
ond, which models further results from the ADM1
simulation which affect the gain of the plant. Also,
the on-the-fly calculation of the monetary gain
would be added on top of the effort of the predic-
tion during the surrogate-optimization process.

2. The alternative is, to create two Kriging models
for the monetary gain. One represents the mone-
tary gain without manure bonus, one with the ma-
nure bonus. During surrogate-optimization the op-
timizer will switch between the two models, de-
pending on whether the 30 percent bonus limit is
reached. The two layers are illustrated in Fig. 1.

The former approach would be more time consuming,

since it needs to calculate the monetary gain for each
predicted sample. Also, each model would have to pre-
dict each sample, because both values are needed for the
monetary gain calculation. The latter approach would
only require to take the 30 percent bonus limit into ac-
count, to switch between models, without any further
calculations. The drawback would be the loss of infor-
mation, since the former approach is able to give an es-
timate of the produced amount of gas to the interested
user. In this study, it was decided to take the less infor-
mative but more efficient approach two. We refer to this
as the Two-layer approach, due to the two different mod-
els of the monetary gain. The difference in model qual-
ity will be investigated in a preliminary study in Sec. 5.

Please note, that the earlier described bump in the de-
cision space is not a constant offset. The manure bonus
which causes this discontinuity affects the revenue from
sold gas, thus having a multiplicative influence on a sin-
gle part of the objective value calculation. The impact
of gas pricing on the overall gain varies significantly in
the given search space.

4.2. Error Measure

Two error measures will be used in the model qual-
ity experiments. The Mean Squared Error (MSE) of
the vector of n observations y = (y1, . . . , yi, . . . , yn)T

and the vector of corresponding predictions ŷ =

(ŷ1, . . . , ŷi, . . . , ŷn)T

MSE(y, ŷ) =
1
n

n∑
i=1

(yi − ŷi)2 (11)

The second error measure is the Scaled MSE (SMSE)
as introduced by Keijzer [24]. Keijzer [24] defines the
SMSE as follows:

SMSE(y, ŷ) = MSE(y, 1a + bŷ) =

(11)
=

1
n

n∑
i=1

(yi − (a + bŷi))2

where b =
cov(y, ŷ)

var(ŷ)
and a = ¯̂y − bȳ

(12)

Here, ¯̂y and ȳ indicate the respective mean values. The
SMSE can be understood to evaluate differences be-
tween two vectors after scaling them to a common
range. That allows to ignore errors that are irrelevant
to the optimization procedure. A simple example would
be a prediction ŷ that differs from the observations y
only by a constant offset. While this prediction would
receive a comparatively large MSE value, the location
of the optimum would be perfectly accurate. SMSE is
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considered as the adequate error measure in this case.
Section 5 will further motivate this choice for the biogas
application, showing preliminary results where SMSE
is clearly the more reasonable indicator.

4.3. Handling Evaluation Failures

Simulations of the expensive, fine target function
may fail and lead to unreasonable or missing results.
Such points can not simply be ignored. Ignoring them
would lead to a situation were the optimization pro-
cess would repeatedly suggest an instable configuration.
This would possibly prevent the optimization progress.
Instead, only failed simulations in the initial design are
removed. Failed simulations in the optimization pro-
cess itself are replaced by the imputation method sug-
gested by Forrester et al. [13]. That means, instead of
the unreasonable result the predicted mean is imputed in
such cases, penalized by adding the predicted variance
of the Kriging (or Co-Kriging) model. Naturally, such
a method is only possible where a variance estimate of
the model is available. All other models, or non-model-
supported approaches will use fixed, large penalty val-
ues.

4.4. Optimization Algorithms

Three different optimization approaches are em-
ployed in this study, either to optimize the fine/coarse
function directly, or to optimize the corresponding sur-
rogate models.

• Downhill Simplex Method (Simplex) is a clas-
sic, derivative free, local optimization method
developed by Nelder and Mead [28]. For the
experiments in this paper a bound constrained
Simplex [7] implementation from the NLopt li-
brary [21] is used, interfaced by the R-package
nloptr [36].

