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a  b  s  t  r  a  c  t

We  increasingly  rely  on software-intensive  embedded  systems.  Increasing  size  and  complexity  of  these
hardware/software  systems  makes  it necessary  to  evaluate  reliability  at the  system  architecture  level.
One  aspect  of  this  evaluation  is  sensitivity  analysis,  which  aims  at identifying  critical  components  of the
architecture.  These  are  the  components  of  which  unreliability  contributes  the most  to  the  unreliability  of
the system.  In  this  paper,  we propose  a novel  approach  for sensitivity  analysis  based  on  spectral  analysis  of
fault  trees.  We  show  that measures  obtained  with  our  approach  are  both  consistent  and  complementary
eywords:
ardware/software architecture evaluation
eliability analysis
ault trees
ourier analysis
ensitivity analysis

with  respect  to the  recognized  metrics  in the  literature.
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. Introduction

We  increasingly rely on software-intensive systems such as
odern embedded systems employed in telecommunication, con-

umer electronics, automotive, avionics and health application
omains. Software plays a central role in defining the functionality
nd the quality for these systems. As a result, both hardware and
oftware faults constitute a threat for system reliability. This threat
ets amplified as systems continue to grow in size and complexity.

For a long period, software reliability has been basically
ddressed at the source code level. However, the increasing size and
omplexity required a special focus on higher abstraction levels as
ell. In particular, early reliability evaluation at the software archi-

ecture design level became essential [1,2]. Software architecture
epresents the gross level structure of the system, consisting of a set
f components, connectors and configurations [3,4]. This structure
as a significant impact on the reliability of the system [5]. Hence,

t is important to evaluate software architecture with respect to
eliability risks [6]. By this way, the quality of the system can be
Please cite this article in press as: T. Ayav, H. Sözer, Identifying critic
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ssessed early to avoid costly redesigns and reimplementations.
In the case of software-intensive embedded systems, both

ardware and software faults have to be taken into account. To
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analyze the propagation and interaction of these faults, system
level abstract models have been developed. These models include
state/path-based models [5,7,8] and (dynamic) fault trees [9,10]. In
this work, we employ fault tree models, which depict logical inter-
relationships among faults that cause a system failure. They have
been integrated as part of AADL (Architecture Analysis and Design
Language) [11]. There also exist tools for synthesizing them auto-
matically based on UML  models [12]. Fault trees can be used for
estimating the reliability of the overall system based on individual
component failures. Another goal is to estimate the sensitivity of
system reliability with respect to reliabilities of system components
[5,13,14]. This goal is achieved with so-called sensitivity analysis
[15] or importance analysis [16,17] to identify critical components
[18]. These are the components of which unreliability contributes
the most to the unreliability of the system.

An established measure for sensitivity/importance was
introduced by Birnbaum [19], which is basically defined as
the partial derivative of the system reliability with respect to
the corresponding component reliability. Hereby, the system
reliability is defined as a function of reliabilities of the involved
components. There have also been other measures introduced for
assessing component importance; however, it was later observed
that they provide counterintuitive or inconsistent results [16,20].
al architectural components with spectral analysis of fault trees,
042

In this paper, we  propose a novel approach for sensitivity anal-
ysis. The approach is based on the spectral analysis of Boolean
functions. Spectral (or Fourier) analysis is widely used in math-
ematics and engineering for decomposing a signal into a sum
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f periodic functions. Representing a function as a sum of sim-
ler functions allows for a sort of probabilistic reasoning about
he various parameters of the system. In our approach, we use
ault tree models as input, which are commonly used for sensi-
ivity/importance analysis [2,13,14,16,18,21]. We  apply spectral
nalysis on these models to identify critical components of the
rchitecture. We  evaluate our approach based on a benchmark
ault tree model and two additional subject models derived from

 software architecture description of a Pick and Place Unit (PPU)
f a factory automation system [22]. We  show that the measures
btained with our approach are both consistent and comple-
entary with respect to the recognized metrics in the literature.
oreover, to the best of our knowledge, this is the first study that

pplies spectral analysis methods to the evaluation of fault trees.
The remainder of this paper is organized as follows. In the fol-

owing two sections, we provide background information on fault
ree analysis and spectral analysis. In Section 4, we  introduce our
pproach for sensitivity analysis. In Section 5, we present an eval-
ation of our approach. In Section 6, we discuss the results and

imitations. In Section 7, we summarize the related studies. Finally,
n Section 8, we conclude the paper.

. Fault tree analysis

A fault tree is a graphical model, which defines causal relation-
hips among faults leading to a system failure. An example fault
ree model is depicted in Fig. 1. Hereby, the top node (i.e., root)
r the top event of the tree represents the system failure. The leaf
odes of the tree (labeled as a, b, and c in Fig. 1) are named as
asic events.  In our modeling approach, each basic event represents

 failure of an individual component of the software architecture.
e  can also see an intermediate event in Fig. 1. Such events rep-

esent undesirable system states that can lead to a system failure.
ogical connectors, which interconnect the set of events, infer the
ropagation and contribution of these events to other events and
ventually to the system failure. For example, we can see in Fig. 1
hat basic events b and c are connected with an AND-gate (depicted

ith symbol ), which in turn is connected to the intermediate
vent. This means that the intermediate event occurs if both b and

 occur. This can be the case, for instance, if these basic events rep-
esent the failures of functionally equivalent software components
mployed for N-version programming [21]. Another basic event,

 is connected with the intermediate event through an OR-gate

depicted with symbol ), which in turn is connected to the top
vent. This means that the top event occurs if one or both of a and
Please cite this article in press as: T. Ayav, H. Sözer, Identifying critic
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.06

he intermediate event occur. This can be the case, for instance, if
 represents the failure of a (critical) component, of which failure
irectly leads to the system failure regardless of the states of other
omponents.

Fig. 1. An example fault tree model.
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Occurrence of a set of k events can be represented as a vector
of Boolean variables, x = [x0, x1, . . .,  xk−1], of length k. Hereby, xi = T
and xi = F indicate the existence and absence of event i, respectively.
Boolean variables and operations are noted and defined as follows:

x:=F |T |x′|x1�x2, where � = {∧ , ∨}.
An AND-gate represents the intersection of the events attached

to the gate. All events must exist for the output event of the gate to
occur. For k input events, the equivalent Boolean expression would
be

fAND(x) = x0 ∧ x1 ∧ x1 ∧ · · · ∧ xk−1

Let p0, . . .,  pk−1 denote the probabilities of the input events. Under
the assumption that these events are independent, the probability
of the output event can be defined as

p =
k−1∏
i=0

pi (1)

Similarly, an OR-gate represents the union of the input events.
There must exist at least one input event for the output event to
occur. The equivalent Boolean expression is

fOR(x) = x0 ∨ x1 ∨ x1 ∨ · · · ∨ xk−1

The probability of the output event can be written as

p = 1 −
k−1∏
i=0

(1 − pi) (2)

Let us assume that n different potential failures are identified
for a given software architecture. These failures are considered as
basic events. Then, a vector of Boolean variables, x = [x0, x1, . . .,
xn−1] can represent the occurrence of these events. So, xi = T and
xi = F indicate the existence and absence of failure i, respectively.
The occurrence of the top event can be represented as a Boolean
function of x, f(x), where f(x) = T and f(x) = F indicate the failure and
the correct functioning of the overall system, respectively. For the
example fault tree model depicted in Fig. 1, this function can be
defined as f(x) = a ∨ b ∧ c.

