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Learning evolving T-S fuzzy systems with both local and
global accuracy – a local online optimization approach

Dongjiao Ge, Xiao-Jun Zeng∗

School of Computer Science, University of Manchester, Manchester M13 9PL, UK

Abstract

Most real data streams are non-linear and non-stationary by nature, which makes it a

challenging issue to develop effective learning techniques. With the advantages of up-

dating the system structure and parameters on the fly, evolving fuzzy systems (EFSs)

are effective paradigms to address this issue. However, existing methods and algo-

rithms of EFSs are usually: (1) developed based on a heuristic rather than an optimal

approach and put main focus on tracking the most recent local model, thus leading to

an “unlearning effect” and often poor global accuracy; (2) lack of optimality of the

consequent parameters when there is a structure update of the fuzzy system. In order

to resolve these issues, this paper proposes a local error optimization approach (LEOA)

for identifying evolving T-S fuzzy systems. LEOA has its antecedent learning method

derived from minimizing a bunch of local error functions and guarantee the optimal-

ity of the consequent parameters by a new extended weighted recursive least square

(EWRLS) method. Furthermore, mathematical proofs and calculations are provided

to verify the optimality and ε-completeness property of LEOA. Numerical examples

based on several benchmark and real-world data sets are tested, and the results demon-

strate that LEOA not only makes preferable local prediction accuracy compared with

existing state-of-the-art methods but also reserves the global accuracy of the identified

models.
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(xt ,yt)—an input-
output pair of
a data stream.

LEOA—an evolving fuzzy system (EF-
S) online identification approach derived

from minimizing local error functions

LEOA structure and anteceden-
t learning (i.e. fuzzy rule
adding, pruning, merging,

antecedent parameters updating).

LEOA consequent learning (i.e.
extended weighted recursive

least square (EWRLS) method).

EFS

Input:xt+1.
Historical

data:{xi}ti=1.

∃ε1,ε2 > 0 such that ‖yt+1 −

ŷt+1‖ < ε1 and
t
∑

i=1
‖yi − ŷi‖ < ε2.

Prediction
of output

yt+1: ŷt+1.

Estimations
of {yi}ti=1:
{ŷi}ti=1.
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1. Introduction

The analysis and prediction of data streams is required in many real-world appli-

cation areas such as finance [1], [2], energy [3], [4], medicine [5], [6]. As well sum-

marized in [7], a data stream usually has four major characteristics: (1) data comes

as unlimited streams that continuously flow with high-speed; (2) the underlying dis-5

tributions may be non-stationary and evolving over time; (3) data should never being

regarded to be independent and identically distributed; (4) data is often time situated

and specially. Due to these reasons, data stream learning methods should have the abil-

ity to change their parameters or structures to capture the change of the data stream, and

give better performance in dynamic and evolving environments. As well highlighted in10

[8], evolving models are one of the main branches that can effectively deal with these

issues, because their parameters and structures can be adapted over time following the

changes in the given learning environments. Evolving fuzzy systems (eFSs) are one of

the most promising evolving models. Most eFSs work as one-pass learning methods to

process data on the fly, learn from data incrementally to extract useful and new knowl-15

edge from data, and evolve the system structure to track behavior and structure changes

of systems being learned. With these merits, the research in eFSs has attracted a lot of

attentions in the recent years and some important progress have been achieved in both

online prediction [9–14] and online clustering [15–17]. Generally speaking, the two

main and common issues that most eFSs related researches put effort to solve are: (1)20

how structure being evolved; (2) how parameters being updated.

In order to better address the above two issues and improve the existing approaches

in eFSs, in this paper, we propose a local online optimization approach for identifying

evolving Takagi-Sugeno systems, known as local error optimization approach (LEOA).

LEOA contains the strategies for determining the number of fuzzy rules (i.e. fuzzy rule25

adding, pruning and merging), and the updating methods for both antecedent and con-

sequent parameters (i.e. cluster centers, radiuses, and coefficients of linear consequent

part) from the data stream. From an optimization point of view, the ultimate purpose

ii
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for this paper is developing an algorithm which can minimize a series of local error

functions considering any changes brought by the change of parameters and structure30

of a fuzzy system. Consequently, we derive four modules of LEOA. (1) Rule base is

expended relying on the activation degree of new data in every existing clusters; (2)

rule merging process is triggered when two clusters have highly similar centers and ra-

diuses with similarity degree judged by an activation degree based similarity measure;

(3) redundant fuzzy rules are removed according to the cumulative activation degree35

and age; (4) consequent parameters are updated through an extended weighted recur-

sive least square (EWRLS) algorithm. Furthermore, the optimality of each of these

modules is verified by mathematical calculations and proofs.

The rest parts of this paper are organized as follows. Extensive literature review,

research gaps between LEOA and existing works as well as novelty of LEOA are pre-40

sented in section 2. Section 3 gives a brief description of the T-S fuzzy system which

needs to be identified. The detailed description of structure learning strategies (i.e.

fuzzy rule adding, pruning and merging strategies), and parameters (i.e. antecedent

and consequent parameters) updating techniques includes EWRLS are deliberated in

section 4. In section 5, the detailed steps and flowchart of the proposed algorithm are45

presented. Section 6 and 7 analyze the complexity and sensitivity of LEOA. Numerical

results of LEOA across four well known benchmark examples are presented in section

8. In the last section, section 9, the conclusions are given.

2. Related works

Initial works for online algorithms to identify eFSs appear around 2000. For ex-50

ample, evolving fuzzy neural networks (EFuNNs) proposed by [18] are a branch of

robust online learning algorithms based on the local learning strategy to learn from the

data swiftly. [19] develops a non-iterative approach to identify the evolving fuzzy rule

based system, which uses an incremental unsupervised learning method to estimate

the parameters and allows the existing fuzzy rules to be replaced by new fuzzy rules55

based on the ranking of the fuzzy rules from informative potential. [9] proposes a dy-

namic evolving neural-fuzzy inference system known as DENFIS. It has both off-line

iii
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and online modes, in which the online version updates the model structure by evolving

cluster method (ECM), and estimates the model consequent parameters by recursive

least square (RLS) method. Other pioneer works including [20–22] etc. Based on these60

early works of eFSs identification methods, [10] proposes an online learning method

for evolving T-S system (eTS) by combining supervised and unsupervised learning,

which enables the rule base and parameters of T-S fuzzy system to be updated from

adding new rules and modifying existing rules. Self-organizing fuzzy neural network

(SOFNN) proposed by [23] is another competitive algorithm whose fuzzy rule adding65

criterion is built based on geometric growing criterion. [24] develops a self-evolving

neural network with interval type-2 fuzzy sets in antecedent parts for T-S fuzzy system.

This methodology is characterized by its online clustering method, which generates

fuzzy rules simply by using the firing strength directly and develops a fuzzy set reduc-

tion approach to avoid the high overlapping between fuzzy sets. [11] proposes a robust70

online adaptive method called SOFMLS to identify Mamdani fuzzy systems by adding

new fuzzy rules using a distance based approach and pruning fuzzy rules according to

the density of the clusters. Similar researches could also be found in [12, 13, 25–33].