• Differential Evolution (DE) [31, 32] is a state-of-
the-art derivative free optimization method based
on the principles of evolution. Due to being
population-based and due to its stochastic nature it
has the capability (although no guarantee) to leave
local optima. The R-implementation in the pack-
age DEoptim [1, 27] was used in the experiments.

• Latin Hypercube Sampling (LHS) is a very sim-
ple optimization strategy, where a space filling
Latin Hypercube design of experiment is evaluated
in the decision space of the optimization problem.
The best found solution in this design is the esti-
mated optimum.

5. Preliminary Study: Model Quality

A first study was performed to analyze how well the
different surrogate-models represent the problem land-
scape, i.e., testing for modeling error. To get a simple
and understandable example, we restrict this Pre-Study
to the two dimensional case. Only the substrates pig
manure and maize are assumed to be available.

Three questions are of interest:

1. What error measure should be used?

2. Does the Two-layer modeling approach improve
model quality?

3. Which (multi-fidelity-)modeling method, e.g..,
Kriging, Co-Kriging, diff or ratio model, works
best?

Please note, that approximately five percent of ran-
domly chosen substrate-mixtures may yield simulation
failures due to numerical instability. In this preliminary
study, such points are ignored, i.e., manually removed.
A more complicated imputation as described in Sec. 4.3
is only employed during the later optimization experi-
ments.

5.1. Experimental Setup

We perform four sets of experiments, where each rep-
resents a different size of the experimental design. In
each set, two design types are created and evaluated.
Type one is a smaller Latin Hypercube Design (LHD)
(size 5, 10, 15 and 20 points) evaluated with the fine
function f f . Type two is a very large LHD (always 100
points) evaluated with the coarse function fc. The de-
rived information is used to build surrogate models of
the fine function, i.e., f̂ f .

To evaluate performance, we will look at the earlier
introduced error measures (MSE, SMSE). The consid-
ered surrogate models are standard Kriging, Co-Kriging
and a Neural Network approach (Quantile Regression
Neural Network QRNN [10]). QRNN and Kriging are
also tested with the earlier introduced simple multi-
fidelity approaches, that is, Input, Ratio and Difference
modeling (see Section 4.1.2). QRNN is introduced as an
alternative approach to determine whether certain obser-
vations are actually linked to the Multi-fidelity model-
ing approach, or rather to the employed model type.

It has to be noted that Co-Kriging is the most time-
consuming method. Since the model building takes less
than a second in any case, this is not significant in com-
parison to the cost of evaluation f f . However, in the
later optimization experiments runtime deserves more

7



−1000

−500

0

500

1000

5 10 15 20 25 30 35 40

10

20

30

40

50

60
BMP

maize [ m3 d ]

pi
g

−
m

an
ur

e 
[ m

3
d 

]

0

500

1000

1500

5 10 15 20 25 30 35 40

10

20

30

40

50

60
ADM1

maize [ m3 d ]

pi
g

−
m

an
ur

e 
[ m

3
d 

]

Figure 2: Contour plots of ADM1 and BMP model, based on 400
samples from a LHD. The two contour plots are both interpolated with
Two-layer Kriging, using data from 400 samples generated with LHS.
The depicted values are monetary daily gain in Euro, thus larger val-
ues are better.

attention, since the time-consumption will sum up over
all sequential optimization steps. Higher search space
dimension will also play an important role.

For each combination of error measure, design size
and chosen surrogate model, 20 repeats are performed.
The modeling error is estimated based on data from a
larger Latin Hypercube Design, consisting of 400 de-
sign points. This data set is not available during model
training.

5.2. Results and Discussion
As a first result, Fig. 2 shows filled contour plots rep-

resenting the ADM1 ( f f ) and BMP ( fc) target functions,
respectively. Here, both are interpolated with Two-layer
Kriging, using data from 400 samples created with LHS.

