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Abstract

This paper proposes a computer-aided diagnosis tool for theearly detection of
atherosclerosis. This pathology is responsible for major cardiovascular diseases,
which are the main cause of death worldwide. Among preventive measures, the
Intima-Media Thickness (IMT) of the common carotid artery stands out as early
indicator of atherosclerosis and cardiovascular risk. In particular, IMT is evalu-
ated by means of ultrasound scans. Usually, during the radiological examination,
the specialist detects the optimal measurement area, identifies the layers of the
arterial wall and manually marks pairs of points on the imageto estimate the
thickness of the artery. Therefore, this manual procedure entails subjectivity and
variability in the IMT evaluation. Instead, this article suggests a fully automatic
segmentation technique for ultrasound images of the commoncarotid artery. The
proposed methodology is based on Machine Learning and artificial neural net-
works for the recognition of IMT intensity patterns in the images. For this pur-
pose, a Deep Learning strategy has been developed to obtain abstract and efficient
data representations by means of Auto-Encoders with multiple hidden layers. In
particular, the considered deep architecture has been designed under the concept
of Extreme Learning Machine (ELM). The correct identification of the arterial
layers is achieved in a totally user-independent and repeatable manner, which not
only improves the IMT measurement in daily clinical practice but also facilitates
the clinical research. A database consisting of 67 ultrasound images has been
used in the validation of the suggested system, in which the resulting automatic
contours for each image have been compared with the average of four manual seg-
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mentations performed by two different observers (ground-truth). Specifically, the
IMT measured by the proposed algorithm is 0.625±0.167 mm (mean± standard
deviation), whereas the corresponding ground-truth valueis 0.619±0.176 mm.
Thus, our method shows a difference between automatic and manual measures of
only 5.79±34.42 µm. Furthermore, different quantitative evaluations reported in
this paper indicate that this procedure outperforms other methods presented in the
literature.

Keywords: Deep learning, Auto-encoders, Extreme learning machine,
Intima-media thickness, Image segmentation

1. Introduction1

Cardiovascular diseases (CVD) remain the major cause of death in the world2

[1]. A large proportion of CVD are caused by an underlying pathological pro-3

cess known as atherosclerosis. Thus, its early diagnosis iscritical for preventive4

purposes. Atherosclerosis involves a progressive thickening of the arterial walls5

by fat accumulation, which hinders blood flow and reduces theelasticity of the6

affected vessels.7

The Intima-Media Thickness (IMT) of the Common Carotid Artery (CCA) is8

considered as an early and reliable indicator of atherosclerosis [2] and it is ex-9

tracted from ultrasound scans [3], i.e. by means of a non-invasive technique. As10

can be seen in Fig. 1 (left), blood vessels present three different layers, from in-11

nermost to outermost: intima, media and adventitia. The IMTis defined as the12

distance from the lumen-intima interface (LII) to the media-adventitia interface13

(MAI) . The use of different protocols and the variability between observers are14

recurrent problems in the IMT measurement procedure. To ensure the repeata-15

bility and reproducibility of the process, according to theMannheim consensus16

[2], the IMT should be measured preferably on the far wall of the CCA within a17

region free of atherosclerotic lesions (plaques), where a double-line pattern corre-18

sponding to the intima-media-adventitia layers can be clearly observed (see Fig.19

1, right).20

Figure 1: Diagram of the arterial layers in a transverse section (left) and longitudinal view of the
CCA in an ultrasound image (right)

Usually, the IMT is manually measured by the specialist, whomarks pairs21

of points corresponding to the LII and MAI on the ultrasound.It is possible to22
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reduce the subjectivity and variability of manual approaches and detecting the23

IMT throughout the artery length by means of image segmentation algorithms.24

In the last two decades, several solutions have been developed to perform the25

carotid wall segmentation in ultrasound images [4, 5] for the IMT measurement.26

Most of the proposed methods require user interaction [6–10]. However, some27

fully automatic approaches have already been published [11–17].28

It is possible to make a classification of techniques according to the used29

methodology. In this sense, we can find algorithms based on edge detection and30

gradient-based techniques [6, 8, 9, 18], and other proposals based on dynamic pro-31

gramming [19–24], active contours [7, 13, 14, 25–27], neural networks [11, 12]32

or in a combination of techniques [10, 16]. There are also techniques based in33

statistical modelling [17, 28] or in Hough transform [15, 29].34

This work addresses a fully automated segmentation technique completely35

based on Machine Learning to recognize IMT intensity patterns in the carotid36

ultrasound images. In particular, the developed system intends to emulate the37

procedure followed by the specialist in the manual protocol. That is, firstly, the38

detection of the optimal measurement area and, then, the identification of the arte-39

rial wall layers. With this purpose, a Deep Learning strategy has been designed to40

obtain abstract and efficient feature representations by means of Auto-Encoders41

based on Extreme Learning Machine (ELM). The proposed method jointly ex-42

tracts the LII and MAI from ultrasound CCA images in a totallyuser-independent43

and repeatable manner. Therefore, it improves the reproducibility and objectivity44

