
A

I
o

TQ1

a

b

a

A
R
R
A
A

K
H
R
F
F
S
I

1

Q2
m
s
d
a
s
g

a
c
w
t
r
o
h
i
r
a

h

T

h
1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43
ARTICLE IN PRESSG Model
SOC 3679 1–13

Applied Soft Computing xxx (2016) xxx–xxx

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

dentifying critical architectural components with spectral analysis
f fault trees

olga Ayava,∗, Hasan Sözerb

Izmir Institute of Technology, İzmir, Turkey
Ozyegin University, İstanbul, Turkey

 r t i c l e i n f o

rticle history:
eceived 10 December 2015
eceived in revised form 22 June 2016
ccepted 30 June 2016
vailable online xxx

a b s t r a c t

We increasingly rely on software-intensive embedded systems. Increasing size and complexity of these
hardware/software systems makes it necessary to evaluate reliability at the system architecture level.
One aspect of this evaluation is sensitivity analysis, which aims at identifying critical components of the
architecture. These are the components of which unreliability contributes the most to the unreliability of
the system. In this paper, we propose a novel approach for sensitivity analysis based on spectral analysis of
fault trees. We show that measures obtained with our approach are both consistent and complementary
eywords:
ardware/software architecture evaluation
eliability analysis
ault trees
ourier analysis
ensitivity analysis

with respect to the recognized metrics in the literature.
© 2016 Elsevier B.V. All rights reserved.

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62
mportance analysis

. Introduction

We increasingly rely on software-intensive systems such as
odern embedded systems employed in telecommunication, con-

umer electronics, automotive, avionics and health application
omains. Software plays a central role in defining the functionality
nd the quality for these systems. As a result, both hardware and
oftware faults constitute a threat for system reliability. This threat
ets amplified as systems continue to grow in size and complexity.

For a long period, software reliability has been basically
ddressed at the source code level. However, the increasing size and
omplexity required a special focus on higher abstraction levels as
ell. In particular, early reliability evaluation at the software archi-

ecture design level became essential [1,2]. Software architecture
epresents the gross level structure of the system, consisting of a set
f components, connectors and configurations [3,4]. This structure
as a significant impact on the reliability of the system [5]. Hence,

t is important to evaluate software architecture with respect to
eliability risks [6]. By this way, the quality of the system can be
Please cite this article in press as: T. Ayav, H. Sözer, Identifying critic
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.06.

ssessed early to avoid costly redesigns and reimplementations.
In the case of software-intensive embedded systems, both

ardware and software faults have to be taken into account. To

∗ Corresponding author at: Computer Engineering Department, Izmir Institute of
echnology, Urla, 35430 İzmir, Turkey. Tel.: +90 232 750 7878.

E-mail address: tolgaayav@iyte.edu.tr (T. Ayav).

ttp://dx.doi.org/10.1016/j.asoc.2016.06.042
568-4946/© 2016 Elsevier B.V. All rights reserved.

63

64

65

66
analyze the propagation and interaction of these faults, system
level abstract models have been developed. These models include
state/path-based models [5,7,8] and (dynamic) fault trees [9,10]. In
this work, we employ fault tree models, which depict logical inter-
relationships among faults that cause a system failure. They have
been integrated as part of AADL (Architecture Analysis and Design
Language) [11]. There also exist tools for synthesizing them auto-
matically based on UML models [12]. Fault trees can be used for
estimating the reliability of the overall system based on individual
component failures. Another goal is to estimate the sensitivity of
system reliability with respect to reliabilities of system components
[5,13,14]. This goal is achieved with so-called sensitivity analysis
[15] or importance analysis [16,17] to identify critical components
[18]. These are the components of which unreliability contributes
the most to the unreliability of the system.

An established measure for sensitivity/importance was
introduced by Birnbaum [19], which is basically defined as
the partial derivative of the system reliability with respect to
the corresponding component reliability. Hereby, the system
reliability is defined as a function of reliabilities of the involved
components. There have also been other measures introduced for
assessing component importance; however, it was later observed
that they provide counterintuitive or inconsistent results [16,20].
al architectural components with spectral analysis of fault trees,
042

In this paper, we propose a novel approach for sensitivity anal-
ysis. The approach is based on the spectral analysis of Boolean
functions. Spectral (or Fourier) analysis is widely used in math-
ematics and engineering for decomposing a signal into a sum

67

68

69

70

dx.doi.org/10.1016/j.asoc.2016.06.042
dx.doi.org/10.1016/j.asoc.2016.06.042
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:tolgaayav@iyte.edu.tr
dx.doi.org/10.1016/j.asoc.2016.06.042

 ING Model
A

2 ft Com

o
p
t
f
t
a
a
f
a
o
o
m
M
a

l
t
a
u
l
i

2

s
t
o
n
b
a
W
r
L
p
e
t

w
e
c
r
e
a

(
e
t
a
d
c

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121
122

123

124

125

126
127

128

129

130

131

132

133

134
135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153
ARTICLESOC 3679 1–13

 T. Ayav, H. Sözer / Applied So

f periodic functions. Representing a function as a sum of sim-
ler functions allows for a sort of probabilistic reasoning about
he various parameters of the system. In our approach, we use
ault tree models as input, which are commonly used for sensi-
ivity/importance analysis [2,13,14,16,18,21]. We apply spectral
nalysis on these models to identify critical components of the
rchitecture. We evaluate our approach based on a benchmark
ault tree model and two additional subject models derived from

 software architecture description of a Pick and Place Unit (PPU)
f a factory automation system [22]. We show that the measures
btained with our approach are both consistent and comple-
entary with respect to the recognized metrics in the literature.
oreover, to the best of our knowledge, this is the first study that

pplies spectral analysis methods to the evaluation of fault trees.
The remainder of this paper is organized as follows. In the fol-

owing two sections, we provide background information on fault
ree analysis and spectral analysis. In Section 4, we introduce our
pproach for sensitivity analysis. In Section 5, we present an eval-
ation of our approach. In Section 6, we discuss the results and

imitations. In Section 7, we summarize the related studies. Finally,
n Section 8, we conclude the paper.

. Fault tree analysis

A fault tree is a graphical model, which defines causal relation-
hips among faults leading to a system failure. An example fault
ree model is depicted in Fig. 1. Hereby, the top node (i.e., root)
r the top event of the tree represents the system failure. The leaf
odes of the tree (labeled as a, b, and c in Fig. 1) are named as
asic events. In our modeling approach, each basic event represents

 failure of an individual component of the software architecture.
e can also see an intermediate event in Fig. 1. Such events rep-

esent undesirable system states that can lead to a system failure.
ogical connectors, which interconnect the set of events, infer the
ropagation and contribution of these events to other events and
ventually to the system failure. For example, we can see in Fig. 1
hat basic events b and c are connected with an AND-gate (depicted

ith symbol), which in turn is connected to the intermediate
vent. This means that the intermediate event occurs if both b and

 occur. This can be the case, for instance, if these basic events rep-
esent the failures of functionally equivalent software components
mployed for N-version programming [21]. Another basic event,

 is connected with the intermediate event through an OR-gate

depicted with symbol), which in turn is connected to the top
vent. This means that the top event occurs if one or both of a and
Please cite this article in press as: T. Ayav, H. Sözer, Identifying critic
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.06

he intermediate event occur. This can be the case, for instance, if
 represents the failure of a (critical) component, of which failure
irectly leads to the system failure regardless of the states of other
omponents.

Fig. 1. An example fault tree model.

154

155

156

157

158

159

160

161

162

163

164

165
 PRESS
puting xxx (2016) xxx–xxx

Occurrence of a set of k events can be represented as a vector
of Boolean variables, x = [x0, x1, . . ., xk−1], of length k. Hereby, xi = T
and xi = F indicate the existence and absence of event i, respectively.
Boolean variables and operations are noted and defined as follows:

x:=F |T |x′|x1�x2, where � = {∧ , ∨}.
An AND-gate represents the intersection of the events attached

to the gate. All events must exist for the output event of the gate to
occur. For k input events, the equivalent Boolean expression would
be

fAND(x) = x0 ∧ x1 ∧ x1 ∧ · · · ∧ xk−1

Let p0, . . ., pk−1 denote the probabilities of the input events. Under
the assumption that these events are independent, the probability
of the output event can be defined as

p =
k−1∏
i=0

pi (1)

Similarly, an OR-gate represents the union of the input events.
There must exist at least one input event for the output event to
occur. The equivalent Boolean expression is

fOR(x) = x0 ∨ x1 ∨ x1 ∨ · · · ∨ xk−1

The probability of the output event can be written as

p = 1 −
k−1∏
i=0

(1 − pi) (2)

Let us assume that n different potential failures are identified
for a given software architecture. These failures are considered as
basic events. Then, a vector of Boolean variables, x = [x0, x1, . . .,
xn−1] can represent the occurrence of these events. So, xi = T and
xi = F indicate the existence and absence of failure i, respectively.
The occurrence of the top event can be represented as a Boolean
function of x, f(x), where f(x) = T and f(x) = F indicate the failure and
the correct functioning of the overall system, respectively. For the
example fault tree model depicted in Fig. 1, this function can be
defined as f(x) = a ∨ b ∧ c.

Note that in reliability engineering, failure probabilities depend
on time, i.e. they are expressed as p(t), t ∈ [0, T] where T is the
mission time and they are assumed to be generated from a failure
distribution. Therefore all equations depending on the probabilities
are also time dependent. For the sake of clarity, we prefer to use a
simpler notation throughout the paper by simply omitting the time
dependency. This means that all equations presented in this study
are applicable to any time t ∈ [0, T].