MSE: Kriging
MSE: Coarse Function

SMSE: Kriging
SMSE: Coarse Function

0.1 0.2 0.3 0.4

Figure 3: Depicted are SMSE and MSE of a Kriging model of the
fine function as well as the BMP model (coarse function) evaluated
by two different error measures. The Kriging model was build based
on a LHD of size 5. The process of creating the LHD design was
repeated 20 times. Smaller values are better.

Naive Kriging
Two−layer Kriging

Coarse Function

0.02 0.04 0.06 0.08 0.10

Design size: 5

SMSE

● ●●

●

Naive Kriging
Two−layer Kriging

Coarse Function

0.00 0.02 0.04 0.06 0.08 0.10

Design size: 10

SMSE

●● ●

●

Naive Kriging
Two−layer Kriging

Coarse Function

0.00 0.01 0.02 0.03 0.04 0.05

Design size: 15

SMSE

● ● ●Naive Kriging
Two−layer Kriging

Coarse Function

0.005 0.010 0.015 0.020

Design size: 20

Figure 4: Again, all plots are based on LHD designs, repeated 20
times. Design sizes are in each header. The two-layer approach mod-
els values with and without manure bonus separately. Smaller values
are better.

In the given region of interest, both show similar behav-
ior. While the BMP has only a slightly different shape,
a strong offset can be observed. Still, the optima of both
functions are not to far from each other. They are also
close to the discontinuity, hence the need for the Two-
layer approach.

The different scale indicates that SMSE should be
preferred over MSE. An unscaled error measure would
not be a fair comparison, as the optimum of the coarse
function is very close to the one of the fine one. Fig. 3
shows how this choice affects the estimation of quality,
comparing MSE and SMSE of the coarse function to
a Kriging model of the fine function. SMSE is better
suited to evaluate the usefulness of the model for opti-
mization purposes. As shown in Fig. 2, bad MSE values
are caused by the saltus, although the location of the op-
timum is very well approximated.

Fig. 4 shows how SMSE results vary depending on
whether or not the Two-layer approach is used. As ex-
pected, the model profits from using the Two-layer ap-
proach, as it avoids the discontinuity introduced by the
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Figure 5: These plots show how different multi-fidelity methods,
based on Kriging, perform in comparison to the coarse function and
the single-fidelity Kriging model. Diff. Kriging models the differ-
ences between coarse and fine function. Input Kriging uses the coarse
function values as an additional input variable. Smaller values for the
SMSE are better.

manure bonus. The exception is the smallest design size
of just five points. Here, no advantage is visible. Two
reasons can be given. Firstly, the very sparse design of
five points will yield such a poor model that the disconti-
nuity becomes irrelevant. Secondly, it becomes unlikely
that any of the five points is in the small area of the re-
gion of interest, where manure bonus is paid.

Figure. 5 visualizes SMSE results of the different
multi-fidelity, i.e., Two-layer, modeling approaches. In
all cases, Co-Kriging outperforms the standard Kriging
model. Results for the Ratio model are not shown. Their
results were worst, and including them in the figure
would have made them hard to read. The Difference-
and Input-based models seem to work for the smallest
design size, but are later outperformed even by standard
Kriging. This is despite the fact that the Difference-
based model is the best for the smallest design size.

One peculiar observation in this context is, that the
Difference based model does not seem to profit from
larger design sizes, whereas all other methods do. This
can be seen more clearly in Fig. 6. The reason for this
behavior is currently unclear and is subject of further
research.

As a final comparison in this preliminary study, Fig. 7

●● ●●

●

● ●●

Coarse Fun.
Diff. Kriging (n=5)

Diff. Kriging (n=10)
Diff. Kriging (n=15)
Diff. Kriging (n=20)

0.01 0.02 0.03 0.04 0.05

Figure 6: This plot uses the same data as Fig. 5 but for the Difference-
based multi-fidelity approach only. Smaller values for the SMSE are
better.
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Figure 7: This plot compares how choosing a different model
type (QRNN instead of single-fidelity Kriging) would affect results.
Smaller values for the SMSE are better.

shows how choosing a different model type would affect
results. For the smallest design size, Input QRNN out-
performs Input Kriging, whereas the standard models
show no striking difference. For all larger design sizes,
standard Kriging clearly works best. The previous ob-
servation that the Difference-based approach does not
profit from larger design sizes can be confirmed for the
QRNN model, too.

