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Co-evolutionary Approach for Strategic 
Bidding in Competitive Electricity Markets  

 
Abstract— Determining optimal bidding strategies in a competitive electricity market to maximize the profit of each bidder 

is a challenging economic game problem. In this paper, it is formulated as a bi-level optimization problem in which, in the 
lower level, the community’s social welfare is maximized by solving a power flow problem while, in the upper level, the 
profits of individual bidders are maximized. In this bidders’ game, instead of using a set of discrete strategies as is usual, we 
consider continuous functions as strategies. To solve the upper-level problem, two co-evolutionary approaches are proposed 
and, for the lower level, an interior point algorithm is applied. Three IEEE benchmark problems in four different scenarios are 
solved and their results compared with those obtained from two conventional approaches and the literature which indicate that 
the proposed approaches have some merit regarding quality and efficiency. 

Keywords— bidding problem, energy market, co-evolutionary algorithm, genetic algorithm, differential evolution. 

NOMENCLATURE 
𝑖, 𝑗, 𝑛, 𝑝, 𝑔 Indices of GENCO, consumer, player, individual of a sub-population, and current generation number, respectively; 

𝐾 Total number of transmission grid nodes (𝐾 > 0); 
𝐼 Total number of generators (𝐼 > 0); 
𝐽 Total number of loads (customers) (𝐽 > 0); 
𝑁 Total number of bidders in market  (𝑁 = 𝐼 + 𝐽); 
𝐼1 Number of generators at node 𝑘; 
𝐽1 Number of loads at node 𝑘; 
𝑃4  Real power injection by generator 𝑖, ∀𝑖; 

𝑃4647, 𝑃4689 Minimum and maximum real power limits of 𝑖𝑡ℎ generator; 
𝑞= Real power demand for load 𝑗 ∈ 𝑖 at node 𝑖; 
𝛿A Voltage angle at reference bus with fixed value of 0; 
𝛿1 Voltage angle (in radians) at node 𝑘, ∀𝑘; 𝑘 ≠ 1;  
𝐹16  Real power flow through branch connection from nodes 𝑘 to 𝑚; 
𝐵𝑅 Set of all distinct branches of 𝑘𝑚, 𝑘 < 𝑚; 

𝑃𝑁𝑒𝑡𝐼𝑛𝑗𝑒𝑐𝑡1 Net injected real power at each node 𝑘; 
𝑥16 Reactance for branches 𝑘 to 𝑚; 
𝐵16 Susceptance (1/𝑥16) for branches 𝑘 to 𝑚; 

𝐹16M ,	𝐹16O  Lower and upper limits of real power flow for branches 𝑘 to 𝑚; 
𝑎4, 𝑏4, 𝑐4  Cost coefficients of 𝑖RS  generator;   
𝑏T4, 𝑐Ú Quiescent coefficients of marginal cost coefficient at 𝑖RS  generator;   
𝑑=, 𝑒=  Coefficients of 𝑗RS consumers’ utility function; 
𝑑T=, 𝑒X́ Quiescent coefficients of 𝑗RS	demand curve;   
𝑘YZ  Bidding coefficient of 𝑖RS  generator; 
𝑘[\  Bidding coefficient of 𝑗RS consumer; 

𝑘YZ
647, 𝑘YZ

689 Lower and upper limits of 𝑖RS  generator; 
𝑘[\
647, 𝑘[\

689 Lower and upper limits of 𝑗RS consumer; 
𝜆1 Locational marginal price (LMP) at 𝑘RS	node; 

𝜆^4, 𝜆[=  LMPs of 𝑖RS	generator and 𝑗RS	consumer, respectively. 

I. INTRODUCTION 
Over the last decade, the electricity markets in many countries have become more decentralized and deregulated 

in order to increase their economic efficiency and reduce costs. As a consequence, they are no longer monopolistic 
but being opened up to competition among both suppliers and consumers [1-3]. In this situation, suppliers, i.e., 
generator companies (GENCOs) and consumers (e.g., large industries, distributor companies, residential loads, 
etc.) simultaneously submit their bids to an independent system operator (ISO) that determines the market clearing 
price (MCP) and power dispatch (PD) of each winning bidder by solving an optimal power flow (OPF) problem, 
with the aim of finding an optimal operating point of a power system by maximizing its community social welfare 
(CSW) subject to its network and physical constraints. The CSW is defined as the difference between the profits 
obtained by trading electricity to consumers and the expenses of purchasing it from GENCOs. Once a winning 
bidder is informed about the MCP and its allocated quantity of PD, its profit is calculated based on its actual cost 
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and revenue. Note that the MCPs of all bidders are the same when transmission congestions (TCs) are ignored but, 
if they are considered, the MCPs vary significantly from location (or node) to location which is called the locational 
market price (LMP) [4].  

As the profit of a bidder depends on both its own submitted bid and those of its rivals, each bidder plays a game 
by optimizing its own bidding behavior with respect to those of its competitors as well as power system constraints. 
An excessively high bid by a player may not be selected by the ISO while a lower one may not cover its own costs. 
Therefore, it is a challenging optimization problem to select an appropriate bidding strategy for maximizing the 
profits of all bidders [5].  

During the last decade, numerous studies have been conducted to determine the optimal bidding strategy based 
on different market models, of which optimization and game theory-based equilibrium models are the most popular 
[2, 6]. In optimization, the problem is solved for a particular player by ignoring other players’ bidding behaviors 
[1]. In this process, a GENCO or consumer first forecasts the MCP and rivals’ bidding strategies, and then solves 
a profit maximization problem using an appropriate algorithm, such as dynamic, fuzzy linear or stochastic dynamic 
programming [7]. However, estimating the MCP and rivals’ bidding strategies is very difficult and, even after doing 
it, the actual profits may significantly vary from predictions as it is assumed that the LMP is independent of the 
players’ submitted bids [8].  

On the contrary, in a game theory-based equilibrium model, a player optimizes its bidding strategy by 
investigating the interactions of its rivals’ bidding behaviors. In it, a GENCO or consumer is represented as a player, 
economic benefits constitute payoffs and players’ options are treated as strategies while it is assumed that all players 
are rational and have some common knowledge of the actual cost function of each bidder from historical data. Each 
player ultimately chooses one strategy from a set of known ones which, as each has a payoff assigned to it by the 
profit function, means that the optimal solution can be reached via the Nash equilibrium (NE). A NE is based on 
the strategies of all players in which one player cannot increase its payoff by changing its own strategy while the 
others’ strategies remain the same, with the solution known as a saddle point of the equilibrium model. This 
approach is very popular among researchers and practitioners for solving energy market problems [6, 9, 10].  

An equilibrium model is classified as a: (i) Bertrand game; (ii) Cournot game; (iii) Stackelberg model; and (iv) 
supply function equilibrium (SFE). In the Bertrand game, the market price is considered a bidding parameter in 
which it is assumed that all players have a constant unit cost, with capacity constraints ignored when competing on 
the price offered to consumers. In both the Cournot and Stackelberg models, the amount of power to be produced 
by each player is considered a strategic variable, with the difference between these approaches being that the former 
allows the strategic variables of all players to be simultaneously improved while, in the latter, the leader improves 
its strategic variable first and then the followers sequentially change theirs. As a consequence, because all players 
in the Stackelberg model do not choose their quantities simultaneously, the largest one acts as the leader and can 
manipulate the market. In the SFE model, a linear function is used for each bidder’s strategic variable, where the 
coefficients of the supply function are simultaneously improved to reach the maximum profit [11].  

Apart from the above classifications, the players in an equilibrium model can be either cooperative or non-
cooperative. In the former, the participants coordinate their strategies in order to maximize the profits of all players 
while, in the latter, a player maximizes its own profit regardless of those of its rivals, with no commitment to 
coordinating their strategies [12]. Of the above methods, the non-cooperative SFE game model is more appealing 
due to its realistic characterisations of the strategic variables which reflect real-life bidding rules in the electricity 
market [1, 13]. It is widely used both in literature and practice [11]; for example, English and Welsh wholesale 
electricity spot markets [6].  

Solving a non-cooperative SFE model has gained a great deal of attention over the last decade, with bi-level 
programming techniques widely used. In it, each independent player maximizes its profit in the upper level while 
the ISO’s CSW is maximized in the lower level by solving a nonlinear OPF optimization problem [14-16]. Each 
decision entity independently optimizes its own objective but is affected by the actions of other entities in a 
hierarchy. However, this bi-level problem is a challenging optimization problem because it contains a nested 
optimization task within the constraints of another optimization problem [14]. It becomes more complex in the 
presence of difficult mathematical properties of the problem, such as multi-modality, non-convexity, non-
differentially and others. This problem is inherently harder to solve than traditional mathematical programs, as 
pointed out in [17]. Therefore, compared with classical techniques, various evolutionary algorithms (EAs), such as 
genetic algorithms (GAs) [18-24], differential evolution (DE) [25-28], evolutionary programming (EP) [29] and a 
bat-inspired algorithm [1, 30] are now generating interest in the research community for solving this problem. In 
these algorithms, a conventional iterative (IT) approach is used to determine the optimal bidding strategies of all 
participating players, with the bidding strategy of each updated sequentially by one in an iteration to maximize its 
profit while those of its rivals remain unchanged. This process continues until the bidding strategy of a player 
improves, with the algorithm terminated as soon as the NE is reached [1]. However, as it solves the bidding problem 
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of each bidder one after the other, it may take too long when there are many bidders which is one of the issues 
addressed in this paper. Moreover, as most of the abovementioned methods, a game based bidding strategies were 
used that the bids were represented as discrete quantities such as bidding high, bidding medium or bidding low, the 
payoff matrices were easily determined by computing all possible combinations of strategies. However, in reality, 
a player in the energy market submits its bid within a given range [31] that results to the size of payoff matrix 
becomes infinite and impossible to evaluate all the combinations [32].  

In this paper, a non-cooperative bi-level SFE model of an electricity market is considered, in which the bidding 
strategies represented as the supply functions of the bidders instead of a set of known discrete strategies as is usually 
applied. We develop two co-evolutionary (CE) approaches for solving the upper-level problem, the first is based 
on a real-coded GA and the other on a self-adaptive DE. In both variants, each bidder’s strategies are evolved in a 
sub-population with exchanging information among these subpopulations to find the overall best solutions. The 
lower-level problem is formulated as an OPF problem and solved using an interior point (IP) algorithm with the 
aim of maximizing the CSW considering power system constraints. In addition, the non-convex OPF problem is 
formulated as a strictly convex quadratic programming (SCQP) using the linear formulation of the power flow 
constraints with the quadratic cost function. In the SFE model, both GENCOs and consumers act as independent 
players that maximize their own profits considering the interactions of their rivals. As the proposed CE algorithm 
determines the bidding actions of all players simultaneously under the N-subpopulations for N-players which results 
in a reduction of the computational time significantly. The performances of the proposed CE approaches for solving 
three well-known benchmark problems are compared with those of two conventional iterative ones [4, 33] and 
results from the literature. We also analyze the effects of different components on their performances and 
demonstrate that these methods outperform those of all the other algorithms with which they are compared.  

The rest of this paper is organized as follows: Section II presents the formulation of the competitive electricity 
market; Section III a brief literature review, Section IV solution approaches using the proposed methodology; 
section V the experimental results; Section VI key discussions; and Section VI conclusions and suggestions for 
future work. 

II. SFE MODEL 
Generally, a competitive electricity market is represented as an equilibrium model to determine the NE for a bid-

based pool market [11]. It is formulated as a bi-level optimization problem with the objective in the upper level to 
maximize the profit of each bidder of either GENCOs or consumers by anticipating the profit-maximization actions 
of its rivals [15, 16]. In the lower level, the electrical power network is represented using an OPF optimization 
problem with the aim of maximizing the CSW subject to the nonlinear balance, branch flows and capacity 
constraints of the real and reactive powers. However, in practice, the OPF problem is typically approximated by a 
more tractable ‘DC-OPF’ problem that focuses exclusively on real power constraints in a linearized form by 
simplifying some restrictions regarding voltage magnitudes, voltage angles, admittances and the reactive power 
[34, 35]. We use DC-OPF to represent the electrical power network which includes the constraints of active 
transmission power flows, transmission line (TL) capacities, active power generation, nodal voltage angle, and 
active power demands. 

In the following subsections, we discuss (i) formulations of the SFE model with different bidding strategies of 
GENCOs and consumers, (ii) the ISO’s DC-OPF problem and (iii) the profit functions of GENCOs and consumers. 
It is also noted that, for the variable notations, a boldface one indicates that it is a matrix or vector and a normal 
italic one a scalar. 

A. Electricity market parameters 
As previously mentioned, the electricity market we consider has both strategic generating firms (i.e., GENCOs) 

and consumers (i.e., loads) that are profit maximizers with respect to their bids and rivals. Its structure is based 
on a single-period bidding model in which each participant submits a bid to the ISO in terms of its supply function. 
Once the market pool is closed, the ISO solves the DC-OPF and declares the MCP and amount of power to be 
generated by each winning bidder. Then, each bidder calculates its profit based on its revenue and actual cost.  

To maximize its individual profit, each bidder optimizes its bidding function with respect to possible bids from 
its rivals. Some assumptions made are that each player (i) knows the market rules, (ii) has complete information 
of the actual generation costs of itself and its rivals, (iii) knows the range of its bidding parameters and those of 
its rivals from historical data, and (iv) knows the capacities of the TLs connected to the market [14]. 

It is also assumed that each GENCO has a single generator with the quadratic cost function [36]: 
 (1) 

The marginal cost of the 𝑖RS generator is: 
IiPcPbaC iiiiii Î"++= ,2
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 (2) 

Since each GENCO plays a game in the market, rather than submitting an actual marginal cost, a strategic quasi-
function (Eqn. (2)) called a linear supply function is submitted to the ISO as [1, 11]: 

 (3) 
The consumers’ utility cost function is the quadratic inverse form [11]: 

 (4) 
Subsequently, the load demand function of the linear form is the inverse function with a negative gradient:  

 (5) 
Again, as a strategic consumer, it plays with the quasi-function in Eqn. (5): 

 (6) 
Based on [1, 11, 37], the bidding parameterizations can be selected in the following four ways. 