Furthermore, most of the latest researches are mainly focusing on how to design

criterions to make unsupervised online clustering process of data streams using the75

inputs data, or noticing to achieve the prediction accuracy from two major aspects:

online feature selection and consequent updating. For instance, in ePL+ [34], a sub-

tractive clustering method is applied to complement the participatory learning approach

in clustering the inputs data. A gradual forgetting approach and the Hebbian learning

mechanism are applied in improving the accuracy for online clustering process be-80

ing proposed by GSETSK [14]. Statistical contribution depended fuzzy rule online

pruning method and online clustering method are proposed by DPFNN[35] and PAN-

FIS [36], respectively. As an extended work of PANFIS, GENEFIS [37] applies the

generalized recursive least square (GRLS) [38] algorithm in local learning of the con-

sequent parameters, and achieves accurate prediction results with an economical rule85

base. Instead of investigating rule generation method, Gen-Smart-EFS [39] puts ef-

fort on studying online feature weighting strategies to improve eFSs in transparency

and computation load. By the aim of improving the prediction accuracy, [40] consid-

iv
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ers non-linearity degree and uncertainties in both model outputs and parameters, and

puts forward a sample selection method for data stream regression problems to make90

decisions on whether a sample can be used in structure and parameters updating. Be-

sides, recent online clustering methods and eFSs identification methods are also being

studied on type-2 fuzzy system [41, 42]. More similar eFSs based researches can be

found from [39, 43–48]. Furthermore, comprehensive and excellent overviews and

comparison about eFS methods can be found in [49], [50].95

Although these previous works are known as satisfactory online learning algorithms

for the identification of evolving fuzzy systems, they still have two major technical

flaws shown as follows:

1) Summarizing these previous state-of-the-art eFSs identification algorithms, it

can be seen that one of the most widely used consequent learning method is100

a local optimum method known as WRLS (e.g. [14, 25, 34, 39]) rather than the

global version (i.e. recursive least square (RLS)). The reason behind this is that

WRLS minimizes a bunch of local error functions, hence enables more flexible

structure evolving. It can be seen from these existing approaches, many different

kinds of generalized version of WRLS are plugged in learning consequent pa-105

rameters. [36] uses an extended recursive least square (ERLS) approach to mini-

mize local weighted error functions. This ERLS method is proved to have small

finite system error. In [40], WRLS is used to update the consequent parameters,

but the samples that used in this updating procedure is selected to avoid under

fitting in highly noisy region through taking the uncertainty in model outputs110

into consideration. Besides, [37] applies a fuzzily weighted generalized recur-

sive least square (FWGRLS) method that extends the generalized recursive least

square (GRLS) [38] to a local learning version and adds a weight decay term

in the error function. This decay term conveys the prior distribution of the local

model, so as to make sure the convergency and enhance the generalization ability.115

Furthermore, this FWRLS is also generalized to learn the consequent parameters

of type-2 fuzzy systems in [42]. However, using both RLS and WRLS directly

to learn the consequent parameters are approximation ways, because there is a

v
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need to assume the rule base is unchanged for ensuring they are accurate method

[10]. If the structure of the rule base is unchanged (i.e. there is no rule adding,120

deleting or merging) or the antecedent parameters are unchanged (i.e. the centers

and radiuses of membership functions remain the same), then such a parameter

updating algorithm is optimal. However, as the structure or antecedent parame-

ters of the rule base are keeping changing during the learning of an eFS, such a

direct application of WRLS algorithm is hard to make sure the optimality of con-125

sequent parameter updating. Some existing results, such as [12] and [36] firstly

addressed the issue that any structural change of the antecedent part will affect

the optimality and convergency of the consequent part, and a sub-optimal solu-

tion was proposed. However, there is no existing work which gives the explicit

calculation of the optimal consequent parameters and assure their optimality.130

2) Most existing eFSs and their online learning algorithms focus on adapting the

structure and parameters of a fuzzy system by fitting more recent data. These

structure evolving strategies are often designed from a heuristic manner simi-

lar to online clustering approaches which are usually one-pass and unsupervised

(e.g. [51, 52]). This is certainly correct if we are learning an evolving sys-135

tem. Furthermore, this ignorance of the connection between consequent and

antecedent learning of most eFSs online identification methods may lead to an

“unlearning effect”. To be more specific, in many applications, the streaming

data arrived in each given period of time are often local data (that is, with a given

time period, all data arrived are located at a sub-region of the input space). In140

such cases, the obtained fuzzy system by these existing learning algorithms end

up as a good local model which fits well the latest arrival data accurately but a

poor global model which fits the historical data very inaccurate. As the accuracy

measurement for the existing eFSs is usually the one-step ahead or testing error,

therefore, such a global accuracy issue has been largely ignored in many of the145

existing approaches. To illustrate this point in more details, a simulation exam-

ple is given in Section 8.1. An existing method which effectively deals with this

“unlearning effect” is proposed by [53], which developed a consequent learning

vi
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method using adaptive forgetting factors updated by the recent contribution of a

cluster to enable a fuzzy system keeps its global accuracy. In some sense, this150

is an indirect approach to address this issue by using different adaptive forget-

ting factors for different rules. Further, [54] considers to develop connections

between antecedent and recursive consequent learning by the aim of ensuring

optimality of weighted recursive least square (WRLS) method, but the exact cal-

culation and proofs still have not been given. Hence, this ignored influence of155

rule base evolving strategies to the optimality of recursive consequent learning

method needs to be further investigated.

As an algorithm proposed to address these above weaknesses, LEOA has the following

novelties.

1. LEOA starts from an optimization point of view. Both of antecedent and conse-160

quent learning methods are derived serving for realizing this goal through mini-

mizing a bunch of local error functions. In detail, this paper builds criterions for

triggering the structure evolution of the rule base and the corresponding recursive

consequent learning method (i.e. an extended recursive least square algorithm

using ERLS for short) at the same time, which establishes a natural connection165

between consequent and antecedent learning. This LEOA approach ensures the

optimality of the consequent parameters. Corresponding mathematical calcula-

tions and proofs further verify the optimality of LEOA and its ε-completeness

[55] property.

2. Although at the first look it may seem very difficult to achieve both the good170

track of the non-stationary system change and the high global accuracy, such

a double goals in fact are realizable by locally optimization learning. The main

idea is that, when a new data point arrives, we only update the local model around

this data in order to track the system behavior changes around this data point but

keep the other parts of the obtained model largely unchanged. The former will175

ensure the non-stationary behavior being tracked and the latter will maintain the

global accuracy. Specifically, these two goals are achieved by LEOA through

remembering more historical knowledge of the data stream by certain characters

vii
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in the new EWRLS, and the connections being built between antecedent and

consequent learning when achieving the same optimality goal. This enables the180

eFS to keep the useful historical behavior of the data stream while tracking the

more recent data. Therefore, LEOA reaches the target to get high local and global

accuracy.

3. Problem statement

The T-S fuzzy system considered in this paper is given as follows. Firstly the form185

of the i-th fuzzy rule is multi-input-single-output (MISO) type given as (1):

i : I f x1 is Γi
1 and x2 is Γi

2 and . . . and xn is Γi
n,

then yi = ψ i
0 +

n

∑
j=1

ψ i
jx j, (1)

where i = 1,2, . . . ,R, R is the number of fuzzy rules, x j is the j-th input, yi is the output

of the i-th fuzzy rule, ψ i
j, j = 0,2, . . . ,n, are consequent parameters, n is the dimension

of the inputs.

In LEOA, Gaussian membership functions are chosen with the center of fuzzy set

Γi
j is ci, j and the radius is σi, j. The membership function of Γi

j is μi, j(x j) shown in (2),

μi, j(x j) = exp
− (x j−ci, j)

2

2(σi, j)
2
. (2)

Furthermore, the form of the firing strength γ i(x) of each fuzzy rule and the model

output ŷ is displayed in (3) and (4), respectively.

γ i(x) =
n

∏
j=1

μi, j(x j), (3)

ŷ =
R

∑
i=1

θ i(x)yi, (4)

in which190

θ i(x) = γ i(x)/
R

∑
j=1

γ j(x) (5)

viii
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is the normalized firing degree of the i-th fuzzy rule.1

The problem needs to solve is identifying the number of fuzzy rules R, antecedent

parameters ci = (ci,1,ci,2, . . . ,ci,n), σi = (σi,1,σi,2, . . . ,σi,n) and consequent parameters

ψ i = (ψ i
0,ψ

i
1,ψ

i
2, . . . ,ψ

i
n), where i = 1,2, . . . ,R, of the T-S fuzzy system in order to

make predictions of y. The exact conditions and steps of LEOA learning algorithm for195

identifying the T-S fuzzy systems are described in section 4 and 5.