2.1. Coherent and non-coherent systems

Fault tree analysis techniques commonly assume that the ana-
lyzed system is a coherent system, which is defined as follows:

Definition 1 (Coherent system). Given a system with n possible
component failures, and its fault tree, where the occurrence of the
top event is defined by f : Bn → B, the system is said to be coherent
iff:

1. (Relevancy) Infi > 0 : ∀ i ∈ {0, 1, 2, . . ., n − 1},
2. (Monotonicity) f(x) ≥ f(y) whenever x ≥ y pointwise.
al architectural components with spectral analysis of fault trees,
.042

The first requirement states that each component must have an
influence on whether or not the system works. Second, f(x) is
required to be monotone, i.e., a non-decreasing function. In other
words, fixing a component cannot make the system worse. Note

166

167

168

169

dx.doi.org/10.1016/j.asoc.2016.06.042

 IN PRESSG Model
A

ft Computing xxx (2016) xxx–xxx 3

t
r
b
b
o

P

w
a

p

0
o
p

u
t
c
T
e
u
f
i

2

c
t
o
m
b
i
b
t
a

H
t
a
e
m
d
S
f
n

A
o
i

c

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254
ARTICLESOC 3679 1–13

T. Ayav, H. Sözer / Applied So

hat a coherent system satisfies that f(0) = F and f(1) = T, meaning
espectively if all components are working then the system must
e working, and if all components are failed then the system must
e failed. Hereby, 0 and 1 represent strings with all bits zero and
ne, respectively.

Failure probability of the top event can be computed as:

TE = E[f (x) = T] =
2n−1∑
x=0

p(x) · f (x) (3)

here p : {F, T}n → R is the probability for a particular value of x
mong the 2n possibilities. p(x) is defined as follows:

(x) =
∏
i ∈ x

pi ·
∏
i/∈x

(1 − pi) (4)

For example, x = [T, F, T, T, F, T] means that the components
, 2, 3 and 5 are failed at the time of observation, while the
ther events, 1 and 4 are working. The probability of this case is
(x) = p0(1 − p1)p2p3(1 − p4)p5.

It has been observed that the majority of the importance meas-
res are strictly developed for coherent system analysis [23]. On
he other hand, some systems can be non-coherent, in which both
omponent failure and recovery contribute to a system failure [24].
his issue was addressed in only a few studies. A non-coherent
xtension of Birnbaum’s importance index [25,24] was previously
tilized. A unified framework [23] has been proposed to analyze
unctions used for obtaining measures of importance and their
mplications on both coherent and non-coherent systems.

.2. Dynamic fault trees

Traditional or static fault trees (SFT) capture the effects of a
ombination of events, i.e., component failures resulting in a sys-
em failure. They disregard the temporal order of the occurrence
f these events. In some circumstances, the ordering of events do
atter. For example, consider a switch that is used for alternating

etween a component and its spare. The failure of this switch after
t activates the spare does not cause a failure; however, its failure
efore this activation does lead to a system failure. Dynamic fault
rees (DFT) were introduced to capture temporal ordering of events
nd their effects [26].

In SFTs, basic events are represented with Boolean variables.
owever, Boolean algebra does not have any mechanism to handle

he temporal order of occurrence. Hence, DFTs use temporal events
s shown in Fig. 2, where d(a) is the unique date of occurrence of
vent a. Such basic events are supplied as inputs to gates, which
odel the propagation of the events to a system failure. DFT intro-

uce 3 more gates in addition to the conventional gates used in
FT: the priority AND gate (PAND), the spare gate (SPARE), and the
unctional dependency gate (FDEP). The commonly used graphical
otations for these gates are shown in Fig. 3.

PAND gate is used for capturing failure sequence dependency.
ll input events must exist for the output event of the PAND gate to
Please cite this article in press as: T. Ayav, H. Sözer, Identifying critic
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.06.

ccur. In addition, the occurrence of these events must be ordered
n time from left to right (i.e., in the order that they are depicted).

SPARE gate is used for representing the management and allo-
ation of spare components. It has one distinguished primary input

a

t
d(a)

1

Fig. 2. A non-repairable event.

255

256

257

258

259

260

261

262
Fig. 3. Dynamic fault tree gates [27].

and one or more spare inputs. If the failure of primary input occurs,
it is replaced by one of the spare inputs. The primary and all the
spare input events must take place (all the corresponding compo-
nents must fail) for the output event of the SPARE gate to occur.
A spare input can be shared among multiple SPARE gates. In this
case, if a spare is already utilized by any of the SPARE gates, it is
considered to be unavailable (failed) for the other SPARE gates that
share it.

FDEP gate is comprised of a trigger event and a set of depend-
ent events. When the trigger event occurs, it causes the dependent
events to occur as well. That is, all the corresponding components
will be assumed to be failed. This gate does not have an output,
or it has a dummy output [28], which is simply ignored. For non-
repairable events, it is known that a FDEP gate can be removed by
replacing its children by OR gate of the child and the FDEP trig-
ger, and a SPARE gate can be replaced by a k-out-of-N OR gate of
SFT [29]. To analyze dynamic fault trees, temporal operators are
incorporated [30], as defined below:

a � b =

⎧⎨
⎩

a if d(a) < d(b)

a if d(a) = d(b)

F if d(a) > d(b)

(5)

The symbol �, namely Inclusive Before defines the relation among
temporal events such that expression a � b yields a if a non-strictly
occurs before b and F otherwise. The algebraic expression of PAND
gate can be written as:

aPANDb = b ∧ (a � b) (6)

For further details on the analysis of fault trees, we refer to the
IEC 61025 standard [9] and the literature [31,10]. In the follow-
ing section, we introduce spectral analysis of boolean functions.
Then, we introduce the application of this analysis technique to
fault trees.

3. Spectral analysis of boolean functions

Spectral or Fourier analysis is widely used in mathematics and
engineering. Fourier decomposes a signal as a sum of periodic func-
tions like �y(x) = e2�ixy/n. In case of Boolean functions, the most
used transform has been defined over Abelian group Z

n
2. Boolean

functions are usually defined as f : {F, T}n → {F, T}. As a require-
ment of Fourier analysis, instead of 0 and 1, 1 and −1 will be
used as False and True values respectively. Hence the function
becomes f : {1, − 1}n → {1, − 1}. The relevant definitions and the-
orems about Fourier analysis are given below without the proofs.
For further explanations, examples and theorems with proofs, we
refer to [32–34].

Theorem 1 (Fourier expansion). Every f : {−1, 1}n → R can be
expressed with its Fourier expansion,
al architectural components with spectral analysis of fault trees,
042

f (x) =
∑
ω⊆[n]

f̂ (ω)�ω(x), (7) 263

dx.doi.org/10.1016/j.asoc.2016.06.042

ARTICLE ING Model
ASOC 3679 1–13

4 T. Ayav, H. Sözer / Applied Soft Com

Table 1
Truth table for f(x) = a ∨ b ∧ c .

x a b c f ∈ B f ∈ R

0 F F F F 1
1 F F T F 1
2 F T F F 1
3 F T T T −1
4 T F F T −1
5 T F T T −1

w

f

D
p

〈

N

F

f

N
t
t
A
r
[
B
a
1
s
e

f

T
b
t

D
i

=

F
0
b
n
n
r

B

i

I
o
d

is an expectation under uniform distribution. �ω : {0, 1} → ± 1 is a
parity function defined as,

�ω(x) = (−1)ω · x,

264

265

266
267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339
340

341

342
343

344
6 T T F T −1
7 T T T T −1

here f̂ (ω) is the Fourier coefficient and �ω(x) =
∏
i ∈ ω

xi is the parity

unction. It is also adopted that �∅ ≡ 1.

efinition 2 (Inner product). Let f, g : { − 1, 1}n → { −1, 1}. The inner
roduct between f and g is defined as

f, g〉 :=
∑

x ∈ {−1,1}n

f (x)g(x)
2n

= Ex ∈ {−1,1}n [f (x)g(x)].

ote that 〈f, f 〉 = ‖f ‖2
2 = 1 and more generally ‖f ‖p := E[|f (x)|p]1/p.

ourier coefficients can be written as

 ̂ (ω) = 〈f, �ω〉 = Ex[f (x)�ω(x)]. (8)

ote in particular that coefficient f̂ (∅) = E[f] corresponds to
he mean E[f]. For example, recall the 3-input Boolean func-
ion f(x) = a ∨ b ∧ c that was derived in the previous section.
greeing that a and c are the most and least significant bits
espectively, it is trivial to derive the truth vector for f as
FFFTTTTT], i.e., [1 1 1 −1 − 1 −1 − 1 −1] as shown in Table 1.
y using Formula (8), Fourier coefficients can be computed
s f̂ (∅) = 1

23 (1 + 1 + 1 − 1 − 1 − 1 − 1) = −0.250, f̂ (1) = 1
23 (1 · 1 +

 · 1 + 1 · 1 − 1 · 1 − 1 · − 1 − 1 · − 1 − 1 · − 1 − 1 · − 1) = 0.750 and
o on. The eight coefficients are used to constitute the Fourier
xpansion of f as follows:

 = −0.25 + 0.75a + 0.25b + 0.25ab + 0.25c

+ 0.25ac − 0.25bc − 0.25abc.

he derivative or difference calculus for Boolean functions has been
enefited in testing digital circuits and also software over the past
wo decades. It can also be used to describe the notion of influence.

efinition 3 (Derivative). The derivative of f with respect to its
nput xi is defined as,

∂f

∂xi

= f (xi := −1) − f (xi := 1)
(−1) − 1

(9)

∑
ω�i

f̂ (ω)�ω\i(x). (10)

or example, ∂f
∂a

= −1−(0.5+0.5b+0.5c−0.5bc)
−2 = 0.75 + 0.25b + 0.25c −

.25bc. It can be noticed that this derivative would produce 0 if
 and c are true (b = c =−1) and 1 otherwise. f is monotonic, i.e.,
on-decreasing since changing one bit from false to true would
ever cause the output to switch from true to false. Monotonicity
equirement can also be expressed by ∂f

∂xi
≥ 0, ∀i. In theory, all

oolean functions excluding the negation operation are monotonic.
Eq. (9) requires that the derivative of a Boolean function can be

∂f
Please cite this article in press as: T. Ayav, H. Sözer, Identifying critic
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.06

n { − 1, 0, 1}. If
∂xi

(x) = ±1, then xi is said to be pivotal for f at x.

f it is zero, then xi has no influence on f at x. Hence, the influence
f input xi on f is the expected value of being pivotal over x. The
efinition of influence is as follows:
 PRESS
puting xxx (2016) xxx–xxx

Definition 4 (Influence). The influence of input xi on f is defined as,

Infi(f) := Pr[f (x) /= f (x⊕i)] = Ex

[
∂f

∂xi

(x)2

]
=

∑
ω�i

f̂ (ω)2. (11)

where x⊕i is the string x with its i-th bit flipped.