Note that in reliability engineering, failure probabilities depend
on time, i.e. they are expressed as p(t), t ∈ [0, T] where T is the
mission time and they are assumed to be generated from a failure
distribution. Therefore all equations depending on the probabilities
are also time dependent. For the sake of clarity, we prefer to use a
simpler notation throughout the paper by simply omitting the time
dependency. This means that all equations presented in this study
are applicable to any time t ∈ [0, T].

2.1. Coherent and non-coherent systems

Fault tree analysis techniques commonly assume that the ana-
lyzed system is a coherent system,  which is defined as follows:

Definition 1 (Coherent system). Given a system with n possible
component failures, and its fault tree, where the occurrence of the
top event is defined by f : Bn → B,  the system is said to be coherent
iff:

1. (Relevancy) Infi > 0 : ∀ i ∈ {0, 1, 2, . . .,  n − 1},
2. (Monotonicity) f(x) ≥ f(y) whenever x ≥ y pointwise.
al architectural components with spectral analysis of fault trees,
.042

The first requirement states that each component must have an
influence on whether or not the system works. Second, f(x) is
required to be monotone, i.e., a non-decreasing function. In other
words, fixing a component cannot make the system worse. Note
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hat a coherent system satisfies that f(0) = F and f(1) = T, meaning
espectively if all components are working then the system must
e working, and if all components are failed then the system must
e failed. Hereby, 0 and 1 represent strings with all bits zero and
ne, respectively.

Failure probability of the top event can be computed as:

TE = E[f (x) = T] =
2n−1∑
x=0

p(x) · f (x) (3)

here p : {F, T}n → R  is the probability for a particular value of x
mong the 2n possibilities. p(x) is defined as follows:

(x) =
∏
i ∈ x

pi ·
∏
i/∈x

(1 − pi) (4)

For example, x = [T, F, T, T, F, T] means that the components
, 2, 3 and 5 are failed at the time of observation, while the
ther events, 1 and 4 are working. The probability of this case is
(x) = p0(1 − p1)p2p3(1 − p4)p5.

It has been observed that the majority of the importance meas-
res are strictly developed for coherent system analysis [23]. On
he other hand, some systems can be non-coherent, in which both
omponent failure and recovery contribute to a system failure [24].
his issue was addressed in only a few studies. A non-coherent
xtension of Birnbaum’s importance index [25,24] was  previously
tilized. A unified framework [23] has been proposed to analyze
unctions used for obtaining measures of importance and their
mplications on both coherent and non-coherent systems.

.2. Dynamic fault trees

Traditional or static fault trees (SFT) capture the effects of a
ombination of events, i.e., component failures resulting in a sys-
em failure. They disregard the temporal order of the occurrence
f these events. In some circumstances, the ordering of events do
atter. For example, consider a switch that is used for alternating

etween a component and its spare. The failure of this switch after
t activates the spare does not cause a failure; however, its failure
efore this activation does lead to a system failure. Dynamic fault
rees (DFT) were introduced to capture temporal ordering of events
nd their effects [26].

In SFTs, basic events are represented with Boolean variables.
owever, Boolean algebra does not have any mechanism to handle

he temporal order of occurrence. Hence, DFTs use temporal events
s shown in Fig. 2, where d(a) is the unique date of occurrence of
vent a. Such basic events are supplied as inputs to gates, which
odel the propagation of the events to a system failure. DFT intro-

uce 3 more gates in addition to the conventional gates used in
FT: the priority AND gate (PAND), the spare gate (SPARE), and the
unctional dependency gate (FDEP). The commonly used graphical
otations for these gates are shown in Fig. 3.

PAND gate is used for capturing failure sequence dependency.
ll input events must exist for the output event of the PAND gate to
Please cite this article in press as: T. Ayav, H. Sözer, Identifying critic
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.06.

ccur. In addition, the occurrence of these events must be ordered
n time from left to right (i.e., in the order that they are depicted).

SPARE gate is used for representing the management and allo-
ation of spare components. It has one distinguished primary input

a

t
d(a)

1

Fig. 2. A non-repairable event.
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Fig. 3. Dynamic fault tree gates [27].

and one or more spare inputs. If the failure of primary input occurs,
it is replaced by one of the spare inputs. The primary and all the
spare input events must take place (all the corresponding compo-
nents must fail) for the output event of the SPARE gate to occur.
A spare input can be shared among multiple SPARE gates. In this
case, if a spare is already utilized by any of the SPARE gates, it is
considered to be unavailable (failed) for the other SPARE gates that
share it.

FDEP gate is comprised of a trigger event and a set of depend-
ent events. When the trigger event occurs, it causes the dependent
events to occur as well. That is, all the corresponding components
will be assumed to be failed. This gate does not have an output,
or it has a dummy output [28], which is simply ignored. For non-
repairable events, it is known that a FDEP gate can be removed by
replacing its children by OR gate of the child and the FDEP trig-
ger, and a SPARE gate can be replaced by a k-out-of-N OR gate of
SFT [29]. To analyze dynamic fault trees, temporal operators are
incorporated [30], as defined below:

a � b =

⎧⎨
⎩

a if d(a) < d(b)

a if d(a) = d(b)

F if d(a) > d(b)

(5)

The symbol �, namely Inclusive Before defines the relation among
temporal events such that expression a � b yields a if a non-strictly
occurs before b and F otherwise. The algebraic expression of PAND
gate can be written as:

aPANDb = b ∧ (a � b) (6)

For further details on the analysis of fault trees, we refer to the
IEC 61025 standard [9] and the literature [31,10]. In the follow-
ing section, we introduce spectral analysis of boolean functions.
Then, we  introduce the application of this analysis technique to
fault trees.

3. Spectral analysis of boolean functions

Spectral or Fourier analysis is widely used in mathematics and
engineering. Fourier decomposes a signal as a sum of periodic func-
tions like �y(x) = e2�ixy/n. In case of Boolean functions, the most
used transform has been defined over Abelian group Z

n
2. Boolean

functions are usually defined as f : {F, T}n → {F, T}. As a require-
ment of Fourier analysis, instead of 0 and 1, 1 and −1 will be
used as False and True values respectively. Hence the function
becomes f : {1, − 1}n → {1, − 1}. The relevant definitions and the-
orems about Fourier analysis are given below without the proofs.
For further explanations, examples and theorems with proofs, we
refer to [32–34].