of the IMT evaluation to assist in the early diagnosis of atherosclerosis.45

The remainder of this paper is structured as follows: Sect. 2.1 describes the46

dataset of ultrasound CCA images and the manual segmentations, while Sect. 2.247

introduces the machine learning concepts used in this work.In Sect. 2.3, the48

proposed segmentation method is explained in detail. The obtained results are49

shown in Sect. 3. Finally, the main extracted conclusions close the paper.50

2. Material and Methods51

2.1. Image Database and Manual Segmentations52

The set of images used in this work consists of 67 ultrasoundsof the CCA53

taken with a Philips iU22 Ultrasound System using three different ultrasound54

transducers or probes, with frequency ranges of 9-3 MHz, 12-5 MHz and 17-555

MHz. All of them were provided by the Radiology Department ofHospital Uni-56

versitario Virgen de la Arrixaca (Murcia, Spain). The parameters of the scanner57

were adjusted in each case by the radiologist. The spatial resolution of the images58
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ranges from 0.029 to 0.081 mm/pixel, with mean and standard deviation equal to59

0.051 and 0.015 mm/pixel, respectively. Some blurred and noisy images, affected60

by intraluminal artifacts, and some others with partially visible boundaries are61

included in the studied set.62

To assess the performance of the proposed segmentation method, it is neces-63

sary to compare the automatic results with some indication of reference values. In64

our case, theground-truthcorresponds to the average of four manual segmenta-65

tions for each ultrasound image. In particular, two different observers delineated66

each image twice, with a mean period of one month between tracings. Each man-67

ual segmentation of a given ultrasound image includes tracings for the LII and68

MAI on the far carotid wall. The delineations were performedby marking at69

least 10 points over the images for each contour, which were subsequently inter-70

polated. Once the four manual contours have been interpolated, the ground-truth71

for each IMT interface (LII and MAI, separately) is assessedby averaging these72

in a column-wise manner, i.e., along the longitudinal axis of the image. Figure73

2 illustrates the process for the manual segmentations and the definition of the74

ground-truth for each contour. Hereinafter, we will refer to the different segmen-75

tations as:76

• MA1: first manual segmentation from observer A.77

• MA2: second manual segmentation from observer A.78

• MB1: first manual segmentation from observer B.79

• MB2: second manual segmentation from observer B.80

• GT: ground-truth, average of MA1, MA2, MB1 and MB2.81

• AUT: proposed automatic segmentation.82

Figure 2: Manual segmentations: application for manual delineation of the IMT interfaces (top);
definition of the ground-truth (GT, green line) from four manual segmentations made by two dif-
ferent observers (bottom)
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2.2. Machine Learning Techniques83

In the last decade, Extreme Learning Machine (ELM) has emerged as a pow-84

erful tool in the learning process of Single-Layer Feed-Forward Networks (SLFN)85

by providing good generalization capability at fast learning speed [30]. Given N86

arbitrary distinct samples (xn, tn), wherexn ∈ R
d is an input vector andtn ∈ R

m
87

its corresponding target vector, the output of a SLFN withM hidden neurons and88

activation functionf(·) is given by89

yn =

M
∑

j=1

βjf(wjxn + bj), n = 1, ..., N ; (1)

wherewj = [wj1, wj2, ..., wjd] is the input weight vector connecting the input90

units and the j-th hidden neuron,βj = [βj1, βj2, ..., βjm] is the output weight91

vector connecting the j-th hidden neuron and the output units, andbj is the bias92

of the j-th hidden neuron. If it is assumed that SLFN can approximate these N93

samples with zero error, then, there existβj, wj andbj such that94

M
∑

i=j

βjf(wjxi + bj) = ti, i = 1, ..., N. (2)

ELM is based on the randomly initialization of the input weights and biases of95

SLFN. Thus, the network can be considered as a linear system and the N equations96

in the expression (2) can be written compactly in the following form:97

HB = T; (3)

whereT ∈ R
N×m is the targets matrix,B ∈ R

M×m is the output weights matrix98

andH ∈ R
N×M is the hidden layer output matrix, which is defined as99

H =







f(w1x1 + b1) . . . f(wMx1 + bM )
... . . .

...
f(w1xN + b1) . . . f(wMxN + bM )






(4)

Thereby, the training is reduced to solve the linear system in Eq. (3), whose100

smallest norm least-squares solution is given by:101

B̂ = H†T; (5)

5



whereH† is the Moore-Penrose generalized inverse matrix ofH. Moreover, in102

order to improve the robustness and generalization performance, a regularization103

term (C) can be added to the solution [31]:104

B̂ =

(

I

C
+HTH

)−1

HTT (6)

Although ELM provides an efficient training for SLFN, the performance of105

machine learning methods and applications highly depends on the selected fea-106

tures for the representation of the problem. Thus, to make progress towards the107

