
FIR Forecasting Strategies Able to Cope with Missing Data:  
A Smart Grid Application 

Sergio Juradoa, Àngela Nebotb, Fransisco Mugicab and Mihail Mihaylovc 
 

ᵃ Sensing & Control Systems, Aragó 208-210, 08011 Barcelona, Spain 
Email: sergio.jurado @sensingcontrol.com 

Email: s.juradogomez@gmail.com 
Phone: +34 605 565 303; 

ᵇ Soft Computing research group, Technical University of Catalonia, Jordi Girona 1-3, 08034 Barcelona, Spain 
Email:{angela,fmugica}@lsi.upc.edu  

c AI lab, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium 
Email: mmihaylo@vub.ac.be 

 

Abstract: Dealing with missing data is of great practical and theoretical interest in forecasting applications. In this 
study, we deal with the problem of forecasting with missing data in smart grid and smart home applications, where 
the information from home area sensors and/or smart meters is sometimes missing, which may hinder or even prevent 
the forecasting of the next hours and days. In concrete, we focus in a Soft Computing technique called Fuzzy 
Inductive Reasoning (FIR) and its improved version that can cope with missing information in the forecasting 
process: flexible FIR. In this article eight different strategies for flexible FIR forecasting are defined and studied 
taking into account: causal relevance of input variables, consistency of predictions, inertia criterion and K-Nearest 
Neighbours. Furthermore, we evaluate the implications of prediction accuracy and number of registers predicted, 
when the number of Missing Values (MVs) in the training dataset is increased progressively. To this end, a real smart 
grid forecasting application, i.e. electricity load forecasting, has been chosen in this study. The results show that all 
eight strategies proposed are able to cope with MVs and take advantage of the inherent information in the data, with 
better results in those strategies making use of causal relevance. In addition, the robustness of flexible FIR and its 
eight strategies are proved taking into account that the percentage of registers predicted is on average 96.15% when 
the %MVs in training dataset was around 73%. 

Keywords: Soft Computing, Fuzzy Inductive Reasoning, Entropy-based Feature Selection, Prediction with Missing 
Values, Energy Modelling 

1. Introduction 

The problem of missing data is of great practical and theoretical interest in forecasting applications. It is 
important to know how to react to certain situations where Missing Values (MVs) are present both during 
the model generation and the offline/online forecasting. As an example, when a sensor fails in a 
production process, it might not be necessary to stop everything if sufficient information is implicitly 
contained in the remaining sensor data. Furthermore, in economic forecasting, one might want to continue 
to use a predictor even when an input variable becomes meaningless (for example, due to political 
changes in a country). In real breast cancer problems [1], missing data imputation is an important task in 
cases where it is crucial to use all available data and not discard records with missing values. 

In this study, we deal with the missing data problem in smart grid or smart home forecasting applications. 
The information that arrives from the different sensors in the home area network and/or the smart meters, 
may contain missing data, which may hinder or even prevent the forecasting of the next hours and days. 
This issue is observed in projects such as iURBAN [2] and GreenCom [3], where either the smart 
metering infrastructure or the smart home gateway, occasionally, does not send data correctly. This may 
be caused by a loss in the Internet connection of the gateway, fail in the communication between smart 
meters and concentrators, or issues between the database interfaces. 

In many studies, the problem of MVs is treated from a pre-processing perspective; conventional missing 
data imputation techniques, such as the substitution with the mean for an unknown feature is studied in 
[4], which can lead to solutions that are far from optimal. In [5] Lakshminarayan et al., explore the use of 
machine-learning based alternatives to standard statistical data completion methods, for dealing with 
missing data. Barladi et al. [6] propose a novel method for missing data reconstruction by fuzzy 
similarity. Other studies where the missing data problem is approached from a pre-processing point of 
view are [7] and [8]. However, conventional missing data deletion techniques like list-wise and pair-wise 
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have been observed to present several limitations, such as discarding a great deal of potentially usable 
data or wrong correlation matrices respectively. Moreover, in smart grid or smart home applications 
where online predictions are needed, systems must deal continuously with the problem of unknown 
features. 

In this paper, we address the missing data problem found out in a Soft Computing technique called Fuzzy 
Inductive Reasoning (FIR) [9][10]. Although its popularity is not comparable to other Soft Computing 
techniques such as Neural Networks (NN), this methodology has been proved to model real complex 
systems with high accuracy compared to other typical Artificial Intelligence (AI) and statistical 
techniques [11][12][13][14].  

There are few studies about how MVs affect the model generation and prediction in Soft Computing 
techniques. Most of them focus on neural networks [15][16] or genetic algorithms [17] but, to the best of 
our knowledge, not in FIR. While FIR displays high prediction accuracy in complex systems, it has 
several limitations when missing data are present in the forecasting process. In [18] we introduced the 
concept of flexible FIR that can cope with missing information in the input pattern as well as in situations 
where patterns are not found in the behaviour matrix. However, that study is limited in the analysis of 
output forecast strategies and the evolution of flexible FIR prediction accuracy against the number of 
MVs in the dataset. 

The contributions of this article can be summarized as follows. We perform a detailed analysis of an 
improved version of FIR, which can cope with missing information in the input values, as well as during 
the prediction phase. Eight different FIR forecasting strategies are proposed and studied taking into 
account several features to perform the prediction: causal relevance of input variables, consistency of 
predictions, inertia criterion and K-Nearest Neighbours. Furthermore, we evaluate the implications in 
prediction accuracy and number of instances1 predicted, when the number of MVs in the training dataset 
is increased progressively. To this end, a real smart grid forecasting application, i.e. electricity load 
forecasting, has been chosen in this study.  

The reason behind these experiments is to select the most appropriate Output Forecast strategy, which is 
not highly affected by the dispersion of the output classes and preserves confidence in prediction. In 
concrete, we suggest 8 different strategies that take into account different parameters and features for this 
calculation. 

The paper is structure as follows: in section 2 the standard FIR methodology is summarized and the 
problem of MVs in this methodology is identified. Then, section 3 analyses a solution to cope with the 
missing data problem in FIR, called flexible FIR Prediction, and proposes 8 different output forecasting 
strategies. Next, section 4 presents the datasets used, which come from eight different buildings belonging 
to the UPC (Technical University of Catalonia), the experiments and the discussion of the results 
encountered when applying standard and flexible FIR Prediction to the datasets. Finally, section 5 points 
out the conclusions of our research and the near future work. 

2. Fuzzy Inductive Reasoning 
2.1 Standard FIR 

The conceptualization of the FIR methodology arises of the General System Problem Solving (GSPS) 
approach proposed by Klir [19]. This methodology of modelling and simulation has the ability to describe 
systems that cannot be easily described by classical mathematics or statistics, i.e. systems for which the 
underlying physical laws are not well understood [9]. A FIR model is a qualitative non-parametric model 
based on fuzzy logic. The FIR model consists of its structure (relevant variables or selected features) and 
a pattern rule base (a set of input/output relations or history behaviour) that are defined as if-then rules.  

