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Abstract

This paper proposes a computer-aided diagnosis tool foedhky detection of
atherosclerosis. This pathology is responsible for magodiovascular diseases,
which are the main cause of death worldwide. Among preventieasures, the
Intima-Media Thickness (IMT) of the common carotid artetgrgls out as early
indicator of atherosclerosis and cardiovascular risk. drtipular, IMT is evalu-
ated by means of ultrasound scans. Usually, during the lcaglaal examination,
the specialist detects the optimal measurement area ifiderthe layers of the
arterial wall and manually marks pairs of points on the imégestimate the
thickness of the artery. Therefore, this manual procedotails subjectivity and
variability in the IMT evaluation. Instead, this articleggests a fully automatic
segmentation technique for ultrasound images of the conwawotid artery. The
proposed methodology is based on Machine Learning andcatifieural net-
works for the recognition of IMT intensity patterns in theages. For this pur-
pose, a Deep Learning strategy has been developed to obstmae and efficient
data representations by means of Auto-Encoders with nhelltiiplden layers. In
particular, the considered deep architecture has beegriEsunder the concept
of Extreme Learning Machine (ELM). The correct identificatiof the arterial
layers is achieved in a totally user-independent and rapiamanner, which not
only improves the IMT measurement in daily clinical praetlut also facilitates
the clinical research. A database consisting of 67 ultradamages has been
used in the validation of the suggested system, in whichdkalting automatic
contours for each image have been compared with the avefrém& onanual seg-
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mentations performed by two different observers (grounth). Specifically, the
IMT measured by the proposed algorithm is 0.6P5167 mm (mean- standard
deviation), whereas the corresponding ground-truth veau@619+0.176 mm.
Thus, our method shows a difference between automatic andaheeasures of
only 5.79+34.42 um. Furthermore, different quantitative evaluatiogported in
this paper indicate that this procedure outperforms otrethods presented in the
literature.

Keywords: Deep learning, Auto-encoders, Extreme learning machine,
Intima-media thickness, Image segmentation

1. Introduction

Cardiovascular diseases (CVD) remain the major cause ¢t de¢ghe world
[1]. A large proportion of CVD are caused by an underlyinghpétgical pro-
cess known as atherosclerosis. Thus, its early diagnosigisal for preventive
purposes. Atherosclerosis involves a progressive thiokeof the arterial walls
by fat accumulation, which hinders blood flow and reducesetlsticity of the
affected vessels.

The Intima-Media Thickness (IMT) of the Common Carotid AytéCCA) is
considered as an early and reliable indicator of atherossile[2] and it is ex-
tracted from ultrasound scans [3], i.e. by means of a noasine technique. As
can be seen in Fig. 1 (left), blood vessels present threerdiit layers, from in-
nermost to outermost: intima, media and adventitia. The iMdefined as the
distance from the lumen-intima interface (LIl) to the meddventitia interface
(MAI) . The use of different protocols and the variabilityttveen observers are
recurrent problems in the IMT measurement procedure. Tarerthe repeata-
bility and reproducibility of the process, according to lannheim consensus
[2], the IMT should be measured preferably on the far wallhef CCA within a
region free of atherosclerotic lesions (plaques), whereudbld-line pattern corre-
sponding to the intima-media-adventitia layers can berlgledserved (see Fig.
1, right).

Figure 1: Diagram of the arterial layers in a transversei@ec¢teft) and longitudinal view of the
CCA in an ultrasound image (right)

Usually, the IMT is manually measured by the specialist, winarks pairs
of points corresponding to the LIl and MAI on the ultrasountis possible to
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reduce the subjectivity and variability of manual apprasciand detecting the
IMT throughout the artery length by means of image segmiemtalgorithms.

In the last two decades, several solutions have been dedtoperform the
carotid wall segmentation in ultrasound images [4, 5] fer tMT measurement.
Most of the proposed methods require user interaction [p—H@wever, some
fully automatic approaches have already been publisheell[a]1

It is possible to make a classification of techniques acogrdo the used
methodology. In this sense, we can find algorithms based ge éétection and
gradient-based techniques [6, 8, 9, 18], and other propbsaled on dynamic pro-
gramming [19-24], active contours [7, 13, 14, 25-27], neneaworks [11, 12]
or in a combination of techniques [10, 16]. There are alsbrigpies based in
statistical modelling [17, 28] or in Hough transform [15]29

This work addresses a fully automated segmentation teabnigmpletely
based on Machine Learning to recognize IMT intensity patten the carotid
ultrasound images. In particular, the developed systeendd to emulate the
procedure followed by the specialist in the manual protoddlat is, firstly, the
detection of the optimal measurement area and, then, théfidation of the arte-
rial wall layers. With this purpose, a Deep Learning strategs been designed to
obtain abstract and efficient feature representations nsef Auto-Encoders
based on Extreme Learning Machine (ELM). The proposed ndefbiotly ex-
tracts the LIl and MAI from ultrasound CCA images in a totaler-independent
and repeatable manner. Therefore, it improves the repioititycand objectivity
of the IMT evaluation to assist in the early diagnosis of edkelerosis.