Theorem 1 (Fourier expansion). Every f : {−1, 1}n → R  can be
expressed with its Fourier expansion,
al architectural components with spectral analysis of fault trees,
042

f (x) =
∑
ω⊆[n]

f̂ (ω)�ω(x), (7) 263
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Table 1
Truth table for f(x) = a ∨ b ∧ c .

x a b c f ∈ B f ∈ R

0 F F F F 1
1  F F T F 1
2  F T F F 1
3  F T T T −1
4  T F F T −1
5  T F T T −1
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is an expectation under uniform distribution. �ω : {0, 1} → ± 1 is a
parity function defined as,

�ω(x) = (−1)ω · x,
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here f̂ (ω) is the Fourier coefficient and �ω(x) =
∏
i ∈ ω

xi is the parity

unction. It is also adopted that �∅ ≡ 1.

efinition 2 (Inner product). Let f, g : { − 1, 1}n → { −1, 1}. The inner
roduct between f and g is defined as

f, g〉 :=
∑

x ∈ {−1,1}n

f (x)g(x)
2n

= Ex ∈ {−1,1}n [f (x)g(x)].

ote that 〈f, f 〉 = ‖f ‖2
2 = 1 and more generally ‖f ‖p := E[|f (x)|p]1/p.

ourier coefficients can be written as

 ̂ (ω)  = 〈f, �ω〉 = Ex[f (x)�ω(x)]. (8)

ote in particular that coefficient f̂ (∅) = E[f ] corresponds to
he mean E[f]. For example, recall the 3-input Boolean func-
ion f(x) = a ∨ b ∧ c that was derived in the previous section.
greeing that a and c are the most and least significant bits
espectively, it is trivial to derive the truth vector for f as
FFFTTTTT], i.e., [1 1 1 −1 − 1 −1 − 1 −1] as shown in Table 1.
y using Formula (8), Fourier coefficients can be computed
s f̂ (∅) = 1

23 (1 + 1 + 1 − 1 − 1 − 1 − 1) = −0.250, f̂ (1) = 1
23 (1 · 1 +

 · 1 + 1 · 1 − 1 · 1 − 1 · − 1 − 1 · − 1 − 1 · − 1 − 1 · − 1) = 0.750 and
o on. The eight coefficients are used to constitute the Fourier
xpansion of f as follows:

 = −0.25 + 0.75a + 0.25b + 0.25ab + 0.25c

+ 0.25ac − 0.25bc − 0.25abc.

he derivative or difference calculus for Boolean functions has been
enefited in testing digital circuits and also software over the past
wo decades. It can also be used to describe the notion of influence.

efinition 3 (Derivative). The derivative of f with respect to its
nput xi is defined as,

∂f

∂xi

= f  (xi := −1) − f (xi := 1)
(−1) − 1

(9)

∑
ω�i

f̂ (ω)�ω\i(x). (10)

or example, ∂f
∂a

= −1−(0.5+0.5b+0.5c−0.5bc)
−2 = 0.75 + 0.25b + 0.25c −

.25bc. It can be noticed that this derivative would produce 0 if
 and c are true (b = c =−1) and 1 otherwise. f is monotonic, i.e.,
on-decreasing since changing one bit from false to true would
ever cause the output to switch from true to false. Monotonicity
equirement can also be expressed by ∂f

∂xi
≥ 0, ∀i. In theory, all

oolean functions excluding the negation operation are monotonic.
Eq. (9) requires that the derivative of a Boolean function can be

∂f
Please cite this article in press as: T. Ayav, H. Sözer, Identifying critic
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.06

n { − 1, 0, 1}. If
∂xi

(x) = ±1, then xi is said to be pivotal for f at x.

f it is zero, then xi has no influence on f at x. Hence, the influence
f input xi on f is the expected value of being pivotal over x. The
efinition of influence is as follows:
 PRESS
puting xxx (2016) xxx–xxx

Definition 4 (Influence). The influence of input xi on f is defined as,

Infi(f ) := Pr[f  (x) /= f (x⊕i)] = Ex

[
∂f

∂xi

(x)2

]
=

∑
ω�i

f̂ (ω)2. (11)

where x⊕i is the string x with its i-th bit flipped.

For f(x) = a ∨ b ∧ c, the influence values are found as Infa(f) = 0.75 and
Infb(f) = Infc(f) = 0.25. We can comment on the influence values such
that a is the most important component, whereas b and c have
identical importance and they are less important with respect to a.

Fault trees are mostly designed to be coherent. The structural
functions in this category are therefore monotone. In this case, ∂f

∂xi
≥

0 and the influence becomes [33]

Infi(f ) = Ex

[
∂f

∂xi

]
= ∂̂f

∂xi

(∅) = f̂  ({i}). (12)

Eq. (12) implies that the influence of a variable simply equals to
one Fourier coefficient. This makes the computation of influences
feasible particularly for large functions. For the previous example,
Infa(f ) = f̂ (1), Infb(f ) = f̂ (2), and Infc(f ) = f̂ (4).

Another concept is the energy spectrum that may provide use-
full information about the noise sensitivity of a function.

Definition 5 (Energy spectrum).  For any real-valued function f :
Bn → R, the energy spectrum Ef is defined by

Ef (k) :=
∑
|ω|=k

f̂ (ω)2 ∀k : 1 ≤ k ≤ n (13)

where |ω| depicts the number of 1 bits in ω.

Ef(∅) is known as DC component, which is the zero-frequency
component. If most of the Fourier mass is localized on high fre-
quencies, then the function is sensitive to small perturbations, i.e.,
component failures as shown in a sample spectrum given in Fig. 4.
If a fault tree is found to be noise sensitive, that means, very small
number of component faults can significantly impact/degrade the
overall system reliability. In that case, one may  consider restructu-
ring the architecture to resolve dependencies or dedicate additional
effort for adding redundancy and design diversity to improve the
reliability.

3.1. Approximating Fourier coefficients

The time and resource usage complexity of the transformation
are given as O(n2n) and O(2n) respectively [35]. Therefore, trans-
formation becomes harder as n gets bigger. In this case, Fourier
coefficients can be approximated. Recall that the Fourier coefficient,

f̂ (ω) = E[f · �ω]

n

al architectural components with spectral analysis of fault trees,
.042

Fig. 4. Energy spectrum of f(x) = x0 + x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5.

dx.doi.org/10.1016/j.asoc.2016.06.042
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here ω · x =
∑n

i=1ωixi =
∑

i ∈ ωxi. We  can approximate the Fourier
oefficients from uniformly drawn examples (x1, f(x1)), . . .,  (xm,
(xm)). Expected value is the following empirical average,

1
m

m∑
j=1

f (xj)�ω(xj)

nd this value converges to the exact value of f̂ (ω) as m grows.
oreover, Chernoff bound tells us how quickly this convergence

appens [36].

