Hybridizing Cartesian Genetic Programming and
Harmony Search for Adaptive Feature Construction
in Supervised Learning Problems

Andoni Elola?, Javier Del Ser®™<* Miren Nekane Bilbao?®, Cristina
Perfecto®, Enrique Alexandre?, and Sancho Salcedo-Sanz?

@ University of the Basque Country UPV/EHU.

Alameda Urquijo S/N, 48018 Bilbao, Spain
YTECNALIA. P. Tecnologico Bizkaia, Ed. 700, 48160 Derio, Spain
¢Basque Center for Applied Mathematics (BCAM), 48009 Bilbao, Spain
dUniversidad de Alcald. 28805 Alcald de Henares, Madrid, Spain

Abstract

The advent of the so-called Big Data paradigm has motivated a flurry of
research aimed at enhancing machine learning models by following very di-
verse approaches. In this context this work focuses on the automatic con-
struction of features in supervised learning problems, which differs from the
conventional selection of features in that new characteristics with enhanced
predictive power are inferred from the original dataset. In particular this
manuscript proposes a new iterative feature construction approach based on
a self-learning meta-heuristic algorithm (Harmony Search) and a solution
encoding strategy (correspondingly, Cartesian Genetic Programming) suited
to represent combinations of features by means of constant-length solution
vectors. The proposed feature construction algorithm, coined as Adaptive
Cartesian Harmony Search (ACHS), incorporates modifications that allow
exploiting the estimated predictive importance of intermediate solutions and,
ultimately, attaining better convergence rate in its iterative learning proce-
dure. The performance of the proposed ACHS scheme is assessed and com-
pared to that rendered by the state of the art in a toy example and three
practical use cases from the literature. The excellent performance figures

*Corresponding author: javier.delser@tecnalia.com (Prof. Dr. Javier Del Ser). TEC-
NALIA. P. Tecnologico Bizkaia, Ed. 700, 48160 Derio, Spain. Tl: +34 946 430 50. Fax:
+34 901 760 009. E-mail: javier.delser@tecnalia.com.

Preprint submitted to Applied Soft Computing February 28, 2017

obtained in these problems shed light on the widespread applicability of the
proposed scheme to supervised learning with legacy datasets composed by
already refined characteristics.

Keywords: Feature construction; Supervised Learning; Cartesian Genetic
Programming; Harmony Search.

1. Introduction

Predictive analytics are broadly conceived as the family of supervised ma-
chine learning models aimed at inferring unknown outcomes from a system
based on a set of observed variables or features [1]. Albeit supervised learning
models date back to several decades ago, predictive analytics have nowadays
regained momentum by virtue of the in crescendo availability of data in most
fields of knowledge. Hot topics such as Intelligent Systems [2] and Big Data
3, 4] evince the increasing relevance of predictive modeling among different
disciplines and the subsequent need for enhancing and innovating through all
its compounding processing steps [5]: 1) data preparation and cleansing, with
different strategies to impute missing and/or illegal data depending on their
alphabet; 2) novelty /outlier detection; 3) feature processing, where the orig-
inal dataset is processed/transformed/filtered so as to describe the essential
features of the data and reduce the complexity of the subsequent predic-
tive model; 4) model selection, where diverse alternatives have so far been
reported in the literature characterized by different controlling parameters,
training algorithms, discriminative capability and generalization properties;
5) model tuning; and 6) model performance assessment when predicting a
set of unseen examples. It is only by thoroughly elaborating on each of the
above steps that a good predictive model is generated.

This manuscript gravitates on the third processing step as enumerated
above: feature processing. The literature has been specially profitable in
this regard, with de facto classifications depending on the selective or con-
structive nature of the feature processing approach at hand. On one hand,
feature selection schemes essentially select a subset of the original features
by following strategies (filter, wrapper or embedded methods). Interestingly
for the scope of this manuscript meta-heuristically empowered feature selec-
tion schemes have lately come into scene in a diversity of scenarios [6]-[13]
with particular emphasis in Energy applications [14, 15] and Bioinformatics
[16, 17]. On the other hand, feature extraction/construction or dimension-

ality reduction algorithms transform the original dataset to a feature space
of fewer dimensions, which can be done by resorting to elements from linear
statistics [18] or newer findings in the field of non-linear manifold learning
and low-dimensional embedding [19].

This research work focuses on this second category, specifically on the
construction of features via wrapper methods. This class of methods are of
paramount utility when dealing with legacy datasets, i.e. datasets whose
compounding features result from raw information preprocessed through
application-specific signal processing stages. In such situations there is no ac-
cess to the original data from which such features were extracted, hence jeop-
ardizing the adoption of embedded schemes with known potential in highly
multidimensional datasets (e.g. deep learning). The scope is also placed on
the readability of the constructed features, which not only is useful for assess-
ing mathematical properties therefrom (e.g. trends, correlations), but also
becomes a requirement for certain application scenarios where supervision
by a higher-level entity and/or the preservation of privacy are crucial, such
as the risk assessment in bank insurance, the diagnosis of diseases and the
personalized prescription of medical treatments. From a technical perspec-
tive this sought explicitness for the constructed feature set can be provided
by Evolutionary Programming [20], a branch of Evolutionary Computation
that aims at iteratively refining computer programs based on a measure of
their quality or fitness. In the context of mathematical programs, this term
stands for a combination or function of different variables (features) based
on an alphabet of operator functions (e.g. {+,—, X,=}). Such programs
can be represented as tree structures, which can be in turn evolved via evo-
lutionary crossover and mutation processes towards regions of progressively
higher optimality as measured by the fitness function at hand. When put
in the context of feature construction, each evolved program represents a
combination of features (i.e. a newly constructed feature), whereas the fit-
ness function is given by the performance of the wrapped predictive model
when trained with the evolved feature set. Indeed this has been the technical
approach followed by a number of contributions by the research community
where the good performance of Evolutionary Programming has been evinced
in diverse practical applications of predictive modeling (see [21]-[30] and the
comprehensive survey in [31]).

The work presented in this paper takes a step further in the state of
the art in the above field by proposing a novel wrapper approach based
on the combination of Cartesian Genetic Programming [32] and Harmony

3

Search (hereafter denoted as HS, [33]). On the one hand, Cartesian Genetic
Programming permits to encode (represent) programs by means of strings of
integers, which numerically encode the operators that relate variables to each
other, their connections to the set of input features and the resulting output
features fed to the model. On the other hand, Harmony Search is a meta-
heuristic solver that has been widely shown to outperform other bio-inspired
optimization algorithms in many applications [34]. In this manuscript we
propose to blend together these two techniques to yield a feature construction
wrapper that in addition, exploits information about the predictive relevance
of the produced feature set so as to enhance the convergence properties of the
overall search process. The performance of the derived feature construction
scheme is evaluated over four supervised learning problems — namely, the well-
known WINE dataset, leaf-based plant classification (LEAF, [35]), classification
of radar returns from the ionosphere (IONOSPHERE, [36]) and vehicle type
recognition (VTR, [37]) — with results that dominate the best scores obtained
to date. To the best of the authors” knowledge, this is the first contribution
in the literature hybridizing Cartesian Genetic Programming with Harmony
Search for feature construction in supervised learning.

The rest of the paper is structured as follows: Section 2 formally poses the
construction of explicit features in supervised learning scenarios as a mathe-
matical optimization problem. Next, Section 3 and subsections therein delves
into the proposed algorithmic approach by outlining its overall working pro-
cedure and detailing each of its compounding modules. Experimental results
over the four considered datasets are presented and discussed in Sections
4 and 5 and, finally, Section 6 ends the paper by drawing conclusions and
sketching several lines of future research.