1) Intercept parameterization: the strategic players adjust the intercepts of 𝑏T 4, ∀𝑖 and 𝑑X,T ∀𝑗 of their marginal 
cost functions in Eqns. (3) and (6), respectively, to construct their profit-maximizing bids for submission 
to the ISO while keeping the slope constant as �́�4 = 2𝑐4, ∀𝑖 and �́�= = 2𝑒=,∀𝑗. 
 

2) Slope parameterization: the strategic bids of the players are modeled by varying the slope of the marginal 
cost functions in Eqns. (3) and (6) with the values of �́�4∀𝑖 and 𝑒X∀𝚥T , respectively, while keeping the 
intercepts constant as 𝑏T 4 = 𝑏4, ∀𝑖 and 𝑑T= = 𝑑=, ∀𝑗, respectively. 
 
 

3) Slope-and-intercept parameterization: the players adjust both intercepts (𝑏T 4, ∀𝑖 and 𝑑X,T ∀𝑗) and slopes 
(�́�4 , ∀𝑖 and 𝑒X,́ ∀𝑗) independently and simultaneously as their strategic variables to allow more degrees of 
freedom for choosing the strategic supply function. 
 

4) Slope intercept parameterization: the strategic players adjust both the slopes and intercepts in the supply 
functions in Eqns. (3) and (6) for GENCOs and consumers, respectively, but in a fixed linear relationship 
between the true and quasi-values of the marginal cost function. This can be interpreted as multiplying 
the marginal cost functions by arbitrary non-negative constants, say 𝑘Y4∀𝑖 and 𝑘[=∀𝑗, in order to 
construct the supply function bids shown in Eqns. (7) and (8), respectively.  

 

 
Fig. 1. Strategic bidding for supply and demand 

Due to the effectiveness of ‘slope intercept parameterization’ in real life, we use it with 𝑘Y4∀𝑖 and 𝑘[=∀𝑗 the 
strategic variables for GENCOs and consumers, respectively. The strategic functions for GENCOs and consumers, 
respectively, as shown in Fig. 1 by dotted lines, represent the true supply functions and the solid lines the strategic 
supply ones obtained by multiplying the factors of 𝑘Y4∀𝑖 and 𝑘[=∀𝑗 as: 

IiPcb
dP
dCMC iii
i

i
i Î"+== ,2

IiPcbB iiiig
Î"¢+¢= ,

JjqeqdD jjjjj Î"-= 2

JjqedMD jjjj Î"-= 2

JjqedB jjjjL Î"¢-¢=

Supply bid (MW)
(a)

Demand bid (MW)
(b)

Price ($/MWh) Price ($/MWh)

Actual demand curve

Strategic bid 
curve Strategic bid

Actual cost 
curve
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(7) 

 

 
(8) 

subject to:  (9) 

B. Formulation of ISO’s optimization problem 
Once the participants in the market submit their strategic supply functions, the ISO runs a DC-OPF problem to 

maximize the CSW subject to the power system’s transmission constraints. The ramp rate constraints are ignored 
in this formulation as it is assumed that they are sufficiently high. Also, start-up and shut-down decisions are not 
considered as it is assumed that the on/off status of a unit is known a priori at the time of constructing bidding 
strategies [38]. Since the ISO receives strategic bids from each player, its objective function is represented by the 
quasi CSW that incorporates the strategic variables 𝑘Y4∀𝑖 and 𝑘[=∀𝑗 as:  

 (10) 

subject to:  

Eqn. (10) represents the objective function of the ISO’s DC-OPF problem in which it is equal to the consumers’ 
benefit minus the generation costs considering the strategic bids. The DC-OPF problem has the following 
constraints when TCs are included.  

i. Real power balance [39] constraints for each node (𝑘 = 1,2,… , 𝐾): 

 (11) 

where                                             (12) 

 (13) 
ii. Limits of real power flow through each branch (𝑘𝑚 ∈ 𝐵𝑅): 

  (14) 
iii. Limits of real power of each generator (𝑖 = 1,2,… , 𝐼): 

 (15) 

The above DC-OPF problem is a nonlinear and non-convex single-objective optimization problem, and 
generally represented by its first-order Karush–Kuhn–Tucker (KKT) conditions [11]. Consequently, the LMPs, 
power output from each GENCO, utility demand of each consumer, transmission flows and nodal voltage angles 
are calculated to simultaneously satisfy each market participant’s first-order optimality conditions for maximizing 
their net benefits (KKT conditions) while clearing the market (supply =	demand).  

However, the lower level DC-OPF problem has to be optimized in every generation with the best solution is 
used in the evaluation of the objective function in the upper level profit maximization problem. Therefore, an 
efficient technique is desired in solving the lower level problem to reduce the computational complexity of the bi-
level optimization problem. This can be achieved by using an SCQP-based technique for solving the lower level 
optimization problem [34, 35, 40].  Note that, such a technique can be only applied under the assumption that the 
objective function is quadratic, which has been satisfied of Eqn. (10). The SCQP-based DC-OPF problem is 
presented in the following subsection.  

C. Formulation of ISO’s optimization problem based on SCQP 
The DC-OPF problem can be represented using an SCQP-based technique by eliminating the voltage angles 

using substitution in which the ISO’s objective function (Eqn. (10)) is subject to the equality constraints of the real 
power balance in Eqn. (11), is expressed as an SCQP and accumulates a soft penalty function of the sum of squared 
voltage angle differences as [34, 35, 40]: 

( ) IiPcbPcbkB iiiiigig i
Î"¢+¢=+= ,2

ickcbkb igiigi ii
"=¢=¢ 2;

( ) JjqedqedkB jjjjjjdjL j
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 (16) 

Assuming a reference bus voltage angle of 𝛿A = 0, Eqn. (16) is reduced as: 

 (17) 

subject to:  

 (18) 

 (19) 

 (20) 

 (21) 

 (22) 

To efficiently solve the above optimization problem, we develop a matrix representation of the objective 
function in Eqn. (17) and constraints in Eqns. (18) to (22) as: 

                                                  Min:           (23) 

                                         subject to:              (24) 

 (25) 
Details of the coefficients of Eq. (23) to (25) are shown in Appendix A. 

  

D. Formulating optimization problem of each player 
Once the lower-level SCQP problem is solved, the values of 𝑃4, 𝑞=, 𝜆^4, 𝜆[=  and 𝐹16	∀𝑖, 𝑗, 𝑘 are calculated 

based on their primal and dual variables in the KKT representation shown in Appendix B. Then, the upper-level 
optimization problems of the strategic firms, in which individual profits are maximized, are solved given the 
revenue minus the true generation cost as: 

 (26) 

 (27) 

where  and  are the profits of the GENCO and consumer, respectively. As the variables 𝜆^, 𝜆[, 𝑃 and 
𝑞 are produced by the SCQP problem given in Eqns. (23) to (25), they can be expressed as implicit functions of 
the players’ bidding strategies as {𝐤𝐩 = 𝑘^A, 𝑘^e,… , 𝑘^f} and {𝐤𝐝 = 𝑘[A, 𝑘[e,… , 𝑘[i}. Therefore, they should 
satisfy the KKT conditions of the ISO optimization problem. 

III. BRIEF REVIEW OF EAS IN SFE 
The SFE game model is a nonlinear, non-convex, bi-level optimization problem in which each GENCO and 

consumer maximizes its profit by optimizing its bidding coefficients (𝑘Y4∀𝑖 and 𝑘[=∀𝑗 in Eqns. (26) and (27), 
respectively) considering the interactions of its rivals [41]. The profit maximization of a player is subject to a set of 
variables (𝜆j4, 𝜆[= , 𝑃4 and 𝑞=, ∀𝑖, 𝑗) determined after solving the nested optimization problem in Eqns. (10) to (15). 
Therefore, the optimal bidding strategy issue of an electricity market problem becomes a two-level programming 
one which is difficult to solve using conventional mathematical approaches [26, 42].  

During the last decade, a significant number of research studies has used different meta-heuristic algorithms to 
develop for solving the bi-level SFE model; for example, Azadeh et al. [18] applied a GA to determine the optimal 
bidding strategies of GENCOs in both cooperative and non-cooperative electricity markets. In [19], another GA 
was used to solve a scenario-based bi-level strategic game in which a player optimizes its bidding strategy by 
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predicting the possible bidding scenarios of its rivals determined from historical data. However, as there are risk 
factors associated with assuming opponents’ bids when a player optimizes its own, an information gap decision 
theory (IGDT) has been used to formulate a risk-based optimal bidding strategy optimization model, with a 
modified particle swarm optimization (MPSO) used to solve it [43]. Gountis and Bakirtzis [20] developed a solution 
approach based on a GA and Monte Carlo (MC) simulation technique [44] for the bi-level SFE model in which 
rivals’ bidding strategies are estimated using the MC technique and the GA determines each bidder’s optimal 
bidding strategy. However, in many of the above methods, consumers are considered non-strategic, i.e., they have 
no option to participate in the market. Considering a consumer strategy, in [11, 37], the SFE model is solved using 
four different types of bidding parameters, with the one between the slope and intercept of the bidding curve a 
strategic variable to achieve a definite equilibrium. To obtain the NE for a competitive energy market, IT solution 
approaches based on a GA [45] and bat-inspired algorithm [1], in which the bidding strategy of each player is 
iteratively updated, have been developed. However, as the bidding strategy of each player is updated sequentially 
in each iteration, approaching the NE is very difficult, even for a small problem, and requires a long computational 
effort for a large one.  

The CE algorithm is an alternative approach that simultaneously determines the optimal bidding strategies of all 
players and results in a significantly reduced computational time compared with those required for iterative 
methods. In the literature, several CE approaches for solving different competitive energy markets have been 
successfully applied [46-48]; for example, a CE approach based on a GA was developed to determine the multi-
period optimal bidding strategy for an oligopoly electricity market [49]. In it, each agent (sub-population) uses a 
reinforcement learning algorithm to increase its profit from one trading period to the next based on experience from 
past trading hours. Chen et al. [27] developed a CE approach based on a GA for solving the real-world electricity 
market, in which two different SFE models, the affine and piece-wise affine cost functions, are solved and analyzed, 
which rapidly converges to the affine one. In order to obtain a NE, another CE approach was tested in two different 
competitive electricity markets, spot and settlement, with the simulation results indicating the effectiveness of the 
CE algorithm for finding optimal strategies in both markets [50].  

However, although in most of the abovementioned approaches, an EA is used in the upper level to determine the 
optimal bidding strategy of a bi-level problem, simple linear programming or Lagrange multipliers are used to solve 
the lower-level one to determine the dispatch quantity and LMP of each GENCO. However, since the lower-level 
problem contains a non-convex and nonlinear objective function and conventional techniques may fail to determine 
optimal solutions, the solutions of the upper level are either local or sub-optimal [51]. To overcome this drawback, 
two EAs, GA and DE, were used in the lower and upper levels, respectively, to solve a simple competitive energy 
market in [4] which showed that the quality of solutions could be further improved if an EA was used in the lower 
level although the computational time increased. As this procedure does not consider consumers’ strategies and TC 
constraints, this problem is simple and easy to solve using an EA. However, existing procedures cannot guarantee 
convergence to the optimal solution when the NE does not exist or provide a local solution in the presence of 
multiple NEs. The number of NEs depends on the number of strategic GENCOs and consumers present in the 
model; for example, a two-player game is formulated as a linear complementary system, an NE point is easily 
determined but, when three or more players participate in a bidding market, it is very difficult to solve as the model 
is no longer linear [1].  

Therefore, a new and efficient algorithm for solving a real-world electricity game model is required as existing 
ones provide only a local or sub-optimal solution which could be further improved [1, 4]. Also, to the best of our 
knowledge, using CE approaches to solve a highly complex and TC-constrained SFE model for a large electricity 
market has not yet been explored. 

IV. PROPOSED METHOD 

In this research, the electricity market considers both non-competitive and competitive participants. In the former 
market, the players are non-strategic and the ISO model considered a single-objective DC-OPF optimization 
problem (Eqns. (23) to (25)) solved using a classical optimization technique. However, for comparison purposes, 
it is also solved using one of two EAs, such as, a GA and DE. 

The competitive electricity market is represented as an SFE by formulating it as a bi-level optimization problem 
with the upper level addressing the individual profits of GENCOs and consumers in Eqns. (26) and (27), 
respectively, and the lower one describing the ISO’s nonlinear DC-OPF problem in Eqns. (23) to (25). As a 
consequence, the market is a nonlinear, bi-level, nested optimization problem which is extremely difficult to solve 
using conventional mathematical approaches [52]. Therefore, in this paper, two proposed CE approaches based on 
two EA variants, a real-coded GA and a self-adaptive DE called CE-GA and CE-DE, respectively, for solving the 
competitive SFE model. In them, either the GA or DE is used to maximize the individual profit of each strategic 
firm in the upper level and, in the lower one, an IP method to maximize the CSW because of its superior 
performance for solving the ISO optimization problem [11, 37]. 
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In the following subsections, we discuss the proposed CE solution approaches for the competitive electricity 
market and the IP algorithm for solving the ISO’s DC-OPF problem. 

A. CE approaches 
The CE algorithm is an extension of a traditional EA in which more than one population, called sub-populations, 

are simultaneously evolved. The main difference between the CE and EA algorithms is that the individual fitness 
function evaluation of the former depends not only on its performance but reflects its interactions with other 
individuals in other subpopulations [50]. Since the participants in a competitive electricity market interact with each 
other to maximize their profits, the individuals in the CE algorithms are simultaneously evolved to obtain an optimal 
bidding strategy for a player considering the possible bids of its rivals and, consequently, achieve an NE [48]. 