4. LEOA learning

As an online learning algorithm, LEOA evolves its structure and parameters while

learning from the data stream. When non-stationary phenomenon is detected, than

there will be new fuzzy rules needed to be added to react to this change, because the200

previous identified model is likely lack of ability to make the accurate prediction at the

data around a new state. There are probably some rules seldom being activated since

they are built, which may cause over-fitting. In order to deal with this problem, these

rules should be regarded as redundant ones and be discarded. Since the membership

functions in some rules should be expended and their centers should be updated if more205

data arrives, this could result that some rules become similar. This would decrease the

computation speed and lead to the conflict of the fuzzy rules. For avoiding this, a

rule merging procedure is necessary to be designed in the algorithm. Therefore, the

structure learning should include three parts: fuzzy rule adding, pruning and merging;

furthermore, the parameter learning includes how to determine the antecedent parame-210

ters, the centers and radiuses of membership functions, and the consequent parameters.

This section mainly discusses and introduces that, under what conditions LEOA can

calculate the weighted least square estimation for ψ i that minimizes (6) using a special

type of updating equations (i.e. extended weighted recursive least square, EWRLS,

method). Aiming to obtain the conditions for evolving the structure and learning the

parameters of the system, we start from the local error function shown in (6) that we

1Because each T-S fuzzy system can be presented as a neural network, the LEOA can also be presented

as a neural network with the form almost the same as eTS+ [56] and DPFNN [35].

ix
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would like to minimize.

Erri =
t+1

∑
k=1

θ i
t+1(xk)(yk − xekψ i)2, (6)

where k = 1,2, . . . , t + 1 is the time, xk = (xk,1,xk,2, . . . ,xk,n) is the input at time k,

xek = (1,xk) is the generalized input at time k, θ i
t+1(xk) =

γ i
t+1(xk)

Rt+1
∑

l=1
γ l
t+1(xk)

is the normalized

firing degree of the i-th rule at time t + 1 obtained by replacing x using xk in (5) with

γ i
t+1 calculated by using the parameters of the state of eFS at time t +1. The EWRLS

estimation for ψ i could be computed using (7) which is the same as WRLS.

ψ i = {Ri(t +1)}−1 f i(t +1), (7)

where Ri(t +1) =
t+1
∑

k=1
θ i

t+1(xk)xekxek
T , f i(t +1) =

t+1
∑

k=1
θ i

t+1(xk)xekyk.

If the structure and parameters of the eFS are unchanged, it is very easy to get

the EWRLS formula with the same form as WRLS used in most existing researches.

However, the antecedent and consequent parameters of eFSs are actually changing, so215

WRLS can not help to find the optimal solution of (6). In the remaining parts of this

section, we utilize the point of view of minimizing (6) in finding the appropriate con-

ditions for structure learning (i.e. fuzzy rule adding, pruning, merging) and parameter

learning (i.e. antecedent parameters and consequent parameters). All the following

structure and consequent learning conditions and theorems are obtained under the as-220

sumption of that the system could be approximated by finite number of fuzzy rules

(Rk < ∞, k = 1,2, . . . , t) in any accuracy in finite steps. Additionally, {xk}∞
k=1 and

{yk}∞
k=1 are bounded.

4.1. Structure learning

Because of that the LEOA is suitable for online learning, so rule base of the EFS is225

initially empty and expended as well as changed while new data comes. This section

gives the detailed description of how LEOA evolves its structure.

4.1.1. Fuzzy rule adding

Adding fuzzy rules is expanding the fuzzy rule base to cover the input space. Once

data stream is detected to change to a new state, there always a new fuzzy rule needs

x
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to be added. In order to get the exact fuzzy rule adding condition, we assume that the

system keeps unchanged until time t (i.e. ci(1) = ci(2) = . . .= ci(k), σi(1) = σi(2) =

. . .= σi(k), ci(k) is the cluster center of the i-th fuzzy rule at time k, σi(k) is the cluster

radius of the i-th fuzzy rule at time k, for i = 1,2, . . . ,Rk and k = 1,2, . . . , t, R1 = R2 =

. . . = Rt ), and a new fuzzy rule is added at time t + 1 with cluster center cRt+1 = xt+1.

Therefore, for i = 1,2, . . . ,Rt , the objective function (6) could be transformed to (8),

Erri =
t

∑
k=1

θ i
t+1(xk)(yk − xekψ i)2 +θ i

t+1(xt+1)(yt+1 − xet+1ψ i)2, (8)

where

θ i
t+1(xk) =

γ i
t+1(xk)

Rt+1

∑
l=1

γ l
t+1(xk)

=
γ i

t+1(xk)
Rt

∑
l=1

γ l
t+1(xk)+ γRt+1

t+1 (xk)

. (9)

Then, Ri(t + 1), f i(t + 1) and ψ i(t + 1) could be represented by (10), (11) and (14),

respectively.230

Ri(t +1) =
t

∑
k=1

θ i
t+1(xk)xekxeT

k +θ i
t+1(xt+1)xet+1xT

et+1 (10)

= Ri(t)+
t

∑
k=1

Ai
t,kxeT

k +θ i
t+1(xt+1)xet+1xeT

t+1,

and

f i(t +1) =
t

∑
k=1

θ i
t+1(xk)xekyk +θ i

t+1(xt+1)xet+1yt+1 (11)

= f i(t)+
t

∑
k=1

Ai
t,kyk +θ i

t+1(xt+1)xet+1yt+1,

where

Ai
t,k =

γ i
t+1(xk)(−γRt+1

t+1 (xk))

(
Rt+1

∑
l=1

γ l
t+1(xk))(

Rt

∑
l=1

γ l
t+1(xk))

xek, (12)

Ri(t) =
t

∑
k=1

θ i
t (xk)xekxeT

k and f i(t) =
t

∑
k=1

θ i
t (xk)xekyk. (13)

xi
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t+1 = R̄−1(t +1) f (t +1) (14)

= Ψi
t −R

−1
(t +1){[

t

∑
k=1

Ai
t,kxeT

k +θ i
t+1(xt+1)xet+1xeT

t+1]ψ i
t

−
t

∑
k=1

Ai
t,kyk −θ i

t+1(xt+1)xet+1yt+1}.

According to 14, if condition 4.1, is satisfied, then we can get a simplified version of235

ψ i updating equation shown in (15).

Condition 4.1. If γ i
t (xt+1)< ε , then a new cluster would be added with center cRt+1 =

xt+1, radius σ2
Rt+1, j

= nmin{min{(ci, j−k0σi, j−cRt+1, j)
2, (ci, j+k0σk, j−cRt+1, j)

2}
−2log

ε0
t

}, where j =

1,2, . . . ,n, i = 1,2, . . . ,R, k0 =

√
− 2log(ε)

n > 0, ε > 0, ε0 > 0 is the tolerance degree.

In condition 4.1, the radius σRt+1, j of the new cluster is initialized to make sure that240

these fuzzy clusters have low overlapping degree and avoid rule confliction. Therefore,

data points in other clusters have low activation degree in the new added cluster with

center cRt+1 . To ensure the optimality, it is necessary to make sure any historical data

x has the activation degree smaller than ε0
t in the new cluster (i.e. γRt+1(x) ≤ ε0

t ).

Further, as γRt+1 is a multivariate Gaussian density, hence, on each dimension, the fact245

that σ2
Rt+1, j

= nmin{min{(ci, j−k0σi, j−cRt+1, j)
2, (ci, j+k0σk, j−cRt+1, j)

2}
−2log

ε0
t

} holds could meet the

requirement of γRt+1(x)≤ ε0
t .

Furthermore, control parameter ε is set based on the α-cut [57] of the fuzzy sets.

The value for ε is 0.05. In this paper the α-cut of each fuzzy set i could be presented by

A i
α = {x ∈ Γi|γ i(x)≥ α}, where i = 1,2, . . . ,R, α = ε = 0.05. Condition 4.1 indicates250

that if there exists a data point x∗ which is outside all the α-cuts of fuzzy sets Γi,

i = 1,2, . . . ,R, then there is a need to build a new fuzzy rule (R+ 1-th rule) such that

x∗ ∈ A R+1
α . This condition assures that {xt}T

t=1 ⊂
⋃
i
A i

α , in which {xt}T
t=1 stands for

the set formed by all the historical data points. Besides, tolerance degree ε0 is a small

value to ensure the optimality of consequent parameters, but ε0 can not be set too small255

in case the radius of the new added rule becomes 0.