The FIR methodology is a modelling tool that is able to infer the model of the system under study very 
quickly and it is a good option for real time forecasting. Moreover, it is able to deal with missing data as it 
has been already proved in a large number of applications [13]. However, its capacity to deal with 
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missing data decreases significantly when the complexity of the mask is big, because it implies the 
generation of a big number of pattern rules in the behaviour matrix containing MVs. In Section 3 we deal 
with this issue. 

Before starting the process of finding a FIR model in order to make predictions from the data, it is 
necessary to fuzzify the data in order to reduce the search space and speed up the optimization process 
[9]. FIR embraces a slightly different approach than other fuzzy techniques to solve the uniqueness 
problem. Rather than mapping into multiple fuzzy rules, FIR only maps into a single rule with the largest 
likelihood. To this end, FIR converts each quantitative value into a qualitative fuzzy triple, i.e. the class, 
the membership and the side values. The class value represents a discretization of the original real-valued 
variable. The fuzzy membership value denotes the level of confidence, expressed in the class value 
chosen to represent a particular quantitative value. The side value indicates whether the data point is to 
the left or the right of the peak of the corresponding fuzzy membership value. Thus, a single quantitative 
value is recoded into a qualitative triple which contains exactly the same information as the original 
quantitative value and it is thus possible to regenerate the quantitative value precisely. For a deeper 
insight into the fuzzification process refer to [9].  

The process of obtaining a FIR model structure corresponds to a Feature Selection Process (FSP). The 
model structure holds the relevant features and it is represented by a mask through which the causal 
relations (both spatial and temporal) between input and output variables x are described. Table 1 presents 
an example of mask for a system with four inputs (u1, u2, u3, u4) and one output (y) variables.  

Table 1. Example of mask for a system with four inputs (u1, u2, u3, u4) and one output (y) variables 

x 
t 

u1 u2 u3 u4 y 

t - 3t -1  0  0  0 -2 
t - 2t  0 -3  0  0  0 
t - t  0  0  0 -4  0 
t  0  0  0  0 +1 

 

Each negative element in the mask is called mask input (m-input). It exhibits a causal relation with the 
output, i.e. it influences the output up to a certain degree. The single positive value denotes the mask 
output (m-output). In the example of Table 1, the prediction of the output at the current time, y(t), is 

directly related to the variables u1, u2, u4 and y in different times t, i.e. u1(t-3t), y(t-3t), u2(t-2t) and 

u4(t-t). 

The optimal mask function of FIR is used to obtain the best mask, i.e. the best FIR structure, for the 
system under study [9]. The procedure consists in finding the mask that best represents the system by 
computing a quality measure for all possible masks, and selecting the one with the highest quality. The 
process starts with the definition of a so-called mask candidate matrix encoding an ensemble of all 
possible masks from which the best is to be chosen. Table 2 shows and example of mask candidate matrix 
for the same system example of Table 1.  

The mask candidate matrix contains elements of value -1, where the mask has potential causal relations. 
Elements of value +1, where the mask has its output can also be found. Finally, elements of value 0 
denote forbidden connections.  

Table 2. Example of mask candidate matrix for a system with four inputs (u1, u2, u3, u4) and one output (y) 

x 
t 

u1 u2 u3 u4 y 

t - nt -1 -1 -1 -1 -1 
… … … … … … 

t - 2t -1 -1 -1 -1  -1 
t - t -1 -1 -1 -1  -1 
t -1 -1 -1 -1 +1 

 



The number of rows of the mask candidate matrix is called the depth of the mask. It represents the 
temporal domain that can influence the output. Each row is delayed relative to its successor by a time 
interval of δt representing the time lapse between two consecutive samplings. δt may vary from one 
application to another. In the study presented in this paper, a value of δt equal to 1 hour is used, due to the 
data characteristics.  

The optimal mask function of FIR offers the possibility to specify an upper limit to the acceptable mask’s 
complexity, i.e. the largest number of non-zero elements that the mask may contain. Starting from the 
candidate matrix with minimum complexity two, i.e. 1 input and the output, the qualitative model 
identification process looks for the best out of the legal masks. Then it is proceed, by searching through 
all legal masks of complexity three, i.e. all masks with two inputs and an output, and find the best of 
these. It continues in the same way until the maximum complexity has been reached. This strategy 
corresponds to an exhaustive search of exponential complexity. However, suboptimal search strategies’ of 
polynomial complexity can also be used, i.e. genetic algorithms [20].  

Each possible mask is compared to the others with respect to its potential merit. The optimality of the 
mask is evaluated with respect to the maximization of its forecasting power that is quantified by means of 
the quality measure. Let us focus on the computation of the quality of a specific mask. The overall quality 
of a mask, Qm, is defined as the product of its uncertainty reduction measure, Hr and its observation ratio, 
Or, as described in equation 1. 

ܳ௠	 ൌ .	௥ܪ	 ௥ܱ    (1) 

The uncertainty reduction measure is defined in equation 2. 

௥ܪ ൌ 	1 െ ௠ܪ
௠௔௫ܪ
ൗ   (2) 

 

Where Hm is the overall entropy of the mask and Hmax the highest possible entropy. Hr is a real number in 
the range between 0.0 and 1.0, where higher values usually indicate lower uncertainty and therefore an 
improved forecasting. The highest possible entropy Hmax is obtained when all probabilities are equal. Zero 
entropy is encountered for totally deterministic relationships. The overall entropy of the mask is then 
computed as described in equation 3. 

௠ܪ ൌ െ∑ ሺ݅ሻ∀௜݌ .  ௜  (3)ܪ
 

Where p(i) is the probability of that input state to occur and Hi is the Shannon entropy relative to the ith 
input state. The Shannon entropy relative to the ith input state is calculated from equation 4. 

௜ܪ ൌ 	∑ .ሻ݅|݋ሺ݌ ሺ∀௢݌ଶ݃݋݈  ሻ  (4)݅|݋
 

Where p(o|i) is the ‘conditional probability’ of a certain output state o to occur, given that the input state i 
has already occurred. The term probability is meant in a statistical rather than in a true probabilistic sense. 
It denotes the quotient of the observed frequency of a particular state in the episodically behaviour 
divided by the highest possible frequency of that state. The observation ratio, Or, measures the number of 
observations for each input state. From a statistical point of view, according to [21], every state should be 
observed at least five times. If every legal input state has been observed at least five times, Or is equal to 
1.0. If no input state has been observed at all (no data are available), Or is equal to 0.0. The optimal mask 
is the mask with the largest Qm value, being the one that generates forecasts with the smallest amount of 
uncertainty, and, therefore, the features that compose the structure of this model are the ones selected as 
the most relevant ones.  

Once the most relevant features are identified, they can be used in any modelling methodology. In FIR the 
mask is used to obtain the pattern rule (called behaviour matrix) from the fuzzified training dataset. Each 
pattern rule is obtained by reading out the class values through the ‘holes’ of the mask (the places where 
the mask does not have zero values), and it places each class next to each other to compose the rule. The 
class values are the mapped continuous variables into categorical.  