2. Feature Construction as an Optimization Problem

Mathematically speaking a supervised learning problem departs from a
set of available data instances X = {x,}_,, with N denoting the number
of instances or examples, 2% the d-th feature for example n and D = |x,|
Vn € {1,..., N} the number of features or dimensionality. Since we deal with
supervised learning, samples in X are associated to a value of the target vari-
able to be predicted, which are all collected in the label vector y = {y, }2_,.
The goal of a supervised learning algorithm is to infer the pattern relat-
ing x,, to its corresponding label y,. This can be accomplished by a model
My : XP = Y that maps a given data instance or sample x to its estimated

target variable y. The model Mpy(-) can be constructed (trained, learned)
based on a set of training examples {X" y"} C {X,y} and the parame-
ters @ of the model at hand. The remaining data samples X = X — X'
and their supervised labels are left out for testing the predictive performance
U (ytest: yPred) of the model when processing unseen data. The design is hence
to maximize this performance measure. To this end, a common practice is
to randomly partition the training set into K folds, retain a subset for vali-
dating the model and use the remaining K — 1 subsets as training data. By
repeating this process K times a cross-validated estimate of model predic-
tion performance can be computed, which is utilized for tuning the parameter
configuration @ of the model.

In this manuscript the maximization of the average performance of the
model is approached by constructing a new feature set X’ = {x/,}__, with
D’ = |x!|, such that a model M’ : X" —) can be trained to yield a better
performance score than the same model when fed with the original set of
features X. As mentioned in Section 1 the scope of this work is placed on
the construction of readable features based on the original data X and a set
of explicit mathematical operators F = {f,..., fp}. Each sample x,, € X
is mapped to the space spanned by a set of constructed features {z¢’ }5):'1,
each expressed as an combination of the original feature set {x¢}2 | through
a operator subset F% C F. For instance, if F = {+, —, X, +, cos, sin, exp}
and D = 7, examples of constructed features with D’ = 3 could be given by

ot = cos(x' + %) + 2® x exp(a® — 2?) (FY = {+, —, x,cos,exp}), (1)

2% = exp(x® —sin(z°)) (F*' = {—, cos,sin}), (2)
2% = cos(z? x (x' —2")/x*) (F¥ ={—, x,+,cos}). (3)

It should be clear that any given operator subset F1 can result in different
expressions, as the original features involved and their relative order in the
expression may vary without impacting on the operator subset at hand. This
is the reason why such combinations (programs) are often represented as
trees, with variables (original features) located at leaf nodes and operators
at intermediate nodes. The transformed dataset X’ is next used for training
and tuning a model M, towards achieving a better performance score than

that operating on X under the following criterion:

Maximize Wy* = E {\I’ (le; My (Xval’/))}) (4a)
{fd”}(?:ll

subject to 2% € X' vd € {1,...,D'}, (4b)

o = QUFY (2"}, vd € {1,..., D'}, (4e)

F¥eF vde{l,..., D'}, (4d)

where E{ - } denotes expectation over every possible validation subset X’ C
X', which can be approximated by the average score produced by the afore-
mentioned K-fold cross-validation procedure. In words, the optimal features
{24} will be given by those constructed upon {F%'}2, and leading to an
expected maximal cross-validated performance score when used as predictive
inputs to a supervised learning model Mg(-). In the above set of constraints
Expression (4c) implicitly defines Q(F, {z¢}2_|) as a particular ordered ar-
rangement of the operators contained in F%' and the variables in {z¢}2 .
The number of different operator subsets F9', original features finally in-
volved in the constructed characteristic %' and the specific arrangement of
these variables within the constructed feature gives rise to a search space
whose large dimensionality requires computationally efficient solvers capable
of learning and evolving programs towards regions of progressively increased
optimality. This is indeed the main purpose of the proposed Adaptive Carte-
sian Harmony Search (ACHS) approach, which is next described.

3. Proposed Feature Construction Approach

In order to tackle the above problem in a computationally efficient fash-
ion we propose a novel feature construction algorithm whose overall working
procedure is illustrated in Figure 1 and algorithmically described in Algo-
rithm 1. The proposed scheme blends together elements from wrapper and
embedded methods for feature processing. On one hand, the setup relies on
a predictive learning model My capable of internally estimating the relevance
of each input variable when predicting the target variable at hand. This es-
timation can be accomplished as an inherent result of the training procedure
of the model itself (as in e.g. tree models) or by incorporating side processes
aimed at this end, such as the so-called Relief approach later explained in the
manuscript. This estimated relevance is exploited at a wrapper optimization
approach, which iteratively evolves a set of programs that represent explicit

6

expressions of constructed variables. The dataset resulting from each poten-
tial set of transformed features proposed by the solver is evaluated by the
predictive model, whose cross-validated score is adopted as the fitness func-
tion that drives the search procedure. At this point it should be remarked
that the novelty of our work does not only resides in the specific implemen-
tation of the general scheme in Figure 1, but rather in the exploitation of the
predictive relevance of the constructed features to enhance the convergence
behavior of the search procedure.

F,D,D'
2lp23 gD « ablp?l - gD
X v CGP-encoded xi H Z; (Stratified) K folds Supervised
X2 | v2 i 7 H arnine
X3 | vs Harmony Search X5 - M Y3 EmEEEE learning model
: s re :]
] max T3 H C :> M,
u .] =
u |::> Feature Construction |::> || : H H k=K
[- 11
. 1 - N I - -
: 1 : x-to-x’ mapping 5 I k=1 pual — i W (yral(k), ppir(ke)s (x’“”’(k)~’)
XN]y~ XN LIy~ L. y i Mg

Figure 1: Overall diagram of the proposed feature construction approach.

We now elaborate on a specific implementation of the above feature con-
struction framework that couples the widely reported good search capability
of Harmony Search as a meta-heuristic solver with the constant-length pro-
gram encoding strategy known as Cartesian Genetic Programming. The
search procedure of the former will be utilized as the core heuristic of the
meta-heuristic optimization wrapper, whose evolved solutions will be repre-
sented by the latter. This specific implementation of the proposed framework
constitutes the ACHS scheme for constructing predictively optimal explicit
feature sets.

3.1. Optimization Wrapper: Harmony Search

First proposed by Geem et al [33], HS is a human-experience-derivative-
based meta-heuristic solver that has been shown to perform satisfactorily
in several application domains [34]. In essence the operators that drive the
HS search procedure work by evolving partial solutions in a similar fashion
to conventional crossover and mutation operators in Genetic Algorithms.
However, as will be shown later in the article it is in the inspiration found in
the musical improvisation process such as note pitch and harmony memory
and its impact on the definition of such operators where HS differs from other

Algorithm 1: Proposed feature construction algorithm (ACHS).

Data: Data instances {x, }_,, with x,, = {2¢}2_, set of operators F,
number of constructed features D', number of iterations 7.
Result: Data instances {x/,}"_, with constructed features {z%'}1",.

1 Initialize ¢ CGP-encoded individuals (harmonies) at random;
2 Set feature importances wg tolforde {l,....,D'}and ¢ € {1,...,¢};
3 fort + 1 to 7T do
4 Apply HS operators (Subsection 3.1) using the wi-dependent
progression law in Expression (8) (Subsection 3.3);
5 for ¢ <+ 1 to p do
6 Transform data instances {x,})_; to {x/,}2_, based on the set
of constructed features represented by the ¢-th harmony
newly improvised by the CGP-encoded HS solver;
7 Compute a cross-validated score for underlying model Mpy;
8 Extract averaged feature importances wg computed over the
trained model corresponding to every fold;
9 end
10 Concatenate and sort the previous and newly improvised
harmonies by their cross-validated score;
11 Filter out the worst ¢ harmonies, including their feature
importance vectors (Subsection 3.3);
12 end

13 The dataset {x/ })Y_, composed by features {z%'}2" is given by the
first CGP-encoded harmony within the memory of harmonies;

evolutionary algorithms [38, 39]. Due to its population-based nature HS relies
on a set of candidates ¢ that are iteratively refined by means of intelligent
combinations and mutations. The Harmony Memory (HM) consists of the
candidates that sound better (under a fitness criterion) along time. The HM
is updated whenever any of the ¢ improvised harmonies sounds better than
any of the ¢ harmonies kept in the HM.