For f(x) = a ∨ b ∧ c, the influence values are found as Infa(f) = 0.75 and
Infb(f) = Infc(f) = 0.25. We can comment on the influence values such
that a is the most important component, whereas b and c have
identical importance and they are less important with respect to a.

Fault trees are mostly designed to be coherent. The structural
functions in this category are therefore monotone. In this case, ∂f

∂xi
≥

0 and the influence becomes [33]

Infi(f) = Ex

[
∂f

∂xi

]
= ∂̂f

∂xi

(∅) = f̂ ({i}). (12)

Eq. (12) implies that the influence of a variable simply equals to
one Fourier coefficient. This makes the computation of influences
feasible particularly for large functions. For the previous example,
Infa(f) = f̂ (1), Infb(f) = f̂ (2), and Infc(f) = f̂ (4).

Another concept is the energy spectrum that may provide use-
full information about the noise sensitivity of a function.

Definition 5 (Energy spectrum). For any real-valued function f :
Bn → R, the energy spectrum Ef is defined by

Ef (k) :=
∑
|ω|=k

f̂ (ω)2 ∀k : 1 ≤ k ≤ n (13)

where |ω| depicts the number of 1 bits in ω.

Ef(∅) is known as DC component, which is the zero-frequency
component. If most of the Fourier mass is localized on high fre-
quencies, then the function is sensitive to small perturbations, i.e.,
component failures as shown in a sample spectrum given in Fig. 4.
If a fault tree is found to be noise sensitive, that means, very small
number of component faults can significantly impact/degrade the
overall system reliability. In that case, one may consider restructu-
ring the architecture to resolve dependencies or dedicate additional
effort for adding redundancy and design diversity to improve the
reliability.

3.1. Approximating Fourier coefficients

The time and resource usage complexity of the transformation
are given as O(n2n) and O(2n) respectively [35]. Therefore, trans-
formation becomes harder as n gets bigger. In this case, Fourier
coefficients can be approximated. Recall that the Fourier coefficient,

f̂ (ω) = E[f · �ω]

n

al architectural components with spectral analysis of fault trees,
.042

Fig. 4. Energy spectrum of f(x) = x0 + x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5.

dx.doi.org/10.1016/j.asoc.2016.06.042

 ING Model
A

ft Com

w
c
f

a
M
h

4

i
s
B
d
p
T
n

t
t
t
a
B
i
t
o
b

s

f

w

f

f

x
e

f

T

P

I

W
o

D
t
d

I

w

p

345

346
347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378
379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423
424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440
ARTICLESOC 3679 1–13

T. Ayav, H. Sözer / Applied So

here ω · x =
∑n

i=1ωixi =
∑

i ∈ ωxi. We can approximate the Fourier
oefficients from uniformly drawn examples (x1, f(x1)), . . ., (xm,
(xm)). Expected value is the following empirical average,

1
m

m∑
j=1

f (xj)�ω(xj)

nd this value converges to the exact value of f̂ (ω) as m grows.
oreover, Chernoff bound tells us how quickly this convergence

appens [36].

. Spectral evaluation of fault trees

In this section, we illustrate how to incorporate spectral analysis
nto the evaluation of fault trees and propose a new metric for sen-
itivity analysis. First, we redefine the conventional metrics using
oolean derivative calculus. These metrics are shown to have some
rawbacks in particular cases. To overcome these drawbacks, we
ropose a new metric based entirely on the spectral coefficients.
his metric is more informative and it is demonstrated to harmo-
ize the former metrics while eliminating their drawbacks.

Sensitivity metrics can be classified into two categories: struc-
ural and probabilistic. The metrics of the former category rely on
he location of the component in the failure logical function and
he latter category takes into account the failure probability of the
ssociated component. We take into account four common metrics:
irnbaum’s importance index, Birnbaum’s structural importance

ndex, criticality index and Fussell-Vesely index. Birnbaum’s impor-
ance index (IB) is widely used and it defines the partial derivative
f the system failure probability with respect to the failure proba-
ility of its components.

Let f(x) be the Boolean function of a fault tree. Shannon’s expan-
ion states that [37]:

 (x) = xi ∧ f T
i (x) ∨ xi′ ∧ f F

i (x) (14)

here

T
i (x) = f (x1, x2, . . ., xi−1, T, xi+1, . . ., xn),

F
i (x) = f (x1, x2, . . ., xi−1, F, xi+1, . . ., xn).

The component is said to be critical if xi = T → f(x) = T and
i = F → f(x) = F. Therefore, the criticality of component xi can be
xpressed with the following requirement:

T
i (x) ∧ f F

i (x)′
he probability that this condition holds is

r[f T
i (x) ∧ f F

i (x)′] = Pr[f T
i (x) = T] − Pr[f T

i (x) ∧ f F
i (x)′ = T]

2

The Birnbaum index is traditionally given as:

Bi = Pr[f T
i (x) = T] − Pr[f F

i (x) = F] (15)

e can redefine this metric by exploiting the influence definition
f spectral analysis as follows:

efinition 6 (Birnbaum’s importance index (IB)). Let f be the struc-
ure function of a fault tree. Importance index of component i is
efined as,

Bi(f) = Pr[f (x) /= f (x⊕i)] = Ex

[
∂f

∂xi

(x)

]
=

2n−1∑
x=0

p(x) · ∂f

∂xi

(x), (16)
Please cite this article in press as: T. Ayav, H. Sözer, Identifying critic
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.06.

here x is a string such that x ⊂ [n] and p : {F, T}n → R is given as

(x) =
∏
i ∈ x

pi ·
∏
i/∈x

(1 − pi). (17)
 PRESS
puting xxx (2016) xxx–xxx 5

In fact, p(x) is the probability of event x. For example, the
probability that components b and c are failed at the time of obser-
vation, i.e., x = [F, T, T], can be calculated as p(x) = (1 − pa)pbpc. Note
that the sum of probabilities of all possible event combinations
must be 1, i.e.,

∑2n−1
x=0 p(x) = 1. As an example, let f(x) = a ∨ b ∧ c

represent a fault tree, assuming that the failure probabilities of
component a, b and c are given as pa = pb = pc = 0.1. We know that
∂f
∂a

= 0.75 + 0.25b + 0.25c − 0.25bc is 1 if (b, c) ∈ {(F, F), (F, T), (T,
F)}. Therefore, IBa(f) can be calculated as

(0.9 · 0.9) + (0.9 · 0.1) + (0.1 · 0.9) = 0.99.

Similarly, we can compute that IBb(f) = IBc(f) = 0.09 .
Birnbaum’s structural importance index slightly differs from IB

relying entirely on the structure of the function. One can realize that
it is the equivalent of the influence value defined with Eq. (11). On
the other hand, it can also be computed by restricting the definition
of IB given with Eq. (16) such that Pr [f = F] = 0.5, i.e., the probability
space consists of all binary n-strings with uniform distribution. In
this case, failure probabilities of components are assumed to be
identical such that pj = 0.5 ∀ j ∈ {1, 2, . . ., n}. Hence, p(x) = 0 .5n and
the formula in Eq. (16) becomes

Infi(f) := 1
2n

2n−1∑
x=0

∂f

∂xi

(x), (18)

which is the expected value given in Eq. (11). As the name implies,
this metric depends solely on the structure of the function. It does
not take into account the failure probabilities of the components.

Criticality index (IC) [38] represents the probability that the
event xi is critical and its occurrence leads to system failure. It is
formulized as

Definition 7 (Criticality index (IC)). Let f be the structure function
of a fault tree. Criticality index of component i is defined as,

ICi(f) := IBi(f)
pi

PTE
. (19)

Note that pTE can be computed as 0.109 using Formula (3). Then,
ICa is found as follows:

ICa = 0.99 · 0.1
0.109

= 0.9083.

Similarly, we can compute that ICb = ICc = 0.0826.
There exist other metrics proposed in the literature, such as Risk

Reduction Worth (RRW), Risk Achievement Worth (RAW) and Fussell-
Vesely (FV) [39][40]. RRW measures the change of the system failure
probability when a component is perfectly working and is given by:

RRWi(f) = 1
1 − ICi(f)

(20)

On the contrary, RAW is the measure of the change of system failure
probability when a component is supposed to be failed or removed
and it can be computed in terms of RRW:

RAWi(f) = 1
pi

(
1 − 1 − pi

1 − RRWi(f)

)
(21)

Since RRW and RAW strictly depend on IC, this study shall not dwell
upon them any further. Moreover, they are less expressive than IB
and IC in terms of component sensitivity [39]. Nevertheless, FV is
rather common in chemical industry and we use it for comparison
purposes. FV, referred to as “fractional contribution” is a measure of
al architectural components with spectral analysis of fault trees,
042

the contribution of a component to the system failure without being
critical. The variable xi contributes to the system failure when a
minimal cut set containing xi occurs. Therefore, it can be expressed
as:

441

442

443

444

dx.doi.org/10.1016/j.asoc.2016.06.042

 IN PRESSG Model
A

6 ft Computing xxx (2016) xxx–xxx

D
t
a

S
m
s
t
t
fi
p
u
b
b
c
i
c
c
I
p
r

o
t
f
s
t
e
s
e
F
t
i
t

i
u
s

D
x

S

w

p

p

L

P
{
w

4.2. Application to dynamic fault trees

Dynamic fault trees (DFT) involve temporal sequences of fail-
ures. Spectral evaluation of Boolean functions does not analyze

Table 2
Importance values of f = a ∨ b′ ∨ c.

a b c

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532
ARTICLESOC 3679 1–13

 T. Ayav, H. Sözer / Applied So

efinition 8 (Fussell-Vesely index (FV)). Let f be the structure func-
ion of a fault tree. Fussell-Vesely index of component i is defined
s,

FVi(f) = Pr[
⋃

sCs = T]

PTE
�

PTE − Pr[f F
i

(x) = T]

PTE

� 1 − 1
PTE

2n−1∑
x=0

p(x)(1 − 2f F
i (x)).

