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Abstract—Semi-supervised learning methods are 

conventionally conducted by simultaneously utilizing abundant 

unlabeled samples and a few labeled samples given. However, the 

unlabeled samples are usually adopted with assumptions, e.g. 

cluster and manifold assumptions, which degrade the 

performance when the assumptions become invalid. The reliable 

hidden features embedded in both the labeled and the unlabeled 

samples can potentially be used to tackle this issue. In this regard, 

we investigate the feature augmentation technique to improve the 

robustness of semi-supervised learning in this paper. By 

introducing an orthonormal projection matrix, we first transform 

both the unlabeled and labeled samples into a shared hidden 

subspace to determine the connections between the samples, and 

utilize the hidden features, the raw features, and zero vectors 

determined to develop a novel feature augmentation strategy. 

Finally, a hidden feature transformation model is proposed to 

compute the desired projection matrix by applying the maximum 

joint probability distribution principle in the augmented feature 

space. The effectiveness of the proposed method is evaluated in 

terms of the hinge and square loss functions respectively, based on 

two types of semi-supervised classification formulations 

developed using only the labeled samples with their original 

features and hidden features. The experimental results have 

demonstrated the effectiveness of the proposed feature 

augmentation technique for semi-supervised learning. 

Index Terms—Semi-supervised learning, Cluster assumption, 

Manifold assumption, Hidden features, Joint probability 

distribution 

I. INTRODUCTION

emi-supervised learning finds applications in various

domains, such as machine learning, pattern recognition, 

image processing, computer vision and bioinformatics. The 

performance of semi-supervised learning is usually dependent 

on the availability of abundant labeled samples, without which 

promising model learning performance is difficult to achieve. 

In many real-world applications, collecting full classes of 

labeled samples is labor-intensive or even impracticable, 
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whereas acquiring a large amount of unlabeled data is relatively 

feasible. Hence, semi-supervised learning using unlabeled data 

has received considerable attention [1, 2, 5, 8]. In this approach, 

the intrinsic structure of the data is critical to the performance. 

For unlabeled data, it is necessary make assumptions on the 

intrinsic data structure but the validity can adversely affect the 

learning performance, as demonstrated in many empirical 

studies [30]. Specifically, the wide variation in modalities and 

distributions in different datasets, or even the variation of data 

distribution among different clusters within a dataset, makes it 

impractical to accurately model every dataset based on a few 

common and straightforward assumptions. For example, in 

manifold learning [3], Laplacian matrix is enlisted to depict the 

manifold structure existing in a dataset. Nevertheless, different 

structures could be disclosed with different choices of 

k-nearest-neighbors. Therefore, it is of significance to

investigate more reliable and robust strategies for using

unlabeled samples in semi-supervised learning. This is the

motivation underlying the research in this paper.

   It has been illustrated empirically that for a classifier, the 

negative influence incurred by feature errors is far less than that 

by incorrect labels [4]. That is, under a certain assumption, e.g. 

manifold preservation, the process of automated labeling may 

result in wrongly tagged labels which can propagate and 

seriously affect the performance of the classifier. Ideally, a 

robust semi-supervised learning method should take 

advantages of both labeled and unlabeled samples while 

avoiding the negative effects due to incorrect labels. However, 

achieving these goals simultaneously is difficult. In practice, 

classification approaches safeguarding invalid assumptions 

often produce little or even no improvement in classification 

performance. The need to make assumptions in existing 

semi-supervised learning algorithms is indeed a major hurdle 

against effective leveraging of the unlabeled samples. 

   Since the adverse effect due to attribution error is essentially 

less than that caused by class label error [4], it is more 

beneficial to make use of the hidden features based on the 

complete unlabeled samples information, rather than relying on 

brute-force assumptions in the model training process. In fact, 

hidden features also play an important role in the human 

cognition. The theory of adaptive control of thought (ACT) 

developed by John Anderson is a well-known theory in the 

community of cognitive psychology [21]. According to ACT, 

declarative knowledge and procedural knowledge are assumed 

to be two critical atomic components of human cognition. 