. Spectral evaluation of fault trees

In this section, we illustrate how to incorporate spectral analysis
nto the evaluation of fault trees and propose a new metric for sen-
itivity analysis. First, we redefine the conventional metrics using
oolean derivative calculus. These metrics are shown to have some
rawbacks in particular cases. To overcome these drawbacks, we
ropose a new metric based entirely on the spectral coefficients.
his metric is more informative and it is demonstrated to harmo-
ize the former metrics while eliminating their drawbacks.

Sensitivity metrics can be classified into two categories: struc-
ural and probabilistic. The metrics of the former category rely on
he location of the component in the failure logical function and
he latter category takes into account the failure probability of the
ssociated component. We  take into account four common metrics:
irnbaum’s importance index, Birnbaum’s structural importance

ndex, criticality index and Fussell-Vesely index. Birnbaum’s impor-
ance index (IB) is widely used and it defines the partial derivative
f the system failure probability with respect to the failure proba-
ility of its components.

Let f(x) be the Boolean function of a fault tree. Shannon’s expan-
ion states that [37]:

 (x) = xi ∧ f T
i (x) ∨ xi′ ∧ f F

i (x) (14)

here

T
i (x) = f (x1, x2, . . .,  xi−1, T, xi+1, . . .,  xn),

F
i (x) = f (x1, x2, . . .,  xi−1, F, xi+1, . . .,  xn).

The component is said to be critical if xi = T → f(x) = T and
i = F → f(x) = F. Therefore, the criticality of component xi can be
xpressed with the following requirement:

T
i (x) ∧ f F

i (x)′
he probability that this condition holds is

r[f T
i (x) ∧ f F

i (x)′] = Pr[f T
i (x) = T] − Pr[f T

i (x) ∧ f F
i (x)′ = T]

2

The Birnbaum index is traditionally given as:

Bi = Pr[f T
i (x) = T] − Pr[f F

i (x) = F] (15)

e can redefine this metric by exploiting the influence definition
f spectral analysis as follows:

efinition 6 (Birnbaum’s importance index (IB)). Let f be the struc-
ure function of a fault tree. Importance index of component i is
efined as,

Bi(f ) = Pr[f  (x) /= f (x⊕i)] = Ex

[
∂f

∂xi

(x)

]
=

2n−1∑
x=0

p(x) · ∂f

∂xi

(x), (16)
Please cite this article in press as: T. Ayav, H. Sözer, Identifying critic
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.06.

here x is a string such that x ⊂ [n] and p : {F, T}n → R  is given as

(x) =
∏
i ∈ x

pi ·
∏
i/∈x

(1 − pi). (17)
 PRESS
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In fact, p(x) is the probability of event x. For example, the
probability that components b and c are failed at the time of obser-
vation, i.e., x = [F, T, T], can be calculated as p(x) = (1 − pa)pbpc. Note
that the sum of probabilities of all possible event combinations
must be 1, i.e.,

∑2n−1
x=0 p(x) = 1. As an example, let f(x) = a ∨ b ∧ c

represent a fault tree, assuming that the failure probabilities of
component a, b and c are given as pa = pb = pc = 0.1. We  know that
∂f
∂a

= 0.75 + 0.25b + 0.25c − 0.25bc is 1 if (b, c) ∈ {(F, F), (F, T), (T,
F)}. Therefore, IBa(f) can be calculated as

(0.9 · 0.9) + (0.9 · 0.1) + (0.1 · 0.9) = 0.99.

Similarly, we  can compute that IBb(f) = IBc(f) = 0.09 .
Birnbaum’s structural importance index slightly differs from IB

relying entirely on the structure of the function. One can realize that
it is the equivalent of the influence value defined with Eq. (11). On
the other hand, it can also be computed by restricting the definition
of IB given with Eq. (16) such that Pr [f = F] = 0.5, i.e., the probability
space consists of all binary n-strings with uniform distribution. In
this case, failure probabilities of components are assumed to be
identical such that pj = 0.5 ∀ j ∈ {1, 2, . . .,  n}. Hence, p(x) = 0 .5n and
the formula in Eq. (16) becomes

Infi(f ) := 1
2n

2n−1∑
x=0

∂f

∂xi

(x), (18)

which is the expected value given in Eq. (11). As the name implies,
this metric depends solely on the structure of the function. It does
not take into account the failure probabilities of the components.

Criticality index (IC) [38] represents the probability that the
event xi is critical and its occurrence leads to system failure. It is
formulized as

Definition 7 (Criticality index (IC)). Let f be the structure function
of a fault tree. Criticality index of component i is defined as,

ICi(f ) := IBi(f )
pi

PTE
. (19)

Note that pTE can be computed as 0.109 using Formula (3). Then,
ICa is found as follows:

ICa = 0.99 · 0.1
0.109

= 0.9083.

Similarly, we  can compute that ICb = ICc = 0.0826.
There exist other metrics proposed in the literature, such as Risk

Reduction Worth (RRW), Risk Achievement Worth (RAW) and Fussell-
Vesely (FV) [39][40]. RRW measures the change of the system failure
probability when a component is perfectly working and is given by:

RRWi(f ) = 1
1 − ICi(f )

(20)

On the contrary, RAW is the measure of the change of system failure
probability when a component is supposed to be failed or removed
and it can be computed in terms of RRW:

RAWi(f ) = 1
pi

(
1 − 1 − pi

1 − RRWi(f )

)
(21)

Since RRW and RAW strictly depend on IC,  this study shall not dwell
upon them any further. Moreover, they are less expressive than IB
and IC in terms of component sensitivity [39]. Nevertheless, FV is
rather common in chemical industry and we use it for comparison
purposes. FV,  referred to as “fractional contribution” is a measure of
al architectural components with spectral analysis of fault trees,
042

the contribution of a component to the system failure without being
critical. The variable xi contributes to the system failure when a
minimal cut set containing xi occurs. Therefore, it can be expressed
as:

441
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4.2. Application to dynamic fault trees

Dynamic fault trees (DFT) involve temporal sequences of fail-
ures. Spectral evaluation of Boolean functions does not analyze

Table 2
Importance values of f = a ∨ b′ ∨ c.

a b c
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efinition 8 (Fussell-Vesely index (FV)). Let f be the structure func-
ion of a fault tree. Fussell-Vesely index of component i is defined
s,

FVi(f ) = Pr[
⋃

sCs = T]

PTE
�

PTE − Pr[f F
i

(x) = T]

PTE

�  1 − 1
PTE

2n−1∑
x=0

p(x)(1 − 2f F
i (x)).