(22)

For example, FVa(f) can be calculated as

0.109 − (0.9 · 0.1 · 0.1)(1 − 2(−1))
0.109

= 0.9174.

imilarly, we can compute that FVb(f) = FVc(f) = 0.1743. The afore-
entioned four metrics are quite common but they may expose

ome difficulties or misinterpretation in particular cases. First, even
hough Infi provides useful information about the relation between
he component failures and the system failure, it solely seems insuf-
cient to identify critical components since it disregards the failure
robabilities of the components. Therefore, IB and IC are often
sed together for reliability evaluation. For any given component, if
oth values are low then the associated component is not critical. If
oth are high, the component can be considered most critical. The
ase of high IB and low IC, however, indicates that the component
s structurally not important or its impact is dominated by other
omponents with high failure probabilities. In this case, one might
onsider a structural improvement. On the contrary, the case of low
B and high IC indicates a lack of structural flaw, but high failure
robability of the associated component. Hence, the component
eliability should be improved in this case.

As stated before, IC is expected to involve the failure probability
f the associated component, whereas IB is independent of it due
o the derivative with respect to that component. However, IC also
alls short to reflect failure probability to the evaluation, as will be
hown in Section 5. The second drawback for both IB and IC is that
hey are limited to the analysis of a certain class of systems: Coher-
nt Systems. They may induce misleading results for non-coherent
ystems. Although fault trees are traditionally designed to be coher-
nt, non-coherent fault trees have also been shown useful [41].
ussell-Vesely is also unable to discriminate the aforementioned
wo cases: (i) low IB and high IC: The component needs to be
mproved and (ii) low IC and high IB: The structure function needs
o be improved.

In order to overcome these drawbacks, we propose a new
mportance metric based on Fourier analysis, in which both fail-
re probabilities and IB are taken into account. We call this metric
pectral sensitivity, which is defined as follows:

efinition 9 (Spectral Sensitivity). The spectral sensitivity of input
i on f is defined as,

i(f) :=
∑
ω�i

f̂ (ω)2p(ω). (23)

here f̂ (ω) depicts spectral of Fourier coefficients and

(ω) =
∏
i ∈ ω

pi ·
∏
i/∈ω

(1 − pi). (24)

Below, we show that Si is the superposition of Infi, IBi, ICi and
i.

emma 1.
∑

ω�ip(ω) = pi .
Please cite this article in press as: T. Ayav, H. Sözer, Identifying critic
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.06

roof. We can write
∑

ωp(ω) = pi
∑

ω�ip(ω \ {i}) + (1−pi)
∑

ω/∈ip(ω \
i}) = 1. Note also that pi

∑
ω�ip(ω \ {i}) =

∑
ω/∈ip(ω \ {i}) = 1 . Hence

e can get
∑

ω�ip(ω) = pi
∑

ω�ip(ω \ {i}) = pi.�
Fig. 5. Example non-coherent fault tree model (pa = pb = pc = 0.1).

We know that ω defines a probability distribution over 2n. Thus∑
ωp(ω) = 1. By Lemma (1),

∑
ω�ip(ω) = pi. We also have the fol-

lowing facts: By Parseval theorem [32],
∑

ωf̂ (ω)2 = 1 and also by

Eq. (11),
∑

ω�i f̂ (ω)2 = Infi. One can realize that Si depends on Infi.
IB, however, is the weighted average of the failure probability with
respect to pi, so it is a derivative and independent of pi. Naturally,
IBi depends on Infi and by Eq. (19), ICi depends on IBi. Note that ICi
may not depend on pi. However, consider a specific case that com-
ponent i’s order of minimum cut set is 1, i.e., pTE = pi · pREST. In this
case, pi disappears in Eq. (19). Let us define a concept of weighted
influence such as:

WInfi =
∑

ω�ip(ω)f̂ (ω)2∑
ω�ip(ω)

The denominator equals to pi. Therefore, this value is expected to
be similar to Birnbaum’s index IBi. In order to incorporate pi into
the metric, we can multiply it by pi, hence one can notice that
Si = piWInfi, which shows that Si contains pi as well.

4.1. Application to non-coherent Systems

A simple fault tree shown in Fig. 5 is used to demonstrate
the comparisons of the traditional and spectral measures for non-
coherent systems. Let f = a ∨ b′ ∨ c be the Boolean representation
of the tree. Note that the system does not satisfy the monoton-
icity requirement of Definition (1). Since all components have the
same order of minimal cut set, Infa, Infb and Infc must be identical.
They can be computed as 0.25 expectedly by Eq. (11). Assum-
ing pa = pb = pc = 0.1, Birnbaum’s indexes can be found as IBa = 0.09,
IBb =−0.81 and IBc = 0.09 by Eq. (16). A negative value comes from
the partial derivative with respect to b. The probability of b′ is
(1 − pb). The derivation of (1 − pb) with respect to b results in a
negative IB value. On the other hand, |IBb| is much higher than
|IBa| and |IBc|. This indicates that component b is much more criti-
cal than a and c, which is misleading. All components are expected
to have identical criticality with equal probabilities and influences.
Both IB and S measures for this example are shown in Table 2,
which confirm this expectation.
al architectural components with spectral analysis of fault trees,
.042

Infi 0.25 0.25 0.25
p 0.1 0.1 0.1
IB 9e−2 −81e−2 9e−2
S 6.25e−3 6.25e−3 6.25e−3

dx.doi.org/10.1016/j.asoc.2016.06.042

ARTICLE IN PRESSG Model
ASOC 3679 1–13

T. Ayav, H. Sözer / Applied Soft Computing xxx (2016) xxx–xxx 7

t
t
i
t
a
i
t
a
t
t
o
b

D
w

t
t
e
i

O
[

f

T

N
t
r

u

T

Table 3
Importance values for u = c ∧ (b � c) ∨ b ∧ (a � b).

a b c

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551
552

553

554
555

556

557

558

559

560
561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600
Fig. 6. An example dynamic fault tree model (pa = 0.05, pb = 0.06, pc = 0.01).

he timing behavior in the input combinations, therefore spec-
ral sensitivity measure cannot be applied directly to DFTs. In fact,
mportance analysis in DFT is still an open research area, and to
he best of our knowledge there is no such work. Nevertheless, by
ltering the definition of Boolean derivative, Birnbaum importance
ndex can still be applied to DFT, yet the nature of this index limits
he calculation to a specific mission time. We take into account the
nalysis for Priority-AND failure logic, since its output depends on
he sequence of the inputs. For non-repairable events, it is known
hat a FDEP gate can be removed by replacing its children by OR gate
f the child and the FDEP trigger, and a SPARE gate can be replaced
y a k-out-of-N OR gate of static fault trees [29].

efinition 10 (Time-aware derivative). Time-aware derivative of f
ith respect to its input xi is defined as,

∂f

∂xi

:= f T
i

(x)+ − f F
i

(x)−

−2
(25)

The semantic of + and − notations is such that xi is assigned
rue after a false value. The intuition behind this definition is that
he output is checked against the switch of input xi from F to T, as
xpectedly from a non-repairable component. For f(x) = a AND b, it
s easy to check that

∂f

∂a
= (−1) · b − 1 · b

−2
= b,

∂f

∂b
= (−1) · a − 1 · a

−2
= a

n the other hand, for f(x) = a PAND b, using the notation given in
21], f can be written as

 = b ∧ (a � b)

he derivatives with respect to a and b can be found as

∂f

∂a
= b ∧ (T+ � b) − b ∧ (F− � b)

−2
= b · 1 − b · 1

−2
= 0

ote that F− � b = F. Also T+ � b = F, since input a is assigned T later
han input b is assigned any value. In this case, PAND produces F
Please cite this article in press as: T. Ayav, H. Sözer, Identifying critic
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.06.

egardless of b.

∂f

∂b
= T+ ∧ (a � T+) − F− ∧ (a � F−)

−2
= (−1) · a − 1 · a

−2
= a

The example DFT given in Fig. 6 can be expressed as follows:

 = (c ∧ (b � c)) ∨ (b ∧ (a � b)) (26)

he derivatives can be computed as,

601

602

603

604

605
Infi 0 0.5 0.25
p 0.05 0.06 0.01
IB 0 5e−2 5.7e−2

∂u

∂a
= (c ∧ (b � c)) ∨ b ∧ (T+ � b) − (c ∧ (b � c)) ∨ b ∧ (F− � b)

−2
= 0

(27)

∂u

∂b
= (c ∧ (T+ � c)) ∨ T+ ∧ (a � T)]′ − (c ∧ (F− � c)) ∨ F− ∧ (a � F−)

−2

= 0.5 − 0.5a
(28)

∂u

∂c
= 0.25 + 0.25a − 0.25b − 0.25ab (29)

The combinations of (a, b, c) that make ∂u
∂b

= 1 are (T, F, F), (T, T, F),
(T, F, T) and (T, T, T). Therefore, IBc can be computed as:

0.5(1 − 0.06)(1 − 0.25) + 0.5 0.06(1 − 0.25) + 0.5(1 − 0.06)0.25

+ 0.5 0.06 0.25 = 0.5.