Explicit declarative knowledge is not always accessible. It is 

more common that based on the existing declarative 

knowledge, along with some unconscious data inference 

(hidden features) and retrieval of information, procedural 
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knowledge gradually can generates new declarative 

knowledge. In other words, human can unconsciously abstract 

hidden features from the procedural knowledge to infer and 

create new declarative knowledge. Enlightened by the learning 

approach of human cognition, we adopt an analogy to propose 

the research in this paper. 

   In this paper, the problem of semi-supervised learning is 

investigated from the perspective of hidden feature 

augmentation. We firstly introduce an orthonormal projection 

matrix to transform both the labeled and unlabeled samples into 

a common subspace such that the connection of objects (to be 

classified) belonging to the same class can be maximized. 

According to the principle of maximum joint probability 

distribution between the labeled and unlabeled samples in the 

augmented feature space, we then propose the Hidden Feature 

Transformation (HFT) model to obtain the hidden feature 

projection matrix shared by them. Finally, semi-supervised 

classification formulations are developed respectively based on 

two typical loss functions. The merits of the proposed approach 

are highlighted as follows.  

 (1) With the hidden feature augmentation strategy, a new 

mechanism to effectively leverage unlabeled samples in 

semi-supervised learning is first proposed. Instead of 

brute-force assumptions, hidden features embedded in both the 

labeled and unlabeled samples are mined and utilized. The 

proposed approach avoids the propagation of labeling errors 

commonly existing in semi-supervised learning, which enables 

practical and reliable utilization of then unlabeled data by 

establishing connections between the labeled and unlabeled 

data. 

(2) The novel HFT model is proposed based on the 

maximum joint probability principle to extract hidden features 

in the samples. It guarantees the labeled and unlabeled data in 

the augmented feature space have similar data distributions. In 

addition, the desired hidden space projection matrix can be 

obtained analytically. 

(3) In the two proposed semi-supervised classification 

formulations, the augmented labeled instances and their 

original and hidden features are only involved, which make it 

easy to solve the classification problems. 

(4) Besides classification, the proposed hidden space 

augmentation based semi-supervised learning mechanism can 

also be conveniently used in other applications, such as 

semi-supervised clustering, regression, and fuzzy inference. 

The remainder of this paper is organized as follows. A brief 

review of the related work is provided in Section 2. The 

proposed semi-supervised learning framework and the feature 

augmentation modality, as well as the estimation of the hidden 

space projection matrix and the semi-supervised classification 

formulations are presented in Section 3. Extensive 

experimental studies on the proposed method and the 

associated analyses are discussed in Section 4. Conclusions and 

the possible avenues for future research are given in the last 

section. 

II. RELATED WORKS 

Semi-supervised classification methods attempt to improve 

the performance of classifier training by exploiting both the 

relatively ample yet unlabeled data (with potential to disclose 

the intrinsic data pattern), and a small amount of labeled 

samples available. Numerous semi-supervised classification 

approaches have been developed in the past decades [5-7]. 

Most of them rely on making two major types of assumptions 

on the unlabeled data, namely, the cluster assumption and the 

manifold assumption [1, 5, 8]. The cluster assumption 

presumes that similar instances have the same class labels and 

the classification boundaries should pass through low density 

regions [9-12]. The manifold assumption supposes that the data 

are distributed in some low dimensional manifolds and similar 

instances have the same data feature. For example, data 

distribution and geometric structure are generally depicted by 

the Laplacian graph [3, 13-15]. 

However, empirical studies have shown that in some cases, 

utilization of unlabeled data indeed decreases the learning 

performance since the assumptions made cannot be met [30, 

31]. It is in fact difficult to estimate the potentially useful but 

unknown data pattern of the unlabeled data. Different 

assumptions can lead to different outcomes, or even 

deteriorates classification effectiveness if the assumptions 

made turn out to be inappropriate. This is evident from the 

example demonstrated in Fig. 1, where two categories of 

objects – round-shaped objects and quadrilateral objects – are 

presented in Fig. 1(a); and the classification results achieved 

with different assumptions on a specific dataset are shown in 

Fig. 1(b). On the one hand, because of the rough shape 

similarity between the rectangles and the ellipses and that 

between the circles and the squares, making the cluster 

assumption may result in the classification hyperplane shown 

with the blue dotted line in Fig. 1(b). On the other hand, based 

on the manifold assumption, another classification hyperplane, 

shown with the red dotted line in the figure, may be obtained 

according to the different data densities of the different classes. 