As previously mentioned, the bi-level SFE model is formulated and solved using the proposed CE approaches, 
the upper-level optimization problem by either a GA or DE and the lower one using a classical optimization 
technique (the IP method). A multi-population concept is used in the upper level in which each player’s individuals 
compete under a sub-population, starting with some random individuals with the decision variables of which 
represent the respective player’s bidding coefficients (𝑘Y4𝑖 ∈ 𝐼 and 𝑘[=𝑗 ∈ 𝐽). To evaluate an individual of a 
GENCO (𝑘Y4𝑖 ∈ 𝐼) in Eqn. (26) or a consumer (𝑘[=𝑗 ∈ 𝐽) in Eqn. (27), it is necessary to solve the nested lower-
level optimization problem in Eqns. (23) to (25) which require all the 𝑘Y4∀𝑖 and 𝑘[=∀𝑗. In this case, the fitness 
functions of a sub-population are evaluated by comprising them with those of the current best individuals from 
other sub-populations. Therefore, all the individuals in a sub-population are constantly being explored to obtain 
fitter individuals by interacting with their opponents’ best individuals. Once all the parents and offspring are 
evaluated, the selection operator selects the best individuals in each sub-population. Therefore, the process leads to 
an incremental improvement as each sub-population continually evolves to meet the increasing pressure from the 
others. The flowchart and pseudo code of the proposed solution approaches based on the CE algorithms are shown 
in Fig. 2 and Algorithm I, respectively.  

 

ALGORITHM I: CE APPROACHES 
1. Set the number of sub-populations (i.e., the number of players) as 𝑁 ∈ (𝐼 + 𝐽) and 𝑔 = 0. 
2. Require: number of maximum generations (𝑁l > 1) and sub-population size (𝑁^). 
3. Generate the 𝑁^ number of random individuals of each player as: 𝑘j,7 ∈ m𝑘Y4, 𝑘[\n , ∀𝑖 = 1,2, . . , 𝐼; 𝑗 = 1,2,… , 𝐽; 	𝑝 =

1,2,… ,𝑁^, , using Eqn. (28). 
4.  𝑓𝑜𝑟	𝑛 = 1:𝑁		 
5. Obtain 𝐤s7tuvR ← the best individuals found so far from other sub-populations while those considered randomly at 𝑔 = 0. 
6. 𝑓𝑜𝑟	𝑝 = 1:𝑁^		 
7. Based on 𝑘j,7 and 𝐤s7tuvR , update the coefficients of 𝑏T4, �́�4, ∀𝑖 and 𝑑X𝑒X́,T ∀𝑗 using Eqns. (7) and (8). 
8. Solve the lower-level ISO problem in Eqns. (23) to (25) using the IP method described in section IV B.   
9. Calculate 𝐏,𝐪, 𝛌𝐩 and 𝛌𝐝, as described in Appendix A. 
10. Evaluate the profit functions of the upper level using Eqns. (26) and (27) for GENCOs and consumers, respectively.	
11.	 𝑒𝑛𝑑	𝑓𝑜𝑟	(𝑝)	
12. 𝑒𝑛𝑑	𝑓𝑜𝑟	(𝑛) 
13. Sort the individuals in all sub-populations based on their respective upper-level fitness values found in step 10. 
14. 𝑓𝑜𝑟	𝑔 = 1:𝑁l 
15. 𝑓𝑜𝑟	𝑛 = 1:𝑁		 
16. Generate each offspring by performing crossover and mutation based on either GA or DE operators. 
17. Evaluate the fitness functions of all the offspring using steps 5 to 11. 
18. Determine the best 𝑁^ individuals from both the parent and child populations as in step 13. 
19. 𝑒𝑛𝑑	𝑓𝑜𝑟	(𝑛) 
20. The algorithm is terminated when 𝑘Y4∀𝑖 and 𝑘[=∀𝑗 are unable to change from the last generation. 
21. 𝑒𝑛𝑑	𝑓𝑜𝑟	(𝑔) 
 
1. Initialization 

A CE algorithm starts with some subpopulations, each of which has 𝑁^ random individuals. Considering that 
𝑁 ∈ 𝐼 + 𝐽 players participate in the competitive electricity market, each of which has its own sub-population, an 
individual in a sub-population is initialized in the search space as: 

           (28) 

where 𝑘7 ∈ {𝑘YZ , 𝑘[\}, 𝑘{|}
7 	∈ {𝑘YZ

647, 𝑘[\
647} and 𝑘{~�7 ∈ m𝑘YZ

689, 𝑘[\
689n ∀𝑖, 𝑗, and LHS(𝑁^) is the 𝑁𝑃 of random 

individuals generated using Latin hypercube sampling (LHS). As the initial values of the decision variables 
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(𝑘7∀𝑛) are highly significant for achieving a global NE, the initial 𝑘7∀𝑛 are generated using LHS rules which 
ensure that each probability distribution is evenly sampled within the area of optimization [53].  
 

 
Fig. 2. Flowchart of the proposed CE based algorithms 

2. Evaluation  
It is already known that the objective function of a player is to maximize its profit by modifying its bidding 

strategy according to the interactions of its rivals. From the profit functions in Eqns. (26) and (27), it can be seen 
that, when a player evaluates its fitness function, it must know the values of 𝜆^4 and 𝑃4, ∀𝑖 if it is a GENCO and 
those of 𝜆[=  and 𝑞=,∀	𝑗 if it is a consumer. However, to determine either of these parameters, another optimization 
problem (DC-OPF), in which the objective function in Eqn. (10) involves the bidding coefficients of all players, is 
required to solve. Therefore, the fitness function evaluation of an individual in a sub-population (𝑝 ∈ 𝑁^) for a 
player (𝑛 ∈ 𝑁) depends on both its own and its opponents’ bidding strategies. Since selecting rivals’ bidding 
strategies is difficult, we use the best bidding strategies found in previous generations. This process is illustrated 
by an example that assumes the market has two strategic players. The individuals of player 1 in generation 𝑔 + 1 
are evaluated by taking the best strategy of player 2 from its previous generation (𝑔). It should also be mentioned 
that, to evaluate the 𝑁^ individuals of player 1 in generation 𝑔 + 1, its rivals’ strategies remain the same as their 
best ones. For n-player, the fitness evaluation of an individual (𝑝) is mathematically expressed as:  

           (29) 

Yes

Require: N, NG, NP

n < N

Initialize NP subpopulations randomly

Set, n = 1

Obtain the rivals’ best individuals (k-n
best)   from 

other subpopulations

Using P, q, λP and λd, evaluate the FVs of the higher level 
for  all the NP individual of nth subpopulation

Using k-n
best and the individuals of nth subpopulation, solve  the lower 

level DC-OPF problem. Then, obtain P, q, λP and λd 

Update the best individual based on the 
higher level FV

Set, g = 0

Evolve the nth subpopulation using either 
GA or DE operators

Set, g = g + 1, and
n = n + 1

g < NG  and
any best individual has changed 

from previous generation

Yes

Terminate the 
algorithm

No

No
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where 𝑓j,7(𝑘j,7) is a dummy function representing the actual profit function evaluation for the 𝑝RS individual of 
the 𝑛RS player, 𝑘j,7  the bidding strategy of the 𝑝RS individual of the 𝑛RS player and 𝐤s7tuvR a vector which contains 
the best bidding strategies of its rivals found so far.  

 
3. Update 𝐤 

To update the bidding strategy of each GENCO (𝑘YZ∀𝑖) and consumer (𝑘[\∀𝑗), a GA and DE are used for the 
CE-GA and CE-DE algorithms, respectively, as briefly described in the following subsections. 

3.1. GA search operators 
As, of the various GA search operators, simulated binary crossover (SBX) and non-uniform mutation (NUM) 

have shown admirable performances for solving different power system optimization problems [26], they are 
considered in this research.  

3.1.1. SBX 
In an SBX operation, firstly, through two tournament operations, the best two parents (𝑘1 and 𝑘2) are selected 

from two random ones based on their maximum fitness values (FVs). Then, two offspring (𝜅A and 𝜅e) are 
generated as: 

 (30) 
 (31) 

where  

 
 

(32) 

where 𝑢 ∈ [0,1] is a random number and 𝜂� a pre-defined parameter of the distribution index set to 3, as in [26]. 

3.1.2. NUM 

The NUM operator is used to increase the diversity of an individual from its original value as:  
 (33) 

 (34) 

The step length (b), which is used to control the speed of convergence, is set to 5 [54]. 

3.1.3. Selection  

In the GA, a greedy selection scheme is used in which the best 𝑁^ individuals are selected from both parents 
and offspring based on their FVs.  

3.2. DE search operators 
Like the GA, DE has three search operators, mutation, crossover, and selection, with its performance highly 

dependent on the settings of their control parameters. Therefore, we employ a self-adaptive mechanism to 
determine the best control parameters for the crossover and mutation operators during each generation of the 
evolution [55], as described below. 

 

3.2.1. Mutation and crossover  
Of the various DE search operators, we use two mutations and one binomial crossover, as widely used in the 

literature [55]. In this process, an offspring (κ) is generated from three random parents (k�A, k�e and k��, rA ≠
re ≠ r�) and the current best parent (k����) as:  

 (35) 

where 𝑃𝑟𝑜𝑏A = 0.5 (as in [26]) is a pre-defined value that determines the methodology for generating new 
individuals from the current ones, 𝐹𝑎j the amplification factor for the mutation operators and 𝐶𝑟j the crossover 
rate of the 𝑝𝑡ℎ individual. The 𝐹𝑎 and 𝐶r are initially assumed as two sets of parameters (𝐅𝐚 ∈ N(0.5,0.1) and 
𝐂𝐫 ∈ N(0.5,0.1), respectively) with normal distributions and mean and standard deviation values of 0.5 and 0.1, 
respectively. Then, their values are updated in each generation to obtain a new offspring as per Eqn. (35) as: 
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 (36) 

 (37) 

where 𝜏A = 0.75	as in [56] and 𝑟𝑎𝑛𝑑� ∈ [0,1] for 𝑞 = 1,2, . . ,6. However, to enhance efficiency, the limits of 
these two parameters are set as [26]:   

 (38) 

 (39) 
where 0.1 and 1 are the lower and upper limits of these two variables, respectively [26].   

3.2.2. Selection  

Like that in the GA, the selection process in DE follows a greedy scheme in which the fittest (according to the 
FVs) of two candidates is selected [57]. In addition, the parent’s corresponding 𝐹𝑎j and	𝐶𝑟j are replaced by the 
offspring’s contributed 𝐹𝑎j and	𝐶𝑟j. This process is repeated until all the individuals are selected. 

B. Lower-level optimization problem 

As seen in previous sections, to evaluate the upper-level fitness functions in Eqs. (26) and (27), it is necessary 
to solve another nonlinear DC-OPF optimization problem. This problem is used in the lower level of the 
competitive bi-level SFE model and treated as a single-objective optimization problem in a non-competitive 
market. For verification purposes, it is solved using a classical IP optimization technique with two EAs, (i) a real-
coded GA and (ii) self-adaptive DE. A description of the nonlinear IP algorithm is found in [58] while the GA 
and DE procedures are described in sections 3.1 and 3.2, respectively. Note that, for the verification purpose, the 
original lower level problem (Eqns. (10) to (15)) is solved using both GA and DE, while the developed SCQP 
formulation (Eqns. (23) to (25)) solved using the gradient based IP method.  

V. EXPERIMENTAL RESULTS 

To test the effectiveness of the proposed approaches, three IEEE benchmark problems up to 118 buses with and 
without TCs are considered [1, 59, 60], with the models solved in both competitive and non-competitive 
environments. In the competitive market, it is assumed that the participating players are non-cooperative, with a 
NE obtained using our proposed CE-GA and CE-DE algorithms. The DC-OPF problem for both the competitive 
and non-competitive markets is solved using three algorithms, (i) GA, (ii) DE and (iii) the IP method. Each test 
problem has the following four cases. 

Case I. GENCOs and consumers are non-strategic with TC. 
Case II. GENCOs are strategic but consumers are non-strategic without TC. 
Case III. GENCOs are strategic but consumers are non-strategic with TC. 
Case IV. GENCOs and consumers are strategic with TC. 

In case I, both suppliers (GENCOs) and consumers are treated as non-strategic players which means the bidding 
problem solves as a dispatch problem, considering the true generation cost of each generator. In both cases II and 
III, GENCOs and consumers are considered as strategic, and non-strategic players, respectively. However, the 
difference between these two cases is that the TL constraints are ignored in case II while it is considered in case III. 
If a bidding problem is solved without considering the TL constraints, the LMP of each node might be the same 
where the individual profit only depends on the amount of power generation. On the other hand, if the problem 
considers the TL constraints, the LMPs of all nodes will be significantly different, which results to change the profit 
of a participant in the system. In case IV, both GENCOs and consumers are considered as strategic players, and the 
TL constraints also applied. Note that, a strategic customer is one that can participate in the bidding process which 
increases the number of players in that game while, in a non-strategic customer game, the number of players is 
reduced to the number of GENCOs with customers only able to buy a predefined amount of electricity from the 
market [1].  

To validate the proposed CE-GA and CE-DE methods, we also implement two other conventional IT-based 
solution approaches using GA and DE algorithms known as IT-GA and IT-DE, respectively, for the competitive 
electricity market [4] which are also used to obtain an NE. Here, at each iteration, a player optimizes its bidding 
strategy knowing that the other players have chosen and fixed their actions. To start the game, each player randomly 
chooses its action assuming that true marginal strategies are used by the other players and then optimizes its action 
with respect to those of the other players. To update its strategy, a player uses either the GA or DE search operators 
described in sections 3.1 and 3.2, respectively. Once a player obtains its optimal bidding strategy, the first iteration 
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is completed. Then, the next player begins to optimize its strategy in the same process while considering the best 
bidding strategies of its rivals found so far. This iterative process is terminated when no player can change its action, 
with this stopping point the desired NE of the game. 

In addition, as previously mentioned, as each algorithm provides a unique and local NE, we cannot compare 
an equilibrium point of one with those of the others [61]. Therefore, we use a ranking procedure based on a non-
parametric test, called the Friedman test, to evaluate the overall performance of an algorithm [62]. The rankings 
are calculated based on the relative performances of the algorithms for achieving the maximum profits of each 
GENCO and load, as illustrated in the following example.  

Consider an electricity market with six competitive objectives, four GENCOs (G) and two loads (L), which is 
solved using the four algorithms (i) IT-DE, (ii) IT-GA, (iii) CE-DE and (iv) CE-GA. Sample solutions obtained 
by each algorithm for the profits of GENCOs and loads are presented in Table 1. 