Artificial Intelligence (AI), the new perspectives in Machine Learning are nec-108

essary based on learning data representations that make more accurate classi-109

fiers/predictors [32]. In this sense, Deep Learning has emerged as set of algo-110

rithms that attempt to model more abstract and useful representation of the data111

by means of architectures with multiple non-linear transformations [33].112

Among the various deep learning architectures, this work focuses on deep113

networks based on Auto-Encoders (AE). In particular, the ELM Auto-Encoders114

(ELM-AE) introduced in [34] have been used to solve our segmentation task.115

Auto-encoders are SLFN performing unsupervised learning in the sense that an116

AE is trained to reconstruct its own inputs, i.e.tn = xn (see Fig. 3). Therefore,117

in the hidden layer of the AE takes place a feature mapping: ifM < d (number118

of hidden neurons< input data dimension), a compressed data coding is obtained119

as hidden layer output (H); while if M > d, the result is a sparse representation120

of data.121

Figure 3: Structure of a generic Auto-Encoder

2.3. Segmentation Procedure122

Figure 4 shows an overview of the proposed segmentation methodology. As123

can be seen in Fig. 1 (right), the raw images contain not only the CCA ultra-124

sound, but also a frame with patient data and additional information is incorpo-125

rated. Therefore, in order to remove this unwanted frame, the images are automat-126

ically cropped at the start. This is done by using Mathematical Morphology to de-127

termine the adequate borders of the ultrasound region, because the DICOM fields128

that provide these parameters are often empty. In particular, an image binarization129

takes place firstly, then, a procedure is applied to the obtained binary image in130

order to remove spurious objects and to fill regions or holes.It is based on two131
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basic morphological operators: opening and reconstruction. In this way, a binary132

mask that matches with the ultrasound region is obtained andthe unwanted frame133

with metadata can be cropped. The process is simple and it does not show any134

error on the tested images, i.e., the 67 ultrasound images are correctly cropped.135

Once the CCA ultrasound is isolated, it is pre-processed to automatically de-136

tect the region of interest (ROI), which is the far wall of theblood vessel. Then,137

those pixels belonging to the ROI are classified for the LII and MAI recognition.138

The final contours are extracted from the obtained classification results and the139

IMT can be evaluated on them.140

Figure 4: Flow chart of the proposed method for the CCA segmentation

2.3.1. ROI Detection141

This section describes the first stage of the proposed methodology, in which142

the carotid far wall (ROI, where the IMT will be evaluated) islocated by means143

of a a system for Pattern Recognition. The scheme of the adopted strategy for this144

purpose is shown in Fig. 5.145

Figure 5: Overview of the strategy for the ROI (far wall of theartery) detection in CCA ultra-
sounds. An ELM-AE provides a compressed representation of input image blocks at its hidden
layer output to improve the classification performance

Specifically, a given CCA ultrasound is split into blocks (squared sections)146

to proceed with the processing. An ELM-AE has been designed to obtain useful147

and efficient representations of image blocks for their posterior classification as148

‘ROI-block’, if a typical pattern of the far wall is recognized, or‘non-ROI-block’,149

otherwise. The size of the image blocks to process is 39×39 pixels, which ensures150

that the intima-media complex can be contained in a block even if the arterial wall151

is thick and the radiologist selects high resolutions. Thus, the ELM-AE has an152

input data dimension of 1521 features.153

For the configuration of the ELM-AE, an exhaustive search of the number of154

hidden neurons and the regularization parameter (M and C, respectively) by means155

of a validation procedure has been performed. As it is verified later in Sect. 3.1.1,156

the optimal coding is obtained with 850 hidden sigmoidal neurons. Once the157

architecture of the AE is fixed, the connections between the new features (hidden158

layer outputs,h) and the system output (y) are analytically calculated according159

to Eq. (6).160
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The dataset used in the design of this system consists of 13776 observations161

(50% from each class): two thirds for training and the remaining for testing. In162

particular, the samples were carefully taken from five heterogeneous images (with163

different orientations of the CCA, spatial resolutions, IMT values, etc.) to assem-164

ble a representative and consistent dataset. Table 1 specifies the distribution of the165

selected samples.166

Table 1: Specification of samples used in the design of the system for far wall detection

2.3.2. Arterial Layers Recognition167

The segmentation of the LII and MAI in the ultrasound images is carried out168

by means of a classification of pixels belonging to the ROI. Inparticular, the inten-169

sity values from a certain neighbourhood centred on the pixel to classify provide170

the necessary contextual information to the classifier for the recognition of the171

arterial layers. Specifically, the neighbourhoods consistof 51×5 pixels (i.e., 255172

input features) and four different classes have been considered as possible sys-173

tem outputs:‘LII-pixel’ , ‘MAI-pixel’ , ‘IMC-pixel’ (intima-media complex) and174

‘non-IMC’ (out of the intima-media complex). As in the previous stage,repre-175

sentational learning techniques have been applied to improve the precision of the176

classifier. With the aim of obtaining meaningful representations from the inputs177

corresponding to LII and MAI, two different multilayer ELM-AE (with multiple178

hidden layers) have been implemented. These multilayer auto-encoders (MLAE)179

are based on the concept set forth in [34], where ELM is used toperform layer-180

by-layer unsupervised learning. The diagram of the proposed deep architecture181

can be seen in Fig. 6.182

Figure 6: Deep-architecture designed for the LII and MAI segmentation. Two different multilayer
ELM-AE produce sparse coding of the input patterns at the output of their second hidden layer.
Then, the union of the learned representations is classifiedfor the recognition of the arterial layers