6. Main Study: Optimization Performance

6.1. Experimental Setup
To run the optimization experiments, the R-package

SPOT is used. Choosing parameters for the model-
based optimization process in SPOT is a hard optimiza-
tion problem. Tuning a model-based optimization algo-
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rithm requires large computational effort. In case of an
expensive optimization problem this effort becomes too
large to warrant the potential benefit. Therefore, we re-
strict the choice of parameters to one fixed set for all ex-
periments. Since the model-based approaches all share
several of these parameters, it can at least be expected
that the bias due to lack of tuning is not exceedingly
large.

In the following list, k is the number of optimized
substrates, that is, the dimension of the optimization
problem. The list contains the important parameters
which affect the optimization performance.

• Choice of surrogate model: The different models
are Kriging and Co-Kriging. The implementations
are taken from the R-package SPOT and are based
on the MATLAB R© code by Forrester et al. [13].

• Surrogate optimizer: While the objective land-
scape in the Pre-Study looked rather well-natured
and uni-modal, there is no guarantee that this holds
for any other scenario. Adding further substrates,
or changing the costs of certain substrates, may
easily introduce local optima. Furthermore, there
is no guarantee that a surrogate model of the uni-
modal landscape is unimodal. Due to model-
ing errors, additional optima might be introduced.
Therefore, it was decided to use DE to optimize
the surrogate landscape. DE is well suited to solve
multi-modal optimization problems. The used im-
plementation is the DEoptim Package in R.

• Surrogate optimizer population size: Population
size of the surrogate-optimizer (DEoptim) is cho-
sen to be 10k, which is the minimal suggested
value according to the DEoptim package documen-
tation.

• Surrogate optimizer budget: 500k evaluations of
the surrogate model are allowed for each sequential
step.

• Number of Function evaluations (fine): The
number of evaluations of the fine function (ADM1)
is limited to 5k.

• Design creation: Experimental designs are cre-
ated with LHS.

• Initial Design size (fine): From the 5k budget, 3k
evaluations are used for the initial design.

• Design Size (coarse): 50n points are evaluated on
the coarse function only. In addition, the coarse

function is evaluated at every point where the fine
function is evaluated, leading to an overall number
of 55n evaluations of the coarse function at the end
of an optimization run.

• Infill criterion: The chosen infill criterion is the
mean predicted by the Kriging models. To make
best use of the very small budget, expected im-
provement (EI) is not used, thus the optimization
may focus on exploitation only. This results in
a greedy strategy, i.e., exploitation dominates ex-
ploration of the search space. The benefit of this
choice was validated in pre-experimental studies.

Based on the results from the preliminary study, it
was chosen to test only Co-Kriging as the best per-
forming multi-fidelity method. To get an estimate of
the performance improvement this yields, Co-Kriging is
compared against the basic Kriging approach. Both are
tested once with and once without a fixed point in the
initial design. That point is the optimum of the coarse
model, which is cheap to determine.

Furthermore, two other methods were chosen as base-
lines in the comparison. Due to the strict budget restric-
tions, DE was not considered here. Instead, Simplex
and LHS are compared to the model-based approaches.
The former is a good local optimizer, while the latter is
more globally oriented. LHS can be viewed as an ap-
proach that has to be beaten by any reasonable search
strategy, because it simply selects the best out of a set
of randomly generated solutions. Simplex may be un-
beatable by the competing approaches if the target func-
tion is of a sufficiently simple structure. Compared to
the surrogate-supported approaches, LHS and Simplex
have little overhead. To make use of the coarse function,
LHS and Simplex use its optimum as a starting point.