Once the behaviour matrix and the mask are available, a prediction of future output states of the system 
can take place using the FIR inference engine, as described in Figure 1. This process is called qualitative 
simulation. The FIR inference engine is based on the K-Nearest Neighbour (KNN) rule, commonly used 
in the pattern recognition field. The forecast (of the output variable) is obtained by means of composition 
of the potential conclusion that results from firing the k rules, whose antecedents have best matching with 
the current input state. 

As can be seen in the left hand side of Figure 1, the mask is placed on top of the qualitative data matrix 
(fuzzified test set), in such a way that the output matches the first element to be predicted. The values of 
the inputs are read out from the mask. And the behaviour matrix (pattern rule base) is used, as it is 
explained later, to determine the future value of the output, which can then be copied back into the 
qualitative data matrix. The mask is then shifted one position down to predict the next output value. This 
process is repeated until all the desired values have been forecast. 

The fuzzy forecasting process works as follows: the input pattern of the new input state is compared with 
those of all previous recordings of the same input state contained in the behaviour matrix. For this 
purpose, a normalization function is computed for every element of the new input state and an Euclidean 
distance formula is used to select the KNN. They are the ones with smallest distance, which are used to 
forecast the new output state. The contribution of each neighbour to the prediction of the new output 
state’s estimation is a function of its proximity. This is expressed by giving a distance weight to each 
neighbour, as shown in Figure 1. The new output state values can be computed as a weighted sum of the 
output states of the previously observed k nearest neighbours. In section 3.1, the standard and new fuzzy 
forecasting strategies are explained in detail. 

 

Figure 1. Qualitative prediction process diagram (with an example containing three inputs and one output) of 
Standard FIR 

2.2 FIR model with missing data 

As explained in detail in the previous section, a model in FIR methodology is composed of the mask 
(model structure) and a set of pattern rules, called behaviour matrix. The mask defines the causal and 
temporal relations between the inputs and output variables, i.e. it contains the variables selected as 
relevant. Once the best mask has been identified, it can be applied to the qualitative data obtained from 
the system resulting in a particular pattern rule base. This is a set of rules that represents pseudo-static 
relationships and that contains the system’s behaviour.  

The FIR process is illustrated in Figure 2, for one of the subsets with MVs. The left hand side of this 
figure shows an excerpt of the qualitative data matrix that stores the class values. In this example a class 
value of -9 indicates a missing value. The dashed box symbolizes the mask that is shifted downwards 



along the class value matrix. The circled values in the mask denote the positions of the relevant selected 
features, whereas the square indicates the position of the output. The class values are read out from the 
class value matrix through the circled values of the mask, and are placed next to each other in the 
behaviour matrix that is shown on the right hand side of the figure. Here, each row represents one 
position of the mask along the class value matrix. Each row of the behaviour matrix represents one 
pseudo-static qualitative state or a pattern rule. 

From the example illustrated in Figure 2, it can be seen that for a qualitative data matrix of 358 registers2 
containing 24 consecutive MVs, and a mask depth of 168, it is possible to generate up to 191 pattern rules 
that contain at least one missing element. This can become a huge problem due to the fact that the current 
prediction process of FIR methodology discards the pattern rules containing MVs, and, therefore, the 
valid pattern rule base available is reduced significantly. This implies that the FIR prediction process is 
barely able to predict a new input pattern due to the fact that it does not exist in the behaviour matrix. 

Due to the fact that the FIR prediction process discards those pattern rules that contain one or more 
missing elements, it performs the inference using only the set of pattern rules that are complete, i.e. do not 
contain any MV. In consequence, a lot of information is lost. 

 

Figure 2. FIR process that generates the pattern rule base starting from the qualitative training dataset and the optimal 
mask. Example that contains 24 consecutive MV registers (reg.) in the input data. The figure illustrates the high 
proportion of generated pattern rules (191) that contains MVs. 

In addition to this problem, there is a second weakness of FIR when it faces MVs, in particular when the 
input pattern contains MV. It may happen, especially with online predictions, where input pattern 
generated may contain MVs: failure in the communication between smart meter and concentrator, the 
battery of a home area sensor is depleted, loss of internet connection, etc. As it is shown in Figure 3, in 
the standard version of FIR, the input pattern is searched in the behaviour matrix. However, it cannot be 
found because, as previously explained, i) the behaviour matrix discards pattern rules containing missing 
elements and ii) the input pattern could represent several states because it contains a missing value. So, 
the m-inout could belong to any class of the fuzzified variable. 
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Figure 3. Input pattern containing MV (-9 value), which is unable to find a matched pattern in the behaviour matrix 
and therefore unable to predict 

3. Flexible FIR Prediction 

The enhancement proposed in this paper is to develop an algorithm that makes the inference process be 
flexible in a dynamic way. The idea is to use the traditional algorithm when there exist in the behaviour 
matrix rules that have the same input pattern (free of MVs) as the one to be predicted. When this is not 
the case, the algorithm will select the set of pattern rules that have the same input pattern, but relaxing one 
of its m-inputs. That is, the same input pattern, but allowing one of the m-inputs to be missing. Basically, 
this means that we are using a different mask than the one selected by FIR in the modelling process. 
Therefore, we are ignoring one of the variables selected as relevant in the feature selection process. It is 
possible that the “new” mask is suboptimal, but very close to the quality of the optimal mask. However, it 
can also happen that the “new” mask is a bad one.  

The new FIR flexible prediction algorithm is depicted in Figure 4. After the training of the model, when a 
new (online) class input pattern arrives, it is checked whether it contains MVs. If not, it continues with the 
standard FIR prediction. If it contains MVs, the new algorithm relaxes the input pattern, particularly, the 
positions of MVs.  

At this point, a Maximum Relax Parameter (MRP) is required. The MRP specifies the maximum number 
of relaxed parameters of the input pattern. The greater the number of m-input patterns relaxed, the larger 
the search space. And, therefore, more noise is added to the final prediction. The total number of missing 
elements allowed in the pattern rules to perform the inference process is determined from the size of the 
input pattern: 

MRP = (Size Input Pattern) / 2   (5) 

Considering the example of Figure 3, the Size Input Pattern is 4 and therefore the MRP is 2, which means 
that the input pattern will be relaxed up to 2 m-inputs. If the maximum relaxation is reached and there is 
none match in the behaviour matrix, the forecast value assigned is the same as the previous forecasted 
value. In hourly energy forecasting problems this solution is usually more convenient than not predicting, 
because current and previous hourly consumptions are highly correlated. 

In the MRP formula, we consider that dividing Size Input Pattern by more than 2 the relaxed input pattern 
may differ too much from the original one because the information lost is too high. 