Before proceeding further with the fundamentals of this meta-heuristic
algorithm, it should be noted that HS and in general other bio-inspired op-
timization methods have lately been involved in a hot debate within the
research community. Some investigations have questioned the inherent nov-
elty of metaphor-based optimization approaches in light of their resemblance

to foundational methods from Evolutionary Computation [40]-[43], subse-
quently unleashing several rebuttals against the criticism shed over such
nature-inspired heuristics [44]-[46]. Recently more constructive proposals
have been made in the literature to standardize the functional definition of
meta-heuristics [47, 48]. Nevertheless, the work presented in this paper is
focused on the impartial use of HS as the heuristic engine to evolve CGP-
encoded programs, i.e. without entering any debate on the originality of this
meta-heuristic algorithm.

Going back to the algorithmic steps underlying the HS solver, its seminal
version as contributed in [33] begins by initializing the set of ¢ stored har-
monies in the HM. This is usually accomplished by sampling each note of
every harmony (i.e. each entry of every solution) uniformly at random from
its corresponding alphabet. Once this is done several improvisation operators
are applied to each note of the HM for a given number of iterations' 7

e The Harmony Memory Considering Rate (HMCR), driven by the prob-
abilistic parameter £ € [0, 1], which sets the probability that the new
value for a certain note is drawn from the values of this same note in
the other o — 1 harmonies.

e The Pitch Adjustment Rate (PAR), controlled by the probabilistic pa-
rameter § € [0, 1] which sets the probability to execute subtle adjust-
ments in the chosen harmony by improvising the probability to replace
the actual value of the note at hand with any of its neighboring values
within the alphabet on which it is defined. Many pitch adjustment ap-
proaches have been reported in the literature dealing with integer- and
real-valued variables (see e.g. [49, 50] and references therein). Without
loss of generality in what follows we will resort to the seminal defi-
nition of the pitch adjustment operator established in [33], although
other pitch adjusting policies can be also considered.

e More recently, another operator has been proposed in the literature,
Random Selection Rate (RSR, v € [0, 1]), which establishes the prob-
ability that the new value for a given note will be drawn uniformly at
random (i.e. without any neighborhood consideration) from its corre-
sponding alphabet [38].

'In practice any other stop criterion can be imposed, but in any case it reduces to the
set of operators being applied for a number of iterations given by the adopted criterion.

9

At this point it is important to remark that a good convergence behav-
ior of the HS solver when applied to a given problem depends roughly from
several algorithmic aspects. To begin with, a minimum-redundancy solution
encoding strategy should be designed, capable of spanning the whole search
space while maintaining at the same time the neighborhood relationship be-
tween locally close solutions in their encoded representations. Likewise the
solver should meet a balance between explorative and exploitative search
well-suited to the problem being tackled, which can be attained via a proper
selection of the parameters guiding the HS search process. Regarding this
latter aspect, there are different parameter tuning strategies, from the most
naive approach (i.e. keeping the HS parameters {£,0,v} fixed to a value)
to more elaborated schemes, such as progressively varying the value of the
parameters along iterations. In [51] a linear progression of HS parameters
with the iteration index t was presented. More recently, the authors in [52]
proposed a more flexible logarithmic progression that generalizes its linear
counterpart and allows for tuning the convexity of the parameter progression
in the range t € {1,...,7} by using a new design parameter (€ R*. By
denoting starting and ending values of the parameters with sub-indexes s
and e respectively, such a progression is given by

n(t) = ns [1 — V15, 7e) <A(% ;Zgg()ﬂ;g% - 1)>] , (5)

where n € {57 57U}7 19<T]87 778> = Sgn(ﬁs - n€>7

—C
)\(7737 Me, C) £ [79(7757 776) (1 - %)]) (6)

s

and sgn(z) = 1if > 0 (—1 otherwise). The fact that the above logarithmic
progression is controlled by just one parameter allows tuning the convexity
of the parameter progression along iterations. This provides a higher degree
of design flexibility for the overall algorithm at an affordable computational
penalty in terms of the time taken to refine such a new parameter.

3.2. Solution Encoding: Cartesian Genetic Programming

In what relates to solution encoding, it is important to recall that the par-
ticularly adopted strategy should represent explicit combinations of the input

10

variables in a numerical fashion that keeps most of the expected properties
for an encoding to be suited for HS (i.e. minimum representation, constant
length, redundancy and vicinity relationship among values for a given note
driven by the fitness at hand). These requirements are met by Cartesian
Genetic Programming (CGP), a highly efficient and flexible form of Genetic
Programming [32]. CGP represents computational structures as a string of
integers and can easily encode computer programs, electronic circuits [53],
neural networks [54, 55|, mathematical equations and other computational
structures [56, 57]. In this encoding integers are used to encode the function
nodes in the graph, the connection between nodes (variables), the connec-
tions to inputs and the locations in the graph where outputs are taken from.
In other words, the genotype of CGP is a fixed-length list of integers values,
from which its phenotype (i.e. the program it represents) is inferred.

The types of computational node functions used in CGP are decided by
the user and are listed in a look-up table indexed by integer values. Each
node represents a function and is encoded by a number of genes. One of them
is the address of the computational node function in the look-up table. The
remaining node genes indicate where the node gets data from. These genes
represent addresses, known as connection genes. They take their inputs in a
feed-forward manner from either the output of nodes in a previous column or
from a program input. The program data inputs are given by {z!,..., 27},
where D is the number of program inputs. Each node output has also an
address and this can be the input of the next node. The selection of the
number of intermediate nodes and their arrangement in terms of number of
hidden layers and amount of nodes per layer are flexible and can be tailored
for the problem at hand.

Figure 2 exemplifies the process to build mathematical expressions. There
are three type of nodes: input nodes (variables), output nodes (programs)
and function nodes. As described above, the user defines the functions and
the layout of the CGP. In Figure 2 there are two input nodes (z! and z?),
nine hidden nodes and two output nodes (z!” and z*'). Each genotype is
composed by three genes, the first one indicates the function (defined in the
table) and the remaining genes define the input data. In some cases, the last
number is marked with a special symbol ({ in Figure 2) to indicate that it
is unused. Output nodes have only a single gene each, which indicates the
node from which there is an incoming edge.

11

- Node: 2 3 4 5 6 7 8 9 10 11 12
o1 = 2! + cosx? —_— T T T T T T T —— ——
22! = log(a! — (! — 2?)) CGP code: 41 101 510 002 223 103 155 326 670 5 10

Label | Function
0 +
1 —
2 X
3 =+
4 cos
5 s
6 log

Figure 2: General form of CGP for representing mathematical expressions. Following the
notation in Section 2, F = {+, —, X, +, cos, Vo log}, D=2 and D' = 2.

3.3. Exploiting Predictive Relevance in the Feature Optimization Process

Besides hybridizing CGP and HS, another novel ingredient of the ACHS
algorithm proposed in this paper is the exploitation of the predictive rele-
vance of the iteratively constructed feature set in the search procedure of
the heuristic wrapper. By considering an original feature set represented by
the variable vector x = {z¢}2_, the memory of program candidates HM is
initialized by encoding each element using CGP, which creates a new con-
structed feature set x' = {x%'}2, using the scheme exemplified in Figure
2. As such, each row of the HM (i.e. each candidate solution) is a newly
constructed feature set built upon a combination of the original features x
through a subset of the overall operator subset F. In order to drive the search
process of the HS solver, each of the rows in the HM is evaluated by using
a supervised learning model M (-), whose cross-validated average prediction
score (e.g. accuracy, R? or any other metric alike) measured over the given
dataset is adopted as the fitness function of the HS algorithm.