As Simplex and LHS do not employ models, failures
of the fine function evaluations will be compensated by
using a constant penalty value of 5,000 e.

6.2. Analysis

Table 2 summarizes the parameters of the best so-
lutions found in any experiment. In both 2D and 5D
optimization, the optimal amount of manure is cho-
sen to barely reach the required level for the manure
bonus. When two substrates are optimized, the amount
of maize is thus the largest part of the mixture, yield-
ing a daily gain of roughly 1,770 e per day. Optimiz-
ing five substrates at the same time yields a better re-
sult of 1,987 e. Here, maize is mostly replaced with
grass silage which is not that expensive and therefore
has a better cost-benefit ratio. Nevertheless, one of the
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Table 2: Overall optimal solutions found.

Parameter 2D 5D

Gain [e/d] 1,770 1,987

Maize [m3/d] 22.85 5.22
Pig Manure [m3/d] 11.85 11.48

Grass Silage [m3/d] 0 18.98
Corn-Cob-Mix [m3/d] 0 0.01

Cow Manure [m3/d] 0 0.08

Manure Bonus yes yes

Ammonia Digester [mg/l] 163.4 216.6
Ammonia Post-digester [mg/l] 291.0 464.2

● ●

●

● ●●

Kriging
Co−Kriging

Simplex

1000 1200 1400 1600 1800

Without fixed start point

Gain of optimal setting in euro per day

●

●●

Kriging
Co−Kriging

Simplex
LHS

1720 1730 1740 1750 1760 1770

Optimum of BMP model as start point

Gain of optimal setting in euro per day

Figure 8: Results of 2D optimization. Larger values are better. Results
are based on 20 repeats of each optimization run. The upper plot
shows results where the initial design (or starting guess) was created
in a random fashion. For the lower plot, the initial guess (or at least
one point in the initial design) was set to the optimum of the coarse
objective function.

disadvantages of using a high amount of grass silage is
its high nitrogen content. In the digester the nitrogen
is released and becomes ammonium and ammonia. As
ammonia is toxic for the bacteria a too high concentra-
tion in the digester must be avoided. While this effect
is respected by the ADM1, plant operators will still pre-
fer mixtures resulting in lower ammonia concentrations.
Hence, future studies may be conducted which consider
ammonia as a second objective or as a constraint. A
coarse model to calculate ammonia concentration would
be to use the extended Buswell equation.

The performance of the different model-based and
model-free approaches is compared for the 2D-case in
Fig. 8. It can be seen that Co-Kriging works much bet-
ter in comparison to the standard Kriging model. Both
outperform Simplex in the case where no start point is

Kriging
Co−Kriging

Simplex

800 1000 1200 1400 1600 1800 2000

Without fixed start point

Gain of optimal setting in euro per day

●

Kriging
Co−Kriging

Simplex
LHS

1840 1860 1880 1900 1920 1940 1960 1980

Optimum of BMP model as start point

Gain of optimal setting in euro per day

Figure 9: Boxplot of 5D optimization with equal number of fine
objective function evaluations. Larger values are better. Results
are based on 20 repeats of each optimization run. The upper plot
shows results where the initial design (or starting guess) was created
in a random fashion. For the lower plot, the initial guess (or at least
one point in the initial design) was set to the optimum of the coarse
objective function.

derived from the coarse function optimum. In this case,
Simplex shows a very large variance caused by the ran-
dom start point.

When the optimum of the coarse function is used to
initialize the different methods, Simplex becomes com-
pletely deterministic. While all methods perform bet-
ter than LHS, standard Kriging does now have nearly
the same median as Simplex, while Co-Kriging is better
than both.