Definition 4.1. ε-completeness [55]: A fuzzy partition for feature Xi which contains

xii
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fuzzy sets Ã1, Ã2,. . . , ÃR is regarded to be ε-completeness, if there does not exist a point

x ∈ [min(Xi),max(Xi)] such that μÃi
(x)< ε , where ε > 0 is a small number.

Theorem 4.1. Let condition 4.1 be satisfied and Rt+1-th rule be the new added rule.260

Then ψ i
t+1 which minimizes (6) could be updated by

ψ i
t+1 = ψ i

t +Ri(t +1)−1θ i
t+1(xt+1)xet+1{yt+1 − xeT

t+1ψ i
t }, (15)

for all i = 1,2, . . . ,Rt+1 −1, and ε-completeness in definition 4.1 holds.

4.1.2. Fuzzy rule pruning

In order to avoid over-fitting, a fuzzy rule pruning procedure is proposed. Similar to

section 4.1.1, we are aiming to get the appropriate condition, under which the optimum265

solution of Erri could be calculated by simple recursive steps. Assuming that the i∗-th

fuzzy rule is pruned at time t +1 and for k = 1,2, . . . , t, R1 = R2 = . . .= Rt holds, and

Rt+1 = Rt −1. In order to optimize (6), the form of Ri(t +1) and f i(t +1) are listed in

(16) and (17),

Ri(t +1) = Ri(t)+
t

∑
k=1

Bi
t,kxeT

k +θ i
t+1(xt+1)xet+1xeT

t+1, (16)

270

f i(t +1) = f i(t)+
t

∑
k=1

Bi
t,kyk +θ i

t+1(xt+1)xet+1yt+1, (17)

in which

Bi
t,k =

γ i
t+1(xk)γ i∗

t (xk)

(
Rt

∑
l=1

γ l
t (xk))(

Rt

∑
l=1, l �=i∗

γ l
t+1(xk))

xek. (18)

From the expressions of Ri(t + 1) and f i(t + 1), it can be seen that if condition 4.2

is satisfied, then the EWRLS optimum solution of (6) could be obtained by (19) in

theorem 4.2.

Condition 4.2. If
k
∑

p=t∗+1
γ i∗

p (xp) < εp, then the i∗-th fuzzy rule is removed where k−275

t∗ > N, N > 0 is a large number, t∗ is the time that the i∗-th fuzzy rule built, k is the

step, εp > 0 is the tolerance degree.
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Threshold εp for cumulative activation degree is set to be a small value 0.05. The

threshold N is suggested to be larger than 50, as sample size above 50 could be regarded

as large sample. Too small threshold may lead to some useful fuzzy rules being deleted280

too early, which makes it hard to guarantee the optimality of the consequent parameters.

Too large threshold allows the redundant fuzzy rules being used for a long time, which

increases the computational burden. Whereas, for online tracking applications, N could

be set smaller than 50 to satisfy the need of giving quick one-step-ahead predictions

and putting the global optimality on a secondary status.285

Theorem 4.2. Let condition 4.2 be satisfied, and the i∗-th rule be removed at step t+1.

Then ψ i
t+1 which minimizes (6) could be updated by

ψ i
t+1 = ψ i

t +Ri(t +1)−1θ i
t+1(xt+1)xet+1{yt+1 − xeT

t+1ψ i
t }, (19)

for all i = 1,2, . . . ,Rt+1 −1.

4.1.3. Fuzzy rule merging

Because of the updating procedure of the cluster centers and their radiuses, so there290

are likely some clusters evolved similar after certain steps. In this situation, it is no

longer necessary and appropriate to apply several fuzzy rules to approximate the data

points in the same cluster, as this may cause conflicting of rules and increase the com-

putation burden. Following the same process as section 4.1.1 and 4.1.2, we assume

that the l1-th and l2-th fuzzy rule are merged in step t +1. The merged fuzzy rule is the295

l0-th and l0 = l1 numerically. Therefore, Ri(t + 1) and f (t + 1) could be presented by

(20) and (21),

Ri(t +1) = Ri(t)+
t

∑
k=1

Ci
t,kxeT

k +
γ i

t+1(xt+1)
Rt+1

∑
l=1

γ l
t+1(xt+1)

xet+1xeT
t+1, (20)

f i(t +1) = f i(t)+
t

∑
k=1

Ci
t,kyk +

γ i
t+1(xt+1)

Rt+1

∑
l=1

γ l
t+1(xt+1)

xet+1yt+1, (21)

Ci
t,k =

γ i
t (xk)[γ l1

t (xk)+ γ l2
t (xk)− γ l0

t (xk)]

[
Rt+1

∑
l=1

γ l
t+1(xk)][

Rt

∑
l=1

γ l
t (xk)]

xek. (22)
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From (20) and (21), we can get theorem 4.3 under condition 4.3, .300

Condition 4.3. When k = t+1 and there exist εc > 0 and εσ > 0 such that ‖cl1 −cl2‖<
εc and ‖σ2

l1
−σ2

l2
‖< εσ , where ‖·‖ is the Euclidean norm, then l1-th and the l2-th fuzzy

rule are merged to l0-th fuzzy rule (l1 = l0 numerically). The center and the radius of

the l0-th cluster is calculated by (23) and (24),

cl0 =

∑
k0

xk0

Nl0
=

Nl1 cl1 +Nl2cl2

Nl1 +Nl2
, (23)

(σl0, j)
2 =

∑
k0

(xk0, j − cl0, j)
2

Nl0 −1
=

(N1 −1)(σl1, j)
2 +(N2 −1)(σl2, j)

2 +
Nl1

Nl2
(cl1, j

−cl2, j
)2

Nl1
+Nl2

Nl1 +Nl2 −1
.

(24)

The statistical theory behind the above two formulas (23) and (24) used in condition

4.3 are the unbiased estimators X̄ and S2 for expected value E(X) and variance Var(X)

of a random variable X , separately. The exact formulas are displayed in (25).

X̄ =
1
N

N

∑
i=1

Xi, S2 =
1

N −1

N

∑
i=1

(Xi − X̄)2, (25)

where X1, . . . ,XN are independent and identically distributed (i.i.d) random variables.

Mathematical deduction for (24) is presented in the appendix.305

In practice, it is hard to choose very small control parameters εc and εσ to assure

that two clusters have high overlapping level. Therefore, an alternative criterion (26)

for merging rule l1 and l2 is given. From (26), it can be seen that the more ε∗c and ε∗σ
close to 1, the larger overlapping part of the corresponding two clusters.

1− max
k=1,2,...,n

{max{‖cl1,k − cl2,k‖
σl1,k

,
‖cl1,k − cl2,k‖

σl2,k
}}> ε∗c , (26)

min
k=1,2,...,n

{min{σl1,k

σl2,k
,

σl2,k

σl1,k
}}> ε∗σ ,

where ε∗c and ε∗σ are control parameters indicating the similarity of two clusters. ε∗c is310

selected based on the α-cut (α = 0.95) of the fuzzy set with ε∗c =

√
− 2log(0.95)

n , and

ε∗σ is 0.9.
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Theorem 4.3. Let condition 4.3 be satisfied, and the l1-th and the l2-th fuzzy rule be

merged to l0-th (l0 = l1 numerically) rule at time t +1. Then ψ i
t+1 which minimizes (6)

could be updated by (27) to (30),315

ψ i
t+1 = ψ̃ i

l2
(t)+ R̃i

l2
(t)−1θ i

t+1(xt+1)xet+1{yt+1 − xeT
t+1ψ̃ i

l2
(t)}, (27)

where ψ̃ i
l2
(t) and P̃i

l2
(t) = R̃i

l2
(t)−1 are shown in (28) and (30)

ψ̃ i
lp
(t) = ψ̃ i

lp
(t −1)+ L̃i

lp
(t){yt − xeT

t ψ̃ i
lp
(t −1)}, (28)

P̃i
lp
(t) = P̃i

lp
(t −1)−

Mi
lp
(xt)P̃i

lp
(t −1)xetxeT

t P̃i
lp
(t −1)

1+Mi
lp
(xt)xeT

t P̃i
lp
(t −1)xet

, (29)

L̃i
lp
=

Mi
lp
(xt)P̃i

lp
(t)xet

1+Mi
lp
(xt)xeT

t P̃i
lp
(t −1)xet

, (30)

with R̃i
lp
(t) =

t
∑

k=1
Mi

lp
(xk)xekxeT

k , Mi
lp
(xk) = θ i

t (xk)+
γ i
t (xk)γ

lp
t (xk)

[
Rt
∑

l=1
γ l
t (xk)][

Rt
∑

l=1
γ l
t (xk)−γ lp

t (xk)]

, lp = l2.