To perform the design and training process of this architecture, a labelled183

dataset composed of 38908 patterns was assembled by taking samples from 8184

manually segmented images. The distribution per class and image of the sam-185

ples is shown in Table 2: 50% of them belong to the IMT boundaries (‘LII’ and186

‘MAI’ classes), and the remaining 50% are distributed between ‘IMC’ class (8904187

samples) and ‘non-IMC’ class (10554 samples). Besides, thedataset is carefully188
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Table 2: Specification of dataset used in the design of the system for arterial layers recognition

divided into three subsets: one-third of samples for testing, 80% of the remaining189

two thirds for training and 20% for validation.190

The configuration of the LII-MLAE has been done by means of a layer-wise191

unsupervised training with the 5877 LII samples (training and validation sets). As192

commented before, the learning process is carried out in a layer-by-layer man-193

ner, i.e., each hidden layer is trained as a simple single layer ELM-AE (see Fig.194

6) by taking the hidden layer outputs of the previous AE as inputs and desired195

outputs (unsupervised learning,tn = xn). Therefore, the final LII-MLAE archi-196

tecture consists of the succession of the hidden layers of the designed single layer197

auto-encoders along with their corresponding connection weights. Moreover, it is198

necessary to establish the optimal number of layers for the LII-MLAE. Thus, after199

designing each layer, it is added to the LII-MLAE architecture only if it allows an200

improvement in the recognition of LII patterns. In order to know if this happens,201

the performance of a binary auxiliary classifier (‘LII-pixels’ or ‘ non-LII-pixels’)202

is examined using the whole dataset (more details in Sect. 3.1.2). Taking into203

account this consideration, the optimal architecture for the LII-MLAE consists of204

two stacked stages, which perform a ‘255-1100-1900’ feature mapping.205

On the other hand, using exclusively MAI samples (5672 for training and 1417206

for validation), the MAI-MLAE has been configured in a similar manner to repre-207

sent better the MAI patterns. In this case, the optimal coding is also obtained with208

two hidden layers (‘255-1000-1900’ mapping).209

In accordance with the suggested system (return to Fig. 6), agiven inputx210

is transformed into two different feature vectors with 1900dimensions each one.211

These new representations of the system input (hLII and hMAI) are then joined212

for proceeding to their classification. The connections between the union of out-213

puts from the second hidden layer of both AE (h) and the system output (y) are214

computed in accordance with the expression (6).215

2.3.3. Extraction of Final Contours216

Once a CCA ultrasound is processed by means of the proposed system, the217

IMT boundaries are properly identified (see Fig. 7, right-central, where the LII218

and MAI pixels detected are depicted in red and blue, respectively). However,219

due to the poor definition of the ultrasound images, thick boundaries are obtained.220

This happens because the system finds the searched intensitypatterns in all these221

pixels. In fact, the classification results cover the variability of the manual seg-222
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mentations, as can be seen in Fig. 7 (right-central), where the points marked by223

the two specialist are superimposed.224

Figure 7: Example of a good quality processed image: far walldetected (left); ROI with man-
ual segmentations (right-top); recognition of IMT boundaries and manually marked points (right-
central); final LII and MAI contours (right-bottom)

Therefore, it is necessary to define the final contours from the system output.225

For this purpose, the gradient image is evaluated by using morphological operators226

(Fig. 8, top). Then, the search for the peaks of the intensitygradient is performed227

(Fig. 8, central). Specifically, the points of maximum gradient which fall within228

pixels classified as ‘LII-pixel’ or ‘ MAI-pixel’ are considered (Fig. 8, bottom).229

From these points, two curves corresponding to LII and MAI interfaces are defined230

by means of a smoothing process based on a moving average filter. The final231

contours of IMT are determined in this way (see Fig. 7, right-bottom).232

Figure 8: Extraction of final contours: gradient image corresponding to Fig. 7 (top); peaks of
the intensity gradient (central); points of maximum gradient which fall within pixels classified as
‘LII-pixel’ or ‘ MAI-pixel’ by the system (bottom)

3. Results and Discussion233

3.1. Architecture Configuration and Classification Performance234

This section includes the results of the performed study forthe configuration235

of the system, as well as the evaluation of its classificationperformance. For236

this analysis, several metrics have been used: theaccuracy(ACC), specificity237

(SPEC),sensitivity(SEN), and theMathews correlation coefficient(MCC) of a238

given classification, which are defined as follows:239

ACC =
TP + TN

TP + TN + FP + FN
(7)

SPEC =
TN

TN + FP
(8)

SEN =
TP

TP + FN
(9)
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MCC =
TP · TN − FP · FN