Before starting the next generation, the predictive importance or rele-
vance of each feature within x’ is computed either from the trained model
or by resorting to algorithmic approaches specifically designed to this end.
In this regard some supervised learning models such as tree-based classifiers
allow for numerically assessing the predictive power of each input feature by
quantifying the information gain (or alternatively, the so-called Gini impu-
rity) for all branches below such a feature, and optionally weighting the gain
at each branch by the number of samples classified thereby. Universal esti-

12

Algorithm 2: Original Relief algorithm.

Data: Data instances {x,}"_,, with x,, = {z¢}2_,.
Result: Feature relevances w = {w?}?_,.

1 Initialize all weights in w to zero, i.e. w =0Vd € {1,...,D};
2 for z <+ 1 to Z do

3 Randomly select an instance x,,, with n € {1,..., N};

4 | Find nearest hit x** and nearest miss x%;

5 for d <1 to D do

6 | wt = w? = 6% (x,, xI) + 02(x, X2

7 end

8 end

mators for inferring the predictive relevance in general supervised learning
models have been also proposed in the literature. For instance, in [58, 59] an
algorithm coined as Relief was shown to estimate attributes according to how
well their values distinguish among the instances that are near to each other.
Given a data instance x,,, Relief searches for its two nearest neighbors: one
for the same class (nearest hit, x**) and the other from a different class (near-
est miss, x~). The original algorithm selects Z training instances, where Z
is an user-defined parameter. By denoting the normalized difference between
the values of the d-th attribute for two instances x,, and x, as 6(z2, z,), the
normalized predictive relevance w? € [0, 1] for the d-th attribute is iteratively
updated as

wh = w? — §2(x,, X7) + 02(X,, X5, (7)

which is repeated Z times as summarized in Algorithm 2. The algorithm was
later extended giving rise to ReliefF [60], a more robust version of its pre-
decessor that can tolerate incomplete and noisy data and manage multiclass
problems by finding one near miss for each different class and averaging their
contribution for updating the importances w.

When put in the context of our article, it should be obvious that each
row ¢ € {1,...,¢} (harmony) of the population of harmonies iteratively
evolved by the HS solver will correspond to a different set of newly proposed
features with potentially higher predictive power. Therefore the normalized
relevance of the d’-th feature in harmony ¢ will be given by wg/ € [0,1]. This
predictive information is exploited by redefining the progression law of two
of the operators of HS (namely, £ and v) so as to reflect the fact that when a

13

newly improvised feature is found to be relevant for the supervised problem
in question, the HS solver should not move far away from the wvicinity of the
program upon which it is defined. Based on this rationale the progression in
Expression (5) is modified as

. log (w? +1 ;
th (145) = [1 - (Mns,g;e,qé) 1og)<2>>] ¥

where 1 € {£, v} and the arbitrary factor (depends on the generation. With-
out loss of generality in this work we assume a linearly increasing progression
of (with the iteration index t as

) =G+ ==), (9)

whose impact on ng/ (wg/) is plotted in Figure 3 for n, = 0.1, n. = 0.75 and
different values of . Note that n is different for each element of the HM
depending on its relative importance and the iteration index. It should be
also remarked that the proposed scheme is flexible enough to accommodate
any arbitrary form of dependence between (and ¢.

T
BB S P - - -8 -9-=R=:9::9-0-"0-0-06-06G-0-0-0-0-0-o

RERE . S
_oTf Srelg e, o=
= =R *
. < = *
= 13N ©
S =
So06) v L =2 :
= N K
2 v B,
: : a : ‘
= \ = T N \
a2 05F _ S - o
= *® R=N
2 B ~ ‘
g ' - N 5 '
= 04| & . 5. .
& AN = Bl % \
5] [v a |
< 03 b t=T —1 v~ _ * o
g LN - “n \
2 T =T T : |
~o02f BaRES e X
n T _ a 0
= Bt e V- _ SR A
LR >7—>—,>,,,>;;>77> ; EN
L el e SR
0.1 L L L L L L L L L o
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Feature importance 7i;

Figure 3: Logarithmic progression of the HS parameter ng/(wg/) versus the feature im-

portance wg/ for several values of (assuming a linear progression of this latter parameter
with the generation index t.

14

4. Cases of Study and Learning Models

As has been already mentioned in the introduction the performance of
the proposed ACHS approach has been experimentally assessed over four
different datasets:

e WINE dataset: this is a relatively small dataset consisting of N = 178
samples and D = 13 original features [61]. The data correspond to
results of a chemical analysis of wines grown in the same region but
delivered from three different cultivars. The aim is to classify among 3
different classes of wine. This first well-known dataset serves as a toy
example to elucidate the expected computational benefits of construct-
ing new feature sets with ACHS.

e LEAF dataset: this is a publicly available repository for the classifica-
tion of plants based on morphological features extracted from digitally
processed leaf images [35]. Specifically, samples in this datasets corre-
spond to specimens of different plant species, whose features are built
upon automatically segmented images of 720 x 960 pixels, which have
been further inspected to ensure comparability between different plant
classes. This process results in N = 171 samples of D = 15 features
corresponding to 15 different plant species [62]. Results obtained with
this dataset aim at verifying whether feature importances do make a
difference in terms of convergence when fed back to the solver and
utilized to tailor the values of the HS parameters.

e TONOSPHERE dataset: these data correspond to signals recorded by a
phased array of 16 high-frequency antennas. The aim is to find evidence
of free electrons in the ionosphere, in such a way that “good” radar
returns are those signals that are evidence of the presence of some
structure in the ionosphere, whereas “bad” radar returns are those
signals that did pass through the ionosphere as a result of the lack of
structure in this atmospheric shell. The dataset is comprised by a total
of D = 34 features and N = 351 instances. More details on the dataset
are provided in [36]. This third dataset will be used to evaluate to
which extent the progression of { with ¢ impacts on the convergence
of the algorithm through the resulting concavity of the curves relating
the feature relevance to the value of the HS parameter.

15

e VTR dataset: in this case the objective is to classify among different
classes of vehicles using recorded engine sounds. The original database
for the experimental work consists of N = 574 vehicle sounds corre-
sponding to 311 cars, 88 motorbikes and 175 trucks. The sound of each
vehicle has been recorded in a single file with a sampling frequency
of 11025 kHz and 16 bits per sample. All sound samples have been
recorded in flat two-way road sections with a speed limit of 50 kilome-
ters per hour, what prevents them from gear shifting and acceleration.
Only a segment of 1 second length has been considered for classifica-
tion, centered on the instant where the vehicle is passing exactly in the
front of the capturing sensor array. All sound files have been divided
into frames of 512 samples each, from which D = 66 features have
been extracted. All features are described in more detail in [37]. This
case study is included to show that the constructed characteristics are
universally good across different classifiers, i.e. the produced feature
set possesses higher predictive power when input to classifiers that are
different than the one utilized for their generation.

In this paper we used several supervised learning models to classify data
and measure the importance of each input feature. One of such techniques
is Random Forest (RF), one of the most utilized classification and regression
algorithms by virtue of its ability to classify large datasets with excellent
accuracy and small chance to overfit. RF splits the data into a number of
subsets and creates a tree for each of them (weak learners), from which the
predicted output of the RF is taken by aggregating the individual predic-
tions of all its compounding trees. RF also provides an embedded method
for quantifying the values of the feature importances: the decrease in the
classification margin is computed if the variables are permuted among weak
learners. Results are averaged over the entire ensemble and divided by the
standard deviation [63].