Table 1: Rankings of algorithms using Friedman test 

Objectives Expected profits ($) Relative ranks 
IT-DE IT-GA CE-DE CE-GA IT-DE IT-GA CE-DE CE-GA 

G-1 12.50 12.10 13.70 13.10 3 4 1 2 
G-2 8.20 10.10 9.20 9.00 4 1 2 3 
G-3 20.12 19.20 20.23 21.20 3 4 2 1 
G-4 4.50 3.20 5.20 5.00 3 4 1 2 
L-1 14.20 13.02 14.20 12.50 1 2 1 3 
L-2 12.30 12.15 11.80 12.00 1 2 4 3 

MR: 2.50 2.83 1.83 2.33 

Each objective’s profits are sorted in descending order and each individual assigned a relative rank, starting 
with rank 1 for the solution with the maximum profit, with solutions with the same values allocated the same rank. 
This procedure is repeated for all the objectives and the rank of each algorithm then calculated according to the 
mean values of the relative ranks of all the objectives. Based on the mean ranks (MRs) in Table 1, it can be seen 
that CE-DE is the best algorithm followed by CE-GA, IT-DE, and IT-GA.  

For all cases, the probabilities of crossover and mutation parameters of the GA are set to 0.9 and 0.1, respectively 
according to ref. [26]. Based on our empirical results (discussed later), the subpopulation sizes (𝑁^) of the upper 
and lower levels are set to 8 and 20, respectively, and the maximum numbers of iterations (𝑀𝑎𝑥𝐼𝑡) and generations 
(𝑁l) to 100. However, to solve the DC-OPF problem using the IP algorithm, the 𝑀𝑎𝑥𝐼𝑡 is set to 1000. Thirty 
independent runs are performed for each test case and the solutions recorded and compared with the results from 
state-of-the-art techniques.  

The algorithms are implemented on a desktop personal computer with a 3.4 GHZ Intel Core i7 processor with 
16 GB of RAM using the MATLAB (R2012b) environment. They run until the number of generations is greater 
than 𝑁l(=100) (criterion 1) or the best FVs are no longer improved in 𝜃	(= 5) generations (criterion 2).  

A. IEEE 3-bus test system 
The IEEE 3-bus test system [1] depicted in Fig. 3 contains two GENCOs at buses (nodes) 1 and 3, two 

consumers at nodes 1 and 2, and three TLs considered lossless with equal reactance (𝑥 = 0.002). The capacities 
of all the TLs are considered infinity except for the maximum capacity of line 𝐹Ae which is set to 500 MW for 
case II and 25 MW for cases I, III and IV. During the competition, all the GENCOs and consumers are allowed 
to change their bidding coefficients from 1 to 2.5, and 0.1 to 1, respectively. These cases are described in the 
following sections. 

 

 
Fig. 3. IEEE 3-bus test system 

A.1. Case I  
As, in this case, the market is considered non-competitive, all the participating GENCOs and consumers are 

considered non-strategic with their bidding coefficients set to 1 [1]. In other words, neither GENCOs nor consumers 
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are allowed to maximize their profits but, rather, always play with their true marginal cost functions in Eqs. (2) and 
(4) for GENCOs and consumers, respectively. Therefore, as this bi-level problem no longer has an upper level, it 
becomes a single-objective optimization one, i.e., DC-OPF, which aims to maximize the CSW, and is solved using 
the (i) GA, (ii) DE and (iii) IP algorithms.  

After 30 independent runs of each algorithm, their average results and the results in the literature, such as those 
of EBA [1], BA [1], PSO [1], GA [1] and NCP [63], including the profit and PD of each GENCO and consumer, 
LMP, CSW and computational time, are presented in Table 2. Note that ‘NR’ means that the results are not reported 
in the literature.  

As can be seen, the profits of each algorithm are quite similar while the computational time of IP is much lower 
than those of the others. Also, as the problem considers TC, as expected, the market prices are not the same for all 
nodes. Moreover, based on the ranking procedure presented in Table 1, the MR of each algorithm is determined 
considering the objectives of the profits of GENCOs and loads, CSW and computational time. The results 
demonstrate that the MR for the IP algorithm is the best.  

Table 2: Summary of 3-bus system for case I 
 Expected profits ($) Market prices Dispatches (MW) CSW ($) Time 

(sec) MR Alg. G-1 G-2 L-1 L-2 𝜆A 𝜆e 𝜆� 𝑃A 𝑃e  𝑑A 𝑑e 
EBA [1] 92.64 620.06 3492.40 164.77 16.36 25.93 21.14 136.12 393.72 295.48 234.36 6212.05 0.96 4.50 
BA [1] 92.64 620.06 3492.40 164.77 16.36 25.93 21.14 136.12 393.72 295.48 234.36 6212.05 0.96 4.50 
PSO [1] 92.64 620.06 3492.40 164.77 16.36 25.93 21.14 136.12 393.72 295.48 234.36 6212.05 0.96 4.50 
GA [1] 92.64 620.06 3492.40 164.77 16.36 25.93 21.14 136.12 393.72 295.48 234.36 6212.05 0.96 4.50 
NCP [63] 92.60 620.10 NR NR 16.40 25.90 21.10 136.10 393.70 295.50 234.40 6212.10 NR NR 
GA 92.68 619.92 3492.38 164.78 16.36 25.94 21.15 136.15 393.67 295.48 234.34 6212.06 0.08 3.33 
DE 92.68 619.92 3492.38 164.78 16.36 25.94 21.15 136.15 393.67 295.48 234.34 6212.06 0.09 3.50 
IP 92.68 619.92 3492.38 164.78 16.36 25.94 21.15 136.15 393.67 295.48 234.34 6212.06 0.01 3.17 

A.2. Cases II to IV 
For cases II and III, although the market is open for competition for GENCOs and consumers, consumers are 

still considered non-strategic (𝑖. 𝑒. , 𝑘[ = 1). The TCs of lines 𝐹A� and 𝐹e� are ignored while the capacity of line 
𝐹Ae is set to a large value of 500 MW in case II and a smaller one of 25 MW in case III.  

As, nowadays, the electricity market is not only open to suppliers (i.e., GENCOs) but also consumers, in case 
IV, we assume that both consumers and suppliers participate in the market, with each GENCO and consumer 
choosing a strategic variable from 1 to 2.5, and 0.1 to 1, respectively, to maximize their own profits while 
considering the interactions of their rivals. Note that the line capacity of 𝐹Ae in case IV is set to its previous value 
of 25 MW. 

All three cases are solved using our proposed CE-GA and CE-DE algorithms as well as the conventional IT-
GA and IT-DE ones, with the IP algorithm used in the lower level for all four approaches to solve the DC-OPF 
problem due to its superior performance in case I. The median results of 30 random runs are compared with those 
found in recent literature from the EBA [1], BA [1], PSO [1], GA [1] and NCP [63] in Table 3 which contains the 
expected profits and MRs, and computational times for each algorithm for each case. Detailed results for the 
expected profit and PD of each GENCO and load, bidding strategies of GENCOs, LMPs, line flows and CSWs 
for all three cases are presented in Tables 17 to 22 in Appendix C.  

It is clear in Table 17 that the market prices of all nodes are equal which is because, as the capacities of the 
TLs are assumed to be high and there is no limit on the power generated from each GENCO, the cheaper G-1 
gains more profit than G-2, as shown in Table 3. When the capacity of 𝐹Ae is reduced to 25 MW in case III, a TC 
appears in lines 1 to 2, as shown in Table 20, and then the market prices of the nodes vary significantly from those 
reported in Table 19. As a consequence, G-1 loses its profit and, conversely, G-2 gains more, as shown in Table 
3. On the other hand, the simulation results for case IV in Table 3 indicate that the profits of the consumers 
increase greatly compared with those of the non-elastic demands in cases II and III and its CSW is much lower 
(Table 22).  

However, it is obvious from Table 3 that the market does not have a pure strategy but mixed ones with 
multiple local NEs, with that of each algorithm providing a local solution very close to those of the others. Based 
on the profits of the GENCOs and loads shown in Table 3 for all three cases, none of the algorithms performs 
consistently best regarding obtaining maximum profits. However, based on the ranking method used, the MR of 
each algorithm indicates that the proposed CE-DE one is ranked 1st and also has the fastest computational time.  
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Table 3: Summary of simulation results for IEEE 3-bus system for cases II, III and IV 

Alg. 

Case II Case III Case IV  
CPU time 
(seconds) Profits ($) 

MR 
Profits ($) 

MR 
Profits ($) 

MR 
G-1 G-2 G-1 G-2 G-1 G-2 L-1 L-2 

EBA [1] 1557.07 455.55 4.67 741.59 1789.58 4.67 767.57 859.46 2116.94 767.57 4.50 108.60 
BA [1] 1540.17 440.16 6.00 690.43 1586.22 6.00 764.78 892.27 2096.01 764.78 4.25 72.60 
PSO [1] 1523.11 429.44 6.33 684.26 1580.74 6.33 761.35 891.46 2096.01 761.35 5.25 60.60 
GA [1] 1494.39 413.18 6.67 747.10 1799.00 6.67 734.80 887.30 2109.49 734.80 6.17 138.60 

NCP [63] 1560.00 446.50 NR 749.55 1798.61 NR 767.83 862.40 2115.77 767.83 NR NR 
IT-DE 1560.39 447.21 4.00 796.93 1816.66 4.00 762.36 1093.81 1988.80 762.36 4.00 5.45 
IT-GA 1835.62 430.34 4.67 749.12 1807.19 4.67 771.71 869.66 2105.91 771.71 4.50 5.39 
CE-DE 1581.98 454.55 3.67 772.84 1839.50 3.67 850.57 892.37 2062.95 850.57 2.67 1.21 
CE-GA 1666.26 468.94 4.00 747.97 1799.02 4.00 767.57 859.46 2116.94 767.57 4.67 1.39 

B. IEEE 30-bus test system 
To demonstrate the effectiveness of the proposed methods, the moderate IEEE 30-bus test system which 

contains 6 GENCOs, 20 loads, 41 lines and 30 buses is considered with all the TLs lossless with their reactance 
set to 0.001. The system data and schematic diagram are described in [59]. There are no TCs for case II while, for 
the others, the capacity limits of lines 10 (𝐹�, ), 17 (𝐹A¡,Ae) and 26 (𝐹A¢,A¡) are set to 10, 8 and 10, respectively. 
As previously, the GENCOs and consumers can change their bidding coefficients from 1 to 2.5, and 0.1 to 1, 
respectively. The cases for the 30-bus test system are described in the following sections.  

B.1. Case I 
In this case, the IEEE 30-bus test system with TC is tested with all 6 GENCOs and 20 consumers considered 

non-strategic, and it is assumed that all the participants submit their marginal bids to the ISO. Since there is no 
strategy for the bidding coefficients, the model has only a lower-level DC-OPF problem which is solved using the 
(i) GA, (ii) DE and (iii) IP methods. The results obtained for the expected profits of all GENCOs, and their CSWs, 
computational times, MRs and line flows are listed in Table 4, with detailed results shown in Tables 23 and 24 in 
Appendix C. Note that the parentheses in each GENCO’s heading represent that GENCO’s location (node 
number). It can be seen in Table 4 that the expected profits of each node obtained from each algorithm are almost 
the same and TCs appear in lines 17 and 26. However, based on the MRs, the IP is ranked 1st and also obtains 
solutions in the least computational time.  

 
Table 4: Summary of simulation results for IEEE 30-bus system for case I 

Alg. Profits ($) CSW ($) Time  
(Sec) MR (𝐹�, , 𝐹A¡,Ae, 𝐹A¢,A¡) G-1(#1) G-2(#2) G-3( #13) G-4( #22) G-5( #23) G-6( #27) 

GA 397.68 360.72 166.95 325.67 945.17 715.17 18453.88 10.09 2.13 (8.90,8.00,10.00) 
DE 397.68 360.72 166.95 325.67 945.17 715.17 18453.88 2.28 2.00 (8.90,8.00,10.00) 
IP 397.68 360.72 166.95 325.67 945.17 715.17 18453.88 0.08 1.88 (8.90,8.00,10.00) 

B.2. Cases II to IV 
In these cases, the market is open for competition among GENCOs and consumers while their strategic variables 

are varied from 1 to 2.5, and 0.1 to 1, respectively. In cases II and III, the GENCOs are considered strategic while, 
in case IV, both they and consumers both strategic. TCs are ignored in case II but those of lines 10, 17 and 26 are 
set to values of 10, 8 and 10, respectively, in cases III and IV to demonstrate their impact on the market transactions 
and profits of each bidder. 

As previously, for all three cases, the competitive market is solved using the (i) CE-GA, (ii) CE-DE, (iii) IT-
GA and (iv) IT-DE methods, with the IP algorithm used to solve the lower-level DC-OPF problem due to its 
superior performance in case I. After 30 random runs are performed for each test case, the average results for the 
expected profits, simulation times and MRs are calculated and presented in Table 5, with detailed results provided 
in Tables 25 to 30 in Appendix C. 

In Table 25 as, in case II, the nodal prices for all GENCOs are similar because TCs are not considered, GENCOs 
3 and 4 earn more profits and GENCOs 5 and 6 less. As the market has no pure strategy, the algorithms provide 
local NE solutions which are almost analogous. However, based on their MRs, CE-DE is ranked 1st followed by 
CE-GA, IT-DE, IT-GA, EBA, BA, PSO and GA.    