4.2. Parameters learning320

Not only the structure of LEOA is changing overtime, but the parameters of the

system are updating while there is new information comes. This section mainly in-

troduces how LEOA updates its parameters using the new information from the new

coming inputs and the known outputs. This process includes learning the antecedent

parameters and the consequent parameters.325

4.2.1. Antecedent parameters learning

Based on the antecedent learning procedure for minimizing (6), the following con-

dition, condition 4.4, could be obtained to update the existing cluster centers and ra-

diuses.

Condition 4.4. If there exists an i∗ ∈ {1,2, . . . ,Rt} and γ i∗
t (xt+1)≥ ε (ε > 0 is the same330

value as what is used in condition 4.1), then cluster center ci∗ and radius σi∗ can be

xvi
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updated by (31),

ci∗, j(t +1) = ci∗, j(t)+
xt+1, j − ci∗, j(t)

Ni∗(t)+1
(31)

(σi∗, j(t +1))2 = (σi∗, j(t))
2 +

(xt+1, j − ci∗, j(t +1))2 − (σi∗, j(t))2

Ni∗(t)

+(ci∗, j(t +1)− ci∗, j(t))
2,

in which Ni∗(t) is the total number of data points which are satisfies γ i∗
t (xt+1) ≥ ε

until time t. (Note that what only have to be assured are ci∗ → c0
i∗ and σi∗ → σ0

i∗ when

Ni∗ → ∞, where c0
i∗ and σ0

i∗ are the real cluster center and radius of the i∗-th cluster.)335

Updating formulas of cluster centers and radiuses in (31) are also deducted from

(25).

4.2.2. Consequent parameters learning

Recursive least square methods are widely used in control theory to minimize the

error function [58–61]. In order to serve for the same optimality purpose as the an-340

tecedent learning procedure of LEOA in section 4.1, the consequent parameters are

obtained by a special type of weighted recursive least square method known as ex-

tended weighted recursive (EWRLS) method. According to theorem 4.1, 4.2, 4.3 in

section 4.1, the form of EWRLS would be influenced by whether there is a merging

process happened. Detailed EWRLS updating formulas are shown in (32) and (33). If345

there is no fuzzy rule merging process, consequent parameters should be learned by

formulas (32),

ψ i
t+1 = ψ i

t +Li(t +1)(yt+1 − xeT
t+1ψ i

t ), (32)

Li(t +1) =
θ i

t+1(xt+1)Pi(t)xet+1

1+θ i
t+1(xt+1)xeT

t+1Pi(t)xet+1
,

Pi(t +1) = Pi(t +1)− θ i
t+1(xt+1)Pi(t)xet+1xeT

t+1Pi(t)

1+θ i
t+1(xt+1)xeT

t+1Pi(t)xet+1
.

Otherwise, assume that two fuzzy rules lq and lp are merged to l0, the EWRLS updating

xvii
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formulas are changed to (33)

ψ i
t+1 = ψ̃ i

lp
(t)+Li(t +1)(yt+1 − xeT

t+1ψ̃ i
lp
(t)), (33)

Li(t +1) =
θ i

t+1(xt+1)P̃i
lp
(t)xet+1

1+θ i
t+1(xt+1)xeT

t+1P̃i
lp
(t)xet+1

,

Pi(t +1) = P̃i
lp
(t)−

θ i
t+1(xt+1)P̃i

lp
(t)xet+1xeT

t+1P̃i
lp
(t)

1+θ i
t+1(xt+1)xeT

t+1P̃i
lp
(t)xet+1

,

where ψ̃ i
lp
(t) and P̃i

lp
(t) are updated by (28) and (29). It needs to be noticed that ψ̃ i

lp
(t)350

and P̃i
lp
(t) should be calculated and updated since k = 3, and each step some extra

information needs to be recorded. For each i = 1,2, . . . ,Rk, l = 1,2, . . . ,Rk, l �= i, ψ̃ i
l (t)

and P̃i
l (t) are recorded and used when fuzzy rule merging happens.

5. Mechanism of LEOA

Following the description of the structure and parameter learning method of LEOA355

in section 4, the overall online learning and predicting process of LEOA could be sum-

marized in the learning steps and the flowchart (Figure 1) below.

Before displaying the specific steps, there are two parameters, which act as indica-

tors, need to be introduced firstly. Parameter inda is the indicator for fuzzy rule adding.

The default value of inda is 0 which stands for no new rule is added. Once there is a360

new fuzzy rule being built, then the value of inda should be turned to inda = 1. Similar

to inda, with the default value 0, indm is the indicator of fuzzy rule merging process.

If there exist two fuzzy rules being merged at the current time step, then the value of

indm should be changed to 1. Otherwise, indm keeps the default value with indm = 0.

step 1 Read new input data xt+1, set inda = 0 and indm = 0.365

step 2 Rule adding and updating

If γ i
t (xt+1) < ε for all i = 1,2, . . . ,Rt , then add a new fuzzy rule Rt+1 = Rt + 1,

change inda = 1. Otherwise, update the cluster center and radius of the i∗-th rule

by (31), where i∗ = argmax
i
{γ i

t (xt+1)} .
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step 3 Rule pruning370

If tmax = max(t +1− t∗i ) > N, i∗ = argmax
i

(t +1− t∗i ) and
t+1
∑

k=t∗i∗
γ i∗

t (xk) < εp,

then remove the i∗-th rule.

step 4 Rule merging

If inda = 0, and the i∗-th rule antecedent is updated, then this merging step is

considered. If there is an lq ∈ {1,2, . . . ,Rt} and lq �= i∗ such that clp , clq , σlp and375

σlq satisfies (26), then the lq-th and the i∗-th fuzzy rule are merged to l0-th fuzzy

rule (i∗ = l0 numerically) with center and the radius calculated by (23) and (24),

indm = 1.

step 5 Output

Compute output by ŷt+1 =
Rt+1

∑
i=1

θ i
t+1(xt+1)xet+1ψ i

t .380

step 6 RLS

If indm = 0, then use (32) to update the consequent parameters ψ i
l , otherwise

apply (33). For each i = 1,2, . . . ,Rt+1 and l = 1,2, . . . ,Rt+1 with l �= i, update

ψ̃ i
l (t) and P̃i

l (t) using (28) to (29).

6. Complexity Analysis385

In this section, the computational burden of proposed algorithm LEOA is discussed.