The second algorithm utilized in the experiments is the 1-Nearest Neigh-
bor (1-NN) algorithm: it simply classifies a new example x,, by finding the
training example (X, y,/) that is closest to x,, according to a distance mea-
sure. Unless otherwise stated, all tested models assume the conventional
Euclidean distance. Another well-known classification method included in
the benchmark is the well-known Support Vector Machine, which essentially
finds a gap in the feature space that is as wide as possible between data
samples corresponding to different categories. Such a gap can be set to be

16

linear or instead, can be shaped arbitrarily by using the so-called kernel trick,
which indirectly maps samples to high-dimensional feature spaces where the
points can be separated linearly. For multi-class classification, one-against-all
or one-against-one strategies can be used [64]. The last classification method
considered in this paper is the Extreme Learning Machine (ELM, [65]). This
is a novel and fast learning method based on the structure of multi-layer
perceptrons. The most significant characteristic of the ELM training proce-
dure lies on the fact that is carried out just by randomly setting the weights
connecting the inputs to the nodes of the hidden layer, and then obtaining
the pseudo-inverse of the matrix linking the hidden layer to the outputs of
the model.

For the experimental setup, the starting and ending values of the HS pa-
rameters were fixed: & = 0.1, & = 0.75, v, = 0.05 and vy, = 0.15. The CGP
tree for feature construction was also fixed. The starting and ending values
of the arbitrary factor (, the size of the HM, the number of generations T
and other parameters of the model — @ in Expression (4a) — were optimized
for each problem via off-line simulations over a value grid, with the maxi-
mization of the average cross-validated accuracy score of Mg when fed with
the produced features by HS as the criterion to select one configuration or
another?. Weights and biases of the 50 hidden neurons of the ELM model
utilized for the VTR dataset have been drawn uniformly at random from the
ranges [—1, 1] and [0, 1], respectively. The number of tree learners in the RF
models has been set to 100 in all cases. The remaining parameters of all
models in the benchmarks have been tuned using a procedure similar to the
above exhaustive grid search with cross-validation. Features of all datasets
have been normalized via Z-scores.

5. Results and Discussion

5.1. Results obtained with the WINE Dataset

We trained two different ACHS-based supervised learning models to ob-
tain D' = 3 features with enhanced predictive power when classifying the
samples within this dataset. For the first one, we used RF to measure
feature importance and to classify the data (namely ACHS; model). The

2Further details on the utilized value grid, the final configuration used in the experi-
ments and the source code can be provided upon demand to the corresponding author.

17

second option was to use 1-NN for classification purposes and ReliefF to
compute feature importance (ACHS,). Both ACHS; and ACHS, were com-
pared with the results obtained with Principal Component Analysis (PCA)
and the results obtained selecting the 3 most important variables according
to the importance estimated by RF and ReliefF. To obtain the optimum
feature expressions, we set apart 25% of the dataset for test and we used
10-fold stratified cross-validation over the remaining 75% of the dataset. We
computed all results using 7 = 50 iterations, changing the folds at each
iteration to avoid overfitting. Both cross-validated accuracy scores — repre-
sented as median (Interquartile Range, IQR) — and those obtained for the
test set are reported in order to check whether the cross-validated score of
each algorithm is representative of the score obtained for the test set.

Table 1 summarizes the results obtained by each algorithm for a given
train/test split. The worst results were obtained by those classifiers based on
ReliefF-based feature selection, with cross-validated accuracy scores ranging
from 91.56% (90.51%-92.61%) using RF to 90.69% (89.86%-91.59%) using
1-NN. By using the three most important features selected by the RF algo-
rithm, the figures of merit when RF and 1-NN are used as predictive model
increase to 96.16% (95.52%-96.32%) and 95.80% (95.11%-96.45%), respec-
tively. The best results were achieved by using the features obtained by the
ACHS; in the training process and using 1-NN classifier, with an accuracy
of 98.40% (97.80%-98.60%). The accuracy scores obtained over the test set
are within the statistical margin covered by the cross-validated metrics.

The train/test split, feature construction, model building and score re-
porting were next further performed for 10 repetitions in order to evaluate the
influence of the stochastic nature of the search heuristic, the random selection
of the train/test split and the training algorithm (in the case of RF) on the
predictive performance of the proposed scheme. Test scores obtained by each
algorithm in the benchmark over such repetitions were compared to those of
the best performing scheme (ACHS; 4+ 1-NN, as measured by its median test
accuracy computed over repetitions) by using the Mann-Whitney U test to
measure the equality of medians. A p-value below 0.05 was obtained for all
cases, hence performance gaps can be deemed statistically significant (differ-
ent median) with respect to the test scores obtained by ACHS, with 1-NN.
The produced features (programs) corresponding to the repetition scoring
the highest test accuracy are the following:

1,

oV =gt 42 2 =2 -2 ¥ =log(z" + 2M). (10)

18

Feature Cross-validated Test
Scheme processing accuracy accuracy
method (%) (%)
ReliefF + RF Selection 91.56 (90.51-92.61) 93.33
PCA + 1-NN Construction 94.40 (93.90-95.49) 93.33
ReliefF + 1-NN Selection 90.69 (89.86-91.59) 95.56
RF + RF Selection 96.16 (95.52-96.32) 95.56
RF + 1-NN Selection 95.80 (95.11-96.45) 95.56
PCA + RF Construction 95.48 (94.94-96.10) 95.56
ACHS; + RF Construction 97.41 (96.33-97.90) 97.78
ACHS; + 1-NN Construction 97.46 (96.60-97.76) 97.78
ACHS, + RF Construction 96.80 (95.54-97.07) 97.78
ACHS; + 1-NN Construction 98.40 (97.80-98.60) 100.00

Table 1: Results obtained with the WINE dataset, different feature processing criteria and
classification methods. Cross-validated accuracy scores are represented as median (IQR).

5.2. Results obtained with the LEAF Dataset

In this second dataset the aim of the experiments discussed in what fol-
lows is twofold. On one hand features produced by the proposed ACHS
approach will be compared, in terms of predictive performance, to those re-
ported in [62]. On the other hand we will assess the impact of incorporating
information about the predictive importance of the iteratively produced fea-
tures in the operators of the HS solver. A RF model will be utilized for both
classification and estimation of feature importances, which can be done effi-
ciently as the latter information is produced as a byproduct of the training
procedure of the model.

Regarding the first goal pursued in this second dataset, using T = 80
and using 10 train/test splits (with proportions set to 75%/25%) the sets
of newly improvised features produced by ACHS for such splits produce a
mean test accuracy score of 92.54%, with IQR equal to (91.81%-93.66%).
These statistics are notably superior to the 88.82% average accuracy score
reported in [66] when using a RF model with the original set of features. For
a fair comparison we have verified that this latter scheme scores a mean test
score of 87.30% (86.62%-89.15%) when computed over the same train/test
splits used in our study. This gap becomes even more relevant when jointly
analyzed with the slight dimensionality reduction of the ACHS approach

19

(D = 15 original features versus D’ = 13 constructed characteristics).

0.92 -
® 0.9
S
=
3
< 0.88 |-
=
0.86 |-
h —— With model information
- - - Without model information
084 | | | | | | |

0 10 20 30 40 50 60 70 80

Generation

Figure 4: Mean accuracy score of the ACHS approach — averaged over 10 Monte Carlo real-
izations — with and without model information in the definition of the operators controlling
the HS-based optimization wrapper. While differences among them are not relevant in the
first iterations, a clear performance gap arises as the search becomes more exploitative.

The discussion with this dataset follows by Figure 4, where convergence
plots (average cross-validation score over generations) of ACHS are depicted
for the cases when the inner HS solver exploits the predictive relevance es-
timated by the learning model and when this information is not utilized
anyhow. Cross-validation scores have been averaged over 10 repetitions of
the HS algorithm for a given train/test split. As inferred from the curves
therein both alternatives behave quite similarly in the early generations of
the HS wrapper; however, as the search process becomes more exploitative,
a clear gap widens between both schemes supporting our postulated benefit
of incorporating the predictive relevance in the definition and progression of
the HS parameters.