Table 3 shows the complete results for this tree. Note that at a spe-
cific mission time, IBa is zero. Consider these two cases: (i) a fails
(switches to T) when b is working and (ii) a fails after b has failed. In
both cases, the output will remain zero. Therefore, failure of a itself
does not have any effect on the output according to the definition
of Birnbaum. Component c seems to be most critical component
among these three.

5. Evaluation

This section will describe the evaluation of the approach and
results. First, we evaluate our approach with a benchmark fault tree
model given in [42]. Then, we apply our approach on two larger fault
tree models. These models are derived from a software architecture
description of a Pick and Place Unit (PPU) of a factory automation
system [22].

Fig. 7 illustrates the model that is used as a benchmark [42]. The
structure function of the tree can be constructed step by step as
follows:

E11 = x0 · x1 (30)

E22 = x4 + x5 (31)

E1 = E11 + x2 = x0x1 + x2 (32)

E2 = x3 · E22 = x3(x4 + x5) (33)

f (x) = E1 · E2 = (x0x1 + x2)x3(x4 + x5). (34)

We can evaluate the tree structurally, using the influences (Birn-
baum’s structural importance) of the basic events and the energy
spectrum of the function. The influence values Infi are given in
Table 4. The influences are independent of the probabilities, hence
they remain the same in all the experiments. All influence values are
non-zero and f(x) is monotonic, therefore the system is coherent.
According to Infi, x3 is the most important component, followed by
al architectural components with spectral analysis of fault trees,
042

x2. We can also see the energy spectrum of the tree in Fig. 8. Since
the Fourier mass is localized at the low frequency (left) side, one
can conclude that the tree is not noise sensitive. This means that
the system failure depends on the failure of many components.

606

607

608

609

dx.doi.org/10.1016/j.asoc.2016.06.042

ARTICLE IN PRESSG Model
ASOC 3679 1–13

8 T. Ayav, H. Sözer / Applied Soft Computing xxx (2016) xxx–xxx

Table 4
Evaluation results.

x0 x1 x2 x3 x4 x5

Infi 0.094 0.094 0.281 0.469 0.156 0.156
Experiment 1
p 0.05 0.06 0.01 0.02 0.04 0.03
IB 8.17344e−5 6.8112e−5 1.371872e−3 8.92336e−4 2.51618e−4 2.49024e−4
IC 2.2899e−1 2.2899e−1 7.68697e−1 1.0e+0 5.639535e−1 4.186047e−1
FV 2.675405e−01 2.752506e−01 7.71010e−01 1.0e+0 5.813953e−01 4.360465e−01
S 4.125781e−4 4.950937e−4 6.720072e−4 3.678401e−3 8.706687e−4 6.530016e−4
Experiment 2
p 0.05 0.06 0.01 0.02 0.04 0.2
IB 2.75616e−4 2.2968e−4 4.62608e−3 3.00904e−3 2.0752e−4 2.49024e−4
IC 2.2899e−1 2.2899e−1 7.68697e−1 1.0e+0 1.37931e−1 8.275862e−1
FV 2.675405e−01 2.752506e−01 7.710100e−01 1.0e+0 1.724138e−01 8.620690e−01
S 3.488281e−4 4.185938e−4 5.681712e−4 3.110029e−3 8.706687e−4 4.353344e−3
Experiment 3
p 0.05 0.06 0.01 0.001 0.04 0.03
IB 4.08672e−6 3.4056e−6 6.85936e−5 8.92336e−4 1.25809e−5 1.24512e−5
IC 2.2899e−1 2.2899e−1 7.68697e−1

FV 2.675405e−01 2.752506e−01 7.710100e−01
S 4.125781e−4 4.950937e−4 6.720072e−4

l

P

W
t
o

a
b
i

610
611

612

613

614

615

616

617

618

619

620

621

622
623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647
Fig. 7. Fault tree model used as a benchmark [42].

Taking on the probability values of Experiment 1, we can calcu-
ate the failure probability of the top event by Eq. (3):

TE = 1, 784672 · 10−5.

e applied three different parameter settings on the given fault
ree model to compare different sensitivity metrics, including the
ne we proposed. All the results are presented in Table 4.
Please cite this article in press as: T. Ayav, H. Sözer, Identifying critic
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.06

The first setting is the same with [42]. In this experiment,
ccording to IB, x2 is the most important component, followed
y x3. In terms of criticality index, component 3 is most crit-

cal with IC3 = 1.0, followed by x2. Moreover this value does

Fig. 8. Energy spectrum of f(x) = (x0x1 + x2)x3(x4 + x5).

648

649

650

651

652

653

654

655

656

657
658
1.0e+0 5.639535e−1 4.186047e−1
1.0e+0 5.813953e−01 4.360465e−01
1.839201e−4 8.706687e−4 6.530016e−4

not respond to the probability changes as will be shown next.
We can calculate the failure probability of the top event as:
PTE = (p0p1 + p2 − p0p1p2)p3(p4 + p5 − p4p5) by Eqs. (1) and (2). Thus,

IC3 = ∂PTE

∂p3

p3

PTE
= ((p0p1 + p2 − p0p1p2)(p4 + p5 − p4p5))

p3

PTE
= 1.

Hence, IC3 is independent of the probabilities. When the failure
probability of component 3 is extremely low, this value becomes
misleading as demonstrated in the results of the third experiment
listed in Table 4. The spectral sensitivity indicates x3 as the most
important component yet the second is x4 unlike the results of IB
and IC. This is because the probability of x4 is four times the one of
x2.

In the second experiment, we increase the failure probability of
x5 6.67 times to see the effect of S. According to IB and IC, the most
important components remain the same, where S now points out
x5.

In the third experiment, we decrease p3 20 times. Although p3
is quite smaller than the other probabilities, this time IB and IC
indicate x3 as the most important, which is again misleading. On
the other hand, S orders the first three components as x4, x2 and
x5. The results show that S takes into account IB, IC and the failure
probabilities of components as well.

We can also see in Table 4 that IC and FV yield to same results
for all the three experiments. In the following, we evaluate our
approach with two larger fault tree models. We apply three differ-
ent parameter settings on these and perform comparisons among
IB, IC and S.

The analyzed fault tree models are derived from two different
versions of a software architecture description of a Pick and Place
Unit (PPU) of a factory automation system [22] that was evolved
over time. These models are enumerated as FT1-SC14 and SC0-10.
They are depicted in Figs. 9 and 11, respectively. We used uni-
formly distributed random numbers as the probability values of
basic events.

The sensitivity results and the energy spectrum of FT1-SC14 are
presented in Table 5 and Fig. 10 respectively. In this system, all
importance metrics agree on the same component, x3 as the most
critical one. The reason is that the structural importance order of
basic events is as follows:
al architectural components with spectral analysis of fault trees,
.042

x0 = x1 = . . . = x8 = x14 = x15 > x9 = x10 > x14 = x15,

therefore the component with the highest failure probability is
expected to be most critical. The energy spectrum exhibits a more

659

660

661

dx.doi.org/10.1016/j.asoc.2016.06.042

ARTICLE IN PRESSG Model
ASOC 3679 1–13

T. Ayav, H. Sözer / Applied Soft Computing xxx (2016) xxx–xxx 9

 a sof

p
l
o
t
a

I
t
s
o
f

6

s
i
v
t
v
p
r
e
d

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703
Fig. 9. Fault tree model derived from

essimistic view than the previous benchmark. The Fourier mass is
ocalized in the middle, which means that the top event depends
n very few basic events. This can be verified from Fig. 9. Most of
he basic events are connected to the top event through OR gates
nd a failure of one of them is sufficient to cause the top event.

The results of SC0-10 are presented in Table 6. Here, IB and
C point out x14 as the most critical component whereas x1 has
he highest spectral sensitivity. The energy spectrum of SC0-10,
hown in Fig. 12 has a quite similar characteristic with the previ-
us spectrum, i.e. very few component failures may cause a system
ailure.

. Discussion

Regarding the validity of our evaluation results, we can con-
ider 4 types of threats [43]: conclusion validity, construct validity,
nternal validity and external validity. Conclusion and construct
alidity threats are mitigated by comparing our results with respect
o well-established metrics in the literature. To overcome internal
alidity issues, we obtained our subject models that are previously
Please cite this article in press as: T. Ayav, H. Sözer, Identifying critic
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.06.

ublished and utilized for other experiments. External validity is
elated to the representativeness of the selected fault tree mod-
ls, which is necessary for generalizing the results. We used three
ifferent models to mitigate this threat.

Fig. 10. Energy spectrum of FT1-SC14.

704

705

706

707

708

709

710

711

712

713

714

715

716
tware architecture (FT1-SC14) [22].

Our approach is subject to limitations when it is employed in a
dynamic context such that the fault tree model and/or component
reliabilities change in time. If the fault tree model changes due to
the evolution/adaptation of the architecture [22], metric evalua-
tion should be repeated. Likewise, if a set of design alternatives
has to be evaluated, metric calculations should be performed for
each alternative design as a whole to make a comparison among
them. Our approach is indifferent with respect to the other sensitiv-
ity/criticality metrics from this perspective. There exist reliability
analysis approaches [28] that are particularly focusing on facilitat-
ing modular analysis and as such the (partial) reuse of calculations
in case of changes. We did not consider this issue in our work. Sim-
ilarly, component reliabilities are assumed to be crisp and constant
values. This assumption may not be valid for all type of compo-
nents especially when runtime adaptations are possible. However,
one can repeat calculations for a range of values to perform a
what-if analysis. Such metric evaluations can be pre-computed
offline, especially if the potential changes can be predicted. These
computations can be used at runtime depending on the observed
changes.