 

Figure 4. Flow diagram of the FIR flexible prediction algorithm 

If the MRP is not reached, the behaviour matrix is relaxed to include all the pattern rules without the m-
input parameter relaxed. As Figure 5 shows (top), the input pattern remains the same but a missing m-
input is allowed. A different mask from the one selected by FIR in the modelling process is used, 
ignoring, therefore, one of the variables selected as relevant in the feature selection process. Similarly, 
when the input pattern is not found in the behaviour matrix, n Adapted Behaviour Matrices are generated, 
n being all possible combinations of relaxation (bottom of Figure 5 with n=4). Afterwards, it is verified if 
there are any matches of the new relaxed input pattern in the relaxed behaviour matrices. 

If there is no match of the new relaxed input pattern in any of the n adapted behaviour matrices, the 
algorithm will look for patterns with two missing elements. The total number of missing elements 
allowed in the pattern rules to perform the inference process will be determined in function of the size of 
the input pattern and the quality of the suboptimal masks associated to the input patterns. 



 

Figure 5. Adaptation of the behaviour matrix when there are MVs in the input pattern (top) or the input pattern is not 
found in the original behaviour matrix (down) 

3.1 Output Forecast Computation 

As explained in section 2.1, the fuzzy forecasting compares the current input pattern with previous 
recordings that have the same input pattern in the behaviour matrix. Then an Euclidean distance formula 
is used to select the KNN that are used to forecast the new output state. The contribution of each 
neighbour to the estimation of the new output state prediction is a function of its proximity. 

In the new approach, flexible FIR prediction may result in a dispersion of the output classes, due to the 
loss of information in the input pattern and in the behaviour matrix when they have been relaxed. This 
could result in a difficult prediction with low confidence. To cope with this possible problem, in this 
research we want to investigate different Output Forecast strategies (In Figure 4 they are represented 
beneath the computation of the Euclidean Distances). The reason behind these experiments is to select the 
most appropriate Output Forecast strategy, which is not highly affected by the dispersion of the output 
classes and preserves confidence in prediction. In concrete, we suggest 8 different strategies that take into 
account different parameters and features for this calculation. 

3.1.1 Classic FIR KNN (aKnn) 

In this case, the output is computed using the Euclidean distance and the specific KNN algorithm of FIR.  

In FIR the membership and side functions of the new input state are compared with those of all previous 
recordings of the same input state contained in the class behaviour matrix [9]. For this purpose, a 
normalization function is computed for every element of the new input state: 

௜݌ ൌ ܵ݅݀݁௜ ൉ ܤ ൉ ඥlnሺܾ݉݁ܯ௜ሻ ൅ 0.5  (6) 

where ܤ ൌ ሺ4 ൉ ln	ሺ0.5ሻሻିଵ/ଶ, and Membi and Sidei are the membership and side values respectively of the 
input i. 

For the extreme classes the functions are calculated in the following way. For the left class: 

௜݌ ൌ ܥ ൉ ඥlnሺܾ݉݁ܯ௜ሻ   (7) 

where ܥ ൌ ln	ሺ0.5ሻሻିଵ/ଶ. For the right class: 

௜݌ ൌ 1 െ ܥ ൉ ඥlnሺܾ݉݁ܯ௜ሻ   (8) 

Irrespective of whether an original signal is, the corresponding pi signal ranges exactly from 0 to 1. 

The pi values are quantitative real valued variables that can be used to represent the relative magnitude of 
a particular qualitative triple. However they are not regenerations of the original quantitative signals. 
They are normalized variables. Consequently different pi signals can be compared to each other or can be 



summed up without weighing them relative to each other. Something that would not be meaningful using 
the original or regenerated signals. The normalization function is a transformation from a qualitative triple 
to a quantitative variable but this variable lives in a different space from the original quantitative variable. 

The pi values corresponding to the different variables of an input state are then concatenated to form the 
vector: 

݌ ൌ ሾ݌ଵ, ,ଵ݌  ௧ሿ    (9)݌…

assuming the state contains t inputs (in case of the example, t = 3 because one variable is missing). We 
call the vector p the norm image of the original input state. 

The analysis proceeds by computing norm images for every previous recording of the same input state. 
Let us call these vectors pk. Every pk vector is a little different, since only the class values of the recorded 
input states are identical, but not their membership or side function values. 

Finally the norm of the differences between the p vector representing the new norm image and the pk 
vectors representing all previous recordings of the same input state are computed: 

௝݀ ൌ ඥ∑ ሺ݌௜ െ ௜௞ሻଶே݌
௜ୀଵ    (10) 

and the k previous recording with the smallest dj are identified (if at least k such recordings are found in 
the class behaviour matrix). The KNN are used to forecast the new output state. 

The contribution of each neighbour to the estimation of the prediction of the new output state is a function 
of its proximity. The new output state values can be computed as a weighted sum of the output states of 
the previously observed k nearest neighbours. 

Notice that this strategy corresponds to the classic KNN of standard FIR but using an adapted Behaviour 
Matrix. 

3.1.2 Use of the causal relevance 

In this strategy the causal relevance (CR) is incorporated in the calculation of the Euclidean distance [22]. 
The idea behind this strategy is simple and can be addressed through the following questions: How much 
does each m-input influence the prediction of the output? Is it possible to compensate the loss of causality 
of the m-input I2? If it is possible to quantify the importance of each m-input with respect to the output, 
then it is possible to assign a higher weight to those m-inputs with a higher importance.  

The Output Forecast is based in the KNN algorithm of FIR, as in the previous case. 

Similarly to the previous strategy, dj is computed for each state, but adding a new distance measure that 
takes the CR into account. Therefore, the CR is used as a weight in the modified Euclidean distance 
formula, as presented in equation 11: 

௝݀ ൌ ට∑ ሺ൫ܴௗ௜௦೔൯ ∗ ሺ݌௜ െ ௜௞ሻଶሻே݌
௜ୀଵ   (11) 

Where Rdisi is the quantified CR of the ith input. Using the weight-modified distance formula of equation 
2, the distances of the most relevant inputs exert a stronger influence on the overall distance of this 
specific input pattern, whereas the influence of the less relevant inputs is reduced with respect to the 
classical Euclidean distance formula, which has been used previously. 

3.1.2.1 Causal Relevance Qnovar (bQnv) 

In [22] several formulae have been proposed, studied and used for the prediction of different types of 
applications, i.e. medical, biological and linear systems. The best weight equation that behaves 
consistently well in all the aforementioned applications is: 

ܴௗ௜௦೔ ൌ 1 െ ܳ௡௢௩௔௥೔   (12) 

The CR Qnovari is based on the quality of the mask Qm. Qnovari is the quality of the mask that is identical to 
the optimal mask except for excluding the ith m-input from the set of mask inputs. Qnovari can be 
interpreted as an indirect causal correlation between the specific m-input under study and the output to be 



predicted. It quantifies the amount of information that will be lost when the ith m-input is eliminated from 
the model that will be used to predict the system. 