5.3. Results obtained with the IONOSPHERE Dataset

In this third dataset RF was used to quantify the feature importances
and to classify the data based on the selection of the D' = 5 features with
highest predictive potential. Although it is not the main purpose of this case
study, for a train/test split of 75%/25% we obtained a median (IQR) cross-
validation accuracy of 95.12% (94.22%-95.89%) by using our ACHS scheme,

20

10 folds and 7 = 50 iterations. A RF model with the original feature set
scored 93.10% (92.44%-93.70%), whereas PCA+RF showed an accuracy of
91.23% (90.86%-91.54%). Differences were found to be significant by using
the Mann-Whitney U test over these cross-validated accuracy score sets.

T T T T T T T T T
f BB BB B B B 8- -8 @ -B--6-6- BB B-B-B-L-Q-0-O0-0-0-0--0
\ -0 S |
I pEN ~. 1
0.7 = *
— N = N
= b % = *
5 . N
=] N B N
= N N “o *
= 0.6 N =R .
o \ * TE.
° S a
H ' AN ‘o *
2 05! * g
3 N B
8 \ S N !
< e ~ aN \
—~ 04 Rl . \
= \
) * < *
< S %o NN i
;_‘ i *e =
< al Tk ~ \
£ o03p) e s,
g % <
® * o ﬂ\
] *e ek N
~o02f . ~xe .
n U o ey, a_
ja=} o *‘;* <
S0 - ~ = ke N
0’0’0”0~fe—fe——a»,e,,a,,e e TR D
01l TG00 060 -0-0-O -0 -0 B
I | 1
1

I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Feature importance 73

Figure 5: Progression curves of an HS parameter (either £(7;;) or v(7;;)) from 0.9 (for the
first generation of the HS search process) to 0.1 (for the last generation) as a function of
the feature importance 7;; for three different values of ¢, and (..

Following the intended purpose of this dataset we analyzed the conver-
gence and cross-validated scores of the ACHS approach with different values
of (s and (., which yields a different concave/convex shape for the curve re-
lating the feature importance 7;; to the value of the HS parameter through
Expression (9). Figure 5 depicts different curves for the used {(s, (.} values,
with the same color used for the starting and ending curves of each of the 3
cases. Red curves correspond to the special case when (., = (5. We applied
ACHS to the aforementioned train/test split of the IONOSPHERE dataset for
10 repetitions, and computed the median cross-validated accuracy for every
generation of the HS solver. Figure 6 shows the obtained plots for every
{Cs, (e} case and T € {50,100} generations. The case where (. = (; (red)
renders the worst results in all cases, which demonstrates the performance
gain that the concavity/convexity tuning by (s and (. through Expressions
(8) and (9) can provide. Indeed the other cases (blue and black) converge to
better median results, especially when the number of generations of the HS
solver is lower.

21

50 generations 100 generations

0.96
[T]

0.95

0.94 1

0.93

Accuracy
Accuracy

0.92 [

0.91

. * * * * 0.9
10 20 30 40 50 20 40 60 80 100

Generation Generation

Figure 6: Convergence plots of the median cross-validated accuracy score obtained by
ACHS+RF, averaged over 10 repetitions of the HS solver over a 75%/25% train/test split,
using 7 = 50 (left) and 7 = 100 (right) generations and the three different {(,, (.} cases
depicted in Figure 5.

5.4. Results obtained with the VIR Dataset

The dataset was divided into a 60%/40% train/test split, from which 5-
fold cross-validation will be used for producing a set of D’ = 17 new features
(in the order of the set used in the landmark reference of this dataset [37]).
The authors in [37] proposed to hybridize Genetic Algorithms for feature se-
lection and ELM as the predictive model, hence comparing the performance
of this hybrid scheme to that provided by different alternative classifiers. In
this paper the same experiment has been repeated in order to compare the
obtained results and the universality of both two algorithms. To this end
we used ReliefF to measure the feature importances and ELM as the classi-
fication method. The ELM has 3 output neurons, from which the maximum
value was considered to be the class predicted by the ELM. A sigmoid activa-
tion function g(z) has been also selected for all compared counterparts. We
next trained a RF classifier, a SVM with different kernels and a 1-NN model
using the constructed features produced by the ACHS approach with ELM
as its core learner. For the SVM, a one-vs-all strategy was considered. The
1-NN classifier is configured to use the Mahalanobis distance, as it scored
best in an off-line 5-fold cross-validation benchmark among different options
for the distance metric.

22

Classifier Kernel Test accuracy

RF - 87.89%
SVM k(x,x{) =x-x] (linear) 88.42%
SVM k(x,x7) = exp(— ||x — x{||*) (RBF) 94.21%
SVM k(x,x1) = (x-xI +1)3 (polinomial) 97.37%
1-NN — 97.89%
ELM — 98.33%
SVM k(x,x1) = (x-x!I +1)? (polinomial) 98.95%

Table 2: Test accuracy of different classifiers using the features extracted previously by
ACHS with ELM as the core classifier.

Table 2 summarizes the accuracy scores obtained by each algorithm over
the test data left aside before any feature construction process. The best
performance was obtained using ELM and SVM with order two polynomial
kernel. In particular the mean accuracy averaged over the output of 100
independent ELM models® over a given train-test split was 98.33%, which
outperforms the 93.74% accuracy previously obtained in [37]. Furthermore,
the accuracy score reported in this reference was computed based on a single
training of the ELM model. Interestingly, other classifiers such as 1-NN or
SVM with other kernel functions also produced good performance scores.
In this case RF yielded worse accuracy figures, possibly due to the fact that
ACHS was not trained using RF as the core classifier. On the other hand, the
feature selection method proposed in [37] scored the best performance using a
multi-class ELM classifier (MC-ELM), with the average probability of correct
classification reported to amount up to 98% over the test set. The MC-ELM
was composed by three different binary ELM-based classifiers arranged in
a one-versus-all voting strategy: one ELM per class trained to distinguish
the samples of each class from the samples of the remaining classes. The
classification of an unknown sound file was done according to the maximum
output among ELMs. For the rest of classifiers used in [37] RF showed a test
accuracy of 86.7%, and 1-NN and the SVM classifiers did not reach the 85%
test accuracy threshold.

There indeed lies the benefit of the proposed algorithm: as shown in

3The purpose of averaging the accuracy over this pool of independent models is to assess
the impact of the stochasticity of the ELM training procedure on the obtained results.

23

25

151 N

’

101 Y

P

0.95 0.96 0.97 0.98 0.99
Accuracy

=

Figure 7: ELM performance histogram over 100 ELM models (see Footnote 3).

Table 2, in this dataset ACHS is proven to construct features that are uni-
versally good across different classifiers, disregarding whether they are the
same model than that used for learning the constructed feature set. Besides,
our simple ELM showed better performance than their MC-ELM. Figure 7
depicts the histogram of the accuracy performance attained by 100 indepen-
dently trained ELM models over the test split at hand. Relevantly is to
highlight that there are model instances where the accuracy reaches 1 (i.e.
100%), whereas the major density of this histogram is concentrated above
98%. Nevertheless, results were calculated for a specific train-test split not
necessarily equal to the one used in [37]. All in all, the better results in Table
2 show the outperforming behavior of the ACHS approach and its universal-
ity when resorting to different supervised models in this fourth dataset.

5.5. Discussion

In order to get an uniform overview on the performance of the proposed
ACHS scheme, we here discuss a final set of simulations performed with al-
gorithms based exclusively on the RF model and train/test data splits fixed
for every dataset. In this way we isolate the contribution of ACHS to the
performance of the overall model and avoid any bias due to the heterogene-
ity of the models around which discussions in previous sections have been
held. Specifically we explore three different schemes: RF using the original

24

feature set, RF using a reduced feature subset selected by their predictive
importance (RF+RF), and the proposed ACHS with RF as its core learner
for both feature extraction and prediction. Performance of each scheme is
given in terms of the mean accuracy score measured over 10 execution of the
algorithm over 10 different realizations, namely, 10 distinct train/test splits
of the dataset at hand. This averaging process not only minimizes the ef-
fects of the selection of train/test splits in databases of relatively small size
as the ones chosen in this benchmark, but also permits to account for the
randomness of the HS operators.