As the capacity limits of TLs are considered in case III, TCs appear in lines 10 and 26, as shown in Table 28, 
and the market prices of different nodes subsequently differ from those in Table 27. As a consequence, the profits 
of the GENCOs are different from those for case II with those of GENCOs 5 and six increased, as shown in Table 
5. Based on a comparison of profits, it can be seen that none of the algorithms is consistently better for all GENCOs, 
but the MRs demonstrate that CE-DE is the best. 
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Table 5: Summary of expected profits, MRs and simulation times of IEEE 30-bus system for cases II, III and IV 
  Expected profits ($) 
  EBA BA PSO GA IT-DE IT-GA CE-DE CE-GA 

Case-II 

G-1(#1) 622.27 621.7 611.6 607.9 713.2 706.32 724.94 716.73 
G-2(#2) 605.97 605.31 594.11 590.31 703.22 698.6 714.65 708.35 
G-3( #13) 280.85 280.42 273.25 270.61 356.46 348.26 367.58 361.97 
G-4( #22) 461.11 460.6 450.65 447.22 548.88 542.44 559.02 553.8 
G-5( #23) 461.1 460.6 450.74 447.41 508.51 503.17 518.4 513.48 
G-6( #27) 771.3 770.61 759.47 755.39 869.82 864.83 882.83 877.04 

MR 5.43 6.14 6.86 7.57 2.71 3.86 1.43 2.00 

Case-III 

G-1(#1) 632.45 615.9 614.52 611.66 793.47 795.19 794.38 791.97 
G-2(#2) 609.69 591.12 589.43 586.84 758.1 765.48 760.34 759.09 
G-3( #13) 352.91 354.78 354.23 352.95 396.34 395.04 397.02 410.47 
G-4( #22) 387.45 385.27 384.64 382.99 710.09 704.8 711.07 719.6 
G-5( #23) 985.8 977.02 976.41 975.1 1206.34 1205.08 1206.93 1196.94 
G-6( #27) 1296.02 1276.09 1274.91 1272.46 1191.89 1193.03 1192.42 1177.74 

MR 4.83 5.17 6.17 7.17 3.67 3.00 2.50 3.50 
Case-IV NR NR NR NR NR 2.65 2.42 2.12 2.81 

CPU time (Sec) 361.8 289.2 253.8 400.2 27.27 29.09 4.60 8.59 
 

As there are so many players in case IV, their expected profits are not listed in Table 5 but presented in Table 
29 in Appendix C which indicate that, as each consumer optimizes its bidding coefficients, its profit is greater 
than in case III. The MRs for this case shown in Table 5 demonstrate that CE-DE is again ranked 1st. Furthermore, 
the computational times of the CE approaches are far better than those of the IT and other methods, with CE-DE 
the fastest algorithm. 

C. IEEE 118-bus test system 

The IEEE 118-bus test system is a large power system network consisting of 118 nodes, 54 GENCOs, 99 loads 
and 186 TLs. Its data and diagram can be found in [60]. The system is modified by considering a TC at TL 163 
£𝐹A¢¢,A¢�¤ with a value of 20 MW for cases I and III and the TLs lossless with equal reactance values of 𝑥 =
0.001. Because of the large number of loads present in this system, we solve only the first three cases with the 
GENCOs’ strategic variables varied from 1 to 2.5 using the proposed CE and conventional IT approaches which 
are described in the following sections. 

C.1. Case I 

The GENCOs and loads for this case are considered non-strategic and submit their actual marginal costs to the 
ISO, with a TC applied in only line 163. The ISO’s DC-OPF problem is solved using one of the three algorithms, 
(i) GA, (ii) DE or (iii) IP. The average solutions for the objective values (CSW), computational times and MRs 
are calculated after 30 random runs and presented in Table 6. Based on comparisons, it can be seen that the 
objective values for all three algorithms are the same while the computational time of IP is much less than those 
of the other two and its MR is the best. 

Table 6: Summary of IEEE 118-bus system for case I 
 GA DE IP 

CSW ($) 52235.08 52235.08 52235.08 
Time (sec.) 0.44 0.24 0.09 
MR 2.50 2.00 1.50 

 

Table 7: MRs and computational times of IEEE 118-bus system 
for cases II and III 
 IT-DE IT-GA CE-DE CE-GA 

Case II 2.50 3.01 2.01 2.48 
Case III 2.62 3.01 2.01 2.36 

Time (sec.) 813.37 946.36 293.21 321.45 
 

C.2. Cases II and III 
In this section, the algorithms’ performances for solving the largest test system considering strategic GENCOs, 

in which TCs are ignored in case II and a TC of TL 163 set at a value of 25 MW, are evaluated. Each GENCO 
varies its strategic variables (𝑘4∀𝑖 = 1,2,… ,54) between 1 and 2.5 to maximize its individual profits. As 
previously, this test system is solved using the (i) IT-DE, (ii) IT-GA, (iii) CE-DE and (iv) CE-GA methods, and 
the IP algorithm for the lower-level DC-OPF problem. Detailed results (median runs) obtained after 30 
independent runs are presented in Tables 31 to 34 in Appendix C and the MRs and computational times in Table 
7. 

As shown in both Tables 31 and 33, the market prices of all nodes are almost analogous, despite a TC being 
applied to TL 163, and the power flows reach their maximum limits (Table 31). This is due to the number of 
GENCOs playing similar bidding strategies in this large energy market because, even if a line is congested, the 
electricity of that node comes from other generators through other TLs. Regarding obtaining the profits of various 
nodes, the proposed CE approaches are better than the IT ones.  
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The computational times in Table 7 demonstrate that the proposed CE-DE algorithm is the fastest and the MRs 
that it is superior to the other algorithms.  

VI. DISCUSSION 
In this section, the robustness of the proposed CE approaches is evaluated by analyzing statistically and the 

effects of parameters (i) 𝑁^, (ii) the stopping criteria and (iii) convergence rates of the CE and IT approaches. To 
do this, the IEEE 3-bus test problem for cases III and IV is solved by following a ceteris paribus strategy in which 
only one parameter is varied while all the others remain fixed to their best values [64].  

A. Statistical analysis  

In this section, we perform the statistical tests of the algorithms considered in this paper.  Firstly, an ANOVA test 
in randomized complete block designs procedures is performed as the number of objective functions (treatments) 
is more than one. Here, the treatments (samples) are considered the profits of all the players, CSWs and 
computational times for all considered problems with their case studies, and four algorithms, such as IT-GA, IT-
DE, CE-GA and CE-DE considered as blocks. The null and alternative hypothesises are defined, respectively, as: 

𝐻¢:		𝛼A = 	𝛼e = 𝛼� = ⋯ = 𝛼1 = 0 
𝐻A:	𝐴𝑡	𝑙𝑒𝑎𝑠𝑡	𝑜𝑛𝑒	𝑜𝑓	𝑡ℎ𝑒	𝛼4	𝑖𝑠	𝑛𝑜𝑡	𝑒𝑞𝑢𝑎𝑙	𝑡𝑜	𝑧𝑒𝑟𝑜 

 
where 𝛼4 is the effect of the 𝑖RS treatment. The null hypothesis 𝐻¢ is tested at the 5% level of significance, that 
assumes, all the algorithms provide the solutions with the same mean value. The test results of ‘sum of squares 
(SS)’, ‘degree of freedom (df)’, ‘mean square (MS)’, computed 𝐹 and critical 𝐹�4R  with the P-values for both 
algorithms and treatments are presented in Table 8. From the results, the smaller the P-values (< 0.05) and the 
meeting the constraint 𝐹 > 𝐹�4R  demonastrate the evidence to against the null hypothesis , 𝐻®. Therefore, the 
solutions from the all algorithms are not equal, at least one of the mean is different. However, the ANOVA test 
does not provide the information where the actually differences lies or which one is better [65].  

Table 8: ANOVA analysis for all the considered test problems 
 𝑆𝑆	 𝑑𝑓	 𝑀𝑆	 𝐹	 𝑃 − 𝑣𝑎𝑙𝑢𝑒	 𝐹�4R  Comments 

Algorithms 4.01E+04 3 1.34E+04 4.36 0.0047 2.62 𝐹 > 𝐹�4R 
Treatments 2.41E+10 196 1.23E+08 40136.57 0.00 1.21 𝐹 > 𝐹�4R 

Error 1.80E+06 588 3.06E+03     
Total 2.41E+10 787 1.23E+08     

 
To determine the individual algorithm’s effect, a Wilcoxon sign test is performed in 200 samples solutions of 

all players from all considered problems for four algorithms. The comparisons are performed based on the average 
profits of all players, using a 5% significance level. The results are shown in Table 9, in which found that the P 
values of all the sets of comparisons are less than 0.05, indicating that there is a significant difference between the 
solutions from any two algorithms. Also, it is found that the CE-based algorithms obtain better solutions than 
those of IT-based ones.  

In addition, the Friedman test is carried out to rank all the algorithms, as shown in Tables 10, with the results 
demonstrating that the proposed CE-DE algorithm is ranked 1st, followed by CE-GA, IT-DE and IT-GA. 
Furthermore, a sample box plot for the 30-bus (case II) system for player 1 is depicted in Fig. 4 that illustrates the 
performance of the proposed CE-DE algorithm for obtaining highest mean results with a smaller standard 
deviation.  

	
Table 9: Wilcoxon test results for IT-DE, IT-GA, CE-DE and CE-GA	

Comparisons Better Similar Worse P-values 
IT-DE vs. IT-GA 88 70 42 0.001 
IT-DE vs. CE-DE 51 70 79 0.018 
IT-DE vs. CE-GA 52 75 73 0.044 
IT-GA vs. CE-DE 46 70 84 0.001 
IT-GA vs. CE-GA 44 70 86 0.000 
CE-DE vs. CE-GA 84 70 46 0.001 

Table 10: Ranks of IT-DE, IT-GA, CE-DE and CE-GA from Friedman test results 
IT-DE IT-GA CE-DE CE-GA 
2.51 2.82 2.24 2.44 
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Fig. 4. Sample boxplot of the profits of player-1 of IEEE 30-bus system (case II) 

B. Effect of 𝑁^ 
The robustness of the CE algorithms is validated using three different 𝑁^ values to solve the IEEE 3-bus test 

problem for cases III and IV in which the GENCOs and consumers act strategically, with the value of 𝑁l set to 
100 for both cases. After 30 independent runs for each 𝑁𝑃, the average results are recorded and presented in Tables 
11 and 12 for cases III and IV, respectively. It is found that, for each 𝑁^, both CE-GA and CE-DE provide unique 
local NEs which are not comparable to the others as at least one of the objectives is found to be better. 
Nevertheless, the profits for each instance are very close to each other, with the best acceptable values, including 
computational time, found when 𝑁^ = 8.  

Table 11: Effect of 𝑵𝑷 for solving IEEE 3-bus system for case III 
 CE-GA CE-DE 
 𝑁^ = 4 𝑁^ = 8 𝑁^ = 12 𝑁^ = 4 𝑁^ = 8 𝑁^ = 12 

G-1 744.84 772.84 779.53 747.49 749.12 747.15 
G-2 1805.62 1839.50 1792.70 1795.06 1807.19 1799.04 
L-1 2085.66 2024.37 2085.70 2099.67 2081.62 2094.12 
L-2 990.71 963.26 922.92 978.87 984.11 984.16 

Time (sec.) 1.23 1.38 1.98 1.18 1.36 1.51 

 

Table 12: Effect of 𝑵𝑷 for solving IEEE 3-bus system for case IV 
 CE-GA CE-DE 
 𝑁^ = 4 𝑁^ = 8 𝑁^ = 12 𝑁^ = 4 𝑁^ = 8 𝑁^ = 12 

G-1 717.99 850.57 748.49 761.63 771.71 766.55 
G-2 918.21 892.37 885.11 872.15 869.66 863.01 
L-1 2016.74 2062.95 2124.69 2105.14 2105.91 2114.74 
L-2 1417.44 1439.46 1439.38 1651.77 1665.02 1662.13 

Time (sec.) 1.15 1.92 4.01 1.30 1.80 3.28 
 

C. Effect of stopping criteria  
In this paper, the two stopping criteria used are that an algorithm is run until (i) the number of generations is 

greater than 𝑁l or (ii) the best FVs are no longer improved in the last 𝜃 generations. In this section, the robustness 
of the algorithms are investigated by varying the values of 𝑁l and 𝜃 as 50, 100 and 150, and 2, 5 and 10, 
respectively.  

The values of 𝑁l are changed first and then the 3-bus test problem for both cases III and IV solved using the 
CE-GA and CE-DE algorithms, with their average profits presented in Tables 13 and 14, respectively. It is found 
that the solutions for all the instances considered are the same which indicate that the algorithms never reach 𝑁l 
but stop due to stopping criterion (ii).  
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Table 13: Effect of 𝑵𝑮 for solving IEEE 3-bus system for case III 
 CE-GA CE-DE 
 𝑁l = 50 𝑁l = 100 𝑁l = 150 𝑁l = 50 𝑁l = 100 𝑁l = 150 

G-1 772.84 772.84 772.84 749.12 749.12 749.12 
G-2 1839.50 1839.50 1839.50 1807.19 1807.19 1807.19 
L-1 2024.37 2024.37 2024.37 2081.62 2081.62 2081.62 
L-2 963.26 963.26 963.26 984.11 984.11 984.11 

Time (sec.) 1.38 1.38 1.38 1.36 1.36 1.36 

Table 14: Effect of 𝑵𝑮 for solving IEEE 3-bus system for case-IV 
 CE-GA CE-DE 
 𝑁l = 50 𝑁l = 100 𝑁l = 150 𝑁l = 50 𝑁l = 100 𝑁l = 150 

G-1 850.57 850.57 850.57 771.71 771.71 771.71 
G-2 892.37 892.37 892.37 869.66 869.66 869.66 
L-1 2062.95 2062.95 2062.95 2105.91 2105.91 2105.91 
L-2 1439.46 1439.46 1439.46 1665.02 1665.02 1665.02 

Time (sec.) 1.92 1.92 1.92 1.80 1.80 1.80 

The average results for cases III and IV after changing the 𝜃 values for the same test problem are presented in 
Tables 15 and 16, respectively. It is clear that the algorithms prematurely converge when 𝜃 = 2, and the quality of 
solutions does not significantly improve if this value is increased from 5 to 10 but the computational time increases. 
Therefore, the algorithms behave the same for values of 𝜃 ≥ 5, with 𝜃 = 5 the best value for obtaining quality 
solutions in the least amount of computational time.  