3.1.2.2 Causal Relevance Qvar (bQv) 

Similarly, as described in [22], the best weight equation found for the CR Qvar is: 

ܴௗ௜௦೔ ൌ ܳ௩௔௥೔    (13) 

Qvari is the quality of the mask, of complexity two, that contains only the m-output and the ith m-input. 
Qvari can be interpreted as a direct causal correlation between the ith m-input and the output to be 
predicted. 

3.1.2.3 Causal Relevance Pnovar (bPnv) 

In this strategy the CR is not based on the quality of the mask but on the Mean Squared Error (MSE) 
prediction: 

ܴௗ௜௦೔ ൌ 1 െ ௡ܲ௢௩௔௥೔   (14) 

Pnovari is the normalized MSE obtained in a validation dataset utilizing the mask that is identical with the 
optimal mask except for excluding the ith m-input [23][24]. 

௡ܲ௢௩௔௥೔ ൌ ெሺ௢௣௧ିపሻതതതതതതതതതതതതതതതതܧܵܯ ൌ 	
ெௌாಾሺ೚೛೟ష೔ሻ

∑ ெௌாಾሺ೚೛೟షೕሻ
೙
ೕసభ

 (15) 

where n is the number of m-inputs of the optimal mask and M(opt-j) is the optimal mask excluding the ith m-
input. 

3.1.2.4 Causal Relevance Pvar (bPv) 

Similar to 3.1.2.3 

ܴௗ௜௦೔ ൌ ௩ܲ௔௥೔    (16) 

The Pvar is the normalized error (inverse) obtained in a validation dataset utilizing the mask of complexity 
two that contains only the m-output and the ith m-input [23][24]. 
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where n is the number of m-inputs of the optimal mask and M(j) is the mask that contains only the jth m-
input and the m-output. 

3.1.3 Inconsistency in Forecast  

The dispersion of the output classes of the neighbours obtained in the behaviour matrix indicates a 
difficult prediction with low confidence. An indirect measure of the matched input patterns’ confidence is 
the variance of the outputs O1 (Ovariance): 

Ovariance = variance (O1)   (18) 

The CR for the calculation of Euclidean distance could not help enough in those cases, therefore, here we 
present three possible strategies to deal with high variances in O1. 

3.1.3.1 Consistency forecast 1 (cCf1) 

If Ovariance is different than 0 and the first two neighbours have the same Euclidean distance but they 
belong to different classes, then take the KNN for the first and second classes.  If Ovariance is 0, classic FIR 
KNN is used. 

3.1.3.2 Consistency forecast 2 (cCf2) 

If Ovariance is different than 0, then from all the instances that matches the input state, use the KNN of the 
most repeated output class. If Ovariance is 0, classic FIR KNN is used. 



3.1.3.3 Inertia Criterion (cIn) 

For any value of Ovariance, use the previous value as the predicted value if a confidence measure is low.  

In electricity load forecasting the previous and current value are usually highly correlated, thus the idea 
with this strategy is that if there is a high probability to perform a bad prediction due to the dispersion of 
the possible solutions, then use the previous value as the predicted value. To this end, a confidence 
measure is computed [25] and, if it is equal or below 0.5, i.e. a confidence below or equal to 50%, the 
previous value is used as the predicted value. If not, aKnn is used. 

In order to compute the confidence of a prediction the position value, Poso, of the m-output is computed 
as follows: 

௢ݏ݋ܲ ൌ ௢ݏݏ݈ܽܥ ൅ ܵ݅݀݁௢ ൉ ሺ1 െ  ௢ሻ (19)ܾ݉݁ܯ

where Classo, Sideo and Membo is the qualitative triple representing the m-ouput. Then, for each of the 
KNNs the position value of the outputs is computed. The maximum, Posmax, and minimum, Posmin, 
position values are then used to compute the confidence measure: 

݁ݎݑݏܽ݁݉	݂݁ܿ݊݁݀݅݊݋ܿ ൌ 1 െ ሺܲݏ݋௠௔௫ െ  ௠௜௡ሻ (20)ݏ݋ܲ

4. Experiments and Results 
4.1 Dataset 

Data of 8 buildings of the Universitat Politècnica de Catalunya (UPC) was obtained for this study, in 
order to have a training/test sample with high diversity of consumptions. They have different profiles of 
usage (sports centre, library, administration building, restaurant...), belong to five different campuses and 
are located in different cities. Thus, affecting different climatology (temperature, humidity, solar 
radiation, etc.), consumption patterns, schedules and working days. The buildings included are: 1) the 
Library of the ETSEIAT3 faculty in Terrassa; 2) one campus building also in ETSEIAT faculty; 3) the 
Library of EPSEM4 faculty in Manresa; 4) the Library of EPSEVG5 faculty in Vilanova 5) the bar of the 
EETAC6 faculty in Castelldefels; 6) and 7) two buildings with different classrooms and labs at FIB7 
faculty in Barcelona; and 8) the sports centre in Campus Nord also in Barcelona. The energy 
consumptions of these 8 buildings have been collected through a remote metering system every hour. 
Therefore, there are 24 recordings per day and per location. 

For all 8 buildings, the dataset comprises a whole year of electricity consumption, from 13/11/2013 to 
12/11/2014, from which we separated 91% for training and the remaining 9% for testing. The testing data 
comprises 35 different days (i.e. 35 test sets) distributed equally through the whole year; meaning around 
9 days per season and taking into account the seven days of the week (from Monday to Sunday). By 
choosing these days we pretend to evaluate the models against the changes caused by seasonal period(s) 
and day of the week.  

Experiments 

In our experiments we perform 24 hour predictions with 9 different FIR forecasting strategies; the 
standard FIR prediction and the aforementioned flexible FIR Prediction (8 output forecast strategies). On 
the one hand, the aim is to understand which output's forecast strategy can cope better with the dispersion 
of output forecast classes and low confidence in predictions (due to the presence of MVs in data). And on 
the other hand, to analyse the evolution of flexible FIR Prediction accuracy against the number of MVs in 
the dataset. 

To add MVs in the experiments, we substitute a data point by an unaccepted value for the model. In our 
current implementation of FIR we have set the missing value to -9.  

                                                           
3 ETSEIAT: School of Industrial and Aeronautic Engineering of Terrassa  
4 EPSEM: School of Engineering of Manresa  
5 EPSEVG: School of Engineering of Vilanova  
6 EETAC: School of Telecommunications and Aerospatiale of Castelldefels 
7 FIB: Barcelona School of Informatics 



Our data does not contain MVs because we need the real consumptions to evaluate standard and flexible 
FIR. Instead, MVs are added artificially (more details in sections 4.1.1 and 4.1.2). 