The remainder of this paper is structured as follows: Sedt.d2scribes the
dataset of ultrasound CCA images and the manual segmergaivhile Sect. 2.2
introduces the machine learning concepts used in this wortkSect. 2.3, the
proposed segmentation method is explained in detail. Thaired results are
shown in Sect. 3. Finally, the main extracted conclusionsethe paper.

2. Material and Methods

2.1. Image Database and Manual Segmentations

The set of images used in this work consists of 67 ultrasoohdise CCA
taken with a Philips iU22 Ultrasound System using threeedgt ultrasound
transducers or probes, with frequency ranges of 9-3 MHZ Mz and 17-5
MHz. All of them were provided by the Radiology Departmenttfspital Uni-
versitario Virgen de la Arrixaca (Murcia, Spain). The paeders of the scanner
were adjusted in each case by the radiologist. The spasialutton of the images
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s ranges from 0.029 to 0.081 mm/pixel, with mean and standewdcton equal to
s 0.051 and 0.015 mm/pixel, respectively. Some blurred amsynmages, affected
s1 by intraluminal artifacts, and some others with partiallgide boundaries are
s2 included in the studied set.

63 To assess the performance of the proposed segmentationanétls neces-
s« Sary to compare the automatic results with some indicatioeference values. In
s OUr case, thground-truthcorresponds to the average of four manual segmenta-
s tions for each ultrasound image. In particular, two différebservers delineated
s7 each image twice, with a mean period of one month betweemgscEach man-
¢ Ual segmentation of a given ultrasound image includesngacfor the LIl and
s MAI on the far carotid wall. The delineations were perform®dmarking at
70 least 10 points over the images for each contour, which wadreexjuently inter-
n polated. Once the four manual contours have been integahldte ground-truth
22 for each IMT interface (LIl and MAI, separately) is assesbgdveraging these
7z IN @ column-wise manner, i.e., along the longitudinal axXishe image. Figure
2 2 illustrates the process for the manual segmentationstadéfinition of the
75 ground-truth for each contour. Hereinafter, we will refethe different segmen-
76 tations as:

77 * MAL: first manual segmentation from observer A.

78 * MA2: second manual segmentation from observer A.

79 MB1.: first manual segmentation from observer B.
80 * MB2: second manual segmentation from observer B.
81 * GT: ground-truth, average of MA1, MA2, MB1 and MB2.

82 » AUT: proposed automatic segmentation.

Figure 2: Manual segmentations: application for manuahéation of the IMT interfaces (top);
definition of the ground-truth (GT, green line) from four nu@hsegmentations made by two dif-
ferent observers (bottom)
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2.2. Machine Learning Techniques

In the last decade, Extreme Learning Machine (ELM) has eetcag a pow-
erful tool in the learning process of Single-Layer Feedward Networks (SLFN)
by providing good generalization capability at fast leagnspeed [30]. Given N
arbitrary distinct samples(,, t,,), wherex,, € R? is an input vector and, € R™
its corresponding target vector, the output of a SLFN withhidden neurons and
activation functionf(-) is given by

M
7j=1

wherew; = [w;1, w2, ..., w;q iS the input weight vector connecting the input
units and the j-th hidden neurow; = [3;1, 8)2, ..., B;m] IS the output weight
vector connecting the j-th hidden neuron and the outpusuaitdb; is the bias
of the j-th hidden neuron. If it is assumed that SLFN can axipnate these N
samples with zero error, then, there existw,; andb; such that

M

=7

ELM is based on the randomly initialization of the input waigiand biases of
SLFN. Thus, the network can be considered as a linear systénia N equations
in the expression (2) can be written compactly in the follogviorm:

HB =T, (3)

whereT € RY*™ is the targets matrix3 € RM*™ s the output weights matrix
andH € RV*M s the hidden layer output matrix, which is defined as

f(W1X1 + bl) . f(W]\/[Xl -+ b]\/[)
H = : : (4)
f(WlxN + bl) o f(WMXN -+ bM)

Thereby, the training is reduced to solve the linear systergq. (3), whose
smallest norm least-squares solution is given by:

B =H'T, (5)
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whereH' is the Moore-Penrose generalized inverse matri¥lofMoreover, in
order to improve the robustness and generalization pedoce, a regularization
term (C) can be added to the solution [31]:

-1
B = (% + HTH) H'T (6)

Although ELM provides an efficient training for SLFN, the f@mance of
machine learning methods and applications highly dependsi® selected fea-
tures for the representation of the problem. Thus, to makgrpss towards the
Artificial Intelligence (Al), the new perspectives in Maoki Learning are nec-
essary based on learning data representations that malee anourate classi-
fiers/predictors [32]. In this sense, Deep Learning has getkas set of algo-
rithms that attempt to model more abstract and useful reptason of the data
by means of architectures with multiple non-linear transfations [33].