Table 15: Effect of 𝜽 for solving IEEE 3-bus system for case III 
 CE-GA CE-DE 
 𝜃 = 2 𝜃 = 5 𝜃 = 10 𝜃 = 2 𝜃 = 5 𝜃 = 10 

G-1 757.90 772.84 772.12 706.57 749.12 747.45 
G-2 1782.41 1839.50 1755.53 1700.26 1807.19 1799.29 
L-1 2103.06 2024.37 2137.48 2053.62 2081.62 2093.64 
L-2 958.49 963.26 897.25 975.38 984.11 981.84 

Time (sec.) 0.68 1.38 2.12 1.01 1.36 2.05 

Table 16: Effect of 𝜽 for solving IEEE 3-bus system for case IV 
 CE-GA CE-DE 
 𝜃 = 2 𝜃 = 5 𝜃 = 10 𝜃 = 2 𝜃 = 5 𝜃 = 10 

G-1 778.86 850.57 850.49 728.24 771.71 766.97 
G-2 842.88 892.37 892.96 912.22 869.66 861.40 
L-1 2009.20 2062.95 2062.99 1981.94 2105.91 2115.76 
L-2 1436.00 1439.46 1438.18 1754.62 1665.02 1666.71 

Time (sec.) 1.60 1.92 3.52 1.03 1.8 2.16 
 

 
Fig. 5. Convergence characteristics of 𝐤𝒈𝒊∀𝒊 and 𝐤𝒅𝒋∀𝒋 in IT-DE and CE-DE, respectively 

D. Convergence characteristics 
In this section, the performances of the proposed CE approaches are explored by comparing their convergence 

characteristics with those of the IT methods. The IEEE 3-bus test problem for case IV is solved using the CE-DE 
and IT-DE algorithms with the convergence patterns of their bidding coefficients shown in Fig. 5. It can be seen 
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that the IT-DE takes 25 iterations to converge while the CE-DE converges in only six generations and, even after 
4, obtains the best solution. This is because an IT approach determines the best 𝑘7∀𝑛 for each bidder sequentially 
while the CE one determines them for all bidders simultaneously.  

 

VII. CONCLUSION AND FUTURE WORKS 

In this paper, two solution approaches based on CE algorithms are developed to solve the competitive electricity 
market in which both strategic GENCOs and consumers participate to maximize their individual profits by 
optimizing their bidding behaviors while anticipating those of others. The market is represented as an SFE with a 
bi-level optimization problem in which the lower level maximizes the CSW by solving a DC-OPF problem using 
a classical optimization technique that satisfies the KKT conditions. In the upper level, one of two EAs, GA or 
DE, is used to maximize an individual bidder’s profit, with multi-populations considered for multiple bidders in 
which each sub-population represents a player (bidder) that co-evolves with the others and seeks its best 
propagation considering the best individuals from the other sub-populations. In addition, two well-known 
conventional solution methods, IT-DE and IT-GA, are also implemented to analyze the effectiveness of the 
proposed CE algorithms. The performances are validated by solving four different cases of three IEEE 
benchmarks with up to 118 buses. Comparisons of the simulation results with both each other and those in the 
literature reveal that the CE approaches have merit in terms of quality and reliability, with CE-DE the best method 
for a competitive energy market.  

Possible future work could consider more complex problems, such as multi-period auctions over 24 hours with 
5-minute intervals instead of the single period used in this paper. Also, the cost function of the generator, which 
is assumed to be quadratic, could be represented as piecewise nonlinear, non-convex and non-smooth to align 
with reality. Moreover, in this paper, it is assumed that each bidder has incomplete information about the bidding 
strategies of its rivals but perfect information about their cost structures. This could be further extended by 
considering that they have incomplete information of both. Furthermore, solving the problem as a complete 
distributed manner is another possible direction. 
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Appendices  

A. ISO’s SCQP problem 
In this section, for the DC-OPF SCQP problem, the coefficients of the objective function in Eqn. (23) and 

constraints in Eqns. (24) and (25) are described.  
 

1. Depiction of objective function  

The decision variable of the objective function in Eqn. (23) is: 
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 (40) 

and the coefficient:  (41) 

where Ug and Ud are the generators’ and consumers’ quadratic matrices, respectively, as: 

 (42) 

 (43) 

Parameter 𝐖𝐫𝐫 is the reduced form of the weight matrix (𝐖) that can be defined as the voltage and angle 
difference of each node as: 

 (44) 

where  (45) 

where  is the branch connection matrix defined as:  

 (46) 

Once the  matrix is found, the reduced weight matrix ( ) is determined after removing the first row and 
column, i.e., excluding the slack bus (𝑘 = 1).  

The linear argument (𝐟) in Eqn. (23) is determined as: 

 (47) 

Comparing the original (17) and quasi (23) objective functions, it is seen that the latter provides a positive 
definite quadratic form, with at least one non-zero component strictly positive scalar which may indicate that the 
optimization problem could be satisfied by the first-order optimality of KKT conditions [34]. The KKT 
representation of the problem is shown in Appendix B. 

 
2. Depiction of Constraints 

The coefficients of the inequality constraint in Eqn. (24) are defined as:  

 (48) 

 where  

 (49) 
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where 𝐎𝐭, 𝐎𝐩, 𝐎𝐝 and 𝐎𝐠 are zero matrices of sizes 𝐾 × 𝐼, 𝐼 × (𝑘 − 1), 𝐽 × (𝐼 + 𝐾 − 1) and (2𝐾 + 2𝐼) × 𝐽 
respectively, while 𝐈𝐩 is the identity matrix of size (𝐼 × 𝑘 − 1). The diagonal matrix (𝐃)	,		reduced adjacency 
matrix (	𝐀𝐫) and diagonal adjacent matrix of the load demand (𝐂𝐝) are determined as: 

 (50) 

 (51) 

 (52) 

Then, the reduced adjacency matrix (𝐀𝐫) is calculated after deleting the first row and column of the 𝐀	matrix, 
with the load adjacent to the diagonal matrix determined as:  

 (53) 

The coefficient on the right-hand side in Eqn. (24) (𝐛𝐢𝐧) can be calculated as:  

 (54) 

where                                                  (55) 

 (56) 

 (57) 
  

The coefficients of the equality constraints in Eqn. (25) (𝐂𝐞𝐪 and 𝐛𝐞𝐪) are determined as:  

 (58) 

where  and  are the matrices indicating the locations of the generators and loads, respectively, which 

are defined as: 

 (59) 

where  (60) 
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 (61) 

where  (62) 

The impedance matrix (𝑌tÊv) is calculated as: 

 (63) 

 
Then, the reduced impedance matrix (𝑌tÊv ) is obtained from the 𝑌tÊv matrix after removing the first row. Note 

that the coefficient of the equality constraints in Eqn. (25) (𝐛𝐞𝐪) is a zero matrix of size (𝐾 × 1). 

B. KKT conditions of ISO SCQP problem 
The ISO SCQP problem can be summarized as: 

 
(64) 

subject to  (65) 

 (66) 
where 𝑔 and ℎ are the inequality and equality constraints, respectively, and 𝐼𝑁 and 𝐸𝑄 their active numbers, 
respectively. Note that the number of equality constraints is exactly the same as the number of buses for a power 
system network. Based on [66], the KKT conditions are: 

 (67) 

 (68) 
where 𝑢47∀𝑖𝑛 is a non-negative scalar and 𝜆 the scalar dual variables for the inequality and equality constraints, 
respectively. After differentiating Eqn. (67) with respect to all the primal and dual variables, a well-known matrix 
equation (𝐀𝐲 = 𝐛) is found, where 𝐲 = Î𝐱𝐓, 𝑢A,… , 𝑢fÑ, 𝜆A,… , 𝜆ÒÓÔ

Õ
. The process for determining 𝐲 is explicity 

described in [60, 66].  
Once 𝐱 and 𝜆1, ∀𝑘 = 1,2,… ,𝐾 are known, the PD by each generator (𝑃4), load dispatch by each consumer (𝑞=), 

LMP of each node (𝜆^4∀𝑖, 𝜆[=∀𝑗) and branch flows (𝐹16) are calculated as: 
 (69) 

 (70) 

 (71) 

 (72) 
 (73) 

  
where                                                      (74) 
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where 𝐁𝐫𝐫 is found from the 𝐘𝐛𝐮𝐬 matrix after deleting the first row and column. 

C. Simulation results 
In this section, detailed results for all the three test problems considered are described. 
 

1. IEEE 3-bus system 

The results for the IEEE 3-bus test system for cases II, III and V are shown in Tables 17 and 18, 19 and 20, and 
21 and 22, respectively. Note that the minus sign of the line flow indicates that the electricity flow is in the reverse 
direction, for example, 𝐹A� = −21.08		 means that the actual electricity flows from nodes 3 to 1.  
Table 17: Detailed summary of IEEE 3-bus system for case II 

 Expected profit ($) BS Market price ($/MW) Dispatch (MW) Line flow (MW) 
Alg. G-1 G-2 L-1 L-2 𝑘YA 𝑘Ye 𝜆A 𝜆e 𝜆� 𝑃A 𝑃e  𝑑A 𝑑e  𝐹Ae 𝐹A� 𝐹e�  
EBA [1] 1557.07 455.55 1557.07 455.55 1.13 1.08 21.11 21.11 21.11 361.79 189.08 236.09 361.79 NR NR NR 
BA [1] 1540.17 440.16 2239.75 2986.34 1.13 1.08 21.07 21.07 21.07 361.26 190.86 236.63 361.26 NR NR NR 
PSO [1] 1523.11 429.44 2253.33 3004.44 1.13 1.08 21.01 21.01 21.01 362.79 191.01 237.34 362.79 NR NR NR 
GA [1] 1494.39 413.18 2274.95 3033.27 1.12 1.07 20.92 20.92 20.92 364.65 191.8 238.48 364.65 NR NR NR 
NCP [63] 1560.00 446.50 NR NR 1.13 1.08 21.10 21.10 21.10 361.80 188.8 236.00 361.80 146.8 -21.00 -167.80 
IT-DE 1560.39 447.21 2227.14 2969.24 1.13 1.08 21.12 21.12 21.12 361.64 188.92 235.96 314.60 146.76 -21.08 -167.84 
IT-GA 1835.62 430.34 2111.37 2814.86 1.14 1.13 21.62 21.62 21.62 395.30 140.76 229.75 306.31 157.29 8.26 -149.03 
CE-DE 1581.98 454.55 2213.71 2951.32 1.14 1.09 21.18 21.18 21.18 362.02 186.88 235.25 313.65 146.81 -20.04 -166.84 
CE-GA 1666.26 468.94 2168.97 2891.68 1.14 1.10 21.37 21.37 21.37 367.56 175.77 232.86 310.47 148.39 -13.69 -162.08 
 
Table 18: CSW, computational time and Friedman test results for IEEE 3-bus test system for case II 

 EBA [1]  BA [1] PSO [1] GA [1] IT-DE IT-GA CE-DE CE-GA 
CSW ($) 6099.2 6122.05 6157.14 6211.8 6093.22 5907.37 6062.5 5970.04 
Time (sec.) 108.6 72.6 60.6 138.6 5.45 5.39 1.21 1.39 
MR 5.67 4.33 4.17 4.5 4.17 5.33 3.83 4.00 

Table 19: Detailed summary of IEEE 3-bus system for case III 
 Expected profit ($) BS Market price ($/MW) Dispatch (MW) Line flow (MW) 

Alg. G-1 G-2 L-1 L-2 𝑘YA 𝑘Ye 𝜆A 𝜆e 𝜆� 𝑃A  𝑃e  𝑑A 𝑑e  𝐹Ae 𝐹A�  𝐹e�  
EBA [1] 747.97 1799.02 2094.20 980.54 1.34 1.25 21.68 25.41 29.13 122.95 287.02 228.96 181.01 NR NR NR 
BA [1] 741.59 1789.58 2110.39 985.47 1.33 1.25 21.62 25.37 29.12 123.45 287.48 229.69 181.24 NR NR NR 
PSO [1] 690.43 1586.22 2424.86 859.21 1.23 1.25 20.30 25.07 29.84 151.97 263.46 246.21 169.23 NR NR NR 
GA [1] 684.26 1580.74 2436.34 862.65 1.23 1.25 20.25 25.04 29.82 152.22 264.14 246.79 169.57 NR NR NR 
NCP [63] 747.10 1799.00 NA NA 1.34 1.25 21.70 25.40 29.10 122.90 286.90 228.80 180.90 25.00 -130.90 -155.9 
IT-DE 749.55 1798.61 2093.70 977.65 1.34 1.25 21.70 29.17 25.43 123.26 286.04 228.78 180.52 25.00 -130.52 -155.52 
IT-GA 796.93 1816.66 2041.20 911.46 1.35 1.27 21.93 29.54 25.73 126.59 273.61 225.90 174.30 25.00 -124.30 -149.30 
CE-DE 749.12 1807.19 2081.62 984.11 1.34 1.25 21.75 29.13 25.44 122.01 287.24 228.12 181.12 25.00 -131.12 -156.12 
CE-GA 772.84 1839.50 2024.37 963.26 1.36 1.26 22.00 29.25 25.62 120.78 283.38 224.97 179.19 25.00 -129.19 -154.19 
 
Table 20: CSW, computational time and Friedman test results for IEEE 3-bus test system for case III 

 EBA [1]  BA [1] PSO [1] GA [1] IT-DE IT-GA CE-DE CE-GA 
CSW ($) 3873.21 3891.90 4130.12 4147.37 3863.59 3728.12 3856.28 3764.74 
Time (sec.) 130.8 84.6 70.8 140.4 5.43 5.42 1.36 1.38 
MR 4.67 6.00 6.33 6.67 4.00 4.67 3.67 4.00 

 
Table 21: Detailed summary of IEEE 3-bus system for case IV 

 Expected profit ($) BS Market price ($/MW) Dispatch (MW) Line flow (MW) 
Alg. G-1 G-2 L-1 L-2 𝑘YA 𝑘Ye 𝑘[A 𝑘[e 𝜆A 𝜆e 𝜆� 𝑃A  𝑃e  𝑑A 𝑑e 𝐹Ae  𝐹A�  𝐹e�  

EBA [1] 767.57 859.46 2116.94 1658.21 1.31 1.16 0.90 0.78 21.45 24.23 22.84 132.58 215.91 203.04 145.45 NR NR NR 
BA [1] 764.78 892.27 2096.01 1657.30 1.32 1.16 0.90 0.78 21.40 24.24 22.82 129.70 219.76 202.09 147.38 NR NR NR 
PSO [1] 761.35 891.46 2096.01 1656.24 1.32 1.16 0.90 0.78 21.54 24.33 22.93 129.21 219.61 201.52 147.30 NR NR NR 
GA [1] 734.80 887.30 2109.49 1647.35 1.32 1.16 0.89 0.78 21.43 24.40 22.91 126.57 219.65 198.90 147.32 NR NR NR 
IT-DE 767.83 862.40 2115.77 1655.34 1.31 1.16 0.90 0.78 21.46 24.26 22.86 132.50 215.98 202.99 145.49 25.00 -95.49 -120.49 
IT-GA 762.36 1093.81 1988.80 1634.91 1.36 1.18 0.92 0.82 22.07 24.92 23.49 117.70 241.61 201.01 158.30 25.00 -108.30 -133.30 
CE-DE 771.71 869.66 2105.91 1665.02 1.32 1.16 0.91 0.78 21.51 24.23 22.87 131.95 217.54 203.21 146.27 25.00 -96.27 -121.27 
CE-GA 850.57 892.37 2062.95 1439.46 1.32 1.20 0.90 0.79 21.69 25.19 23.44 142.31 190.97 200.29 132.98 25.00 -82.98 -107.98 

Table 22: CSW, computational time and Friedman test results of IEEE 3 bus test system for case-IV 
  EBA [1]  BA [1] PSO [1] GA [1] IT-DE IT-GA CE-DE CE-GA 
CSW ($) 2416.84 2425.83 2412.94 2358.71 2417.78 2582.24 2430.62 2308.88 
Time (sec.) 146.40 99.00 82.20 177.60 10.83 36.17 1.80 1.92 
MR 4.5 4.25 5.25 6.17 4 4.5 2.67 4.67 
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2. IEEE 30-bus system 

The results for the IEEE 30-bus test system for cases I, II, III and IV are shown in Tables 23 and 24, 25 and 
26, 27 and 28, and 29 and 30, respectively.  