Dataset Baseline RF RF+RF ACHS+RF
(Literature) (original) (selection) (proposed)
WINE — 97.11% X 96.59% O 97.89%
LEAF 88.82% [66] 82.92% OO0 78.32% O 93.19%
IONOSPHERE 92.50% [63] 93.12% O 87.76% U 94.20%
VTR 86.77% [37] 85.74% O 88.44% O 97.77%

Table 3: Summary of mean test accuracy scores (computed over 10 realizations) achieved
for the datasets and algorithms in this benchmark. Train/test splits within each realiza-
tion are kept fixed for every dataset so that features and scores for all algorithms in the
benchmark are based on the same data subsets. The number of selected (RF+RF) and
constructed (ACHS+RF) features is also set equal for a fair comparison.

Results are summarized in Table 3. The statistical significance of the
performance gaps between each algorithm and the proposed ACHS+RF —
by the Mann-Whitney U test with 0.05 as the confidence threshold — being
denoted as O (statistically meaningful) or X (statistically meaningless). Also
included are in the table scores of RF-based models reported in the litera-
ture for LEAF, TIONOSPHERE and VTR. Except for LEAF due to the use of an
augmented set of features in [66], it can be noticed that the results of RF
with the original set of features and the baseline scores are similar to each
other, which confirms that our discussed figures are aligned with those in the
literature. In all datasets the proposed ACHS+RF is shown to be superior,
with statistical significance in the majority of cases.

Before finishing this discussion, it should be noted that the computational
complexity of the proposed feature construction algorithm is higher than
that of feature selection schemes. This fact limits its applicability to static
learning scenarios where no time constraints are imposed for constructing

25

the predictive model and/or with stationary data.

6. Conclusions

This manuscript has delved into a novel feature construction framework
for supervised learning problems. The proposed scheme, coined as ACHS,
blends together 1) a heuristic wrapper that relies on Cartesian Genetic Pro-
gramming and the Harmony Search solver; and 2) the predictive relevance of
the constructed features produced by the model wrapped by the former. The
solution encoding convention provided by Cartesian Genetic Programming
is shown to conveniently match the constant-length encoding requirements
of the naive HS algorithm. Furthermore, the incorporation of the predictive
importance of the constructed features to the HS search procedure expedites
the convergence of the overall wrapper method. The performance of the pro-
posed ACHS approach has been assessed over four datasets with different yet
related purposes: to shed light on its potential over the thoroughly studied
WINE dataset, and to prove that it outperforms the state of the art related
to two other recently contributed datasets for supervised learning, namely,
LEAF, TONOSPHERE and VTR. The accuracy scores attained by the proposed
ACHS have been shown to be promising, with statistically meaningful perfor-
mance gains that motivate its widespread application to practical supervised
learning problems.

Acknowledgements

This work has been funded in part by the Basque Government under the
ELKARTEK program (BID3A project, grant ref. KK-2015/0000080). The
authors would also like to thank the anonymous referees for their constructive
comments and recommendations.

Bibliography

[1] E. Siegel, Predictive Analytics: The Power to Predict who will Click,
Buy, Lie, or Die, John Wiley & Sons, 2013.

[2] M. Negnevitsky, Artificial Intelligence: a Guide to Intelligent Systems,
Pearson Education, 2005.

[3] S. Lohr, The age of big data, New York Times 11 (2012).

26

[4]

[10]

[11]

F. Provost, T. Fawcett, Data science and its relationship to big data
and data-driven decision making, Big Data 1 (2013) 51-59.

J. Han, M. Kamber, J. Pei, Data Mining: Concepts and Techniques,
Elsevier, 2011.

B. Xue, M. Zhang, W. N. Browne, X. Yao, A survey on evolutionary
computation approaches to feature selection, IEEE Transactions on
Evolutionary Computation 20 (2016) 606-626.

J. Yang, V. Honavar, Feature subset selection using a genetic algorithm,
in: Feature extraction, construction and selection, Springer, 1998, pp.
117-136.

C.-L. Huang, J.-F. Dun, A distributed pso—svm hybrid system with
feature selection and parameter optimization, Applied Soft Computing
8 (2008) 1381-1391.

S.-W. Lin, Z.-J. Lee, S.-C. Chen, T.-Y. Tseng, Parameter determina-
tion of support vector machine and feature selection using simulated
annealing approach, Applied Soft Computing 8 (2008) 1505-1512.

C.-M. Wang, Y.-F. Huang, Evolutionary-based feature selection ap-
proaches with new criteria for data mining: A case study of credit ap-
proval data, Expert Systems with Applications 36 (2009) 5900-5908.

K. Drozdz, H. Kwasnicka, Feature set reduction by evolutionary selec-
tion and construction, in: KES International Symposium on Agent and
Multi-Agent Systems: Technologies and Applications, Springer, 2010,
pp. 140-149.

B. Xue, M. Zhang, W. N. Browne, Particle swarm optimisation for fea-
ture selection in classification: Novel initialisation and updating mech-
anisms, Applied Soft Computing 18 (2014) 261-276.

B. Xue, M. Zhang, W. N. Browne, A comprehensive comparison on
evolutionary feature selection approaches to classification, Interna-
tional Journal of Computational Intelligence and Applications 14 (2015)
1550008.

27

[14]

S. Salcedo-Sanz, J. A. Portilla-Figueras, J. Munoz-Bulnes, J. del Ser,
M. N. Bilbao, A novel harmony search algorithm for one-year-ahead
energy demand estimation using macroeconomic variables, in: Interna-
tional Joint Conference SOCO14-CISIS14-ICEUTE14, Springer, 2014,
pp- 251-258.

S. Salcedo-Sanz, A. Pastor-Sanchez, J. Del Ser, L. Prieto, Z. Geem, A
coral reefs optimization algorithm with harmony search operators for
accurate wind speed prediction, Renewable Energy 75 (2015) 93-101.

T. Jirapech-Umpai, S. Aitken, Feature selection and classification for
microarray data analysis: Evolutionary methods for identifying predic-
tive genes, BMC bioinformatics 6 (2005) 1.

M. Banerjee, S. Mitra, H. Banka, Evolutionary rough feature selection
in gene expression data, IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews) 37 (2007) 622-632.

J. P. Cunningham, 7. Ghahramani, Linear dimensionality reduction:
Survey, insights, and generalizations, Journal of Machine Learning Re-
search 16 (2015) 2859-2900.

J. A. Lee, M. Verleysen, Nonlinear Dimensionality Reduction, Springer
Science & Business Media, 2007.

X. Yao, Y. Liu, G. Lin, Evolutionary programming made faster, IEEE
Transactions on Evolutionary Computation 3 (1999) 82-102.

K. Krawiec, Genetic programming-based construction of features for
machine learning and knowledge discovery tasks, Genetic Programming
and Evolvable Machines 3 (2002) 329-343.

H. Guo, L. B. Jack, A. K. Nandi, Feature generation using genetic
programming with application to fault classification, IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics) 35 (2005) 89—
99.

M. G. Smith, L. Bull, Genetic programming with a genetic algorithm for
feature construction and selection, Genetic Programming and Evolvable
Machines 6 (2005) 265-281.

28

[24]

[25]

[26]

K. Neshatian, M. Zhang, M. Johnston, Feature construction and di-
mension reduction using genetic programming, in: Al 2007: Advances
in Artificial Intelligence, Springer, 2007, pp. 160-170.