Among the various deep learning architectures, this wodki$es on deep
networks based on Auto-Encoders (AE). In particular, théMEAuto-Encoders
(ELM-AE) introduced in [34] have been used to solve our segaien task.
Auto-encoders are SLFN performing unsupervised learmnipe sense that an
AE is trained to reconstruct its own inputs, i, = x,, (see Fig. 3). Therefore,
in the hidden layer of the AE takes place a feature mapping? ik d (number
of hidden neurons: input data dimension), a compressed data coding is obtained
as hidden layer outpuH); while if M > d, the result is a sparse representation
of data.

Figure 3: Structure of a generic Auto-Encoder

2.3. Segmentation Procedure

Figure 4 shows an overview of the proposed segmentationadelbgy. As
can be seen in Fig. 1 (right), the raw images contain not dmyGCA ultra-
sound, but also a frame with patient data and additionakmnédion is incorpo-
rated. Therefore, in order to remove this unwanted franeeifttages are automat-
ically cropped at the start. This is done by using Matherahtorphology to de-
termine the adequate borders of the ultrasound regionusedhe DICOM fields
that provide these parameters are often empty. In partji@damage binarization
takes place firstly, then, a procedure is applied to the nbtabinary image in
order to remove spurious objects and to fill regions or holes based on two
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basic morphological operators: opening and reconstmictiothis way, a binary
mask that matches with the ultrasound region is obtainedrendnwanted frame
with metadata can be cropped. The process is simple and strimeshow any
error on the tested images, i.e., the 67 ultrasound imagesoarectly cropped.

Once the CCA ultrasound is isolated, it is pre-processedtonaatically de-
tect the region of interest (ROI), which is the far wall of thleod vessel. Then,
those pixels belonging to the ROI are classified for the LU 8Al recognition.
The final contours are extracted from the obtained classditaesults and the
IMT can be evaluated on them.

Figure 4: Flow chart of the proposed method for the CCA sedatiem

2.3.1. ROI Detection

This section describes the first stage of the proposed melibgyg in which
the carotid far wall (ROI, where the IMT will be evaluated)egated by means
of a a system for Pattern Recognition. The scheme of the adgptategy for this
purpose is shown in Fig. 5.

Figure 5: Overview of the strategy for the ROI (far wall of tagery) detection in CCA ultra-
sounds. An ELM-AE provides a compressed representationpaftimage blocks at its hidden
layer output to improve the classification performance

Specifically, a given CCA ultrasound is split into blocks {ated sections)
to proceed with the processing. An ELM-AE has been desigoeibtain useful
and efficient representations of image blocks for their grost classification as
‘ROI-block’, if a typical pattern of the far wall is recognized,‘apbn-ROI-block;
otherwise. The size of the image blocks to process is3pixels, which ensures
that the intima-media complex can be contained in a block étae arterial wall
is thick and the radiologist selects high resolutions. Tlioe ELM-AE has an
input data dimension of 1521 features.

For the configuration of the ELM-AE, an exhaustive searchefriumber of
hidden neurons and the regularization parameter (M ands@entively) by means
of a validation procedure has been performed. As it is veriiger in Sect. 3.1.1,
the optimal coding is obtained with 850 hidden sigmoidalroes. Once the
architecture of the AE is fixed, the connections between évefeatures (hidden
layer outputsh) and the system outpuy) are analytically calculated according
to Eq. (6).
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The dataset used in the design of this system consists o61@7servations
(50% from each class): two thirds for training and the renmgrior testing. In
particular, the samples were carefully taken from five logfeneous images (with
different orientations of the CCA, spatial resolutions,TIMalues, etc.) to assem-
ble a representative and consistent dataset. Table 1 gsdtié distribution of the
selected samples.

Table 1: Specification of samples used in the design of thesytor far wall detection

2.3.2. Arterial Layers Recognition

The segmentation of the LIl and MAI in the ultrasound imagesarried out
by means of a classification of pixels belonging to the ROpadrticular, the inten-
sity values from a certain neighbourhood centred on thel poxelassify provide
the necessary contextual information to the classifier ierrecognition of the
arterial layers. Specifically, the neighbourhoods cortdistl x5 pixels (i.e., 255
input features) and four different classes have been cerexidas possible sys-
tem outputs:‘LII-pixel”, ‘MAl-pixel’, ‘IMC-pixel’ (intima-media complex) and
‘non-IMC’ (out of the intima-media complex). As in the previous stagere-
sentational learning techniques have been applied to weghe precision of the
classifier. With the aim of obtaining meaningful represaate from the inputs
corresponding to LIl and MAI, two different multilayer ELME (with multiple
hidden layers) have been implemented. These multilayer@utoders (MLAE)
are based on the concept set forth in [34], where ELM is usguktiorm layer-
by-layer unsupervised learning. The diagram of the prop@sep architecture
can be seen in Fig. 6.