Table 23: Summary of IEEE 30-bus system for case I 
 Alg. G-1(#1) G-2(#2) G-3( #13) G-4( #22) G-5( #23) G-6( #27) 

Average nodal 
price ($/MWh) 

GA 32.10 32.01 33.17 33.41 45.90 34.91 
DE 32.10 32.01 33.17 33.41 45.90 34.91 
IP 32.10 32.01 33.17 33.41 45.90 34.91 

Average power  
production (MW) 

GA 56.40 60.06 40.86 57.07 50.00 75.64 
DE 56.40 60.06 40.86 57.07 50.00 75.64 
IP 56.40 60.06 40.86 57.07 50.00 75.64 

Average expected 
profit ($) 

GA 397.68 360.72 166.95 325.67 945.17 715.17 
DE 397.68 360.72 166.95 325.67 945.17 715.17 
IP 397.68 360.72 166.95 325.67 945.17 715.17 

 

Table 24: Line flow, CSW, computational time and Friedman test results for IEEE 30-bus test system for case I 
 GA DE IP 

(𝐹�, , 𝐹A¡,Ae, 𝐹A¢,A¡) (MW) (8.90,8.00,10.00) (8.90,8.00,10.00) (8.90,8.00,10.00) 
CSW ($) 18453.88 18453.88 18453.88 
Time (sec.) 10.09 2.28 0.08 
MR 2.13 2.00 1.88 

Table 25: Detailed summary of IEEE 30-bus system for case II 
 Alg. G-1(#1) G-2(#2) G-3( #13) G-4( #22) G-5( #23) G-6( #27) 

Average nodal 
price ($/MWh) 

EBA 36.18 36.18 36.18 36.18 36.18 36.18 
BA 36.17 36.17 36.17 36.17 36.17 36.17 
PSO 36.00 36.00 36.00 36.00 36.00 36.00 
GA 35.94 35.94 35.94 35.94 35.94 35.94 

IT-DE 37.17 37.17 37.17 37.17 37.17 37.17 
IT-GA 37.06 37.06 37.06 37.06 37.06 37.06 
CE-DE 37.37 37.37 37.37 37.37 37.37 37.37 
CE-GA 37.27 37.27 37.27 37.27 37.27 37.27 

Average bidding coefficients 

EBA 1.07 1.08 1.05 1.07 1.07 1.08 
BA 1.07 1.08 1.05 1.07 1.07 1.08 
PSO 1.06 1.07 1.04 1.06 1.06 1.07 
GA 1.06 1.07 1.04 1.06 1.06 1.07 

IT-DE 1.10 1.11 1.04 1.10 1.01 1.11 
IT-GA 1.09 1.10 1.06 1.09 1.04 1.10 
CE-DE 1.10 1.12 1.02 1.10 1.01 1.12 
CE-GA 1.10 1.11 1.03 1.10 1.01 1.11 

Average power production 
(MW) 

EBA 61.52 65.72 44.70 57.33 57.33 68.53 
BA 61.53 65.72 44.71 57.35 57.35 68.52 
PSO 61.75 65.75 45.04 57.29 57.34 68.78 
GA 61.76 65.83 45.09 57.31 57.41 68.82 

IT-DE 63.53 67.54 49.02 59.65 50.00 70.17 
IT-GA 63.52 68.28 48.10 59.63 50.00 70.88 
CE-DE 63.28 67.03 49.62 59.15 50.00 69.93 
CE-GA 63.03 67.19 49.21 59.63 50.00 70.39 

Average expected 
profit ($) 

EBA 622.27 605.97 280.85 461.11 461.10 771.30 
BA 621.70 605.31 280.42 460.60 460.60 770.61 
PSO 611.60 594.11 273.25 450.65 450.74 759.47 
GA 607.90 590.31 270.61 447.22 447.41 755.39 

IT-DE 713.20 703.22 356.46 548.88 508.51 869.82 
IT-GA 706.32 698.60 348.26 542.44 503.17 864.83 
CE-DE 724.94 714.65 367.58 559.02 518.40 882.83 
CE-GA 716.73 708.35 361.97 553.80 513.48 877.04 

 

Table 26: Line flow, CSW, computational time and Friedman test results for IEEE 30-bus test system for case II 
 EBA BA PSO GA IT-DE IT-GA CE-DE CE-GA 

(𝐹�, , 𝐹A¡,Ae, 𝐹A¢,A¡) (MW) NR NR NR NR (9.78,16.98,16.08) (9.69,16.92,16.28) (9.77,16.99,15.88) (9.69,16.94,16.03) 
CSW ($) NR NR NR NR 18225.32 18201.44 18200.8 18216.83 
Time (sec.) 261.6 213 185.4 288.6 27.66 23.39 4.60 8.67 
MR 5.43 6.14 6.86 7.57 2.71 3.86 1.43 2.00 
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Table 27: Summary of IEEE 30-bus system for case III 
 Alg. G-1(#1) G-2(#2) G-3( #13) G-4( #22) G-5( #23) G-6( #27) 

Average nodal 
price ($/MWh) 

EBA 36.58 36.58 40.13 36.15 47.12 43.44 
BA 36.33 36.33 40.04 35.81 46.95 43.25 
PSO 36.30 36.30 40.00 35.79 46.93 43.23 
GA 36.25 36.25 39.95 35.75 46.91 43.19 

IT-DE 38.57 38.39 40.77 40.47 51.13 46.55 
IT-GA 38.62 38.42 40.98 40.42 51.10 46.61 
CE-DE 38.60 38.41 40.81 40.49 51.14 46.57 
CE-GA 38.69 38.47 41.29 40.26 50.94 46.40 

Average bidding 
coefficients 

EBA 1.12 1.13 1.27 1.19 1.40 1.26 
BA 1.11 1.13 1.27 1.16 1.40 1.26 
PSO 1.11 1.13 1.27 1.16 1.40 1.26 
GA 1.11 1.13 1.26 1.16 1.40 1.26 

IT-DE 1.15 1.18 1.30 1.23 1.45 1.65 
IT-GA 1.16 1.18 1.32 1.23 1.31 1.66 
CE-DE 1.16 1.18 1.31 1.23 1.41 1.65 
CE-GA 1.17 1.19 1.32 1.20 1.39 1.65 

Average power 
production (MW) 

EBA 57.13 59.46 30.19 39.41 50.00 71.43 
BA 56.58 58.62 30.72 41.57 50.00 70.78 
PSO 56.60 58.57 30.79 41.58 50.00 70.79 
GA 56.59 58.65 30.84 41.61 50.00 70.79 

IT-DE 61.72 62.41 31.36 54.58 50.00 48.72 
IT-GA 61.51 63.31 30.60 54.51 50.00 48.66 
CE-DE 61.59 62.53 31.33 54.57 50.00 48.69 
CE-GA 60.11 61.71 31.15 57.56 50.00 48.35 

Average expected 
profit ($) 

EBA 632.45 609.69 352.91 387.45 985.80 1296.02 
BA 615.90 591.12 354.78 385.27 977.02 1276.09 
PSO 614.52 589.43 354.23 384.64 976.41 1274.91 
GA 611.66 586.84 352.95 382.99 975.10 1272.46 

IT-DE 793.47 758.10 396.34 710.09 1206.34 1191.89 
IT-GA 795.19 765.48 395.04 704.80 1205.08 1193.03 
CE-DE 794.38 760.34 397.02 711.07 1206.93 1192.42 
CE-GA 791.97 759.09 410.47 719.60 1196.94 1177.74 

Table 28: Line flow, CSW, computational time and Friedman test results for IEEE 30-bus test system for case III 
 EBA BA PSO GA IT-DE IT-GA CE-DE CE-GA 

(𝐹�, , 𝐹A¡,Ae, 𝐹A¢,A¡) (MW) NR NR NR NR (10,8,10) (10,8,10) (10,8,10) (10,8,10) 
CSW ($) NR NR NR NR 15731.54 15901.73 15778.71 15795.78 
Time (sec.) 361.8 289.2 253.8 400.2 27.27 29.09 4.60 8.59 
MR 4.83 5.17 6.17 7.17 3.67 3.00 2.50 3.50 

Table 29: Summary of IEEE 30-bus system for cases III and IV 

 
Expected profits ($) at case III Expected profits ($) at case IV Bidding coefficients at case IV 

IT-DE IT-GA CE-DE CE-GA IT-DE IT-GA CE-DE CE-GA IT-DE IT-GA CE-DE CE-GA 
G-1(#1) 793.47 795.19 794.38 791.97 783.94 768.22 789.52 782.49 1.14 1.14 1.13 1.13 
G-2(#2) 758.1 765.48 760.34 759.09 754.07 737.85 768.40 766.86 1.17 1.17 1.16 1.14 
G-3(#13) 396.34 395.04 397.02 410.47 376.09 368.92 369.49 361.56 1.25 1.24 1.25 1.24 
G-4(#22) 710.09 704.8 711.07 719.6 506.58 510.41 560.16 556.91 1.21 1.19 1.19 1.19 
G-5(#23) 1206.34 1205.08 1206.93 1196.94 611.66 625.52 657.67 658.65 1.11 1.12 1.11 1.12 
G-6(#27) 1191.89 1193.03 1192.42 1177.74 941.64 936.28 880.76 866.85 1.13 1.13 1.33 1.34 
L-1(#2) 666.06 665.55 665.65 664.68 668.20 671.25 667.86 669.83 0.98 0.98 0.98 0.98 
L-2(#3) 756.88 755.91 756.45 754.37 761.61 764.80 761.77 763.93 0.98 0.98 0.98 0.98 
L-3(#4) 730.1 728.81 729.63 726.78 736.60 740.11 737.06 739.49 0.98 0.97 0.97 0.98 
L-4(#7) 940.5 940.42 940.04 940.15 940.05 943.61 939.03 941.20 0.97 0.97 0.97 0.97 
L-5(#8) 880.33 876.09 879.8 884.53 1254.90 1258.51 1141.07 1150.41 0.97 0.97 0.66 0.66 
L-6(#10) 564.25 565.73 563.84 568.61 557.35 561.56 551.35 553.77 0.95 0.96 0.95 0.95 
L-7(#12) 1084.56 1080.45 1083.94 1074.3 1106.55 1110.99 1110.18 1113.73 0.94 0.94 0.94 0.94 
L-8(#14) 232.35 235.21 232.64 241.94 527.07 523.22 492.76 484.83 0.45 0.47 0.47 0.47 
L-9(#15) 212.14 212.44 212.07 213.96 397.96 391.43 384.62 383.18 0.94 0.94 0.94 0.94 
L-10(#16) 947.49 940.73 946.95 930.78 1150.10 1148.37 1151.41 1153.26 0.81 0.83 0.81 0.81 
L-11(#17) 92.55 89.13 92.37 83.99 250.36 241.75 249.10 248.50 0.73 0.73 0.73 0.73 
L-12(#18) 271.16 271.68 271.03 273.61 441.82 436.85 428.63 427.81 0.95 0.96 0.95 0.95 
L-13(#19) 269.57 270.24 269.4 272.13 377.00 374.86 367.39 367.45 0.97 0.97 0.97 0.97 
L-14(#20) 333.44 334.34 333.2 336.42 387.95 388.42 380.81 381.72 0.97 0.97 0.97 0.97 
L-15(#21) 1227.32 1228.62 1226.91 1231.72 1252.61 1255.86 1244.15 1246.39 0.95 0.96 0.95 0.95 
L-16(#23) 474.35 474.71 474.19 476.95 652.05 647.66 637.33 637.00 0.96 0.97 0.96 0.96 
L-17(#24) 902.22 902.58 901.93 905.51 1038.28 1037.28 1023.05 1024.34 0.97 0.97 0.97 0.97 
L-18(#26) 321 320.8 320.77 323.02 423.58 423.66 409.55 411.34 0.98 0.98 0.97 0.98 
L-19(#29) 335.31 334.56 335 337.38 461.90 463.04 441.68 444.79 0.98 0.97 0.96 0.96 
L-20(#30) 683.78 682.83 683.39 686.38 838.35 839.76 814.03 817.56 0.97 0.97 0.95 0.94 
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Table 30: Line flow, CSW, computational time and Friedman test results for IEEE 30-bus test system for case IV 
 IT-DE IT-GA CE-DE CE-GA 
(𝐹�, , 𝐹A¡,Ae, 𝐹A¢,A¡) (MW) (9.18,8,10) (9.11,8,10) (9.05,8,10) (9.42,8,10) 
CSW ($) 15146.98 15236.98 14238.36 14271.38 
Time (Sec) 219.78 247.98 35.18 120.83 
MR 2.65 2.42 2.12 2.81 
 

3. IEEE 118-bus system 

The results for the IEEE 118-bus test system for cases II and III are shown in Tables 31 and 32, and 33 and 34, 
respectively.  