(22)

For example, FVa(f) can be calculated as

0.109 − (0.9 · 0.1 · 0.1)(1 − 2(−1))
0.109

= 0.9174.

imilarly, we can compute that FVb(f) = FVc(f) = 0.1743. The afore-
entioned four metrics are quite common but they may  expose

ome difficulties or misinterpretation in particular cases. First, even
hough Infi provides useful information about the relation between
he component failures and the system failure, it solely seems insuf-
cient to identify critical components since it disregards the failure
robabilities of the components. Therefore, IB and IC are often
sed together for reliability evaluation. For any given component, if
oth values are low then the associated component is not critical. If
oth are high, the component can be considered most critical. The
ase of high IB and low IC,  however, indicates that the component
s structurally not important or its impact is dominated by other
omponents with high failure probabilities. In this case, one might
onsider a structural improvement. On the contrary, the case of low
B and high IC indicates a lack of structural flaw, but high failure
robability of the associated component. Hence, the component
eliability should be improved in this case.

As stated before, IC is expected to involve the failure probability
f the associated component, whereas IB is independent of it due
o the derivative with respect to that component. However, IC also
alls short to reflect failure probability to the evaluation, as will be
hown in Section 5. The second drawback for both IB and IC is that
hey are limited to the analysis of a certain class of systems: Coher-
nt Systems. They may  induce misleading results for non-coherent
ystems. Although fault trees are traditionally designed to be coher-
nt, non-coherent fault trees have also been shown useful [41].
ussell-Vesely is also unable to discriminate the aforementioned
wo cases: (i) low IB and high IC:  The component needs to be
mproved and (ii) low IC and high IB:  The structure function needs
o be improved.

In order to overcome these drawbacks, we propose a new
mportance metric based on Fourier analysis, in which both fail-
re probabilities and IB are taken into account. We  call this metric
pectral sensitivity,  which is defined as follows:

efinition 9 (Spectral Sensitivity).  The spectral sensitivity of input
i on f is defined as,

i(f ) :=
∑
ω�i

f̂ (ω)2p(ω). (23)

here f̂ (ω) depicts spectral of Fourier coefficients and

(ω) =
∏
i ∈ ω

pi ·
∏
i/∈ω

(1 − pi). (24)

Below, we show that Si is the superposition of Infi, IBi, ICi and
i.

emma  1.
∑

ω�ip(ω) = pi .
Please cite this article in press as: T. Ayav, H. Sözer, Identifying critic
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roof. We  can write
∑

ωp(ω) = pi
∑

ω�ip(ω \ {i}) + (1−pi)
∑

ω/∈ip(ω \
i}) = 1. Note also that pi

∑
ω�ip(ω \ {i}) =

∑
ω/∈ip(ω \ {i}) = 1 . Hence

e can get
∑

ω�ip(ω) = pi
∑

ω�ip(ω \ {i}) = pi.�
Fig. 5. Example non-coherent fault tree model (pa = pb = pc = 0.1).

We  know that ω defines a probability distribution over 2n. Thus∑
ωp(ω) = 1. By Lemma  (1),

∑
ω�ip(ω) = pi. We  also have the fol-

lowing facts: By Parseval theorem [32],
∑

ωf̂ (ω)2 = 1 and also by

Eq. (11),
∑

ω�i f̂ (ω)2 = Infi. One can realize that Si depends on Infi.
IB,  however, is the weighted average of the failure probability with
respect to pi, so it is a derivative and independent of pi. Naturally,
IBi depends on Infi and by Eq. (19), ICi depends on IBi. Note that ICi
may  not depend on pi. However, consider a specific case that com-
ponent i’s order of minimum cut set is 1, i.e., pTE = pi · pREST. In this
case, pi disappears in Eq. (19). Let us define a concept of weighted
influence such as:

WInfi =
∑

ω�ip(ω)f̂ (ω)2∑
ω�ip(ω)

The denominator equals to pi. Therefore, this value is expected to
be similar to Birnbaum’s index IBi. In order to incorporate pi into
the metric, we can multiply it by pi, hence one can notice that
Si = piWInfi, which shows that Si contains pi as well.

4.1. Application to non-coherent Systems

A simple fault tree shown in Fig. 5 is used to demonstrate
the comparisons of the traditional and spectral measures for non-
coherent systems. Let f = a ∨ b′ ∨ c be the Boolean representation
of the tree. Note that the system does not satisfy the monoton-
icity requirement of Definition (1). Since all components have the
same order of minimal cut set, Infa, Infb and Infc must be identical.
They can be computed as 0.25 expectedly by Eq. (11). Assum-
ing pa = pb = pc = 0.1, Birnbaum’s indexes can be found as IBa = 0.09,
IBb =−0.81 and IBc = 0.09 by Eq. (16). A negative value comes from
the partial derivative with respect to b. The probability of b′ is
(1 − pb). The derivation of (1 − pb) with respect to b results in a
negative IB value. On the other hand, |IBb| is much higher than
|IBa| and |IBc|. This indicates that component b is much more criti-
cal than a and c, which is misleading. All components are expected
to have identical criticality with equal probabilities and influences.
Both IB and S measures for this example are shown in Table 2,
which confirm this expectation.
al architectural components with spectral analysis of fault trees,
.042

Infi 0.25 0.25 0.25
p  0.1 0.1 0.1
IB  9e−2 −81e−2 9e−2
S 6.25e−3 6.25e−3 6.25e−3

dx.doi.org/10.1016/j.asoc.2016.06.042
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Table 3
Importance values for u = c ∧ (b � c) ∨ b ∧ (a � b).

a b c
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Fig. 6. An example dynamic fault tree model (pa = 0.05, pb = 0.06, pc = 0.01).

he timing behavior in the input combinations, therefore spec-
ral sensitivity measure cannot be applied directly to DFTs. In fact,
mportance analysis in DFT is still an open research area, and to
he best of our knowledge there is no such work. Nevertheless, by
ltering the definition of Boolean derivative, Birnbaum importance
ndex can still be applied to DFT, yet the nature of this index limits
he calculation to a specific mission time. We take into account the
nalysis for Priority-AND failure logic, since its output depends on
he sequence of the inputs. For non-repairable events, it is known
hat a FDEP gate can be removed by replacing its children by OR gate
f the child and the FDEP trigger, and a SPARE gate can be replaced
y a k-out-of-N OR gate of static fault trees [29].

efinition 10 (Time-aware derivative).  Time-aware derivative of f
ith respect to its input xi is defined as,

∂f

∂xi

:= f T
i

(x)+ − f F
i

(x)−

−2
(25)

The semantic of + and − notations is such that xi is assigned
rue after a false value. The intuition behind this definition is that
he output is checked against the switch of input xi from F to T, as
xpectedly from a non-repairable component. For f(x) = a AND b, it
s easy to check that

∂f

∂a
= (−1) · b − 1 · b

−2
= b,

∂f

∂b
= (−1) · a − 1 · a

−2
= a

n the other hand, for f(x) = a PAND b, using the notation given in
21], f can be written as

 = b ∧ (a � b)

he derivatives with respect to a and b can be found as

∂f

∂a
= b ∧ (T+ � b) − b ∧ (F− � b)

−2
= b · 1 − b · 1

−2
= 0

ote that F− � b = F. Also T+ � b = F, since input a is assigned T later
han input b is assigned any value. In this case, PAND produces F
Please cite this article in press as: T. Ayav, H. Sözer, Identifying critic
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egardless of b.