Figure 6: Deep-architecture designed for the LIl and MAlreegtation. Two different multilayer
ELM-AE produce sparse coding of the input patterns at theututf their second hidden layer.
Then, the union of the learned representations is classdigtie recognition of the arterial layers

To perform the design and training process of this architecta labelled
dataset composed of 38908 patterns was assembled by taamges from 8
manually segmented images. The distribution per class made of the sam-
ples is shown in Table 2: 50% of them belong to the IMT bourega(iLIl’ and
‘MAI’ classes), and the remaining 50% are distributed bemvéMC’ class (8904
samples) and ‘non-IMC’ class (10554 samples). Besidegjateset is carefully
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Table 2: Specification of dataset used in the design of thesyfor arterial layers recognition

divided into three subsets: one-third of samples for tgs89% of the remaining
two thirds for training and 20% for validation.

The configuration of the LII-MLAE has been done by means ofyatavise
unsupervised training with the 5877 LIl samples (trainind &alidation sets). As
commented before, the learning process is carried out ilyex-lay-layer man-
ner, i.e., each hidden layer is trained as a simple singler IB{M-AE (see Fig.
6) by taking the hidden layer outputs of the previous AE asiis@nd desired
outputs (unsupervised learning, = x,,). Therefore, the final LII-MLAE archi-
tecture consists of the succession of the hidden layerseafdékigned single layer
auto-encoders along with their corresponding connectieigkts. Moreover, it is
necessary to establish the optimal number of layers for thRBILAE. Thus, after
designing each layer, it is added to the LII-MLAE architeetanly if it allows an
improvement in the recognition of LIl patterns. In order twkv if this happens,
the performance of a binary auxiliary classifiecl(*pixels” or ‘ non-LII-pixels)
is examined using the whole dataset (more details in Sedt2)3. Taking into
account this consideration, the optimal architecturetierltll-MLAE consists of
two stacked stages, which perform a ‘255-1100-1900’ featuapping.

On the other hand, using exclusively MAI samples (5672 f@ining and 1417
for validation), the MAI-MLAE has been configured in a sintitaanner to repre-
sent better the MAI patterns. In this case, the optimal apdiralso obtained with
two hidden layers (‘255-1000-1900" mapping).

In accordance with the suggested system (return to Fig. Givem inputx
is transformed into two different feature vectors with 1@DMensions each one.
These new representations of the system inpug @ndhy,,) are then joined
for proceeding to their classification. The connectionsvieen the union of out-
puts from the second hidden layer of both A é&nd the system outpuy) are
computed in accordance with the expression (6).

2.3.3. Extraction of Final Contours

Once a CCA ultrasound is processed by means of the proposezhsythe
IMT boundaries are properly identified (see Fig. 7, righttcal, where the LII
and MAI pixels detected are depicted in red and blue, resdgt. However,
due to the poor definition of the ultrasound images, thickutauies are obtained.
This happens because the system finds the searched intesuséyns in all these
pixels. In fact, the classification results cover the vadlighof the manual seg-
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mentations, as can be seen in Fig. 7 (right-central), whergoints marked by
the two specialist are superimposed.

Figure 7: Example of a good quality processed image: far detiécted (left); ROI with man-
ual segmentations (right-top); recognition of IMT bounidamand manually marked points (right-
central); final LIl and MAI contours (right-bottom)

Therefore, it is necessary to define the final contours fragrsffstem output.
For this purpose, the gradientimage is evaluated by usingimaedogical operators
(Fig. 8, top). Then, the search for the peaks of the interggagient is performed
(Fig. 8, central). Specifically, the points of maximum geadiwhich fall within
pixels classified asLll-pixel’ or ‘MAIl-pixel are considered (Fig. 8, bottom).
From these points, two curves corresponding to LIl and MAdifaces are defined
by means of a smoothing process based on a moving average Tilhe final
contours of IMT are determined in this way (see Fig. 7, rigbttom).

Figure 8: Extraction of final contours: gradient image cspanding to Fig. 7 (top); peaks of
the intensity gradient (central); points of maximum gradighich fall within pixels classified as
‘LII-pixel’ or * MAI-pixel by the system (bottom)

3. Results and Discussion

3.1. Architecture Configuration and Classification Perfame

This section includes the results of the performed studyHerconfiguration
of the system, as well as the evaluation of its classificapierformance. For
this analysis, several metrics have been used:attwairacy(ACC), specificity
(SPEC),sensitivity(SEN), and theMathews correlation coefficiefMCC) of a
given classification, which are defined as follows:

TP+ TN
ACC_TP+TN+FP+FN (7)
TN
PEC= TNy PP )
TP
EN= """
o TP+ FN ©)

10
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TP-TN—FP-FN
MOC = , (10)
V(TP+FP)-(TP+ FN)-(TN+FP)- (TN + FN)
where TP is the number of true positives; TN is the numberuws tregatives; FP
and FN are the number of false positives and false negatiegsectively.