Similar to many previous online learning algorithms, the complexity of LEOA depends

on the number of fuzzy rules R and the dimension of input n. From the structure of

LEOA and the details in each step, it can be seen that the complexity of the whole

process of fuzzy rule adding, merging, pruning process is O(Rn). Whereas, the new390

parameter updating procedure has the complexity O(R2), which will increase the com-

plexity if the number of fuzzy rules R is larger than the dimension of the input space

n. The reason behind this is that the new proposed EWRLS in section 4.2.2 requires

to remember more information than the widely used WRLS method, in order to meet

the requirement of global accuracy. Comparing with other state-of-the-art algorithms395

such as eTS [10], DENFIS [9], FLEXFIS[12], DEC [51], PANFIS [36], Gen-Smart-

EFS [39], LEOA requires to store more historical knowledge and has more complex

xix
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start

read xt+1, set

inda = 0, indm = 0

γ i
t (xt+1) < ε

update ci∗ , (σi∗ )2 add new rule with center xt+1

tmax > N,
t+1
∑

k=t∗i∗
γ i∗

t (xk) < εp

remove rule i∗

inda = 0

ci∗ ,clq ,σi∗ ,σlp

s.t.(26) holds

compute output ŷt+1

merge i∗-th and lp-th rule

indm = 0

RLS update by (33) RLS update by (32)

update ψ̃ i
l (t), P̃i

l (t) by (28) to (29)

no more data

stop

no
yes

no

yes

yes

no

yes

no

no
yes

yes

no

Figure 1: Computational steps of LEOA.

structure when R > n. Nonetheless, LEOA takes the affecting of antecedent structure

changing to the convergency of consequent parameters into consideration, and assures

the optimality of consequent parameters instead of sub-optimality presented in most of400

xx
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previous existing approaches. The high computational complexity is a price to pay for

achieving the optimality.

7. Sensitivity Analysis

There are two control parameters (ε0 and N) need to be selected when using LEOA

to make predictions. Varies values of ε0 and N are chosen to assure LEOA is not405

problem-dependent. Thus, the well known Box-Jenkins gas furnace data set [36, 51,

62–67] is cast to investigate whether LEOA is sensitive to ε0 and N. The Box-Jenkins

data set consists of 290 input-output pairs. Methane flow rate u(t), and CO2 concentra-

tion in off gas y(t) comprise the input of each data sample. The output of the process

is y(t). From previous studies, it can be seen that the best model of this process is (34),410

y(t) = f (y(t −1),u(t −4)). (34)

LEOA runs in an online mode on this data set. All 290 outputs are used to evaluate

the performance of LEOA. In section 4.1.1, control parameter ε0 is suggested to be

a small value, hence ε0 is varying in [10−1,10−2,10−3,10−4,10−5]. Besides, sample

size control parameter N is opted as 50, 70, 90, 110, 130. Remark that other control

parameters are kept as their default settings. Predicting results of the testing data are415

presented in Table 1. To test the global accuracy of LEOA, then we use the final model

learned from the data to make estimations of all the historical data. Table 2 displays the

results of fitting all the historical data. Both predictions of testing data and historical

data are evaluated by fuzzy rule numbers, which are shown in the bracket in Table 1

and 2, and non-dimensional error index (NDEI).420

It is obvious from Table 1 that different values of ε0 and N affect little to the per-

formance of LEOA. Table 2 shows that larger N helps the model learned by LEOA

keeping more historical information, thus giving smaller NDEIs. However, it always

causes a more complex fuzzy rule base of the system and heavier computational bur-

den. Besides, too small value of ε0 does not promote the learned system to give better425

global fitting results. As a result, in the following numerical examples ε0 is chosen

from 0.1, 0.01, 0.001, and N is selected smaller than 100, in order to keep balance

between achieving accuracy and lowering down computational burden.
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Table 1: Sensitivity of predefined parameters.

ε0 = 10−1 ε0 = 10−2 ε0 = 10−3 ε0 = 10−4 ε0 = 10−5

N = 50 0.2192(42) 0.2197(39) 0.2199(38) 0.2199(38) 0.2200(38)

N = 70 0.2206(59) 0.2209(60) 0.2209(58) 0.2209(58) 0.2209(58)

N = 90 0.2209(78) 0.2199(78) 0.2200(78) 0.2200(78) 0.2200(78)

N = 110 0.2210(91) 0.2161(90) 0.2185(89) 0.2182(92) 0.2199(92)

N = 130 0.2185(107) 0.2141(105) 0.2163(104) 0.2162(107) 0.2179(108)

Table 2: Sensitivity of predefined parameters to global optimality.

ε0 = 10−1 ε0 = 10−2 ε0 = 10−3 ε0 = 10−4 ε0 = 10−5

N = 50 0.2265(42) 0.2698(39) 0.2896(38) 0.2896(38) 0.2896(38)

N = 70 0.2210(59) 0.2554(60) 0.2744(58) 0.2745(58) 0.2745(58)

N = 90 0.2067(78) 0.2411(78) 0.2412(78) 0.2446(78) 0.2458(78)

N = 110 0.1921(91) 0.2256(90) 0.2338(89) 0.2362(92) 0.2364(92)

N = 130 0.1871(107) 0.2264(105) 0.2340(104) 0.2362(107) 0.2363(108)

8. Numerical examples

Four numerical examples include classical benchmark examples and real-world

data predictions are carried out to assess LEOA. The data sets are DJIA daily clos-

ing prices, data sets generated by two non-linear dynamic systems, and Mackey-Glass

chaotic time series. The motivation for testing LEOA on these data sets are the essence

of non-stationary, non-linear, as well as uncertainty of these data sets. These data sets

can effectively evaluate the learning ability and the global optimality of LEOA. In the

following subsections, LEOA is compared against varies kinds of state-of-the-art algo-

rithms. The performances of the algorithms are evaluated by the rooted mean square

error (RMSE) and non-dimensional error index (NDEI), which are

RMSE =

n
∑

k=1
(yk − ŷk)

2

n
, (35)
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430

NDEI =

√
RMSE
std(y)

, (36)

respectively. std(y) is the standard deviation of {yk}n
k=1. Results of LEOA are calcu-

lated in the environment of intel(R) core (TM) i7-4790 CPU with a 3.6 GHz processor

and 16.0 GB memory.

8.1. Example 1: online prediction of DJIA daily closing price

This example is an online learning example applied to demonstrate that LEOA

can make both one-step-ahead predictions and global approximations accurately. In

this example, LEOA and MEPL (model 1) [48] are used to make online prediction of

Dow Jones Industrial Average (DJIA) daily closing price. The DJIA data are collected

from Wharton Research Data Services (WRDS) between 04.01.1960 and 31.12.2007,

which provide 12118 data points for this experiment. Both LEOA and MEPL make

predictions of the logarithm of the data set based on the following three models, M1,

M2 and M3, shown in (37), (38) and (39), respectively.

M1 : yt+1 = f (yt−3,yt−2,yt−1,yt), (37)

M2 : yt+1 = f (yt−4,yt−3,yt−2,yt−1,yt), (38)

M3 : yt+1 = f (yt−5,yt−4,yt−3,yt−2,yt−1,yt), (39)

where yk presents the logarithm closing price of DJIA, and {yk}12118
k=1 stands for all435

these data. Time delays are chosen based on the cases that there are not very huge dif-

ference between the number of fuzzy rules and parameters used to make predictions.

With this model chosen, it is more visible to compare the one-step-ahead and global

accuracy of these two algorithms. All of the results of these two algorithms are ob-

tained by using the same group of control parameters. Both one-step-ahead and global440

prediction results are listed in Table 3. The RMSEs in Table 3 is calculated based on

the one-step-ahead predictions with the structure and parameters of the model used in
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Table 3: RMSEs of example 1

M1 (37)

Method model

type

RMSEs global

RMSEs

rule num. parameter

num.

MEPL[48] T-S 0.0119 0.0417 16 64

LEOA T-S 0.0133 0.0133 27 108

M2 (38)

Method model

type

RMSEs global

RMSEs

rule num. parameter

num.

MEPL[48] T-S 0.0119 0.0423 20 80

LEOA T-S 0.0139 0.0138 22 88

M3 (39)

Method model

type

RMSEs global

RMSEs

rule num. parameter

num.