√

(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)
, (10)

where TP is the number of true positives; TN is the number of true negatives; FP240

and FN are the number of false positives and false negatives,respectively.241

3.1.1. ROI Detection242

As commented in Sect. 2.3.1, a validation procedure becomesnecessary for243

the configuration of the ELM-AE. The design parameters to select are the number244

of hidden neurons (M) and the regularization term (C). In ourcase, 28 different245

values for M (10, 20, ..., 100, 150, 200, ..., 1000) and 38 different values for C246

(2−18, 2−17, ..., 219) have been considered. The ELM-AE was retrained 50 times247

for every pair of values (50×28×38) and its mean performance has been analysed.248

Moreover, 20% of training samples were randomly selected asvalidation set in249

each trial.250

The learning process is carried out in an unsupervised manner, i.e. with tar-251

get values identical to inputs. However, the selection of its design parameters has252

been performed by analysing the classification accuracy of the system over the253

validation samples. For this purpose, a provisional outputis computed according254

to Eq. (5) in each case. Thus, it is possible to analyse the surface of the classifica-255

tion performance (see Fig. 9, left). In view of this result, the optimal compressed256

coding is obtained with 850 hidden neurons andC1 = 2−6.257

Once the single hidden layer of the ELM-AE is adjusted, the output connec-258

tions of the system must be determined according to Eq. (6). Therefore, a new259

tuning of another regularization parameter (C2 = 2−18, 2−17, ..., 224, 225) is per-260

formed. The analysis of the mean validation accuracy (see Fig. 9, right) shows261

that the optimal value isC2 = 219, because from that point, the saturation is262

reached.263

Figure 9: Classification accuracy over validation set. Meanperformance of the ELM-AE (50 trials)
according toM andC1, i.e. number of hidden neurons and regularization term (left). Analysis
for the tuning of the second regularization parameter (C2) related to the computation of the output
connections (right)

Finally, note that the proposed system has proved its good performance. The264

confusion matrix of the system over the test samples, which are completely unre-265

lated to the training/validation process, is shown in Table3. From this informa-266

tion, it is possible to deduce that the accuracy of the classification between ROI267
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and non-ROI image blocks is 98.45± 0.06 % (mean and standard deviation from268

50 trials). Moreover, the sensitivity is 99.38± 0.06 % and the specificity is 97.56269

± 0.11 %, which describe the ability of the system to identify positive results (ROI270

observations) and negative results (non-ROI observations), respectively.271

Table 3: Confusion matrix of the system for ROI detection

3.1.2. Detection of IMT Boundaries272

Two different multilayer ELM-AE are part of the system developed for the273

recognition of the arterial layers in CCA ultrasounds (see Fig. 6). The configura-274

tion of these machines has been performed in a layer-wise unsupervised manner.275

For each layer, the number of hidden neurons and the regularization parameter276

were varied as follows:M = {10, 20,..., 500, 550,..., 1000, 1100,..., 2000}; and277

C = {2−18, 2−17, ..., 250}. Fifty trials were conducted for each pair of values.278

In each case, the Root-Mean-Square Error (RMSE) between theequivalent in-279

puts and outputs of the LII-MLAE and MAI-MLAE was evaluated.The optimal280

parameters (Mopt andCopt) for every layer have been selected according to the281

minimal validation RMSE obtained.282

An additional parameter of the architecture to optimize is the number of hid-283

den layers constituting the LII-MLAE and the MAI-MLAE. As itis mentioned284

in Sect. 2.3.2, a layer is appended to the LII-MLAE or MAI-MLAE architec-285

ture only if this fact implies an improvement in the recognition of LII patterns or286

MAI patterns, respectively. With the aim of determining this enhancement, the287

whole dataset is passed through the corresponding AE and theperformance of a288

binary classification between ‘LII-pixels’ and ‘non-LII-pixels’ (or between ‘MAI-289

pixels’ and ‘non-MAI-pixels’) is analysed. Note that this provisional labelling of290

the dataset involves an imbalanced class distribution. Therefore, the connections291

between the outputs of the hidden layer under analysis and these provisional bi-292

nary outputs have been assessed according to the Weighted-ELM [35].293

The results obtained in the design process of the LII-MLAE and the MAI-294

MLAE are summarized in Table 4, where ACC and MCC represent the accuracy295

and Mathews correlation coefficient of the related binary classification, respec-296

tively. The latter is generally regarded as a balanced measure which can be used297

even if the classes are of very different sizes. Thus, the optimal architecture for298

the LII-MLAE consists of two stacked stages, which perform a‘255-1100-1900’299

feature mapping; whereas in the case of the MAI-MLAE, the optimal coding is300

also obtained with two hidden layers (‘255-1000-1900’ mapping).301
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Table 4: Specification of the analysis for LII-MLAE and MAI-MLAE configuration

The final deep architecture achieves a high success rate overthe testing dataset.302