3.1.1. ROI Detection

As commented in Sect. 2.3.1, a validation procedure becomesssary for
the configuration of the ELM-AE. The design parameters tectelre the number
of hidden neurons (M) and the regularization term (C). In case, 28 different
values for M (10, 20, ..., 100, 150, 200, ..., 1000) and 38dt values for C
(2718, 2717, ..., 219) have been considered. The ELM-AE was retrained 50 times
for every pair of values (5028x 38) and its mean performance has been analysed.
Moreover, 20% of training samples were randomly selectedafidation set in
each trial.

The learning process is carried out in an unsupervised man@ewith tar-
get values identical to inputs. However, the selectionflgsign parameters has
been performed by analysing the classification accurachefystem over the
validation samples. For this purpose, a provisional ougpabmputed according
to Eq. (5) in each case. Thus, itis possible to analyse thHaiof the classifica-
tion performance (see Fig. 9, left). In view of this resuig bptimal compressed
coding is obtained with 850 hidden neurons &hd= 2-°.

Once the single hidden layer of the ELM-AE is adjusted, thgpouconnec-
tions of the system must be determined according to Eq. (Beréfore, a new
tuning of another regularization parametéh (= 2718, 2717, ..., 224, 22%) is per-
formed. The analysis of the mean validation accuracy (sge % right) shows
that the optimal value i€, = 2', because from that point, the saturation is
reached.

Figure 9: Classification accuracy over validation set. Meaifiormance of the ELM-AE (50 trials)
according toM and (1, i.e. number of hidden neurons and regularization ternt)(I&nalysis
for the tuning of the second regularization parameigj ¢elated to the computation of the output
connections (right)

Finally, note that the proposed system has proved its goddrpgance. The
confusion matrix of the system over the test samples, whieltampletely unre-
lated to the training/validation process, is shown in Tabld-rom this informa-
tion, it is possible to deduce that the accuracy of the diaasion between ROI

11
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and non-ROI image blocks is 98.450.06 % (mean and standard deviation from
50 trials). Moreover, the sensitivity is 99.380.06 % and the specificity is 97.56
+ 0.11 %, which describe the ability of the system to identidgitive results (ROI
observations) and negative results (non-ROI observatioespectively.

Table 3: Confusion matrix of the system for ROI detection

3.1.2. Detection of IMT Boundaries

Two different multilayer ELM-AE are part of the system deysdd for the
recognition of the arterial layers in CCA ultrasounds (s&g 6). The configura-
tion of these machines has been performed in a layer-wisgpengsed manner.
For each layer, the number of hidden neurons and the regatliem parameter
were varied as followsM = {10, 20,..., 500, 550,..., 1000, 1100,..., 2p0énd
C = {2718 2717 . 250} Fifty trials were conducted for each pair of values.
In each case, the Root-Mean-Square Error (RMSE) betweeadgtwalent in-
puts and outputs of the LII-MLAE and MAI-MLAE was evaluatetihe optimal
parametersX/,,, andC,,,) for every layer have been selected according to the
minimal validation RMSE obtained.

An additional parameter of the architecture to optimizeneshumber of hid-
den layers constituting the LII-MLAE and the MAI-MLAE. As is mentioned
in Sect. 2.3.2, a layer is appended to the LII-MLAE or MAI-MEAarchitec-
ture only if this fact implies an improvement in the recogmitof LIl patterns or
MAI patterns, respectively. With the aim of determiningstienhancement, the
whole dataset is passed through the corresponding AE amketfiermance of a
binary classification betweeill-pixels’ and ‘non-LII-pixels (or between MAI-
pixels and ‘non-MAl-pixel$) is analysed. Note that this provisional labelling of
the dataset involves an imbalanced class distributionréfbee, the connections
between the outputs of the hidden layer under analysis awktprovisional bi-
nary outputs have been assessed according to the WeighMd35)].

The results obtained in the design process of the LII-MLAH #me MAI-
MLAE are summarized in Table 4, where ACC and MCC representtituracy
and Mathews correlation coefficient of the related binagssification, respec-
tively. The latter is generally regarded as a balanced nmeashich can be used
even if the classes are of very different sizes. Thus, thengptarchitecture for
the LII-MLAE consists of two stacked stages, which perforf@z6-1100-1900’
feature mapping; whereas in the case of the MAI-MLAE, therogl coding is
also obtained with two hidden layers (‘255-1000-1900" magjp
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Table 4: Specification of the analysis for LII-MLAE and MAIIME configuration

The final deep architecture achieves a high success ratéheMesting dataset.
Table 5 shows the confusion matrix of the system in terms afmand standard
deviation from 50 trials. The overall success rate is 92@85% (considering
the four classes), with 99.76.03% of accuracy in the recognition of LIl patterns
and 99.69-0.04% for the classification of MAI samples.