The figure illustrates intuitively the effect of assumptions on 

semi-supervised classification using unlabeled data. 

 

(b) Possible classification results 
achieved by different assumptions

(a) Two categories of 
objects

 
Fig. 1. Effect of assumptions on semi-supervised learning. 

 

In some assumption-based methods, the pseudo-label 

generation trick is typically applied to part of the unlabeled data 

to expand the labeled dataset [1, 5, 8]. However, if the 

pseudo-labels generated based on the assumptions are 

erroneous, information due to the wrong labels can propagate 

iteratively and eventually degrade the classification 

performance significantly. A data editing technique has been 
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proposed as a counter measure [27]. However, this technique 

relies on the neighboring information and only works well in 

some dense-data scenarios. 

Other semi-supervised learning methods concerning data 

leveraging as well as negative influence avoidance have also 

been investigated. For example, Wang et al. developed a 

safety-aware semi-supervised learning (SA-SSCCM) method 

[18] which is a compromise between the modified cluster 

assumption and least-square support vector machine (LS-SVM) 

[20] in order to tackle the sole dependence of the cluster 

assumption. The safe semi-supervised SVMs (S4VMs) was 

also proposed to only exploit the candidate low-density 

separators to assist model training, under the assumption that 

the ground-truth label could be attained by one of the 

low-density separators obtained [19]. This method attempts to 

achieve better performance based on the extrinsic data density 

property, which, to some extent, is equivalent to the assumption 

of density-based spatial cluster [32]. 

In light of the fact that inappropriate assumptions not only 

mismatch the intrinsic data pattern but also degrade the 

performance of model training, there is a need to develop more 

reliable data-leveraging mechanisms, rather than resorting to 

brute-force assumptions.  

III. SEMI-SUPERVISED LEARNING BASED ON FEATURE 

AUGMENTATION  

Instead of making assumptions on the data pattern, we focus 

on semi-supervised classification with the feature augmentation 

strategy in this paper. Before introducing the details of this 

approach, the notations used in the paper are first described. 

A. Mathematical Notations 

The mathematical notations and definitions used in this 

paper are introduced as follows. n0 , n1
n

 denotes the 

1n  column vectors of all zeros and all ones respectively. For 

simplicity, 0  and 1 are used instead of n0  and n1 when the 

dimension is explicit. Suppose a d dimensional dataset S with 

N samples,  1 2, ,..., NS = x x x , is given, the lN  labeled samples 

are denoted by ( ) ( ) ( ) 1 1 2 2, , , ,..., ,
l l

L L L
N NL y y y= x x x  with labels 

 1, 1iy  − + , and the remaining u lN N N= −  unlabeled samples 

are denoted as ( ) ( ) ( ) 1 1 2 2, , , ,..., ,
l l l

U U U
N l N N N NU y y y+ + + += x x x . 

The classification problem can be formulated as an 

optimization problem which aims at finding the decision 

function f by minimizing the structural risk 

( ) ( )( )
1

,
N

i i
i

f C f y
=

 +  xL , where ( )f  is a regularization 

term and L( )  is a certain convex non-negative loss function to 

assesses the effectiveness of the f . In our study, two classical 

loss functions are concerned, i.e., the hinge loss function and 

the least square loss function [28]. 

B.  Feature Augmentation Based Semi-Supervised 

Framework 

    In the paper, we introduce a common orthonormal projection 

matrix P r d
  to transform both the labeled and unlabeled 

samples into shared hidden subspace, in which r is the 

dimension of hidden feature space and the range of r  will be 

discussed later. The shared hidden subspace is referred to as the 

augmented future space, which is composed of the generated 

hidden features, the original features, and the zero vectors. In 

the augmented future space, the HFT model is proposed based 

on the principle of maximum joint probability to calculate the 

desired projection matrix P. Eventually, augmented labeled 

samples, produced by using the ample unlabeled and the 
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Fig. 2. The proposed assumption-free method versus conventional supervised-learning method. 

common projection matrix P, are exploited to improve the 

performance of the classifier. The framework of the 

semi-supervised learning approach is illustrated in Fig. 2, 

where the proposed assumption-free method is compared with 

the conventional assumption-based method. 