∂f

∂b
= T+ ∧ (a � T+) − F− ∧ (a � F−)

−2
= (−1) · a − 1 · a

−2
= a

The example DFT given in Fig. 6 can be expressed as follows:

 = (c ∧ (b � c)) ∨ (b ∧ (a � b)) (26)

he derivatives can be computed as,

601

602

603

604

605
Infi 0 0.5 0.25
p  0.05 0.06 0.01
IB  0 5e−2 5.7e−2

∂u

∂a
= (c ∧ (b � c)) ∨ b ∧ (T+ � b) − (c ∧ (b � c)) ∨ b ∧ (F− � b)

−2
= 0

(27)

∂u

∂b
= (c ∧ (T+ � c)) ∨ T+ ∧ (a � T)]′ − (c ∧ (F− � c)) ∨ F− ∧ (a � F−)

−2

= 0.5 − 0.5a
(28)

∂u

∂c
= 0.25 + 0.25a − 0.25b − 0.25ab (29)

The combinations of (a, b, c) that make ∂u
∂b

= 1 are (T, F, F), (T, T, F),
(T, F, T) and (T, T, T). Therefore, IBc can be computed as:

0.5(1 − 0.06)(1 − 0.25) + 0.5 0.06(1 − 0.25) + 0.5(1 − 0.06)0.25

+ 0.5 0.06 0.25 = 0.5.

Table 3 shows the complete results for this tree. Note that at a spe-
cific mission time, IBa is zero. Consider these two cases: (i) a fails
(switches to T) when b is working and (ii) a fails after b has failed. In
both cases, the output will remain zero. Therefore, failure of a itself
does not have any effect on the output according to the definition
of Birnbaum. Component c seems to be most critical component
among these three.

5. Evaluation

This section will describe the evaluation of the approach and
results. First, we  evaluate our approach with a benchmark fault tree
model given in [42]. Then, we apply our approach on two larger fault
tree models. These models are derived from a software architecture
description of a Pick and Place Unit (PPU) of a factory automation
system [22].

Fig. 7 illustrates the model that is used as a benchmark [42]. The
structure function of the tree can be constructed step by step as
follows:

E11 = x0 · x1 (30)

E22 = x4 + x5 (31)

E1 = E11 + x2 = x0x1 + x2 (32)

E2 = x3 · E22 = x3(x4 + x5) (33)

f (x) = E1 · E2 = (x0x1 + x2)x3(x4 + x5). (34)

We can evaluate the tree structurally, using the influences (Birn-
baum’s structural importance) of the basic events and the energy
spectrum of the function. The influence values Infi are given in
Table 4. The influences are independent of the probabilities, hence
they remain the same in all the experiments. All influence values are
non-zero and f(x) is monotonic, therefore the system is coherent.
According to Infi, x3 is the most important component, followed by
al architectural components with spectral analysis of fault trees,
042

x2. We  can also see the energy spectrum of the tree in Fig. 8. Since
the Fourier mass is localized at the low frequency (left) side, one
can conclude that the tree is not noise sensitive. This means that
the system failure depends on the failure of many components.
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609
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Table 4
Evaluation results.

x0 x1 x2 x3 x4 x5

Infi 0.094 0.094 0.281 0.469 0.156 0.156
Experiment 1
p 0.05 0.06 0.01 0.02 0.04 0.03
IB  8.17344e−5 6.8112e−5 1.371872e−3 8.92336e−4 2.51618e−4 2.49024e−4
IC  2.2899e−1 2.2899e−1 7.68697e−1 1.0e+0 5.639535e−1 4.186047e−1
FV  2.675405e−01 2.752506e−01 7.71010e−01 1.0e+0 5.813953e−01 4.360465e−01
S  4.125781e−4 4.950937e−4 6.720072e−4 3.678401e−3 8.706687e−4 6.530016e−4
Experiment 2
p 0.05 0.06 0.01 0.02 0.04 0.2
IB  2.75616e−4 2.2968e−4 4.62608e−3 3.00904e−3 2.0752e−4 2.49024e−4
IC  2.2899e−1 2.2899e−1 7.68697e−1 1.0e+0 1.37931e−1 8.275862e−1
FV  2.675405e−01 2.752506e−01 7.710100e−01 1.0e+0 1.724138e−01 8.620690e−01
S  3.488281e−4 4.185938e−4 5.681712e−4 3.110029e−3 8.706687e−4 4.353344e−3
Experiment 3
p 0.05 0.06 0.01 0.001 0.04 0.03
IB  4.08672e−6 3.4056e−6 6.85936e−5 8.92336e−4 1.25809e−5 1.24512e−5
IC  2.2899e−1 2.2899e−1 7.68697e−1 

FV  2.675405e−01 2.752506e−01 7.710100e−01
S  4.125781e−4 4.950937e−4 6.720072e−4 
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Fig. 7. Fault tree model used as a benchmark [42].

Taking on the probability values of Experiment 1, we  can calcu-
ate the failure probability of the top event by Eq. (3):

TE = 1, 784672 · 10−5.

e  applied three different parameter settings on the given fault
ree model to compare different sensitivity metrics, including the
ne we proposed. All the results are presented in Table 4.
Please cite this article in press as: T. Ayav, H. Sözer, Identifying critic
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The first setting is the same with [42]. In this experiment,
ccording to IB,  x2 is the most important component, followed
y x3. In terms of criticality index, component 3 is most crit-

cal with IC3 = 1.0, followed by x2. Moreover this value does

Fig. 8. Energy spectrum of f(x) = (x0x1 + x2)x3(x4 + x5).
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1.839201e−4 8.706687e−4 6.530016e−4

not respond to the probability changes as will be shown next.
We can calculate the failure probability of the top event as:
PTE = (p0p1 + p2 − p0p1p2)p3(p4 + p5 − p4p5) by Eqs. (1) and (2). Thus,

IC3 = ∂PTE

∂p3

p3

PTE
= ((p0p1 + p2 − p0p1p2)(p4 + p5 − p4p5))

p3

PTE
= 1.

Hence, IC3 is independent of the probabilities. When the failure
probability of component 3 is extremely low, this value becomes
misleading as demonstrated in the results of the third experiment
listed in Table 4. The spectral sensitivity indicates x3 as the most
important component yet the second is x4 unlike the results of IB
and IC.  This is because the probability of x4 is four times the one of
x2.

In the second experiment, we  increase the failure probability of
x5 6.67 times to see the effect of S. According to IB and IC,  the most
important components remain the same, where S now points out
x5.