Table 5: Confusion matrix of the system for the arterial lay@gmentation

3.2. Visual Results

The proposed segmentation method has been tested on a Jetiltfa8ound
images of the common carotid artery. Fig. 7 shows an exanfeogessed im-
age. Left image depicts the result of the stage for the far dedection, whereas
right pictures show the ROI in detail, where the manual sedat®ns (top), the
classification results and manually marked points (cerdwad the final IMT con-
tours (bottom) are superimposed on the ultrasound. Thedodetection of the
far wall is achieved in all the tested images, even in noigytdarred ones. Some
examples can be seen in Fig. 10.

Figure 10: Examples of correct far wall detection in CCAasgwunds

To ensure an optimal visualization of the IMT boundariesim tiltrasound, a
straight and horizontal appearance of the carotid artetiygnmage is desirable.
However, this projection is not always possible. Sometinies CCA may be
tilted or curved because of the probe position or the ownamngiof the subject.
In the case of algorithms using human interaction, the dpei@an select the
optimal area of the image for the IMT measurement. Nevezigelfully automatic
methods must be able to correctly handle the different nagafies of the artery.
The examples of final results included in Fig. 11 reveals timatfully automatic
segmentation approach proposed in this paper is robustsighae orientation and
appearance of the CCA in the ultrasound image (slope anaitug).

Figure 11: Final IMT boundaries obtained for the images on EO
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3.3. Segmentation Accuracy

In order to validate the precision of the obtained segmmmatsults, four
manual tracings performed by two different experts arertak® consideration.
On the one hand, manual segmentations are compared betvezeseives in or-
der to characterize the uncertainty and variability of themal procedure. Thus,
the intra-observer errors (MA1 vs MA2 and MB1 vs MB2) as wallthe inter-
observer errors (MA1 vs MB1, MA1 vs MB2, MA2 vs MB1 and MA2 vs N2B
have been evaluated. On the other hand, the inter-methodisrevaluated by
comparing our automatic segmentations with those coreidas ground-truth
(AUT vs GT). In addition, in order to complete the characation of the auto-
matic IMT contours, comparisons between each of the fourualsegmentations
and the automatic ones (AUT vs MAL, AUT vs MA2, AUT vs MB1 and AUs
MB2) have been studied. The different segmentation ern@<alculated sep-
arately for LIl and MAI contours using the Mean Absolute Bi#nce (MAD),
which is the most used quantitative metric to evaluate IMd #re accuracy of
a segmentation method [4, 5]. This metric represents theageeof the vertical
distances between two contours along the longitudinal@bas image.

The box-plot in Fig. 12 shows the distributions of the segtaon errors for
LIl and MAI over the 67 tested ultrasound images. Moreovahl& 6 includes the
maximum, minimum, mean and standard deviation values odliffierent errors
over the image database. Since the scale resolution vadesdne image to
another, the results are expressed in um and pixels, forter laetscription of the
difference between segmentations. This statistical amahgveals that a greater
variability exists for the MAI, which is much more noticealbetween manual
segmentations. This is due to the fact that, in generalsitians from lumen to
intima layer are clearer than transitions from media to atltia layer.

The difference between manual tracings of LIl ranges, omne@es from 29.7
pm to 40.6 um, whereas manual segmentation error for MAksdretween 43.5
and 53.9 um. Despite the greater error and the higher dispes§the error for
the MAI boundaries, there is a good agreement between mamagahgs, since
the mean differences are around one pixel.

Nevertheless, when the comparisons are made between dict@oatours
and GT, the segmentation errors for LIl and MAI are considlgreeduced. Be-
sides, although the MAI error remains slightly greater oarage, its distribution
is more comparable to the distribution of LIl error. In viettloe results, it is pos-
sible to appreciate that our automatic segmentation redthze uncertainty and
variability of the manual procedure and, therefore, it \alid to a more reliable
and precise measurement of the IMT.
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Figure 12: Statistical distribution of Mean Absolute Ditface (mm) between different segmen-
tations for LIl and MAI. Box-plot: in each box, the whiskergtend to the most extreme not
outliers values (marked as black crosses), upper and lowelirbits represent the 75th and 25th
percentile, respectively; the median is depicted by theiitine in the box

Table 6: Mean absolute difference between different seg¢ations for LIl and MAI

3.4. IMT Measurements

Given an ultrasound image and the corresponding boundairigee arterial
wall, manually or automatically segmented contours, thd I8l estimated by
using three different metrics: Mean Absolute DifferenceAd), Poly-Line Dis-
tance (PLD) and Center Line Distance (CLD). As commenteckict.S3.3, MAD
is the most used metric to evaluate IMT. It is based on thaoatrtlistance be-
tween contours along the longitudinal axis of an image. Ii@aar, it is nec-
essary that both contours have the same number of pointso(Bgltulate the
average of these vertical distances (see Fig. 13, top) lasvil