The proposed method figures out the shared hidden space via 

the feature augmentation mechanism, where the hidden 

features, generated by using the projection matrix P for each 
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original sample in the labeled dataset or unlabeled dataset, are 

regarded as a type of implicit knowledge. Based on the 

supplementary knowledge, i.e., the augmented features, and the 

original features, classification of the samples can be performed 

more effectively. 

C. Feature Augmentation  

    A simple domain-adaption-based feature augmentation 

method has been proposed by Daumé recently [22], where the 

original feature space d is projected into the augmented 

feature space 3d by merely replicating the original features 

and zeroes. Specifically, for any data point x d
 from the 

source or target domain (where useful knowledge can be 

exploited from the source domain to help learning in the target 

domain), define the feature mapping functions 

( ) , ,
S

=  x x 0 xΦ and ( ) , ,
T

=  x x x 0Φ for the source domain and 

the target domain respectively. Inspired by this idea, while 

developing a different way of feature augmentation, we apply 

the hidden features into the feature space in order to establish 

connections between the labeled and unlabeled samples. In this 

paper, the primitive feature augmentation structure is slightly 

modified by replacing the original components with the hidden 

features for both the labeled and the unlabeled sets. That is 

, ,
T

L L L
i i i

 =
 

X Px x 0 , , ,
T

U U U
j j j

 =
 

X Px 0 x , (1) 

    Note that it is not meaningful to directly use the method 

proposed by Daumé [22] for semi-supervised learning tasks 

simply by padding zeros to equalize the dimensions of the data 

from the labeled dataset and the unlabeled dataset, which would 

result in the absence of correspondences between the two 

datasets. With the projection matrix P in our method, the 

hidden features obtained can be used to facilitate the discovery 

of the connection of the samples belonging to the same classes 

in the entire dataset. In addition, the new feature augmentation 

method proposed only makes use of the hidden features to 

establish the connection between individual samples. This 

precludes the need of making assumptions and prevents the 

propagation of labeling noise in the model training procedure. 

D. Hidden Feature Extraction in Augmented Feature Space 

    In this section, the HFT model is first presented, followed by 

the projection matrix P which is obtained based on the principle 

of maximum joint probability distribution in the augmented 

feature space and the HFT model. 

 

1) The HFT model 

    Using the novel feature augmentation mechanism presented 

in (1), all samples, either from the labeled dataset or the 

unlabeled dataset, are mapped into the augmented feature space 

established.   For the labeled dataset L and the unlabeled 

dataset U in the augmented feature space, with the Gaussian 

distribution function ( ) ( )2 21
, , exp 2

2
i iG  


= − −X X X X , 

the Parzen-window based density functions [23] can be 

respectively expressed as  

( )

2

22 2

1

1
, ,

2

L
i

lN

L
i

l i

G e
N


 

−
−

=

=



X X

X X  and (2) 

 

( )

2

22 2

1

1
, ,

2

U
j

uN

U
j

u j

G e
N


 

−
−

=

=



X X

X X ,  (3) 

where denotes the Gaussian kernel bandwidth. Furthermore, 

the Gaussian probability density of ( )LP X and ( )UP X  can be 

separately expressed as 

( ) ( )2

1

1
= , ,

lN

L
L i

l i

P G
N



=

X X X  and (4) 

( ) ( )2

1

1
= , ,

uN

U
U j

u j

P G
N



=

X X X . (5) 

To measure the difference between these two density 

distributions, the integrated squared error J0 between ( )LP X  

and ( )UP X  is calculated, i.e., 

( ) ( )( )
2

0 L UJ P P d= − X X X . (6) 

By minimizing 0J , the labeled dataset and unlabeled dataset 

are expected to have the maximal commonality in the 

projective hidden feature space. It can be shown that by 

expressing 0J  

as ( ) ( ) ( ) ( )2 2
0 2L L U UJ P d P P d P d= − +  X X X X X X X  and based 

on the results in [24, 34], the relationship 

( ) ( ) ( )1 2 1 2, , , , ,i j i jG G d G   = − + X X X X X X X  holds. 

Hence, the following equations can be obtained.  