Table 5 shows the confusion matrix of the system in terms of mean and standard303

deviation from 50 trials. The overall success rate is 99.44±0.05% (considering304

the four classes), with 99.76±0.03% of accuracy in the recognition of LII patterns305

and 99.69±0.04% for the classification of MAI samples.306

Table 5: Confusion matrix of the system for the arterial layers segmentation

3.2. Visual Results307

The proposed segmentation method has been tested on a set of 67 ultrasound308

images of the common carotid artery. Fig. 7 shows an example of processed im-309

age. Left image depicts the result of the stage for the far wall detection, whereas310

right pictures show the ROI in detail, where the manual segmentations (top), the311

classification results and manually marked points (central) and the final IMT con-312

tours (bottom) are superimposed on the ultrasound. The correct detection of the313

far wall is achieved in all the tested images, even in noisy and blurred ones. Some314

examples can be seen in Fig. 10.315

Figure 10: Examples of correct far wall detection in CCA ultrasounds

To ensure an optimal visualization of the IMT boundaries in the ultrasound, a316

straight and horizontal appearance of the carotid artery inthe image is desirable.317

However, this projection is not always possible. Sometimes, the CCA may be318

tilted or curved because of the probe position or the own anatomy of the subject.319

In the case of algorithms using human interaction, the operator can select the320

optimal area of the image for the IMT measurement. Nevertheless, fully automatic321

methods must be able to correctly handle the different morphologies of the artery.322

The examples of final results included in Fig. 11 reveals thatthe fully automatic323

segmentation approach proposed in this paper is robust against the orientation and324

appearance of the CCA in the ultrasound image (slope and curvature).325

Figure 11: Final IMT boundaries obtained for the images in Fig. 10
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3.3. Segmentation Accuracy326

In order to validate the precision of the obtained segmentation results, four327

manual tracings performed by two different experts are taken into consideration.328

On the one hand, manual segmentations are compared between themselves in or-329

der to characterize the uncertainty and variability of the manual procedure. Thus,330

the intra-observer errors (MA1 vs MA2 and MB1 vs MB2) as well as the inter-331

observer errors (MA1 vs MB1, MA1 vs MB2, MA2 vs MB1 and MA2 vs MB2)332

have been evaluated. On the other hand, the inter-method error is evaluated by333

comparing our automatic segmentations with those considered as ground-truth334

(AUT vs GT). In addition, in order to complete the characterization of the auto-335

matic IMT contours, comparisons between each of the four manual segmentations336

and the automatic ones (AUT vs MA1, AUT vs MA2, AUT vs MB1 and AUT vs337

MB2) have been studied. The different segmentation errors are calculated sep-338

arately for LII and MAI contours using the Mean Absolute Difference (MAD),339

which is the most used quantitative metric to evaluate IMT and the accuracy of340

a segmentation method [4, 5]. This metric represents the average of the vertical341

distances between two contours along the longitudinal axisof an image.342

The box-plot in Fig. 12 shows the distributions of the segmentation errors for343

LII and MAI over the 67 tested ultrasound images. Moreover, Table 6 includes the344

maximum, minimum, mean and standard deviation values of thedifferent errors345

over the image database. Since the scale resolution varies from one image to346

another, the results are expressed in µm and pixels, for a better description of the347

difference between segmentations. This statistical analysis reveals that a greater348

variability exists for the MAI, which is much more noticeable between manual349

segmentations. This is due to the fact that, in general, transitions from lumen to350

intima layer are clearer than transitions from media to adventitia layer.351

The difference between manual tracings of LII ranges, on average, from 29.7352

µm to 40.6 µm, whereas manual segmentation error for MAI varies between 43.5353

and 53.9 µm. Despite the greater error and the higher dispersion of the error for354

the MAI boundaries, there is a good agreement between manualtracings, since355

the mean differences are around one pixel.356

Nevertheless, when the comparisons are made between automatic contours357

and GT, the segmentation errors for LII and MAI are considerably reduced. Be-358

sides, although the MAI error remains slightly greater on average, its distribution359

is more comparable to the distribution of LII error. In view of the results, it is pos-360

sible to appreciate that our automatic segmentation reduces the uncertainty and361

variability of the manual procedure and, therefore, it willlead to a more reliable362

and precise measurement of the IMT.363
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Figure 12: Statistical distribution of Mean Absolute Difference (mm) between different segmen-
tations for LII and MAI. Box-plot: in each box, the whiskers extend to the most extreme not
outliers values (marked as black crosses), upper and lower box limits represent the 75th and 25th
percentile, respectively; the median is depicted by the inner line in the box

Table 6: Mean absolute difference between different segmentations for LII and MAI

3.4. IMT Measurements364

Given an ultrasound image and the corresponding boundariesof the arterial365

wall, manually or automatically segmented contours, the IMT is estimated by366

using three different metrics: Mean Absolute Difference (MAD), Poly-Line Dis-367

tance (PLD) and Center Line Distance (CLD). As commented in Sect. 3.3, MAD368

is the most used metric to evaluate IMT. It is based on the vertical distance be-369

tween contours along the longitudinal axis of an image. In particular, it is nec-370

essary that both contours have the same number of points (N) to calculate the371

average of these vertical distances (see Fig. 13, top) as follows:372

IMTMAD =
1

N

N
∑

x=1

|LII(x)−MAI(x)| (11)