At a first glance, the situation does seem to be very
similar for the larger search space of five parameters.
The results of the 5D-case in Fig. 9 seem to show the
same behavior as the 2D runs. It is important to note,
that Fig. 8 and Fig. 9 show results after an equal num-
ber of function evaluations, i.e., after the budget is ex-
pended. This does not take runtime into consideration.
In case of the 2D-optimization there is nearly no differ-
ence in runtime between the different model-based ap-
proaches. This observation can not be made for the 5D
case. Here, due to the much larger coarse design sizes,
the model building becomes expensive. In fact, build-
ing and optimizing the Co-Kriging model now takes a
similar effort as single evaluation of the fine function
(ADM1).

Hence, Fig. 10 shows a comparison which is based
on results after an equal runtime of roughly 25 minutes.
While this does not affect the model-free optimization
algorithms, Co-Kriging is now not significantly differ-
ent from the standard Kriging model.

The main reason for the difference in time-
consumption is the large computational effort spend on
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Figure 10: Boxplot of 5D optimization with equal runtime. Larger
values are better. Results are based on 20 repeats of each optimization
run. The upper plot shows results where the initial design (or starting
guess) were created in a random fashion. For the lower plot, the initial
guess (or at least one point in the initial design) was set to the optimum
of the coarse objective-function.

building a model with data of 250 (initial design: 50k,
Section 6.1) evaluations of the coarse function, or more.
This is not done with Kriging, which still remains com-
paratively cheap. Co-Kriging however suffers from a
strong increase in time consumption. Careful tuning of
parameters (e.g., design sizes) may avoid this issue, but
would be extremely expensive and thus undesirable.

7. Summary and Outlook

The experiments showed that the employed ap-
proaches can be successful in building cheaper yet quite
accurate models of the concerned biogas plant opti-
mization problem. Therefore, Question (Q-1) can be
affirmed. In detail, Co-Kriging based on cheap eval-
uations from a basic biomethane potential model was
shown to improve the model quality, compared to a stan-
dard Kriging model based on evaluations of an accu-
rate ADM1 based simulation model only. Furthermore,
model quality could be improved by using a Two-layer
approach, thus avoiding discontinuities in the searched
landscape.

Besides these successes in improving surrogate
model quality, their application in an optimization pro-
cess proved to be more difficult. In detail, time con-
sumption of Co-Kriging proved to be too large in case
of a 5-Dimensional optimization problem. On the other
hand, Co-Kriging was still successful in the case of a
2-Dimensional problem formulation.

Apart from that, the integration of cheaply avail-
able data was shown to be very profitable. That is, all

tested methods profited from using a coarse representa-
tion of the target function to generate a promising ini-
tial solution. Using this initialization method, a sim-
ple Downhill Simplex method was shown to be as ef-
ficient as the more complex model based approaches.
This comparison does however require to be investi-
gated in more detail. Since Downhill Simplex, with
a fixed start point, is completely deterministic, while
the model-based approaches are not, the comparison
does not provide any information on statistical signif-
icance. Without a fixed starting point, the surrogate-
model-based approaches proved to be much more effi-
cient than the Simplex method. Summarizing, detailed
answers to Question (Q-2) were presented in this study.

For future research, it is therefore commendable to
use test cases with larger variety. The herein presented
research is based on a simulation for a specific com-
bination of plant parameters, substrate costs, substrate
parameters and environmental parameters. For other
plants, the initialization with the cheaper BMP model
may not work that well, or the searched landscape can
become more complex.

As mentioned previously, the larger amount of am-
monia in the sludge may make the found optimum for
the 5D optimization undesirable to plant operators. The
amount of ammonia can therefore be included as a con-
straint or even as a secondary objective. In both cases,
it may again be modeled with data-driven approaches
like Kriging, to cheapen the evaluation of the constraint
or secondary objective, respectively. In the same way,
there are other details of additional parameters which
may require to be included. In previous studies [35, 39]
these were included in a weighted sum of objectives.
Since the weights are hard to set, a multi-objective ap-
proach may make more sense. Of course, the compu-
tational effort of a surrogate-model-based approach will
of course increase, since a separate model has to be built
for each objective. At the same time, classical methods
like Simplex are not applicable anymore.
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