Table 31: Summary of IEEE 118-bus system for case II 
Gen-bus Expected profits ($) Power production (MW) Bidding coefficients 

 IT-DE IT-GA CE-DE CE-GA IT-DE IT-GA CE-DE CE-GA IT-DE IT-GA CE-DE CE-GA 
G-1(#1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.50 2.50 2.50 2.50 
G-2(#4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.50 2.50 2.50 2.50 
G-3(#6) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.50 2.50 2.50 2.50 
G-4(#8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.50 2.50 2.50 2.50 
G-5(#10) 167.49 165.10 168.60 167.15 114.62 110.52 112.11 111.33 1.01 1.01 1.01 1.01 
G-6(#12) 31.89 31.52 32.16 31.91 23.01 22.67 22.89 22.87 1.00 1.00 1.00 1.00 
G-7(#15) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.47 2.50 2.50 2.50 
G-8(#18) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.50 2.50 2.50 2.50 
G-9(#19) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.50 2.50 2.50 2.50 
G-10(#24) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.50 2.50 2.50 2.50 
G-11(#25) 82.42 81.33 83.04 82.57 58.53 56.61 57.50 60.27 1.00 1.01 1.01 1.00 
G-12(#26) 117.45 115.83 118.11 117.30 82.47 79.42 80.21 80.23 1.00 1.01 1.01 1.01 
G-13(#27) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.46 2.50 2.49 2.50 
G-14(#31) 2.63 2.59 2.65 2.63 1.92 1.80 1.91 1.92 1.00 1.01 1.00 1.00 
G-15(#32) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.50 2.50 2.49 2.50 
G-16(#34) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.50 2.50 2.50 2.50 
G-17(#36) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.50 2.50 2.50 2.50 
G-18(#40) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.50 2.50 2.50 2.50 
G-19(#42) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.50 2.50 2.50 2.50 
G-20(#46) 7.13 7.02 7.19 7.13 5.19 4.89 5.18 5.18 1.00 1.01 1.00 1.00 
G-21(#49) 76.41 75.50 77.02 76.42 53.88 53.06 53.56 53.46 1.00 1.01 1.01 1.01 
G-22(#54) 18.00 17.80 18.16 18.01 13.07 12.98 13.03 13.02 1.00 1.00 1.00 1.00 
G-23(#55) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.42 2.50 2.49 2.50 
G-24(#56) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.50 2.50 2.50 2.50 
G-25(#59) 58.09 57.42 58.57 58.11 41.42 41.00 41.13 41.07 1.00 1.00 1.00 1.00 
G-26(#61) 59.94 59.27 60.05 59.97 42.42 42.32 41.49 42.34 1.00 1.00 1.01 1.00 
G-27(#62) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.40 2.50 2.42 2.50 
G-28(#65) 145.81 144.26 147.12 145.72 99.76 99.08 99.72 98.25 1.01 1.01 1.01 1.01 
G-29(#66) 146.24 144.63 145.83 146.00 100.40 99.34 96.66 98.10 1.01 1.01 1.01 1.01 
G-30(#69) 191.80 190.26 193.22 191.51 128.46 129.43 127.07 126.07 1.01 1.01 1.01 1.01 
G-31(#70) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.48 2.50 2.47 2.50 
G-32(#72) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.50 2.50 2.50 2.50 
G-33(#73) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.50 2.50 2.50 2.50 
G-34(#74) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.50 2.50 2.50 2.50 
G-35(#76) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.50 2.50 2.49 2.50 
G-36(#77) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.50 2.50 2.50 2.50 
G-37(#80) 177.38 175.18 178.39 177.14 119.65 117.21 117.34 117.30 1.01 1.01 1.01 1.01 
G-38(#85) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.45 2.50 2.47 2.50 
G-39(#87) 1.50 1.48 1.51 1.50 1.09 1.03 1.10 1.10 1.00 1.01 1.00 1.00 
G-40(#89) 195.80 222.15 225.74 223.85 129.91 146.61 145.31 144.48 1.08 1.01 1.02 1.02 
G-41(#90) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.38 2.50 2.50 1.46 
G-42(#91) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.50 2.50 2.50 2.50 
G-43(#92) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.50 2.50 2.50 2.50 
G-44(#99) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.50 2.50 2.50 2.50 
G-45(#100) 94.38 93.17 95.11 94.30 66.46 64.85 65.73 65.27 1.00 1.01 1.01 1.01 
G-46(#103) 15.01 14.83 15.13 15.01 10.92 10.81 10.81 10.87 1.00 1.00 1.00 1.00 
G-47(#104) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.49 2.49 2.50 2.47 
G-48(#105) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.50 2.50 2.50 2.50 
G-49(#107) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.50 2.49 2.46 2.50 
G-50(#110) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.50 2.50 2.50 2.50 
G-51(#111) 13.51 13.35 13.62 13.51 9.83 9.73 9.81 9.78 1.00 1.00 1.00 1.00 
G-52(#112) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.50 2.49 2.50 2.50 
G-53(#113) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.50 2.50 2.50 2.49 
G-54(#116) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.47 2.50 2.50 2.50 
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Table 32: Line flow, LMP, CSW, computational time and Friedman test results for IEEE 118-bus test system for case II 
 IT-DE IT-GA CE-DE CE-GA 

𝐹A¢¢,A¢� (MW) 24.56 24.66 24.61 24.60 
𝜆 ($/MWh) 22.74 22.72 22.75 22.74 
CSW ($) 52038.40 52031.63 52002.34 52014.12 
Time (sec.) 813.37 946.36 293.21 321.45 
MR 2.50 3.01 2.01 2.48 

Table 33: Summary of IEEE 118-bus system for case III 
Gen-bus Market clearing prices (($/MWh)) Expected profits ($) Bidding coefficients 
 IT-DE IT-GA CE-DE CE-GA IT-DE IT-GA CE-DE CE-GA IT-DE IT-GA CE-DE CE-GA 
G-1(#1) 22.69 22.68 22.73 22.72 0.00 0.00 0.00 0.00 2.50 2.49 2.50 2.50 
G-2(#4) 22.69 22.68 22.73 22.72 0.00 0.00 0.00 0.00 2.50 2.49 2.50 2.50 
G-3(#6) 22.69 22.68 22.73 22.72 0.00 0.00 0.00 0.00 2.50 2.49 2.50 2.50 
G-4(#8) 22.69 22.68 22.73 22.72 0.00 0.00 0.00 0.00 2.50 2.49 2.50 2.50 
G-5(#10) 22.69 22.68 22.72 22.72 161.25 160.51 165.40 164.85 1.01 1.01 1.01 1.01 
G-6(#12) 22.69 22.68 22.73 22.72 30.78 30.55 31.59 31.32 1.00 1.00 1.00 1.01 
G-7(#15) 22.69 22.68 22.73 22.72 0.00 0.00 0.00 0.00 2.50 2.49 2.50 2.50 
G-8(#18) 22.69 22.68 22.73 22.72 0.00 0.00 0.00 0.00 2.50 2.49 2.50 2.50 
G-9(#19) 22.69 22.68 22.73 22.72 0.00 0.00 0.00 0.00 2.50 2.49 2.50 2.49 
G-10(#24) 22.69 22.68 22.73 22.72 0.00 0.00 0.00 0.00 2.50 2.49 2.50 2.50 
G-11(#25) 22.69 22.68 22.73 22.72 79.56 78.89 81.59 80.65 1.00 1.01 1.01 1.01 
G-12(#26) 22.69 22.68 22.73 22.72 113.26 112.11 116.14 115.68 1.01 1.01 1.01 1.01 
G-13(#27) 22.69 22.68 22.73 22.72 0.00 0.00 0.00 0.00 2.50 2.49 2.50 2.50 
G-14(#31) 22.69 22.68 22.73 22.72 2.53 2.52 2.60 2.58 1.00 1.00 1.00 1.00 
G-15(#32) 22.69 22.68 22.73 22.72 0.00 0.00 0.00 0.00 2.50 2.49 2.50 2.49 
G-16(#34) 22.69 22.68 22.73 22.72 0.00 0.00 0.00 0.00 2.50 2.49 2.50 2.49 
G-17(#36) 22.69 22.68 22.73 22.72 0.00 0.00 0.00 0.00 2.50 2.49 2.50 2.50 
G-18(#40) 22.69 22.68 22.73 22.72 0.00 0.00 0.00 0.00 2.50 2.49 2.50 2.50 
G-19(#42) 22.69 22.68 22.73 22.72 0.00 0.00 0.00 0.00 2.50 2.49 2.50 2.50 
G-20(#46) 22.69 22.68 22.73 22.72 6.88 6.83 7.06 7.03 1.00 1.00 1.00 1.00 
G-21(#49) 22.69 22.68 22.73 22.72 73.69 73.22 75.67 75.40 1.01 1.00 1.01 1.00 
G-22(#54) 22.69 22.68 22.73 22.72 17.37 17.25 17.84 17.77 1.00 1.00 1.00 1.00 
G-23(#55) 22.69 22.68 22.73 22.72 0.00 0.00 0.00 0.00 2.50 2.49 2.50 2.50 
G-24(#56) 22.69 22.68 22.73 22.72 0.00 0.00 0.00 0.00 2.50 2.49 2.50 2.50 
G-25(#59) 22.69 22.68 22.73 22.72 56.07 55.63 57.53 57.32 1.00 1.00 1.00 1.00 
G-26(#61) 22.69 22.68 22.73 22.72 57.87 57.42 59.37 59.17 1.00 1.00 1.00 1.00 
G-27(#62) 22.69 22.68 22.73 22.72 0.00 0.00 0.00 0.00 2.50 2.49 2.50 2.50 
G-28(#65) 22.69 22.68 22.73 22.72 140.54 139.58 144.18 143.82 1.01 1.01 1.01 1.01 
G-29(#66) 22.69 22.68 22.73 22.72 140.92 139.94 144.56 144.24 1.01 1.01 1.01 1.01 
G-30(#69) 22.69 22.68 22.73 22.72 184.96 184.37 189.38 188.75 1.01 1.01 1.01 1.01 
G-31(#70) 22.69 22.68 22.73 22.72 0.00 0.00 0.00 0.00 2.50 2.49 2.50 2.47 
G-32(#72) 22.69 22.68 22.73 22.72 0.00 0.00 0.00 0.00 2.50 2.49 2.50 2.47 
G-33(#73) 22.69 22.68 22.73 22.72 0.00 0.00 0.00 0.00 2.50 2.49 2.50 2.50 
G-34(#74) 22.69 22.68 22.73 22.72 0.00 0.00 0.00 0.00 2.50 2.49 2.50 2.50 
G-35(#76) 22.69 22.68 22.73 22.72 0.00 0.00 0.00 0.00 2.50 2.49 2.50 2.50 
G-36(#77) 22.69 22.68 22.73 22.72 0.00 0.00 0.00 0.00 2.50 2.49 2.50 2.50 
G-37(#80) 22.69 22.68 22.73 22.72 171.09 170.30 175.26 174.55 1.01 1.01 1.01 1.01 
G-38(#85) 22.69 22.68 22.73 22.72 0.00 0.00 0.00 0.00 2.50 2.49 2.50 2.50 
G-39(#87) 22.69 22.68 22.73 22.72 1.45 1.44 1.49 1.48 1.00 1.00 1.00 1.00 
G-40(#89) 22.69 22.68 22.73 22.72 215.70 216.65 221.43 220.78 1.02 1.01 1.02 1.02 
G-41(#90) 22.69 22.68 22.73 22.72 0.00 0.00 0.00 0.00 2.50 2.49 2.50 2.50 
G-42(#91) 22.69 22.68 22.73 22.72 0.00 0.00 0.00 0.00 2.50 2.49 2.50 2.50 
G-43(#92) 22.69 22.68 22.73 22.72 0.00 0.00 0.00 0.00 2.50 2.49 2.50 2.50 
G-44(#99) 22.69 22.68 22.73 22.72 0.00 0.00 0.00 0.00 2.50 2.49 2.50 2.50 
G-45(#100) 22.69 22.68 22.73 22.72 91.04 90.37 93.40 93.06 1.00 1.01 1.01 1.01 
G-46(#103) 26.48 26.17 26.47 26.37 61.53 55.76 61.41 60.20 1.14 1.14 1.14 1.14 
G-47(#104) 24.75 24.57 24.76 24.71 0.00 0.00 0.00 0.00 2.46 2.49 2.50 2.50 
G-48(#105) 25.07 24.87 25.08 25.02 0.00 0.00 0.00 0.00 2.50 2.49 2.50 2.50 
G-49(#107) 24.60 24.44 24.61 24.56 0.00 0.00 0.00 0.00 2.50 2.49 2.50 2.50 
G-50(#110) 26.13 25.84 26.12 26.04 0.00 0.00 0.00 0.00 1.80 2.49 2.50 2.50 
G-51(#111) 26.13 25.84 26.12 26.04 57.07 55.31 57.04 56.09 1.10 1.08 1.10 1.10 
G-52(#112) 26.13 25.84 26.12 26.04 0.00 0.00 0.00 0.00 2.50 2.49 2.50 2.50 
G-53(#113) 22.69 22.68 22.73 22.72 0.00 0.00 0.00 0.00 2.50 2.49 2.50 2.50 
G-54(#116) 22.69 22.68 22.73 22.72 0.00 0.00 0.00 0.00 2.50 2.49 2.50 2.50 

Table 34: Line flow, CSW, computational time and Friedman test results for IEEE 118-bus test system for case III 
 IT-DE IT-GA CE-DE CE-GA 

𝐹A¢¢,A¢� (MW) 20.00 20.00 20.00 20.00 
CSW ($) 51966.17 51983.37 51926.68 51935.34 
Time (sec.) 673.68 843.60 174.78 256.03 
MR 2.62 3.01 2.01 2.36 
 