In the third experiment, we  decrease p3 20 times. Although p3
is quite smaller than the other probabilities, this time IB and IC
indicate x3 as the most important, which is again misleading. On
the other hand, S orders the first three components as x4, x2 and
x5. The results show that S takes into account IB,  IC and the failure
probabilities of components as well.

We can also see in Table 4 that IC and FV yield to same results
for all the three experiments. In the following, we evaluate our
approach with two larger fault tree models. We  apply three differ-
ent parameter settings on these and perform comparisons among
IB, IC and S.

The analyzed fault tree models are derived from two different
versions of a software architecture description of a Pick and Place
Unit (PPU) of a factory automation system [22] that was evolved
over time. These models are enumerated as FT1-SC14 and SC0-10.
They are depicted in Figs. 9 and 11, respectively. We  used uni-
formly distributed random numbers as the probability values of
basic events.

The sensitivity results and the energy spectrum of FT1-SC14 are
presented in Table 5 and Fig. 10 respectively. In this system, all
importance metrics agree on the same component, x3 as the most
critical one. The reason is that the structural importance order of
basic events is as follows:
al architectural components with spectral analysis of fault trees,
.042

x0 = x1 = . . . = x8 = x14 = x15 > x9 = x10 > x14 = x15,

therefore the component with the highest failure probability is
expected to be most critical. The energy spectrum exhibits a more
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Fig. 9. Fault tree model derived from

essimistic view than the previous benchmark. The Fourier mass is
ocalized in the middle, which means that the top event depends
n very few basic events. This can be verified from Fig. 9. Most of
he basic events are connected to the top event through OR gates
nd a failure of one of them is sufficient to cause the top event.

The results of SC0-10 are presented in Table 6. Here, IB and
C point out x14 as the most critical component whereas x1 has
he highest spectral sensitivity. The energy spectrum of SC0-10,
hown in Fig. 12 has a quite similar characteristic with the previ-
us spectrum, i.e. very few component failures may  cause a system
ailure.

. Discussion

Regarding the validity of our evaluation results, we  can con-
ider 4 types of threats [43]: conclusion validity, construct validity,
nternal validity and external validity. Conclusion and construct
alidity threats are mitigated by comparing our results with respect
o well-established metrics in the literature. To overcome internal
alidity issues, we obtained our subject models that are previously
Please cite this article in press as: T. Ayav, H. Sözer, Identifying critic
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.06.

ublished and utilized for other experiments. External validity is
elated to the representativeness of the selected fault tree mod-
ls, which is necessary for generalizing the results. We  used three
ifferent models to mitigate this threat.

Fig. 10. Energy spectrum of FT1-SC14.
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716
tware architecture (FT1-SC14) [22].

Our approach is subject to limitations when it is employed in a
dynamic context such that the fault tree model and/or component
reliabilities change in time. If the fault tree model changes due to
the evolution/adaptation of the architecture [22], metric evalua-
tion should be repeated. Likewise, if a set of design alternatives
has to be evaluated, metric calculations should be performed for
each alternative design as a whole to make a comparison among
them. Our approach is indifferent with respect to the other sensitiv-
ity/criticality metrics from this perspective. There exist reliability
analysis approaches [28] that are particularly focusing on facilitat-
ing modular analysis and as such the (partial) reuse of calculations
in case of changes. We did not consider this issue in our work. Sim-
ilarly, component reliabilities are assumed to be crisp and constant
values. This assumption may  not be valid for all type of compo-
nents especially when runtime adaptations are possible. However,
one can repeat calculations for a range of values to perform a
what-if analysis. Such metric evaluations can be pre-computed
offline, especially if the potential changes can be predicted. These
computations can be used at runtime depending on the observed
changes.

The time complexity of the calculation of the entire spectra
for a Boolean function is denoted with O(n2n). Therefore, the
complexity of our spectral sensitivity metric given in Eq. (23) is
O(n22n). Traditional metrics are usually calculated either using
Boolean manipulation or through Binary Decision Diagram (BDD)
representation of the fault trees [29]. Conversion to a BDD has
exponential worst-case and linear best-case complexity. However,
BDDs are shown to exhibit better performance than Boolean manip-
ulation since they provide a compact representation of Boolean
functions with a high degree of symmetry and fault trees show
this symmetry. Once a BDD is obtained, cut sets can be deter-
mined by starting at all 1-leaves and traversing upwards to the
root. Birnbaum and other aforementioned metrics can be calcu-
al architectural components with spectral analysis of fault trees,
042

lated through the cut sets, therefore they have linear complexity
after the BDD is generated. In all conditions, spectral techniques
appear to be inefficient compared to the other methods. Nev-
ertheless, the approximation method presented in Section 3.1 is
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Fig. 11. Fault tree model derived from a software architecture (SC0-10) [22].

Table 5
Evaluation results for FT1-SC14.

x0 x1 x2 x3 x4 x5

Infi 7.629395e−04 7.629395e−04 7.629395e−04 7.629395e−04 7.629395e−04 7.629395e−04
p  0.035457 0.035338 0.061671 0.094864 0.035846 0.032513
IB  6.128847e−01 6.128092e−01 6.300071e−01 6.531107e−01 6.131324e−01 6.110200e−01
IC  5.315184e−02 5.296724e−02 9.503183e−02 1.515409e−01 5.375765e−02 4.859102e−02
S  1.598650e−08 1.593293e−08 2.780592e−08 4.277172e−08 1.616217e−08 1.465934e−08

x6 x7 x8 x9 x10 x11

Infi 7.629395e−04 7.629395e−04 7.629395e−04 2.136230e−04 2.136230e−04 3.051758e−05
p  0.035781 0.021062 0.049430 0.096217 0.031884 0.039217
IB  6.130906e−01 6.038726e−01 6.218937e−01 2.352263e−03 7.098438e−03 1.652711e−03
IC  5.365563e−02 3.110920e−02 7.518718e−02 5.535748e−04 5.535748e−04 1.585302e−04
S  1.613260e−08 9.496362e−09 2.228647e−08 3.854247e−09 1.277211e−09 3.652374e−11

x12 x13 x14 x15

Infi 3.051758e−05 3.051758e−05 7.629395e−04 7.629395e−04
p  0.003908 0.085452 0.078028 0.030211
IB  1.594126e−03 1.736263e−03 6.411842e−01 6.095694e−01
IC  1.523695e−05 3.628915e−04 1.223699e−01 4.504311e−02
S  3.639449e−12 7.958321e−11 3.518079e−08 1.362131e−08

Fig. 12. Energy spectrum of SC0-10.
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Table  6
Evaluation results for SC0-10.