The time complexity of the calculation of the entire spectra
for a Boolean function is denoted with O(n2n). Therefore, the
complexity of our spectral sensitivity metric given in Eq. (23) is
O(n22n). Traditional metrics are usually calculated either using
Boolean manipulation or through Binary Decision Diagram (BDD)
representation of the fault trees [29]. Conversion to a BDD has
exponential worst-case and linear best-case complexity. However,
BDDs are shown to exhibit better performance than Boolean manip-
ulation since they provide a compact representation of Boolean
functions with a high degree of symmetry and fault trees show
this symmetry. Once a BDD is obtained, cut sets can be deter-
mined by starting at all 1-leaves and traversing upwards to the
root. Birnbaum and other aforementioned metrics can be calcu-
al architectural components with spectral analysis of fault trees,
042

lated through the cut sets, therefore they have linear complexity
after the BDD is generated. In all conditions, spectral techniques
appear to be inefficient compared to the other methods. Nev-
ertheless, the approximation method presented in Section 3.1 is

717

718

719

720

dx.doi.org/10.1016/j.asoc.2016.06.042

Please cite this article in press as: T. Ayav, H. Sözer, Identifying critical architectural components with spectral analysis of fault trees,
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.06.042

ARTICLE IN PRESSG Model
ASOC 3679 1–13

10 T. Ayav, H. Sözer / Applied Soft Computing xxx (2016) xxx–xxx

Fig. 11. Fault tree model derived from a software architecture (SC0-10) [22].

Table 5
Evaluation results for FT1-SC14.

x0 x1 x2 x3 x4 x5

Infi 7.629395e−04 7.629395e−04 7.629395e−04 7.629395e−04 7.629395e−04 7.629395e−04
p 0.035457 0.035338 0.061671 0.094864 0.035846 0.032513
IB 6.128847e−01 6.128092e−01 6.300071e−01 6.531107e−01 6.131324e−01 6.110200e−01
IC 5.315184e−02 5.296724e−02 9.503183e−02 1.515409e−01 5.375765e−02 4.859102e−02
S 1.598650e−08 1.593293e−08 2.780592e−08 4.277172e−08 1.616217e−08 1.465934e−08

x6 x7 x8 x9 x10 x11

Infi 7.629395e−04 7.629395e−04 7.629395e−04 2.136230e−04 2.136230e−04 3.051758e−05
p 0.035781 0.021062 0.049430 0.096217 0.031884 0.039217
IB 6.130906e−01 6.038726e−01 6.218937e−01 2.352263e−03 7.098438e−03 1.652711e−03
IC 5.365563e−02 3.110920e−02 7.518718e−02 5.535748e−04 5.535748e−04 1.585302e−04
S 1.613260e−08 9.496362e−09 2.228647e−08 3.854247e−09 1.277211e−09 3.652374e−11

x12 x13 x14 x15

Infi 3.051758e−05 3.051758e−05 7.629395e−04 7.629395e−04
p 0.003908 0.085452 0.078028 0.030211
IB 1.594126e−03 1.736263e−03 6.411842e−01 6.095694e−01
IC 1.523695e−05 3.628915e−04 1.223699e−01 4.504311e−02
S 3.639449e−12 7.958321e−11 3.518079e−08 1.362131e−08

Fig. 12. Energy spectrum of SC0-10.

dx.doi.org/10.1016/j.asoc.2016.06.042

ARTICLE IN PRESSG Model
ASOC 3679 1–13

T. Ayav, H. Sözer / Applied Soft Computing xxx (2016) xxx–xxx 11

Table 6
Evaluation results for SC0-10.

x0 x1 x2 x3 x4 x5 x6

p 0.048211 0.090476 0.009704 0.073332 0.047763 0.046852 0.006192
IB 4.14e-01 4.33e-01 3.98e-01 0.00e+00 1.85e-02 1.89e-02 1.06e-03
IC 3.30e-02 6.47e-02 6.38e-03 0.00e+00 1.46e-03 1.46e-03 1.08e-05
S 1.05e-02 1.58e-02 7.54e-04 2.00e-04 2.20e-04 2.14e-04 7.49e-05

x8 x9 x10 x11 x12 x13

p 0.002682 0.059671 0.092333 0.038408 0.069307 0.002909 0.064377
IB 2.44e−03 3.66e−02 2.37e−02 2.74e−02 1.52e−02 0.00e+00 4.21e−01
IC 1.08e−05 3.61e−03 3.61e−03 1.74e−03 1.74e−03 0.00e+00 4.48e−02
S 1.04e−05 1.71e−04 3.40e−04 1.00e−04 1.95e−04 1.01e−05 1.68e−04

x14 x15 x16 x17 x18 x19 x20

p 0.09597 0.000987 0.019109 0.087771 0.053134 0.090643 0.020308
IB 4.36e−01 3.95e−01 4.02e−01 4.32e−01 4.16e−01 4.34e−01 4.02e−01
IC 6.91e−02 6.43e−04 1.27e−02 6.26e−02 3.65e−02 6.49e−02 1.35e−02
S 2.82e−04 5.34e−06 6.23e−05 2.19e−04 1.66e−04 5.50e−04 7.16e−05

x21 x22 x23 x24 x25 x26

p 0.013639 0.024008 0.056297 0.090061 0.064624 0.05769
−01

−02

−04

p
a
o
t
F
c

7

n
b
a
t
a
i
t
t
p
t
l
t
s
t
I
g
a

f
a
e
o
w
t
t
t
f
m
t
s
a

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795
IB 4.00e−01 4.04e−01 4.18e
IC 9.00e−03 1.60e−02 3.88e
S 5.62e−05 7.70e−05 1.90e

romising since it allows to compute the coefficients in reason-
ble times. Moreover, approximate values are sufficient to find the
rder of importance of the components. In the evaluation section,
he spectral sensitivities for the two relatively large fault trees,
T1-SC14 and SC0-10, are calculated with the approximate spectral
oefficients.

. Related work

There have been many software architecture analysis tech-
iques introduced [6]. These techniques mainly adopt scenario-
ased analysis approaches. Hereby, the impact of set scenarios is
nalyzed on a model of the architecture to identify the poten-
ial risks and the sensitive points of the architecture. Different
nalysis methods use different type of scenarios (e.g., usage scenar-
os [44], change scenarios [45], failure scenarios [18]) depending on
he quality attributes (e.g, performance, maintainability, reliability)
hat they focus on. Some methods such as ATAM [44] utilize multi-
le types of scenarios for addressing multiple quality attributes at
he same time. Previously, failure scenarios have been used for ana-
yzing software reliability at the architecture design level [18]. In
hat approach, fault tree models have been defined based on these
cenarios [14]. Then, sensitivity analysis has been performed on
hese models based on the measure introduced by Birnbaum [19].
n this work, we assume that the fault tree model of the system is
iven as input. However, we apply a new technique for sensitivity
nalysis.

In this work, we applied spectral analysis of Boolean functions
or sensitivity analysis. There also exist other sensitivity analysis
pproaches that are applied based on (dynamic) fault tree mod-
ls [16,5]. These approximate approaches make use of variations
f Markov chain models (DTMC, CTMC) in order to model the soft-
are architecture. These models are usually derived based on fault

rees [16,46] that are provided as input. As an alternative approach
o analytical resolution, there also exist simulation techniques and
ools [47] applied on fault tree models. They are used particularly
or analyzing DFT models to perform dynamic reliability assess-
Please cite this article in press as: T. Ayav, H. Sözer, Identifying critic
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.06.

ent [48,49]. They mainly employ Monte Carlo simulation with
he aim of overcoming the limitations of analytical methods such as
tate space explosion and lack of modularity in analysis [47]. There
lso exist studies that benefit from Bayesian Network (BN) that is
4.33e−01 4.22e−01 4.18e−01
6.44e−02 4.50e−02 3.98e−02
1.88e−04 2.98e−04 2.63e−04

a powerful method for probabilistic reasoning, particularly taking
into account the complex dependencies in components and uncer-
tainty in modeling. To that end both FT and DFT can be converted
into BN [50] and Dynamic BN [51] respectively.

Spectral analysis of Boolean functions is a powerful technique. In
the literature, Fourier analysis, Walsh or Walsh-Hadamard trans-
formations, Reed-Muller transformation are all used for spectral
analysis. These techniques are well-known for more than thirty
years. Although they have a wide application area in mathematics,
physics and engineering, its application in computer science seems
relatively limited. Some fields that have utilized spectral analysis
so far include error-correcting code analysis, cryptography, graph
theory and quantum computing. Spectral analysis of Boolean func-
tions has attracted a great attention from computer scientists in
the last decade [32–34]. This is due to well-developed theorems
such as Kahn-Kalai, Arrow’s and Peres’s theorems, and also its con-
tribution in the development of social choice theory. The influence
of Boolean variables and noise sensitivity has also been studied by
several papers [32,34,52]. In our study, we benefit particularly from
influence, probabilistic influence and energy spectrum of spectral
analysis in order to analyze fault trees that represent both coherent
and non-coherent systems.