Nevertheless, MAD may deviate from the actual distance between LII and MAI373

when these contours present certain slope or curvature. To avoid the overesti-374

mation in these cases, PLD was proposed in [36] as a more robust and reliable375

indicator of the distance between two boundaries. It is based on trigonometry376

and, in this case, it is not a necessary condition that the contours to compare have377

the same number of points. Given the IMT contours, LII withN1 points and MAI378

with N2 points (see Fig. 13, centre), the distance between a vertexv = (x0, y0) in379

LII and the segments in MAI (from v1 = (x1, y1) to v2 = (x2, y2)) is defined as:380

d(v, s) =

{

| d⊥ |, if 0 ≤ λ ≤ d12
min(d1, d2), otherwise

(12)

whered1 andd2 are the euclidean distances between the vertexv and the vertices381

in the segments (v1 andv2, respectively); whereasd12 is the euclidean distance382

betweenv1 andv2. As can be seen in Fig. 13 (centre),d⊥ is the perpendicular383

distance froms to v, andλ is the distance along the segments betweenv1 and the384

intersection with the perpendicular. In this way, the distance fromv ∈ LII to MAI385

is calculated as:386

d(v,MAI) = min
s∈MAI

d(v, s) (13)
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The distance between LII and MAI is evaluated as the sum of thedistances from387

all the vertices in LII to the closest segment in MAI:388

d(LII,MAI) =
∑

v∈LII

d(v,MAI) (14)

Similarly, the distance from MAI to LII is assessed (d(MAI, LII)). And finally,389

the IMT can be measured by using PLD in the following form:390

IMTPLD =
d(LII,MAI) + d(MAI, LII)

N1 +N2

(15)

The third of the three considered metrics is CLD [37], which also takes into ac-391

count the local orientation of the IMT boundaries. CLD is based on the calculation392

of the center line between LII and MAI (see Fig. 13, bottom). Once this line is393

found, a segment perpendicular to the center line, which intersects with the two394

boundaries, is considered at each point, and CLD is defined asthe mean length of395

all these segments:396

IMTCLD =
1

N

N
∑

i=1

li (16)

whereli is the length of the i-th segment andN is the number of points of the397

center line. In this case, just like in the MAD metric, the number of points of LII398

and MAI must be the same.399

Figure 13: Diagrams of the three different metrics used to evaluate the IMT: Mean Absolute
Difference, MAD (top); Poly-Line Distance, PLD (centre); Center Line Distance, CLD (bottom)

For each ultrasound image, the IMT has been evaluated for manual and auto-400

matic segmentations using the aforementioned metrics (MAD, PLD and CLD) to401

quantify the distance between the corresponding LII and MAIcontours. Similar402

distributions of the IMT values are obtained for the 4 manualmeasures and the403

automatic one, as can be seen in Table 7. It is possible to notethe slight overesti-404

mation produced by the MAD metric in the IMT measurement.405

Table 7: Statistics of the IMT measurements (n = 67 images) inmillimetres using different metrics
(MAD, PLD and CLD)

As in Sect. 3.3, intra and inter-observer IMT errors have been estimated for406

the manual measurements to be compared with the error between automatic IMT407
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and GT. Given two different segmentationsS1 andS2, the degree of agreement408

between its IMT measures over the 67 images is assessed by calculating three409

figures of merit: the correlation coefficient (ρ), the absolute error value (εIMTi
=410

|IMT S1

i − IMT S2

i |, for each image) and the difference between measurements411

(∆IMTi
= IMT S1

i − IMT S2

i , i = 1, ..., 67). Table 8 shows the results of the IMT412

measurement error analysis.413

The IMT intra-observer reproducibility is of 98.4% for observer A and prac-414

tically 98% for observer B (see the corresponding correlation coefficients in Ta-415

ble 8). Moreover, the inter-observer reproducibility of the IMT measurements is416

around 97%. This high grade of agreement between manual measures confirms417

the goodness of the 4 manual segmentations and, consequently of the GT, which418

is defined as the average of these ones. The absolute errors and the standard devi-419

ations of the differences indicate a greater IMT inter-observer error in comparison420

with the error between IMT measures from the same observer, which seems logi-421

cal.422

Table 8: Comparison between IMT measurements (MAD, PLD and CLD metrics) from different
segmentations. n = 67 images;ρ: Correlation coefficient;εIMT : Mean± standard deviation of
the absolute errors;∆IMT : Mean± standard deviation of the differences