MEPL[48] T-S 0.0121 0.0395 16 64

LEOA T-S 0.0145 0.0144 22 88

prediction are varies from time to time; while global RMSEs is computed by using the

estimation of every historical data point. The estimation of historical data points are

computed by the final system learned from the data without any structure and parame-445

ters updating of the system. Large global RMSEs indicates that there is an “unlearning

effect”. The control parameters of LEOA are ε0 = 10−3, N = 20. RMSEs in Table 3

shows that both LEOA and MEPL can make accurate one-step-ahead predictions, and

MEPL always performs a little bit better than LEOA in making one-step-ahead predic-

tions. Besides, LEOA gives accurate global prediction results which are similar to its450

one-step-ahead prediction results for all these three models. Nonetheless, it is obvious

that the number of fuzzy rules for LEOA used to make predictions is always larger

than MEPL. This is cause by that MEPL minimize the error function (6) to get the

estimation of the consequent parameters by supposing the fuzzy rules are unchanged.

Besides, MEPL mainly focuses on tracking the behavior of the most recent data, and455

puts global behavior of the algorithm in an secondary place. But the starting point for

designing LEOA is how to make accurate one-step-ahead predictions without losing

too much memory of the knowledge learnt from the historical data. Furthermore, take
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Figure 2: Example 1: predictions for all historical data using M2 (38).

M2 as an exmple, Figure 2 depicts the estimation results of all the historical data using

the final models learned by LEOA and MEPL. It can be seen from Figure 2, it is sig-460

nificant that LEOA reserves a more accurate prediction model than MEPL. As a result,

this example further verifies LEOA can achieve satisfactory local and global accuracy.

8.2. Example 2: nonlinear dynamic plant

A nonlinear system identification problem is applied to evaluate the performance465

of LEOA. The model form of nonlinear dynamic plant is shown in Eq.(40),

y(t +1) =
y(t)y(t −1)[y(t)−0.5]
1+ y2(t)+ y2(t −1)

+u(t), (40)

where u(t) = sin(2t/25), t ∈ [1,5200]. The first 5000 pairs of (y(t −1),y(t),u(t)) are

used for training and the remaining 200 pairs are applied for forecasting. Although

LEOA does not need a training phase, in order to make comparison with other algo-

rithms, LEOA runs in an online mode on the training data set and stops to evolve its470

structure after this phase. The numerical results for predicting the testing data samples

xxv
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Table 4: RMSEs of example 2

Method model type RMSEs rule num. parameter run time(s)

eTS[10] T-S 0.0212 49 490 −
simpl eTS[62] T-S 0.0225 22 220 −
SAFIS[13] RBF 0.0221 17 119 −
FLEXFIS var A[12] T-S 0.0176 5 50 −
FLEXFIS var B[12] T-S 0.0171 8 80 −
SOFMLS[11] mamdani 0.0201 5 35 −
eMG[29] T-S 0.0058 5 80 −
OSAMNN[44] neural net-

work

0.0206 40 400 −

DeTS[51] T-S 0.0172 4 40 −
LEOA T-S 0.0029 20 200 39.021154

are displayed in Table 42. It can be seen from Table 4, LEOA proposed in this pa-

per has much higher accuracy than other previous methods according to the predicting

RMSEs. Figure 3 plots the prediction results for the 200 testing data. Figure 3 indi-

cates that LEOA is a powerful tool to make accurate predictions. Furthermore, we use475

the final model to make estimations of all the 5200 historical data points, the predicting

RMSE reaches at 0.0033 which is still a small value. Figure 4 presents the prediction

errors of LEOA for the first 1000 historical data. It is obvious that LEOA only gives

inaccurate predictions for the first 10 data, and after that the prediction errors fluctuate

in a very low level. The second figure in Figure 4 portrays the trace of the prediction480

errors from the 101st to 1000th data, which shows that prediction errors become stable

and fluctuate between −0.0085 and 0.0073.

2“−” stands for having not been listed in the source paper.
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Figure 4: Example 2: prediction errors for all historical data.
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8.3. Example 3: high-dimensional system

In this example, LEOA is tested on identifying a high-dimensional system. The

system is defined by the following equation (40):485

y(t) =

m
∑

i=1
y(t − i)

1+
m
∑

i=1
y2(t − i)

+u(t −1), (41)

where u(t) = sin(2πt/20), m = 10, y( j) = 0, for j = 1,2, . . . ,m. The prediction model

is of the form shown in (42),

ŷ(t) = f (y(t −1),y(t −2), . . . ,y(t −10),u(t −1)). (42)

There are 3300 data points produced with t ∈ [1,3300], in which only the last 300

data points are used to evaluate the performance of the algorithms. In this example,

(y(t−1),y(t−2), . . . ,y(t−10),u(t−1)) are used to forecast y(t). Similar to example 2490

in section 8.2, LEOA also runs in an online mode. The prediction results for the testing

data are displayed in Table 5. It is obvious that LEOA can make better predictions

than other previous methods judged by RMSEs. It should be noticed that we use 61

fuzzy rules which is larger than other models that being used to make comparison. The

reason behind this is that LEOA could make sure that for each of the fuzzy rule its495

consequent parameters are selected as the global optimum. To verify this, the final

system learned from the data is kept unchanged in both structure and parameters to

make prediction of the whole 3300 data and get predicting RMSE of 0.0620. This

means that LEOA remembers its previous behavior well while evolving its structure

and updating its parameters applying the information extracting from the new data.500

Figure 5 shows the prediction results for the 300 testing data and the estimation results

of first 300 training data. Figure 5 and the numerical results indicate that LEOA is a

powerful algorithm for making significantly accurate predictions without forgetting too

much historical information.

8.4. Example 4: Mackey-Glass chaotic time series.505

Mackey-Glass chaotic time series [10, 14, 37, 42, 51] is a classical benchmark

example to assess different evolving fuzzy systems. Mackey-Glass time series is gen-
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Table 5: RMSEs of example 3

Method model

type

RMSEs rule num. parameter run

time(s)

FLEXFIS[12] T-S 0.0085 15 510 −
eTS[10] T-S 0.0075 14 476 −
eMG(∑init = 2×10−1I11)[29] T-S 0.0288 9 1296 −
eMG(∑init =×10−1I11)[29] T-S 0.0050 13 1872 −
Gen-smart-EFS(fac=0.6)[39] T-S 0.0042 9 1296 −
LEOA T-S 0.0027 61 2074 358.790208
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Figure 5: Example 3: prediction results for testing and all historical data.

erated from the following differential equation (43) with time delay.

dx(t)
dt

=
ax(t − τ)

1+ x10(t − τ)
−bx(t), (43)

in which a = 0.2, b = 0.1, τ ≥ 17. The same as most of previous researches we use

τ = 17. There are 3500 input-output pairs generated by the fourth-order Range-Kutta510

method with x(0) = 1.2. The first 3000 training samples are in the range of t = 201 to

xxix
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t = 3200, and the remaining testing samples are produced from t = 5001 to t = 5500.

The prediction model is shown below,

x̂(t +85) = f (x(t),x(t −6),x(t −12),x(t −18)), (44)

where x̂(t + 85) is the estimated value of x(t + 85). In order to make comparisons,

LEOA is compared with other exaisting EFSs approaches, DENFIS [9], eTS+[27],515

Simple eTS+ [68], GENEFIS [37], PANFIS [36], eT2RFNN [42], GSETSK [14],

SPLAFIS [69] and DeTS [51]. Performances of these algorithms are judged by NDEIs.

Figure 6 portrays the error trace of LEOA while running online on the training data

set. From Figure 6 we can see that absolute value of prediction error decreases from

nearly 0.3 to approximately 0.1 after 1500 training steps. Further, the errors are vary-520

ing approximately between −0.1 and 0.1 from 1501 to 3000 training steps. Table 6

summarizes the numerical results of all state-of-the-art algorithms and LEOA. These

algorithms are compared by NDEIs, fuzzy rule numbers as well as execution time.

The results of LEOA listed in Table 6 is obtained by chosen the control parameters as

ε0 = 0.1 and N = 50. Furthermore, in order to test the global optimality of the online525

learning algorithm LEOA, we use the final model learned from the whole data set to

make estimations of all the 3500 historical data with neither fuzzy rule nor parameters

updating. Numerical results reports that LEOA presents its characteristics of global

optimality highlighted in this paper with NDEI = 0.2423.