N
IMTyap = %Z \LII(z) — MAI(z)| (11)
r=1

Nevertheless, MAD may deviate from the actual distance éeitwLIl and MAI
when these contours present certain slope or curvature.vdid ¢ghe overesti-
mation in these cases, PLD was proposed in [36] as a moretrahdgeliable
indicator of the distance between two boundaries. It is ¢hasetrigonometry
and, in this case, it is not a necessary condition that theocosito compare have
the same number of points. Given the IMT contours, LIl withpoints and MAI
with N, points (see Fig. 13, centre), the distance between a vertexz,, yo) in
LIl and the segment in MAI (from vy = (z1, y1) to v = (29, 2)) is defined as:

[dy |, If0<\<dpy

d(v, s) = { min(dy, d,), otherwise (12)

whered; andd, are the euclidean distances between the vertxd the vertices
in the segment (v; andw,, respectively); whereag,, is the euclidean distance
betweenv; andwv,. As can be seen in Fig. 13 (centrd), is the perpendicular
distance frons to v, and)\ is the distance along the segmenitetweery; and the
intersection with the perpendicular. In this way, the disgfromv € LIl to MAI
is calculated as:

d(v, MAI) = min d(v,s) (13)

seEM AT
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The distance between LIl and MAI is evaluated as the sum ofliftances from
all the vertices in LIl to the closest segment in MAL:

d(LIT, MAT) = Y d(v, MAI) (14)

veLIl

Similarly, the distance from MAI to LIl is assesseti {/ AI, LI11)). And finally,
the IMT can be measured by using PLD in the following form:

d(LIT, MAI) + d(MAI, LII)
Ni + Ny

The third of the three considered metrics is CLD [37], whitdpaakes into ac-
count the local orientation of the IMT boundaries. CLD isdxhen the calculation
of the center line between LIl and MAI (see Fig. 13, bottomnc® this line is
found, a segment perpendicular to the center line, whicrsetcts with the two
boundaries, is considered at each point, and CLD is defindteanean length of
all these segments:

IMTprp = (15)

N
1
IMTerp = N ; l; (16)

wherel; is the length of the i-th segment ard is the number of points of the
center line. In this case, just like in the MAD metric, the ragnof points of LII
and MAI must be the same.

Figure 13: Diagrams of the three different metrics used @luate the IMT: Mean Absolute
Difference, MAD (top); Poly-Line Distance, PLD (centre)efer Line Distance, CLD (bottom)

For each ultrasound image, the IMT has been evaluated fouahand auto-
matic segmentations using the aforementioned metrics (MAID and CLD) to
guantify the distance between the corresponding LIl and Mgitours. Similar
distributions of the IMT values are obtained for the 4 marnueahsures and the
automatic one, as can be seen in Table 7. It is possible taimetdight overesti-
mation produced by the MAD metric in the IMT measurement.

Table 7: Statistics of the IMT measurements (n = 67 imagesiiliimetres using different metrics
(MAD, PLD and CLD)

As in Sect. 3.3, intra and inter-observer IMT errors havenbestimated for
the manual measurements to be compared with the error betugematic IMT
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and GT. Given two different segmentatiofis and S,, the degree of agreement
between its IMT measures over the 67 images is assessed duyjatalg three
figures of merit: the correlation coefficient)( the absolute error value ;1. =
|[IMT? — IMT??|, for each image) and the difference between measurements
(A, = IMT? — IMT??,i = 1,...,67). Table 8 shows the results of the IMT
measurement error analysis.

The IMT intra-observer reproducibility is of 98.4% for ologer A and prac-
tically 98% for observer B (see the corresponding corretatioefficients in Ta-
ble 8). Moreover, the inter-observer reproducibility o tMT measurements is

the goodness of the 4 manual segmentations and, consggagktiite GT, which
is defined as the average of these ones. The absolute erdbiiseastandard devi-
ations of the differences indicate a greater IMT inter-obseerror in comparison
with the error between IMT measures from the same observechveeems logi-
cal.

Table 8: Comparison between IMT measurements (MAD, PLD and @etrics) from different
segmentations. n = 67 imagegs; Correlation coefficientz;y,7: Mean+ standard deviation of
the absolute errorg); ;7 Mean4 standard deviation of the differences

The difference between automatic IMT and GT is of 584 um for MAD
and PLD metrics (6. A 34 um for CLD), whereas the absolute error of the au-
tomatic measurements is 274321 um for MAD and PLD (27.2t 22 um for
CLD). These values reveal that the measurement error assdavith the pro-
posed method is lower than the inter-observer errors argiit the rank of the
intra-observer errors. In addition, the correlation coedfit (98.1%) is compara-
ble to the intra-observer variability.