L. Shao, L. Liu, X. Li, Feature learning for image classification via multi-
objective genetic programming, IEEE Transactions on Neural Networks
and Learning Systems, 25 (2014) 1359-1371.

K. Neshatian, M. Zhang, P. Andreae, A filter approach to multiple
feature construction for symbolic learning classifiers using genetic pro-

gramming, IEEE Transactions on Evolutionary Computation 16 (2012)
645-661.

M. W. Aslam, Z. Zhu, A. K. Nandi, Feature generation using genetic
programming with comparative partner selection for diabetes classifica-
tion, Expert Systems with Applications 40 (2013) 5402-5412.

D. Y. Harvey, M. D. Todd, Automated feature design for numeric se-
quence classification by genetic programming, IEEE Transactions on
Evolutionary Computation 19 (2015) 474-489.

A. Cano, S. Ventura, K. J. Cios, Multi-objective genetic programming
for feature extraction and data visualization, Soft Computing (2015)
1-21.

B. Tran, B. Xue, M. Zhang, Genetic programming for feature construc-
tion and selection in classification on high-dimensional data, Memetic
Computing 8 (2016) 3-15.

P. G. Espejo, S. Ventura, F. Herrera, A survey on the application of
genetic programming to classification, IEEE Transactions on Systems,
Man, and Cybernetics, Part C 40 (2010) 121-144.

J. F. Miller, P. Thomson, Cartesian genetic programming, in: Genetic
Programming, Springer, 2000, pp. 121-132.

Z. W. Geem, J. H. Kim, G. Loganathan, A new heuristic optimization
algorithm: harmony search, Simulation 76 (2001) 60-68.

D. Manjarres, 1. Landa-Torres, S. Gil-Lopez, J. Del Ser, M. N. Bilbao,
S. Salcedo-Sanz, Z. W. Geem, A survey on applications of the harmony

29

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

search algorithm, Engineering Applications of Artificial Intelligence 26
(2013) 1818-1831.

E. J. Pauwels, P. M. de Zeeuw, E. B. Ranguelova, Computer-assisted
tree taxonomy by automated image recognition, Engineering Applica-
tions of Artificial Intelligence 22 (2009) 26-31.

V. G. Sigillito, S. P. Wing, L. V. Hutton, K. B. Baker, Classification of
radar returns from the ionosphere using neural networks, Johns Hopkins
APL Technical Digest 10 (1989) 262-266.

E. Alexandre, L. Cuadra, S. Salcedo-Sanz, A. Pastor-Sanchez,
C. Casanova-Mateo, Hybridizing extreme learning machines and ge-
netic algorithms to select acoustic features in vehicle classification ap-
plications, Neurocomputing 152 (2015) 58-68.

Z. W. Geem, Novel derivative of harmony search algorithm for discrete
design variables, Applied Mathematics and Computation 199 (2008)
223-230.

Z. W. Geem, K.-B. Sim, Parameter-setting-free harmony search algo-
rithm, Applied Mathematics and Computation 217 (2010) 3881-3889.

K. Sorensen, Metaheuristics — the metaphor exposed, International
Transactions in Operational Research 22 (2015) 3-18.

D. Weyland, A critical analysis of the harmony search algorithm — how
not to solve sudoku, Operations Research Perspectives 2 (2015) 97-105.

M. Padberg, Harmony search algorithms for binary optimization prob-
lems, in: Operations Research Proceedings, Springer, 2012, pp. 343-348.

D. Weyland, A rigorous analysis of the harmony search algorithm: How
the research community can be misled by a “novel” methodology, Model-
ing, Analysis, and Applications in Metaheuristic Computing: Advance-
ments and Trends (2012) 72.

Z. W. Geem, Research commentary: Survival of the fittest algorithm or
the novelest algorithm?, International Journal of Applied Metaheuristic
Computing (IJAMC) 1 (2010) 75-79.

30

[45]

[46]

[49]

[50]

[52]

[53]

[54]

M. Saka, O. Hasancgebi, Z. Geem, Metaheuristics in structural opti-
mization and discussions on harmony search algorithm, Swarm and
Evolutionary Computation 28 (2016) 88-97.

J. H. Kim, Harmony search algorithm: A unique music-inspired al-
gorithm, in: 12th International Conference on Hydroinformatics, HIC
2016, 2016.

J. Swan et al., A research agenda for metaheuristic standardization, in:
Proceedings of the XI Metaheuristics International Conference, 2015.

S. Adriaensen, A. Nowé, Towards a white box approach to automated
algorithm design, in: International Joint Conferences on Artificial In-
telligence (IJCAI), 2016, pp. 554-560.

M. El-Abd, An improved global-best harmony search algorithm, Applied
Mathematics and Computation 222 (2013) 94-106.

Z. W. Geem, State-of-the-art in the structure of harmony search algo-
rithm, in: Recent Advances In Harmony Search Algorithm, Springer,
2010, pp. 1-10.

M. Mahdavi, M. Fesanghary, E. Damangir, An improved harmony search
algorithm for solving optimization problems, Applied Mathematics and
Computation 188 (2007) 1567-1579.

J. Del Ser, M. Matinmikko, S. Gil-Lépez, M. Mustonen, Centralized and
distributed spectrum channel assignment in cognitive wireless networks:
a harmony search approach, Applied Soft Computing 12 (2012) 921-930.

S. Zhan, J. F. Miller, A. M. Tyrrell, A developmental gene regula-
tion network for constructing electronic circuits, in: Evolvable Systems:
From Biology to Hardware, Springer, 2008, pp. 177-188.

M. M. Khan, G. M. Khan, J. F. Miller, Efficient representation of recur-
rent neural networks for markovian/non-markovian non-linear control
problems, in: International Conference on Intelligent Systems Design
and Applications (ISDA), IEEE, 2010, pp. 615-620.

M. M. Khan, A. M. Ahmad, G. M. Khan, J. F. Miller, Fast learning
neural networks using cartesian genetic programming, Neurocomputing
121 (2013) 274-2809.

31

[56]
[57]

[58]

[59]

[60]

[61]

[62]

[63]
[64]

[65]

[66]

J. F. Miller, Cartesian genetic programming, Springer, 2011.

S. Luke, Essentials of metaheuristics. lulu, 2009, Available for free
at http://cs. gmu. edu/sean/book/metaheuristics/. There is no corre-
sponding record for this reference (2011).

K. Kira, L. A. Rendell, The feature selection problem: Traditional
methods and a new algorithm, in: AAAI, volume 2, 1992, pp. 129-134.

K. Kira, L. A. Rendell, A practical approach to feature selection, in:
Proceedings of the ninth international workshop on Machine learning,
1992, pp. 249-256.

I. Kononenko, E. Simec, M. Robnik-Sikonja, Overcoming the myopia of
inductive learning algorithms with relieff, Applied Intelligence 7 (1997)
39-55.

M. Lichman, UCI machine learning repository, 2013. URL:
http://archive.ics.uci.edu/ml.

P. F. Silva, A. R. Marcal, R. M. A. da Silva, Evaluation of features for
leaf discrimination, in: Image Analysis and Recognition, Springer, 2013,
pp- 197-204.

L. Breiman, Random forests, Machine learning 45 (2001) 5-32.

C.-W. Hsu, C.-J. Lin, A comparison of methods for multiclass support
vector machines, IEEE Transactions on Neural Networks 13 (2002) 415
425.

G.-B. Huang, D. H. Wang, Y. Lan, Extreme learning machines: a
survey, International Journal of Machine Learning and Cybernetics 2
(2011) 107-122.

E. Elhariri, N. El-Bendary, A. E. Hassanien, Plant classification system
based on leaf features, in: Computer Engineering & Systems (ICCES),
2014 9th International Conference on, IEEE, 2014, pp. 271-276.

32