Our spectral analysis technique can be safely used for both
coherent and non-coherent systems. IEC 61025 does not distin-
guish between these two types systems [9]. Indeed, fault tree
analysis is usually applied to coherent systems. However, as stated
by [25,41], non-coherent systems can also be useful in many cases
and the sensitivity analysis techniques proposed for these systems
are quite limited. It is also demonstrated that the conventional
metrics, IB and IC provide misleading results for the evaluation of
non-coherent systems. Therefore, some extensions have been pro-
posed for these metrics [25,24]. There were also other extensions
proposed [53] to address complex components (as well as group
of components) whose failures are triggered by a combination of
basic events. In our approach, component failures are modeled in
the form of basic events.
al architectural components with spectral analysis of fault trees,
042

8. Conclusions, limitations and future work

We introduced a new approach for identifying critical compo-
nents of the software architecture with respect to reliability. Our

796

797

798

dx.doi.org/10.1016/j.asoc.2016.06.042

 ING Model
A

1 ft Com

a
m
a
f
r
u
m
a
o

F
a
w
c
s
l
a
a
s
m
u
t

A

Q3
f

R

[

[

[

[

[

[

[

[

[

[

[
[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[Q4

[

[

[

[

[

[

[

[

[

[

[

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950
ARTICLESOC 3679 1–13

2 T. Ayav, H. Sözer / Applied So

pproach employs a spectral analysis of fault trees that are com-
only used models for sensitivity and importance analysis at the

rchitecture design level. The approach is applied on benchmark
ault tree models and the results are compared with respect to the
ecognized metrics in the literature. It was observed that the meas-
res obtained with our approach are consistent with the existing
etrics. In addition, we showed that our approach can facilitate the

nalysis of different types of fault trees, which are considered to be
ut-of-scope for the current metrics.

Our approach is currently applicable to static fault trees only.
urther research is necessary for extending or complementing the
pproach to make it applicable for dynamic fault trees as well. Like-
ise, it is assumed that the software architecture is not subject to

hanges and component reliabilities are defined as crisp and con-
tant values. Another limitation of the approach is time complexity
eading to exponential growth in the worst case. We offered an
pproximation method to be able compute coefficients in reason-
ble times. In our experiments, approximate values turned out to be
ufficient for finding the relative component importance. However,
ore case studies and controlled experiments are needed to eval-

ate the effectiveness of our approximation method for different
ypes of subject systems.

cknowledgements

This study was partially supported by research grant 115E726
rom the Scientific and Technological Research Council of Turkey.

eferences

[1] S. Gokhale, Architecture-based software reliability analysis: overview and
limitations, IEEE Trans. Softw. Eng. 4 (1) (2007) 32–40.

[2] A. Immonen, E. Niemela, Survey of reliability and availability prediction
methods from the viewpoint of software architecture, Softw. Syst. Model. 7
(1) (2008) 49–65.

[3] P. Clements, et al., Documenting Software Architectures: Views and Beyond,
Addison-Wesley, 2002.

[4] M. Shaw, R. DeLine, D. Klein, T. Ross, D. Young, G. Zelesnik, Abstractions for
software architecture and tools to support them, IEEE Trans. Softw. Eng. 21
(4) (1995) 314–335.

[5] S. Gokhale, K. Trivedi, Reliability prediction and sensitivity analysis based on
software architecture, in: Proceedings of the 13th International Symposium
on Software Reliability Engineering, 2002, pp. 64–76.

[6] E.N.L. Dobrica, A survey on software architecture analysis methods, IEEE
Trans. Softw. Eng. 28 (7) (2002) 638–654.

[7] W.-L. Wang, D. Pan, M.-H. Chen, Architecture-based software reliability
modeling, J. Syst. Softw. 79 (1) (2006) 132–146.

[8] K. Goeva-Popstojanova, K. Trivedi, Architecture-based approaches to software
reliability prediction, Comput. Math. Appl. 46 (7) (2003) 1023–1036.

[9] IEC61025:2006, Fault tree analysis (FTA), in: The International
Electrotechnical Commission (IEC), Geneva, Switzerland, 2006 https://
webstore.iec.ch/publication/4311.

10] M.A. Boyd, Dynamic fault tree models: techniques for analyses of advanced
fault tolerant computer systems (Ph.D. thesis), Duke University, Durham, USA,
1991.

11] H. Sun, M. Hauptman, R. Lutz, Integrating product-line fault tree analysis into
AADL models, in: Proceedings of the 10th IEEE High Assurance Systems
Engineering Symposium, 2007, pp. 15–22.

12] C. Lauer, R. German, J. Pollmer, Fault tree synthesis from uml models for
reliability analysis at early design stages, SIGSOFT Softw. Eng. Notes 36 (1)
(2011) 1–8.

13] H. Sozer, B. Tekinerdogan, M. Aksit, Extending failure modes and effects
analysis approach for reliability analysis at the software architecture design
level, in: R. de Lemos, C. Gacek, A. Romanovsky (Eds.), Architecting
Dependable Systems IV, Vol. 4615 of Lecture Notes in Computer Science,
Springer, Berlin Heidelberg, 2007, pp. 409–433.

14] H. Sozer, Architecting fault-tolerant software systems (Ph.D. thesis),
University of Twente, Enschede, The Netherlands, 2009.

15] E. Borgonovo, E. Plischke, Sensitivity analysis: a review of recent advances,
Eur. J. Oper. Res. 248 (3) (2016) 869–887.
Please cite this article in press as: T. Ayav, H. Sözer, Identifying critic
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.06

16] Y. Ou, B. Dugan, Sensitivity analysis of modular dynamic fault trees, in:
Proceedings of the IEEE International Symposium on Computer Performance
and Dependability, 2000, pp. 35–43.

17] W. Kuo, X. Zhu, Importance Measures in Reliability, Risk and Optimization –
Principles and Applications, Wiley, Hoboken, NJ, USA, 2012.

[

 PRESS
puting xxx (2016) xxx–xxx

18] B. Tekinerdogan, H. Sozer, M. Aksit, Software architecture reliability analysis
using failure scenarios, J. Syst. Softw. 81 (4) (2008) 558–575.

19] J. Andrews, T. Moss, Reliability and Risk Assessment, Longman Scientific and
Technical, Essex, 1993.

20] E. Henley, H. Kumamoto, Probabilistic Risk Assessment, IEEE Press, 1992.
21] J. Dugan, Software system analysis using fault trees, in: M.R. Lyu (Ed.),

Handbook of Software Reliability Engineering, McGraw-Hill, 1996, pp.
615–659, chapter 15.

22] S. Getir, M. Tichy, A. van Horn, L. Grunske, Co-evolution of software
architecture and fault tree models: an explorative case study on a pick and
place factory automation system, in: Proceedings of the 5th International
Workshop on Non-functional Properties in Modeling, 2013, pp. 32–39.

23] E. Borgonovo, The reliability importance of components and prime implicants
in coherent and non-coherent systems including total-order interactions, Eur.
J. Oper. Res. 204 (3) (2010) 485–495.

24] S. Beeson, J. Andrews, Importance measures for non-coherent-system
analysis, IEEE Trans. Reliab. 52 (3) (2003) 301–310.

25] S.C. Beeson, Non coherent fault tree analysis (PhD thesis), Loughborough
University, 2002 https://dspace.lboro.ac.uk/2134/6927.

26] J.B. Dugan, S.J. Bavuso, M.A. Boyd, Dynamic fault-tree models for
fault-tolerant computer systems, IEEE Trans. Reliab. 41 (3) (1992) 363–377.

27] S. Junges, D. Guck, J. Katoen, A. Rensink, M. Stoelinga, Fault trees on a diet –
automated reduction by graph rewriting, in: Proceedings of the 1st
International Symposium on Dependable Software Engineering: Theories,
Tools, and Applications, 2013, pp. 3–18.

28] H. Boudali, P. Crouzen, M. Stoelinga, Dynamic fault tree analysis using
input/output interactive Markov chains, in: Proceedings of the 37th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks,
2007, pp. 708–717.

29] E. Ruijters, M. Stoelinga, Fault tree analysis: a survey of the state-of-the-art in
modeling, analysis and tools, Comput. Sci. Rev. 15 (2015) 29–62, http://dx.doi.
org/10.1016/j.cosrev.2015.03.001.

30] G. Merle, J. Roussel, J. Lesage, A. Bobbio, Probabilistic algebraic analysis of
fault trees with priority dynamic gates and repeated events, IEEE Trans.
Reliab. 59 (1) (2010) 250–261, http://dx.doi.org/10.1109/TR.2009.2035793.

31] W. Veseley, F. Goldberg, N. Roberts, D. Haasl, Fault tree handbook, Tech. Rep.
NUREG-0492, United States Nuclear Regulatory Commission, Washington,
DC, 1981.

32] R. O’Donnell, Some topics in analysis of Boolean functions, in: Proceedings of
the fortieth annual ACM symposium on Theory of computing – STOC 08,
2008, p. 569, http://dx.doi.org/10.1145/1374376.1374458.

33] R. O’Donnell, P. Austrin, Analysis of Boolean Functions: Notes from a series of
lectures by Ryan O’Donnell, Workshop on Computational Complexity, 2012
arXiv:1205.0314v1.

34] R.D. Wolf, A brief introduction to Fourier analysis on the Boolean cube, Theory
Comput. Grad. Surv. 1 (015848) (2008) 1–20, http://dx.doi.org/10.4086/toc.gs.
2008.001.

35] P. Porwik, Efficient spectral method of identification of linear Boolean
function, Control Cybern. 33 (4) (2004) 83–105.

36] M. Mitzenmacher, E. Upfal, Probability and Computing: Randomized
Algorithms and Probabilistic Analysis, Cambridge University Press, New York,
NY, 2005.

37] C.E. Shannon, The synthesis of two terminal switching circuits, Bell Syst. Tech.

J. 28 (1) (1949) 59–98 http://bstj.bell-labs.com/BSTJ/images/Vol28/bstj28-1-
59.pdf.

38] S. Contini, V. Matuzas, Components’ importance measures for initiating and
enabling events in fault tree analysis, Tech. Rep. EUR 24373, European
Commission, Joint Research Centre, Luxembourg, 2010.

39] C. Sergio, F. Luciano, M. Vaidas, Concurrent importance and sensitivity
analysis applied to multiple fault trees, 2009.

40] M. Rausand, A. Hyland, Component Importance, John Wiley & Sons, Inc, 2008,
pp. 183–206, http://dx.doi.org/10.1002/9780470316900.ch5.