Figure 14 (right) depicts the linear regression analysi&ben automatic IMT
and GT (MAD, PLD and CLD metrics), where the high degree otagrent can
be observed. Furthermore, Fig. 14 (left) shows the cormedipg Bland-Altman
plots (MAD, PLD and CLD metrics) with the following limits agfgreement (mean
+ 2 x standard deviation): 5& 68.8 um for MAD, 5.8+ 68.5 um for PLD, and
6.7 +£ 68.5 um for CLD. The vertical axis in the Bland-Altman plopresents
the difference between AUT and GT measures of the IMT, wisetteahorizontal
axis represents the average of the values compared. Theréie precision in
the automatic IMT measurements is full well justified.
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Figure 14: Analysis of automatic IMT measurements: Blartira&n plot (left) and linear regres-
sion analysis (right)

4. Conclusions

This paper proposes a fully automated segmentation metirodGA ultra-
sounds to accurately measure the IMT, an early indicatotledrasclerosis and
cardiovascular risk. This proposal is completely based @ctvhe Learning, in
order to detect the arterial far wall and to extract the IMTitoars (LIl and MAI)
in a reliable and automatic way. In particular, the suggkatehitecture is based
on the Extreme Learning Machine (ELM). Furthermore, Autez&ders (AE) and
Deep Learning concepts have been used to obtain usefulefaesentations for
solving the segmentation task, which is posed as a PattezogRgion problem.
Following the developed strategy, the IMT can be measured totally user-
independent and repeatable manner.

The method has been tested over a database of 67 imagesfiathrdispatial
resolutions. The validation of the technique is carriedlyutomparing the auto-
matic contours with the average of four manual segmentapenformed by two
different observers. The results show a mean segmentationat 0.028 mm for
the LIl and 0.035 mm for the MAI and demonstrate that the pseplomethodol-
ogy reduces the uncertainty and variability of the manuatedure. In reference
to the IMT measurements, a high grade of agreement betweenahand auto-
matic observations is obtained with a difference of only%.84 um (mean and
standard deviation).

With these error values, the algorithm outperforms botlomatic and semi-
automatic methods presented in the literature. Table 9 sanmes the results
reached by other IMT measurement methods. All methods dieclun Table 9
do not consider ultrasound images with atherosclerotiqyda, and use MAD
metric to evaluate the IMT and the different errors. Althbutirect comparisons
between different studies are difficult due to the depenelemcthe measurement
protocol, characterization of the results, number and tfppatients, tissue to
be segmented and image quality, it can be seen that our atitccsegmentation
compares favourably to other semi-automatic and autorabgarithms.

Table 9: Some IMT measurement methods

It is important to pay special attention to the works [11] &h2]], which cor-
respond to previous contributions from the authors of thisgr. In the previous
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papers [11, 12], as well as in this one, a novel point of viepresented for this
specific application and the posed problem is solved by mebRattern Recog-
nition techniques. This new proposal is oriented to imprtihe generalization
capability and the performance of the method in order toeaghihe best system
configuration.

In particular, the new approach is completely based on Mechearning
(ML), both the recognition of the carotid far wall (region ioterest, ROI) and
the identification of the IMT contours (LIl and MAI). Whereas[11, 12], dif-
ferent image processing techniques were applied to déted®®I, none of them
based on ML. The use of a new pattern recognition strateggtbas ML for the
recognition of the ROI implies that the system is able to atlaghe optimal area
for the measurement, by avoiding those uncertain regiomsioh the character-
istic IMT pattern is unclear, blurred or even hidden. Moregin this work, it has
been studied the utilisation of ELM multilayer AE to obtapesse data represen-
tations with the aim of obtaining a high performance classifivith the proposed
architecture, the obtained results show an overall suce¢s®xceeding 99% in
the classification of the nearly 13000 test samples. In [digfjle-layer AE were
considered only to reduce the data dimension. ELM algoritfas not used in the
previous contributions [11, 12], but in the present studhag provided advantages
in the learning process (training and design) of the progpaeystem, because of
its good performance at fast speed even with high-dimeasdata. Furthermore,
the suggested strategy has been designed to recognig |[dirdnd MAI and it
is able to identify and differentiate both contours by meairthie developed mul-
ticlass classifier (4 classes); whereas in the previous sdrk, 12], only binary
classifications were considered. In this way, the postsdiaation stage of the
new proposal does not require hard efforts for debuggingekelts and for the
extraction of the final IMT boundaries and it has been singgifiotably.

To summarize, the main contributions and improvementseptbposed method
are the following: a greater intelligence and autonomy efdjrsstem; the high de-
gree of robustness against the anatomical and instrumentability of the ultra-
sound images; and the noteworthy reliability and precigidhe evaluation of the
IMT. Finally, it is important to emphasize that these pesitaspects are crucial
for a fully automatic method which has been designed to asdike early detec-
tion of atherosclerosis and the prevention of cardiovasaliseases. According
to this, it can be concluded that the proposed methodologpiiable for the eval-
uation of IMT not only in the daily clinical practise, but alén clinical research
studies.
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