4.1.1 Experiment 1: Flexible FIR Strategy evaluation 

In the first experiment (Figure 6) the aim is to understand how possible it is to perform predictions with 
partial information in the input pattern and how it is correlated with the number of input variables and 
depth of the mask. To do so, we have identified three branches with different number of input variables 
and depths. In the first branch we only take into account a basic variable in load forecasting; the output 
variable, i.e. historical consumptions. In concrete, the four most relevant electricity past consumption 
selected in the FIR FSP. The second branch includes the past values of the electricity consumptions (four 
variables), and a binary variable that specifies whether it is a working day. Therefore, the second 
experiment has five inputs. Finally, the third branch includes all five inputs of the previous experiment 
plus the hours of the day variable. The FSP has been applied to different depths: 24, 72 and 24 + 24. The 
reason why these depths are chosen is explained in section 4.1.3. 

The 9% of data used for testing is substituted by MVs (only in historical consumptions output variable) 
during the training process of the model (see Table 3). With this modification in data, we are emulating 
failures in gathering the data. 

Table 3. Number of MVs in Experiment 1 and Experiment 2 

EXPERIMENT 1 
% of MVs in training dataset 
(only historical consumption 
output variable) 

Number of MVs 

9 6720 
 

EXPERIMENT 2 
% of MVs in training dataset (all 
input and output variables) 

Number of MVs 

9 20160 
18 39168 
27 58176 
36 77184 
45 96192 
54 115200 
63 134208 
72 153216 
81 172224 

4.1.2 Experiment 2: Robustness and reliability of Flexible FIR 

The second experiment consists of increasing the number of MVs in data progressively and evaluate the 
accuracy of the predictions. Figure 7, shows the scheme of the experiment, which is slightly different to 
the first experiment: the training test (without MVs) is used to compute the 4 more relevant past 
consumptions based on FIR FSP. Then n, the percentage of MVs in data, is initiated (an initial value is 
given) and we randomly substitute n% of the training data by MVs. Right after, the process of FIR model 
creation and FIR forecasting (standard and flexible) followed the scheme of the first experiment but 
always with six variables: the 4 most important past consumptions, whether it is working day and the 
hour of the day. Finally, the prediction error is computed based on the 35 test days. Then, n is increased, 
and again we randomly substitute n% of training data by MVs. The experiment is repeated until a 
maximum n%. Notice that FIR FSP is computed only once and when data do not contain MVs. 

For the purpose of the experiments described in this paper, we assumed that data was missing at random, 
i.e. there was no correlations between the occurrence of missing values for different variables, and 
ignored the mechanism of missing data. . 

Table 3 shows the number of MVs inserted in the training dataset. In this experiment, they are inserted to 
all input and output variables. Therefore, the number of MVs with n = 9% is three times more in the 
experiment 2 than 1. The number the MVs are randomly selected and it increases around 9% in each 
round. 



 

Figure 6. Scheme of Experiment 1 when depth is equal to 24. The same scheme applies to depths 72 and 24+24. The 
numbers in parentheses stand for the number of variables added in the model. 

 

 

Figure 7. Scheme of Experiment 2 to evaluate implications of MVs in the training dataset with flexible FIR 
Prediction. The numbers in parentheses stand for the number of variables added in the model. 

 

4.1.3 Model parameters 

In this study the modelling process consists of: 1) feature selection process 2) use of the relevant features 
to derive a FIR model and 3) selection of the parameters that will allow a more flexible prediction of FIR 
in case of missing data. This process is repeated for each location and each depth studied. It is decided to 
build up one model that predicts electricity consumptions one day ahead for each season instead of 4 
independent models, i.e. one per season. The main reason is that the data studied do not present a clear 
trend; hence no deseasonal pre-processing is applied because we want to study the capacity of the 
different methodologies to obtain generic models. 

The FSP is applied only to the historical consumption data and not to the hourly and daily information. It 
is decided to follow this strategy because the hourly and daily information contains only the hour of the 
day and if it is or not a working day, respectively. Therefore, the valuable information is gained with the 
actual value not with the previous ones. However, previous consumptions contain information patterns 
from where important knowledge could be extracted. 

The selection of the depth and number of variables is a crucial issue that can affect those methods that are 
more sensitive to the curse of dimensionality. When the FSP of FIR is used, when increasing the number 
of variables (i.e. complexity) and depth, the quality of the results also increases until the optimal values 
are reached. After that, increasing the number of variables may add noise to the system and end up with a 
lower-quality result. But it may also imply an unfulfillment of the observation ratio and end up with an 
impossibility of prediction. It has been empirically determined, for electrical load consumption 
applications, that more than four variables and depths higher than 72, do not increase significantly the 
quality of the FSP of FIR, while computational cost (in terms of time) does exponentially [18]. 

4.1.3.1 Model parameters Experiment 1 

To capture the most relevant previous consumptions in the electric load series, different depths are 
studied: i) previous 24 hours, ii) previous 72 hours and iii) 24 + 24: previous 24 hours and the past 24 
hours of the previous week (48 past values in total that corresponds to a depth of the mask of 168).  



With regard to the complexity of the mask, the four past consumptions selected by FIR are taken into 
account in all the models developed in this work and the mask increases to five and six when the variables 
working day and hour are added. 

Regarding the fuzzification parameters, three classes and the equal frequency partition algorithm have 
been used to discretize the electrical load consumption and hour of the day variable. Working day 
variable is binary and, therefore, it has been discretized into two classes. 

Finally, in the Output Forecast, the parameter set for the KNN is k=5, because as we have seen in other 
experiments with same application [11][12][18] it has good results. 

4.1.3.2 Model parameters Experiment 2 

Here the focus is not on the best model configuration for predictions, but in the prediction error evolution 
increasing the number of MVs in the training dataset. So then, the depth and complexity selected are 
those with better results in experiment 1, which are 48 and 6 respectively (Figure 8 and Figure 9). 

In the Output Forecast, k remains the same as experiment 1. 

4.1.4 Flexible FIR Prediction parameters 

As the standard FIR Output Forecast, the parameter set for the KNN in the new strategies will be also 
k=5. Apart from that, there are other few parameters to be determined in the new flexible FIR Prediction. 

4.1.4.1 bPnv and bPv 

As reviously pointed out in section 3.1, the Pnovar and Pvar are computed using a validation dataset. The 
validation dataset is taken from the training dataset (test dataset is not used to compute Pnovar and Pvar, they 
are independent procedures), which is a total 7896 data points; 80% is used for training and 20% for 
testing. 

4.2 Evaluation Criteria 

There are many measures of forecast's accuracy in the literature [26]. We require a statistical quality 
measure, which is able to compare the different forecasting methods in buildings with different average 
loads. 

The Normalized Mean Squared Error (NMSE), described in equation 21, is used as the error measure to 
evaluate the forecasted results. 

ܧܵܯܰ ൌ
ଵ

ே
∑ ൣሺݕ௥ሺݐሻ െ ሻሻ൧ݐ௙ሺݕ

ଶே
௧ୀଵ  ሻ൯ (21)ݐ௧௥௔௜௡௜௡௚ሺݕ൫ݎܽݒ/

where yr and yf are real and forecast electric consumptions, respectively, and var(ytraining(t)) is the variance 
of the real electric consumptions used in the training data. N is the number of elements in the test dataset. 