41] S. Contini, G. Cojazzi, G. Renda, On the use of non-coherent fault trees in
safety and security studies, Reliab. Eng. Syst. Saf. 93 (12) (2008) 1886–1895,
http://dx.doi.org/10.1016/j.ress.2008.03.018.

42] P. Lszl, Sensitivity investigation of fault tree analysis with matrix-algebraic
method, Theory Appl. Math. Comput. Sci. 1 (1) (2011) 34–44.

43] C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Regnell, A. Wesslen,
Experimentation in Software Engineering, Springer-Verlag, Berlin,
Heidelberg, 2012.

44] P. Clements, R. Kazman, M. Klein, Evaluating Software Architectures: Methods
and Case Studies, Addison-Wesley, 2002.

45] P. Bengtsson, N. Lassing, J. Bosch, H. van Vliet, Architecture-level modifiability
analysis (ALMA), J. Syst. Softw. 69 (1-2) (2004) 129–147.

46] Y. Ou, B. Dugan, Approximate sensitivity analysis for acyclic Markov reliability
models, IEEE Trans. Reliab. 52 (2) (2003) 220–230.

47] G. Manno, F. Chiacchio, L. Compagno, D. D’Urso, N. Trapani, Matcarlore: an
integrated {FT} and Monte Carlo Simulink tool for the reliability assessment
of dynamic fault tree, Expert Syst. Appl. 39 (12) (2012) 10334–10342.

48] F. Chiacchio, D. D’Urso, G. Manno, L. Compagno, Stochastic hybrid automaton
model of a multi-state system with aging: reliability assessment and design
al architectural components with spectral analysis of fault trees,
.042

consequences, Reliab. Eng. Syst. Saf. 149 (2016) 1–13.
49] F. Chiacchio, D. D’Urso, L. Compagno, M. Pennisi, F. Pappalardo, G. Manno,

Shyfta, a stochastic hybrid fault tree automaton for the modelling and
simulation of dynamic reliability problems, Expert Syst. Appl. 47 (2016)
42–57.

951

952

953

954

955

dx.doi.org/10.1016/j.asoc.2016.06.042
https://webstore.iec.ch/publication/4311
https://webstore.iec.ch/publication/4311
https://webstore.iec.ch/publication/4311
https://webstore.iec.ch/publication/4311
https://webstore.iec.ch/publication/4311
https://webstore.iec.ch/publication/4311
https://dspace.lboro.ac.uk/2134/6927
https://dspace.lboro.ac.uk/2134/6927
https://dspace.lboro.ac.uk/2134/6927
https://dspace.lboro.ac.uk/2134/6927
https://dspace.lboro.ac.uk/2134/6927
https://dspace.lboro.ac.uk/2134/6927
https://dspace.lboro.ac.uk/2134/6927
dx.doi.org/10.1016/j.cosrev.2015.03.001
dx.doi.org/10.1016/j.cosrev.2015.03.001
dx.doi.org/10.1016/j.cosrev.2015.03.001
dx.doi.org/10.1016/j.cosrev.2015.03.001
dx.doi.org/10.1016/j.cosrev.2015.03.001
dx.doi.org/10.1016/j.cosrev.2015.03.001
dx.doi.org/10.1016/j.cosrev.2015.03.001
dx.doi.org/10.1016/j.cosrev.2015.03.001
dx.doi.org/10.1016/j.cosrev.2015.03.001
dx.doi.org/10.1016/j.cosrev.2015.03.001
dx.doi.org/10.1016/j.cosrev.2015.03.001
dx.doi.org/10.1109/TR.2009.2035793
dx.doi.org/10.1109/TR.2009.2035793
dx.doi.org/10.1109/TR.2009.2035793
dx.doi.org/10.1109/TR.2009.2035793
dx.doi.org/10.1109/TR.2009.2035793
dx.doi.org/10.1109/TR.2009.2035793
dx.doi.org/10.1109/TR.2009.2035793
dx.doi.org/10.1109/TR.2009.2035793
dx.doi.org/10.1109/TR.2009.2035793
dx.doi.org/10.1145/1374376.1374458
dx.doi.org/10.1145/1374376.1374458
dx.doi.org/10.1145/1374376.1374458
dx.doi.org/10.1145/1374376.1374458
dx.doi.org/10.1145/1374376.1374458
dx.doi.org/10.1145/1374376.1374458
dx.doi.org/10.1145/1374376.1374458
dx.doi.org/10.1145/1374376.1374458
https://arxiv.org/abs/1205.0314v1
https://arxiv.org/abs/1205.0314v1
dx.doi.org/10.4086/toc.gs.2008.001
dx.doi.org/10.4086/toc.gs.2008.001
dx.doi.org/10.4086/toc.gs.2008.001
dx.doi.org/10.4086/toc.gs.2008.001
dx.doi.org/10.4086/toc.gs.2008.001
dx.doi.org/10.4086/toc.gs.2008.001
dx.doi.org/10.4086/toc.gs.2008.001
dx.doi.org/10.4086/toc.gs.2008.001
dx.doi.org/10.4086/toc.gs.2008.001
dx.doi.org/10.4086/toc.gs.2008.001
http://bstj.bell-labs.com/BSTJ/images/Vol28/bstj28-1-59.pdf
http://bstj.bell-labs.com/BSTJ/images/Vol28/bstj28-1-59.pdf
http://bstj.bell-labs.com/BSTJ/images/Vol28/bstj28-1-59.pdf
http://bstj.bell-labs.com/BSTJ/images/Vol28/bstj28-1-59.pdf
http://bstj.bell-labs.com/BSTJ/images/Vol28/bstj28-1-59.pdf
http://bstj.bell-labs.com/BSTJ/images/Vol28/bstj28-1-59.pdf
http://bstj.bell-labs.com/BSTJ/images/Vol28/bstj28-1-59.pdf
http://bstj.bell-labs.com/BSTJ/images/Vol28/bstj28-1-59.pdf
http://bstj.bell-labs.com/BSTJ/images/Vol28/bstj28-1-59.pdf
http://bstj.bell-labs.com/BSTJ/images/Vol28/bstj28-1-59.pdf
http://bstj.bell-labs.com/BSTJ/images/Vol28/bstj28-1-59.pdf
http://bstj.bell-labs.com/BSTJ/images/Vol28/bstj28-1-59.pdf
dx.doi.org/10.1002/9780470316900.ch5
dx.doi.org/10.1002/9780470316900.ch5
dx.doi.org/10.1002/9780470316900.ch5
dx.doi.org/10.1002/9780470316900.ch5
dx.doi.org/10.1002/9780470316900.ch5
dx.doi.org/10.1002/9780470316900.ch5
dx.doi.org/10.1002/9780470316900.ch5
dx.doi.org/10.1002/9780470316900.ch5
dx.doi.org/10.1016/j.ress.2008.03.018
dx.doi.org/10.1016/j.ress.2008.03.018
dx.doi.org/10.1016/j.ress.2008.03.018
dx.doi.org/10.1016/j.ress.2008.03.018
dx.doi.org/10.1016/j.ress.2008.03.018
dx.doi.org/10.1016/j.ress.2008.03.018
dx.doi.org/10.1016/j.ress.2008.03.018
dx.doi.org/10.1016/j.ress.2008.03.018
dx.doi.org/10.1016/j.ress.2008.03.018
dx.doi.org/10.1016/j.ress.2008.03.018
dx.doi.org/10.1016/j.ress.2008.03.018

 ING Model
A

ft Com

[

[

[52] J. Kahn, G. Kalai, N. Linial, The influence of variables on Boolean functions, in:956

957

958

959

960

961
ARTICLESOC 3679 1–13

T. Ayav, H. Sözer / Applied So

50] A. Bobbio, L. Portinale, M. Minichino, E. Ciancamerla, Improving the analysis
Please cite this article in press as: T. Ayav, H. Sözer, Identifying critic
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.06.

of dependable systems by mapping fault trees into Bayesian networks, Reliab.
Eng. Syst. Saf. 71 (3) (2001) 249–260.

51] L. Portinale, A. Bobbio, D. Raiteri, S. Montani, Compiling dynamic fault trees
into dynamic Bayesian nets for reliability analysis: the RADYBAN tool, in:
Proceedings of the 5th UAI Bayesian Modeling Applications Workshop, 2007.

[

 PRESS
puting xxx (2016) xxx–xxx 13
al architectural components with spectral analysis of fault trees,
042

29th Annual Symposium on Foundations of Computer Science, 1998, http://
dx.doi.org/10.1109/SFCS.1988.21923.

53] Y. Dutuit, A. Rauzy, On the extension of importance measures to complex
components, Reliab. Eng. Syst. Saf. 142 (2015) 161–168.

962

963

964

965

dx.doi.org/10.1016/j.asoc.2016.06.042
dx.doi.org/10.1109/SFCS.1988.21923
dx.doi.org/10.1109/SFCS.1988.21923
dx.doi.org/10.1109/SFCS.1988.21923
dx.doi.org/10.1109/SFCS.1988.21923
dx.doi.org/10.1109/SFCS.1988.21923
dx.doi.org/10.1109/SFCS.1988.21923
dx.doi.org/10.1109/SFCS.1988.21923
dx.doi.org/10.1109/SFCS.1988.21923
dx.doi.org/10.1109/SFCS.1988.21923

	Identifying critical architectural components with spectral analysis of fault trees
	1 Introduction
	2 Fault tree analysis
	2.1 Coherent and non-coherent systems
	2.2 Dynamic fault trees

	3 Spectral analysis of boolean functions
	3.1 Approximating Fourier coefficients

	4 Spectral evaluation of fault trees
	4.1 Application to non-coherent Systems
	4.2 Application to dynamic fault trees

	5 Evaluation
	6 Discussion
	7 Related work
	8 Conclusions, limitations and future work
	Acknowledgements
	References