The difference between automatic IMT and GT is of 5.8± 34 µm for MAD423

and PLD metrics (6.7± 34 µm for CLD), whereas the absolute error of the au-424

tomatic measurements is 27.3± 21 µm for MAD and PLD (27.2± 22 µm for425

CLD). These values reveal that the measurement error associated with the pro-426

posed method is lower than the inter-observer errors and it is in the rank of the427

intra-observer errors. In addition, the correlation coefficient (98.1%) is compara-428

ble to the intra-observer variability.429

Figure 14 (right) depicts the linear regression analysis between automatic IMT430

and GT (MAD, PLD and CLD metrics), where the high degree of agreement can431

be observed. Furthermore, Fig. 14 (left) shows the corresponding Bland-Altman432

plots (MAD, PLD and CLD metrics) with the following limits ofagreement (mean433

± 2× standard deviation): 5.8± 68.8 µm for MAD, 5.8± 68.5 µm for PLD, and434

6.7 ± 68.5 µm for CLD. The vertical axis in the Bland-Altman plot represents435

the difference between AUT and GT measures of the IMT, whereas the horizontal436

axis represents the average of the values compared. Therefore, the precision in437

the automatic IMT measurements is full well justified.438
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Figure 14: Analysis of automatic IMT measurements: Bland-Altman plot (left) and linear regres-
sion analysis (right)

4. Conclusions439

This paper proposes a fully automated segmentation method for CCA ultra-440

sounds to accurately measure the IMT, an early indicator of atherosclerosis and441

cardiovascular risk. This proposal is completely based on Machine Learning, in442

order to detect the arterial far wall and to extract the IMT contours (LII and MAI)443

in a reliable and automatic way. In particular, the suggested architecture is based444

on the Extreme Learning Machine (ELM). Furthermore, Auto-Encoders (AE) and445

Deep Learning concepts have been used to obtain useful data representations for446

solving the segmentation task, which is posed as a Pattern Recognition problem.447

Following the developed strategy, the IMT can be measured ina totally user-448

independent and repeatable manner.449

The method has been tested over a database of 67 images with different spatial450

resolutions. The validation of the technique is carried outby comparing the auto-451

matic contours with the average of four manual segmentations performed by two452

different observers. The results show a mean segmentation error of 0.028 mm for453

the LII and 0.035 mm for the MAI and demonstrate that the proposed methodol-454

ogy reduces the uncertainty and variability of the manual procedure. In reference455

to the IMT measurements, a high grade of agreement between manual and auto-456

matic observations is obtained with a difference of only 5.8± 34 µm (mean and457

standard deviation).458

With these error values, the algorithm outperforms both automatic and semi-459

automatic methods presented in the literature. Table 9 summarizes the results460

reached by other IMT measurement methods. All methods included in Table 9461

do not consider ultrasound images with atherosclerotic plaques, and use MAD462

metric to evaluate the IMT and the different errors. Although direct comparisons463

between different studies are difficult due to the dependence on the measurement464

protocol, characterization of the results, number and typeof patients, tissue to465

be segmented and image quality, it can be seen that our automatic segmentation466

compares favourably to other semi-automatic and automaticalgorithms.467

Table 9: Some IMT measurement methods

It is important to pay special attention to the works [11] and[12], which cor-468

respond to previous contributions from the authors of this paper. In the previous469
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papers [11, 12], as well as in this one, a novel point of view ispresented for this470

specific application and the posed problem is solved by meansof Pattern Recog-471

nition techniques. This new proposal is oriented to improvethe generalization472

capability and the performance of the method in order to achieve the best system473

configuration.474

In particular, the new approach is completely based on Machine Learning475

(ML), both the recognition of the carotid far wall (region ofinterest, ROI) and476

the identification of the IMT contours (LII and MAI). Whereasin [11, 12], dif-477

ferent image processing techniques were applied to detect the ROI, none of them478

based on ML. The use of a new pattern recognition strategy based on ML for the479

recognition of the ROI implies that the system is able to adapt to the optimal area480

for the measurement, by avoiding those uncertain regions inwhich the character-481

istic IMT pattern is unclear, blurred or even hidden. Moreover, in this work, it has482

been studied the utilisation of ELM multilayer AE to obtain sparse data represen-483

tations with the aim of obtaining a high performance classifier. With the proposed484

architecture, the obtained results show an overall successrate exceeding 99% in485

the classification of the nearly 13000 test samples. In [12],single-layer AE were486

considered only to reduce the data dimension. ELM algorithmwas not used in the487

previous contributions [11, 12], but in the present study ithas provided advantages488

in the learning process (training and design) of the proposed system, because of489

its good performance at fast speed even with high-dimensional data. Furthermore,490

the suggested strategy has been designed to recognize jointly LII and MAI and it491

is able to identify and differentiate both contours by meansof the developed mul-492

ticlass classifier (4 classes); whereas in the previous works [11, 12], only binary493

classifications were considered. In this way, the post-classification stage of the494

new proposal does not require hard efforts for debugging theresults and for the495

extraction of the final IMT boundaries and it has been simplified notably.496

To summarize, the main contributions and improvements of the proposed method497

are the following: a greater intelligence and autonomy of the system; the high de-498

gree of robustness against the anatomical and instrumentalvariability of the ultra-499

sound images; and the noteworthy reliability and precisionin the evaluation of the500

IMT. Finally, it is important to emphasize that these positive aspects are crucial501

for a fully automatic method which has been designed to assist in the early detec-502

tion of atherosclerosis and the prevention of cardiovascular diseases. According503

to this, it can be concluded that the proposed methodology issuitable for the eval-504

uation of IMT not only in the daily clinical practise, but also in clinical research505

studies.506
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