The Mean Squared Error is not suitable to evaluate the performance of the model when values in the 
datasets differ in magnitude. For example, values predicted in some buildings are in the order of 132 
kWh, whereas, for instance, the Castelldefels Bar is in the order of 5 kWh. Hence, we decided to use the 
MSE divided by the variance of the training dataset, in order to standardize the data.  

The NMSE is not the only criterion and there are some other commonly used evaluation criteria. The 
present research also considered to use the Mean Absolute Percentage Error (MAPE) to offer a 
forecasting performance from a multi-dimensional perspective. The reason to choose MAPE is that it can 
be used to compare the performance on different datasets, because it is a relative measure. The MAPE, is 
described in equation (22). 

ܧܲܣܯ ൌ 100 ∗
ଵ

ே
∑ หሺݕ௥ሺݐሻ െ ሻሻݐ௙ሺݕ ⁄ሻݐ௥ሺݕ หே
௧ୀଵ   (22) 

However, MAPE puts a heavier penalty in negative errors than in positive errors. For example, if ݕ௥ሺ1ሻ ൌ
4.20	ܹ݄݇ and ݕ௙ሺ1ሻ ൌ 6.03	ܹ݄݇ (negative error) the MAPE is 43.57%. Whereas if ݕ௥ሺ1ሻ ൌ 6.03	ܹ݄݇ 

and ݕ௙ሺ1ሻ ൌ 4.20	ܹ݄݇ (positive error) the MAPE is 30,34%. In some applications it is interesting to 



penalize negative errors, because higher predictions than actual values can lead to an extra purchase of 
assets. In our study, we are only interested in the forecasting accuracy and it should penalize equally 
negative and positive errors. 

This observation led to the use of the so-called “symmetric” Mean Absolute Percentage Error (sMAPE) 
[27] defined by  

ܧܲܣܯݏ ൌ 200 ∗
ଵ

ே
∑ หሺݕ௥ሺݐሻ െ ሻሻหݐ௙ሺݕ ሺݕ௥ሺݐሻ ൅ ሻሻൗேݐ௙ሺݕ
௧ୀଵ  (23) 

In the example above, with sMAPE, the error obtained with both negative and positive error is 35.77%. 
Therefore, sMAPE has been chosen as the second measure of forecast's accuracy. 

In addition, it has to be highlighted that measures based on percentage errors have the disadvantage of 
being undefined when y(t) = 0 for any t in the period of interest, and having an extremely skewed 
distribution for values of y(t) very close to zero. In our experiments, it has been verified that none of the 
consumption data points y(t) is equal or very close to zero. 

5. Results 
5.1 Experiments 

Experiment 1 

Table 1 shows the results obtained by standard FIR and each of the eight flexible FIR strategies for the 
three different depths studied, and for the three experiments with different number of input variables. The 
results obtained are an average of the error prediction in the 35 test days considering the 8 buildings of 
study. 

The lowest error in each experiment is highlighted. The average prediction error of the standard FIR and 
our new implementation are equivalent and sometimes the error is lower with flexible FIR Prediction. 
These are promising results because although the new version of FIR performs predictions with MVs, 
both in input pattern and in behaviour matrix, the NMSE and sMAPE average is around 0.108 and 11% 
respectively. It is important to emphasize that the average error performed with the standard FIR does not 
contain those registers with the missing value problem because it cannot predict them, which means it 
only takes into account part of the predictions to compute NMSE and sMAPE.  

The main reason why high error values appear in some cells of Table 4 is because the table shows the 
average of 35 test days. If in those cases the prediction of a single day is quite bad then the average error 
is considerably increased. 

Table 5 shows the results obtained only when standard FIR was not able to perform a prediction, i.e. 
when there were MVs in the input pattern and/or the input pattern was not found in the behaviour matrix. 
When it is analysed, it can be seen that the NMSE and sMAPE averages are, in the best cases, around 
0.116 and 11% respectively, which is similar to the average error prediction of Table 4, although missing 
information is present. 

Figure 8 and Figure 9 show the error evolution with sMAPE in different FIR model configurations of 
standard FIR and flexible FIR (8 strategies). The average is also computed considering the prediction 
results in the 8 buildings of this study. In Figure 8 the prediction errors (of 4, 5 and 6 input variable) are 
considered to compute the average and we differentiate by the depth of the mask. Figure 9 shows the 
average of all prediction errors (with depth’s mask 24, 48 and 72) differentiated by the number of input 
variables in the FIR models. 

 



Table 4. NMSE and sMAPE Average (%) of the 35 test days representing an entire season year, in 8 different buildings, obtained by means of standard FIR Prediction and flexible FIR Prediction (F1-2-3: Output 
Forecast 1,2,3 ) 

 

 

Table 5.NMSE and sMAPE Average (%) of the days where standard FIR Prediction could not predict due to MVs 

 

Table 6. Number of registers (reg.) predicted by standard FIR Prediction and flexible FIR Prediction 

Depth: 24  Depth: 72 Depth: 48 (24+24)  

FIR Flex FIR FIR Flex FIR FIR Flex FIR 

Input Variables: 4 
reg. 6613 6720 6597 6720 6530 6720 

% 98.41 100 98.17 100 97.17 100 

Input Variables: 5 
reg. 6521 6720 6438 6720 6574 6720 

% 97.04 100 95.80 100 97.83 100 

Input Variables: 6 
reg. 5984 6720 5719 6720 5861 6720 

% 89.05 100 85.10 100 87.22 100 



Figure 8. sMAPE error evolution against different depths 
(24, 48 and 72) 

Figure 9. sMAPE evolution against different number of 
input variables (4, 5 and 6) 

Similarly, Figure 10 and Figure 11 show the error evolution with sMAPE in different flexible FIR 
Prediction model configurations, when standard FIR cannot predict due to the missing data problem. 

Figure 10. sMAPE error evolution against different 
depths (24, 48 and 72) when standard FIR cannot predict 

Figure 11. sMAPE error evolution against number of 
variables (4, 5 and 6) when standard FIR cannot predict 

In Table 6 the total average registers predicted in experiment 1 by the different methodologies are shown. 
When the flexible FIR Prediction was used, all the registers (from the test dataset) were predicted, while 
for the standard FIR decreases up to 85% with some configuration parameters. 

Experiment 2 

In Figure 12 a progression of the percentage of registers predicted versus percentage of MVs in the 
training process is shown. The y axis indicates the total number (in percentage) of registers that have been 
possible to predict from the test dataset. The x axis represents the percentage of MVs inserted in the 
training dataset (details of the experiment are explained in section 4.1.3.2 Model parameters Experiment 
2). In addition, different points of the curves have a numerical value associated, which is the average of 
the 8 building’s sMAPE. Those percentages in grey colour belong to standard FIR, while the rest are an 
average among the eight flexible FIR strategies. The percentage of registers predicted with flexible FIR 
remains almost the same (around 100%), even though percentage of MVs in training data is more than 
70%. It is observed a decrease of registers predicted with 81% of MVs. On the other hand, the percentage 
of registers with standard FIR decline to less than 10%, when MVs are present in around 20% of training 
data.  