x0 x1 x2 x3 x4 x5 x6

p 0.048211 0.090476 0.009704 0.073332 0.047763 0.046852 0.006192
IB  4.14e-01 4.33e-01 3.98e-01 0.00e+00 1.85e-02 1.89e-02 1.06e-03
IC  3.30e-02 6.47e-02 6.38e-03 0.00e+00 1.46e-03 1.46e-03 1.08e-05
S  1.05e-02 1.58e-02 7.54e-04 2.00e-04 2.20e-04 2.14e-04 7.49e-05

x8 x9 x10 x11 x12 x13

p 0.002682 0.059671 0.092333 0.038408 0.069307 0.002909 0.064377
IB  2.44e−03 3.66e−02 2.37e−02 2.74e−02 1.52e−02 0.00e+00 4.21e−01
IC  1.08e−05 3.61e−03 3.61e−03 1.74e−03 1.74e−03 0.00e+00 4.48e−02
S  1.04e−05 1.71e−04 3.40e−04 1.00e−04 1.95e−04 1.01e−05 1.68e−04

x14 x15 x16 x17 x18 x19 x20

p 0.09597 0.000987 0.019109 0.087771 0.053134 0.090643 0.020308
IB  4.36e−01 3.95e−01 4.02e−01 4.32e−01 4.16e−01 4.34e−01 4.02e−01
IC  6.91e−02 6.43e−04 1.27e−02 6.26e−02 3.65e−02 6.49e−02 1.35e−02
S  2.82e−04 5.34e−06 6.23e−05 2.19e−04 1.66e−04 5.50e−04 7.16e−05

x21 x22 x23 x24 x25 x26

p 0.013639 0.024008 0.056297 0.090061 0.064624 0.05769
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IB  4.00e−01 4.04e−01 4.18e
IC  9.00e−03 1.60e−02 3.88e
S  5.62e−05 7.70e−05 1.90e

romising since it allows to compute the coefficients in reason-
ble times. Moreover, approximate values are sufficient to find the
rder of importance of the components. In the evaluation section,
he spectral sensitivities for the two relatively large fault trees,
T1-SC14 and SC0-10, are calculated with the approximate spectral
oefficients.

. Related work

There have been many software architecture analysis tech-
iques introduced [6]. These techniques mainly adopt scenario-
ased analysis approaches. Hereby, the impact of set scenarios is
nalyzed on a model of the architecture to identify the poten-
ial risks and the sensitive points of the architecture. Different
nalysis methods use different type of scenarios (e.g., usage scenar-
os [44], change scenarios [45], failure scenarios [18]) depending on
he quality attributes (e.g, performance, maintainability, reliability)
hat they focus on. Some methods such as ATAM [44] utilize multi-
le types of scenarios for addressing multiple quality attributes at
he same time. Previously, failure scenarios have been used for ana-
yzing software reliability at the architecture design level [18]. In
hat approach, fault tree models have been defined based on these
cenarios [14]. Then, sensitivity analysis has been performed on
hese models based on the measure introduced by Birnbaum [19].
n this work, we assume that the fault tree model of the system is
iven as input. However, we apply a new technique for sensitivity
nalysis.

In this work, we applied spectral analysis of Boolean functions
or sensitivity analysis. There also exist other sensitivity analysis
pproaches that are applied based on (dynamic) fault tree mod-
ls [16,5]. These approximate approaches make use of variations
f Markov chain models (DTMC, CTMC) in order to model the soft-
are architecture. These models are usually derived based on fault

rees [16,46] that are provided as input. As an alternative approach
o analytical resolution, there also exist simulation techniques and
ools [47] applied on fault tree models. They are used particularly
or analyzing DFT models to perform dynamic reliability assess-
Please cite this article in press as: T. Ayav, H. Sözer, Identifying critic
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.06.

ent [48,49]. They mainly employ Monte Carlo simulation with
he aim of overcoming the limitations of analytical methods such as
tate space explosion and lack of modularity in analysis [47]. There
lso exist studies that benefit from Bayesian Network (BN) that is
4.33e−01 4.22e−01 4.18e−01
6.44e−02 4.50e−02 3.98e−02
1.88e−04 2.98e−04 2.63e−04

a powerful method for probabilistic reasoning, particularly taking
into account the complex dependencies in components and uncer-
tainty in modeling. To that end both FT and DFT can be converted
into BN [50] and Dynamic BN [51] respectively.

Spectral analysis of Boolean functions is a powerful technique. In
the literature, Fourier analysis, Walsh or Walsh-Hadamard trans-
formations, Reed-Muller transformation are all used for spectral
analysis. These techniques are well-known for more than thirty
years. Although they have a wide application area in mathematics,
physics and engineering, its application in computer science seems
relatively limited. Some fields that have utilized spectral analysis
so far include error-correcting code analysis, cryptography, graph
theory and quantum computing. Spectral analysis of Boolean func-
tions has attracted a great attention from computer scientists in
the last decade [32–34]. This is due to well-developed theorems
such as Kahn-Kalai, Arrow’s and Peres’s theorems, and also its con-
tribution in the development of social choice theory. The influence
of Boolean variables and noise sensitivity has also been studied by
several papers [32,34,52]. In our study, we benefit particularly from
influence, probabilistic influence and energy spectrum of spectral
analysis in order to analyze fault trees that represent both coherent
and non-coherent systems.

Our spectral analysis technique can be safely used for both
coherent and non-coherent systems. IEC 61025 does not distin-
guish between these two  types systems [9]. Indeed, fault tree
analysis is usually applied to coherent systems. However, as stated
by [25,41], non-coherent systems can also be useful in many cases
and the sensitivity analysis techniques proposed for these systems
are quite limited. It is also demonstrated that the conventional
metrics, IB and IC provide misleading results for the evaluation of
non-coherent systems. Therefore, some extensions have been pro-
posed for these metrics [25,24]. There were also other extensions
proposed [53] to address complex components (as well as group
of components) whose failures are triggered by a combination of
basic events. In our approach, component failures are modeled in
the form of basic events.
al architectural components with spectral analysis of fault trees,
042

8. Conclusions, limitations and future work

We introduced a new approach for identifying critical compo-
nents of the software architecture with respect to reliability. Our
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pproach employs a spectral analysis of fault trees that are com-
only used models for sensitivity and importance analysis at the

rchitecture design level. The approach is applied on benchmark
ault tree models and the results are compared with respect to the
ecognized metrics in the literature. It was observed that the meas-
res obtained with our approach are consistent with the existing
etrics. In addition, we showed that our approach can facilitate the

nalysis of different types of fault trees, which are considered to be
ut-of-scope for the current metrics.

Our approach is currently applicable to static fault trees only.
urther research is necessary for extending or complementing the
pproach to make it applicable for dynamic fault trees as well. Like-
ise, it is assumed that the software architecture is not subject to

hanges and component reliabilities are defined as crisp and con-
tant values. Another limitation of the approach is time complexity
eading to exponential growth in the worst case. We  offered an
pproximation method to be able compute coefficients in reason-
ble times. In our experiments, approximate values turned out to be
ufficient for finding the relative component importance. However,
ore case studies and controlled experiments are needed to eval-

ate the effectiveness of our approximation method for different
ypes of subject systems.
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