As can be seen from Table 6, LEOA achieves the best performance judged by530

NDEI. However, LEOA applies more fuzzy rules being evolved into making predic-

tions and longer execution time than many of the other algorithms. This phenomenon

is determined by the designing viewpoint and structure of LEOA. LEOA is always try-

ing to keep more historical information to assure the global optimality while achieving

the high testing accuracy.535

9. Conclusions

In this paper, we propose a new online learning algorithm referred to as LEOA for

identifying eFS. LEOA is mainly featured by the following two main novel aspects.
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Table 6: NDEIs of example 4

Method model

type

NDEIs rule num. parameter run

time(s)

LEOA T-S 0.2480 42 546 144.781848

DENFIS [9] T-S 0.278 58 886 −
eTS+[27] T-S 0.392 10 130 −
Simple eTS+[68] T-S 0.375 15 150 −
GENEFIS(C)[37] T-S 0.280 19 475 4.46

GENEFIS(B)[37] T-S 0.339 9 225 3.02

PANFIS[36] T-S 0.301 19 475 4.5

eT2RFNN[42] T-S 0.32 3 108 −
GSETSK[14] T-S 0.347 19 247 −
SPLAFIS[69] T-S 0.279 30 390 −
DeTS[51] T-S 0.440 3 39 −
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Figure 6: Example 4: error trace.
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On one hand, antecedent evolving approaches (i.e. structure evolving strategies and

antecedent parameters adaptation method) and consequent parameters updating meth-540

ods (i.e. EWRLS) are derived together for the purpose of minimizing the local error

functions. Exact calculation and proofs are given to verify this optimality and the ε-

completeness property. On the other hand, LEOA achieves in not only local optimality

but also significant global fitting accuracy. The feasibility and accuracy are validated

by both artificial and real-world data sets across both system identification and time545

series prediction area. Although LEOA is usually more complex than many of other

online recursive algorithms, it is still worthwhile in its optimality of consequent param-

eters and the ability for learning the global behavior of a data stream. For the future

research, we will develop further methods for reducing the algorithm complexity of

LEOA and feature selection method. Further, the extension of LEOA to the general-550

ized T-S fuzzy systems with non axis-paralleled rules proposed by [36] (PANFIS) and

[39] (Gen-Smart-EFS) will be considered.

Appendix A.

Appendix A.1. proof of theorem 4.1

Proof If condition 4.1 holds, then σ2
Rt+1, j

≤ n(xk, j−cRt+1, j)
2

−2log{ ε0
t } is satisfied, which further555

implies exp{−
n
∑
j=1

(xk, j−cRt+1, j)
2

2σ2
Rt+1, j

}� ε0
t . Because each

γ i
t+1(xk)

(
Rt+1

∑
l=1

γ l
t+1(xk))(

Rt
∑

l=1
γ l
t+1(xk))

is bounded,

so ∃ ε > 0 such that
t
∑

k=1
Ai

t,kxT
ek < ε and

t
∑

k=1
Ai

t,kyk < ε . Then, ψ i could be estimated

recursively by (15). Besides, it is easy to verify that ε-completeness is satisfied.

�

Appendix A.2. proof of theorem 4.2560

Proof As there exists a finite number N1 > 0 such that | γ i
t+1(xk)

(
Rt
∑

l=1
γ l
t (xk))(

Rt
∑

l=1, l �=i∗
γ l
t+1(xk))

|< N1

for i = 1,2, . . . ,Rt , i �= i∗, and
k
∑

p=t∗+1
γ i∗

p (xp) < εp, so there exists an ε > 0 such that

t
∑

k=1
Bi

t,kxT
ek < ε and

t
∑

k=1
Bi

t,kyk < ε .

�

xxxii



Page 34 of 43

Acc
ep

te
d 

M
an

us
cr

ip
t

Appendix A.3. proof of theorem 4.3565

Proof As condition 4.3 is satisfied, so γ l1
t (xk) ≈ γ l2

t (xk) ≈ γ l0
t (xk), thus we can use

γ l1
t (xk) to replace γ l0

t (xk) in (20) and (21), then these two equations could be approxi-

mated by (A.1) and (A.2),

Ri(t +1) = Ri(t)+
t

∑
k=1

Ci,l2
t,k xekxeT

k +
γ i

t+1(xt+1)
Rt+1

∑
l=1

γ l
t+1(xt+1)

xet+1xeT
t+1, (A.1)

f i(t +1) = f i(t)+
t

∑
k=1

Ci,l2
t,k xekyk +

γ i
t+1(xt+1)

Rt+1

∑
l=1

γ l
t+1(xt+1)

xet+1yt+1, (A.2)

in which570

Ci,l2
t,k =

γ i
t (xk)γ l2

t (xk)

[
Rt

∑
l=1

γ l
t (xk)− γ l2

t (xk)][
Rt

∑
l=1

γ l
t (xk)]

. (A.3)

Let

R̃i
l2
(t +1) = Ri(t)+

t

∑
k=1

Ci,l2
t,k xekxeT

k =
t

∑
k=1

{θ i
t (xk)+Ci,l2

t,k }xekxeT
k , (A.4)

f̃ i
l2
(t +1) = f i(t)+

t

∑
k=1

Ci,l2
t,k xekyk =

t

∑
k=1

{θ i
t (xk)+Ci,l2

t,k }xekyk, (A.5)

thus we can get that (28), (29) and (30) hold. Further, use (A.6) and (A.7),

Ri(t +1) = R̃i
l2
(t)+

γ i
t+1(xt+1)

Rt+1

∑
l=1

γ l
t+1(xt+1)

xet+1xeT
t+1, (A.6)

f i(t +1) = f̃ i
l2
(t)+

γ i
t+1(xt+1)

Rt+1

∑
l=1

γ l
t+1(xt+1)

xet+1yt+1, (A.7)

it is easy to get that (27) holds.575

�
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Appendix A.4. deduction of formula (24)

Once l1-th and l2-th fuzzy rule are merged into the l0-th as shown in (24), the sample

size of the l0-th cluster becomes Nl1 +Nl2 . Based on (25), the radius σl0, j could be

estimated using (A.8),580

(σl0, j)
2 =

Nl1
+Nl2

∑
k=1

(xk, j − cl0, j)
2

Nl1 +Nl2 −1
(A.8)

=

Nl1

∑
i1=1

(xi1, j − cl0, j)
2

Nl1 +Nl2 −1
+

Nl1

∑
i2=1

(xi2, j − cl0, j)
2

Nl1 +Nl2 −1
,

where cl0, j is the merged cluster center shown in (23), j = 1,2, . . . ,n. The numerator

of the first term could be presented by (A.9),

Nl1

∑
i1=1

(xi1, j − cl0, j)
2 =

Nl1

∑
i1=1

(xi1, j − cl1, j + cl1, j − cl0, j)
2 (A.9)

= (Nl1 −1)(σl1, j)
2 +Nl1(cl1, j − cl0, j)

2.

Similar formula could be used to present
Nl1

∑
i2=1

(xi2, j − cl0, j)
2. Therefore, based on (A.8)

and (A.9), (24) is easy to be obtained.
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(xt ,yt)—an input-
output pair of
a data stream.

LEOA—an evolving fuzzy system (EF-
S) online identification approach derived

from minimizing local error functions

LEOA structure and anteceden-
t learning (i.e. fuzzy rule
adding, pruning, merging,

antecedent parameters updating).

LEOA consequent learning (i.e.
extended weighted recursive

least square (EWRLS) method).

EFS

Input:xt+1.
Historical

data:{xi}ti=1.

∃ε1,ε2 > 0 such that ‖yt+1 −

ŷt+1‖ < ε1 and
t
∑

i=1
‖yi − ŷi‖ < ε2.

Prediction
of output

yt+1: ŷt+1.

Estimations
of {yi}ti=1:
{ŷi}ti=1.
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