As it can be expected the lowest errors are observed when the percentage of MVs is also low. sMAPE of 
standard FIR remains low (between 7.75% and 18.18%) but with few registers predicted (from 84.77% to 
0%). As it happens in Experiment 1, sMAPE of standard FIR does not contain those registers with the 
missing value problem, i.e. registers that standard FIR is not able to predict at all. On the other hand, 
flexible FIR strategies on average have an accuracy from 86.14% (% of MVs in training data= 9%) to 
75.13% (% of MVs in training data= 72%). However, unlike standard FIR, all strategies of this new 
approach are able to predict almost 100% of the registers except when % of MVs in training data is really 
very high, i.e. 81%. 

 

Figure 12. Prediction error (sMAPE) progression when % of MVs is increased in Standard and flexible FIR's training 
process 

In Figure 13. Prediction error (sMAPE) progression when % of MVs is increased only in flexible FIR's 
training processTwo out of the eight flexible FIR strategies performance are lower: Consist.2 (cCf1) and 
Inertia (cCf2). As it can be observed, the prediction error of 6 out of the 8 strategies are very similar and 
it cannot be seen the difference among them. However, the aim of these two figures is to show the 
tendencies of the strategies. 
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Figure 13. Prediction error (sMAPE) progression when % of MVs is increased only in flexible FIR's training process 

5.2 Discussion 

Based on Figure 8 and Figure 9 it is clear that, with this data, the optimal configurations of standard and 
flexible FIR are when mask depth is 48 and the number of input variables is 6. Whereas based on Figure 
10 and Figure 11, where standard FIR cannot predict, the optimal configuration for flexible FIR is a depth 
of 48 and 5 input variables. From these results we can get that adding more information to the FIR model 
(more input variables) both standard and flexible FIR improve the prediction accuracy, which means that 
variables working day and hour of the day add valuable information to the models. When the predictions 
are only in registers affected by the presence of MVs, the variable hour of the day is not contributing to 
improve prediction accuracy. 

As it can be seen in Table 4 prediction errors of flexible FIR Prediction are very close to standard FIR, 
although the last one discards predictions with the missing data problem. When the focus is on the results 
of registers that could not be predicted by standard FIR (Table 5), bPv (use of causal relevance Pvar) is 
the strategy with better results in more model configurations. Moreover, in 6 out of 9 model 
configurations, the strategy with better result utilise the causal relevance. These results suggest that the 
use of causal relevance in flexible FIR mitigates the impact of dispersion of output classes and the loss of 
causality due to removing of partial information from the behaviour matrix.  

It is important to highlight that both bPv and bPnv compute the causal relevance based on the MSE of the 
prediction of a validation dataset, instead of being based on the quality of the mask (as it is done with 
bQnv and bQv). This means that the computational cost to obtain the causal relevance Pvar and Pnovar is 
higher than Qvar and Qnovar, because in the first case the whole FIR forecasting process is needed, while in 
the second only the computation of mask’s quality. Thus, we believe that for a future industrial 
applications where computational cost is an important variable to consider, bQnv and bQv are the best 
strategies to be implemented. 

cCf2 and cIn accuracy decreases faster than the rest of strategies, when MVs are present in the training 
dataset, as it can be observed in Figures 10 and 11. cCf1, cCf2 and cIn make use of the Ovariance to check if 
there is dispersion of the possible output classes. When we compare cCf2 with aKnn, which is the default 
output forecast strategy of FIR, we can see that (on average) aKnn predicts better than cCf2. This 
becomes more noticeable when the percentage of MVs in data increases (Figure 12 and Figure 13). 
Similarly, cIn does not improve the prediction accuracy compared to aKnn. This does not mean that the 
confidence measure is an incorrect approximation to measure the probability to perform a prediction, but 
the use of this parameter in the strategy is not well integrated. 

Unlike cCf2 and cIn, prediction error in cCf1 strategy does not increase so fast for higher percentage of 
MVs in the data. Nevertheless, looking at Table 4 and Table 5, on average, aKnn also predicts better than 
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cCf1. Thus cCf1 strategy does not contribute significantly to improve the forecasting when dispersion of 
output classes is present. 

In consequence, it is better to respect the distances (dj) between norm images (pi) than to ignore the 
dispersion of possible output classes, or use the previous value as the predicted value, if there is a high 
probability to perform a bad prediction.  

Based on the results from experiment 2, the robustness of flexible FIR and its eight strategies are 
demonstrated taking into account that the percentage of registers predicted is around 96% when the % of 
MVs in training data was around 73%. A significant decrease in the number of registers predicted can be 
observed when MVs are present in 82% of training dataset, which is high number of MVs. Furthermore, 
the difference of prediction error when % of MVs in training data is 9% (sMAPE = 13.86%) and 63% 
(sMAPE = 24.87%) is around 11%, which is not a big difference taking into account the volume of 
information lost. Thus, flexible FIR is able to keep a good compromise between information lost and 
prediction accuracy.  

6. Conclusions and Future Work 

In this work a comparison of FIR forecasting strategies is performed when MV is present in data. Due to 
some limitations in standard FIR, it is not able to perform predictions when it contains missing data in the 
input pattern and also it discards pattern rules with MVs. To cope with this situation we proposed an 
improved version of the FIR fuzzy forecasting, which is called flexible FIR Prediction. Eight different 
strategies of prediction for this new approach are proposed and compared to understand: how loss of 
causality of a variable, dispersion of output classes and increase of missing data in the training process 
affect the forecasting accuracy. This study defines a more reliable and robust FIR forecasting process, and 
could help for instance, in load modelling applications where missing data is present in online predictions. 

The experiments presented contain MVs during the training process and the online prediction. All eight 
strategies proposed are able to cope with them and take advantage of the inherent information in the data, 
even though it contains MVs. In this research, we demonstrate that flexible FIR is able to predict 
electricity consumptions accurately, making use of partial information, whereas standard FIR cannot. 

On average, the strategy with lower prediction errors is bPv, which uses the causal relevance Pvar. Whilst 
cCf2 and cIn are strategies with higher prediction errors. The lowest prediction error is found with 
strategy aKnn when depth is equal to 48 and with 4 input variables. 

The outcome of our study sheds light on robust Soft Computing methodologies for smart home and smart 
grid applications. As future work, we plan to integrate flexible FIR, and some of the proposed strategies, 
in a smart home Internet of Things (IoT) platform that will provide home context awareness such as 
prediction of events or patterns detection. This is an interesting application due to the intermittent 
communication of home area sensors, which generate significant number of MVs. In a first integration of 
flexible FIR in the smart home IoT results are encouraging compared to standard prediction and pattern 
recognition frameworks such as Weka or RapidMiner. 
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