( ) ( )

( )

2 2

2
1 1

2

1 1

1
= , , 2  

1 1
                    = , , 2

l l

l l

N N

L L
L i j

l i j

N N

L L
i j

l li j

P d G
N

G
N N





= =

= =

 
 
 
 



 

X X X X

X X

, (6.1) 

( ) ( )

( )

2 2

2
1 1

2

1 1

1
= , , 2

1 1
                    = , , 2

u u

u u

N N

U U
U i j

u i j

N N

U U
i j

u ui j

P d G
N

G
N N





= =

= =

 
 
 
 



 

X X X X

X X

, (6.2) 

( ) ( ) ( )2

1 1

1
= , ,2

l uN N

L U
L U i j

l u i j

P P d G
N N



= =

 X X X X X . (6.3) 

    Here, the expression ( )2

1

1
, ,2

lN

L L
i j

l j

G
N



=

 X X  can be regarded 

as another estimate of ( )L
L iP X  with bandwidth 2 , and thus 

( )2
LP d X X  can be approximated by ( )

1

1
lN

L
L i

l i

P
N

=

 X  and further 
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reduced to 
1

lN
. Similarly, ( )2

UP d X X can be approximated by 

1

uN
. Eventually, 0J can be approximated as 

( )2
0

1 1

1 1 2
, ,2

l uN N

L U
i j

l u l u i j

J G
N N N N



= =

 + −  X X , (7) 

and the minimization of 0J is then equivalent to the 

maximization of 0J   in the following expression 

( )

2

22 4
0

1 1 1 1

1
, , 2 =

4

L U
i j

l u l uN N N N

L U
i j

i j i j

J G e 


−
−

= = = =

 =  
X X

X X . (8) 

   By using the Taylor series expansion 

1 2 3

0

1
1! 2! 3! !

n
x

n

x x x x
e

n



=

= + + + +    =  , (9) 

with the exponential function x
e  at 0 , we arrive at the 

following approximation 

1
x

e x
−

 − . (10) 

   Therefore, in order to maximize the joint probability 

distribution of the labeled dataset L and the unlabeled 

datasetU with the new representations in the augmented feature 

space, we can instead minimize the following objective 

( )
2

0

1 1

=

l uN N

L U
i j

i j

J J

= =

  − X X , (11) 

subject to the orthogonal condition of the projection matrix P , 

i.e. T
d d=PP I . Finally, the following optimization objective 

function is obtained. 

( ) ( )
2

1 1

min    

 s.t.      .

l uN N

L U
i j

i j

T
d d

J

= =



= −

=

P X X

PP I

 (12) 

    After mathematical derivations, this optimization problem 

can be reformulated as: 

( )

( ) ( )

( ) ( )

( )
1 1

min   

2

s.t.    .

l u

T T
L T L L L
i i i i

N N
T T

U T U U U
j j j j

i j
T

L T U
i j

T
d d

J

= =



 
+ + 

 
 

= +
 
 
 − 
 

=



x P Px x x

P x P Px x x

x P Px

PP I

 (13) 

   By taking the derivative of the above objective function with 

respect to P, we have 

( ) ( )

( ) ( )1 1

2 2

=

2 +

l u

T T
L L U U

N N i i j j

T T
L U U L

i j i j j i

J

= =

 
+ − 

  
  
  
  


Px x Px x

P
P x x x x

. (14) 

Then the projection matrix P can be estimated using the 

following gradient descent procedure [25-27, 33] 

( ) .
T

d d

J
 


 − − = − 


P P I PP P P

P
 (15) 

    That is,   

( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( )( ) ( )

1

1 1

2 2

     

2

       

l u

t t

T Tt tL L U U
N N i i j j

T Tt L U U L
i j i j j i

T
T

t t
d d



+

= =



= −

  
+ −  

  
   

+       

 
 −  

 



P P

P x x P x x

P x x x x

I P P

. 
 (16) 

The step size   in (16) can either be manually set or 

analytically obtained using the techniques described below. 

After putting (15) into the objective function in (13), the 

following continuous function ( )g   and its derivative with 

respect to   can be obtained. 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )
1 1

2

l u

T TTL L L L
i i i i

N N
T TTU U U U

j j j j

i j
T TL U

i j

g

 

  

 

= =

 
−  −  + + 

 
 

= −  −  + −
 
 
 −  −  
 



x P P P P x x x

x P P P P x x x

x P P P P x

.  (17) 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

1 1

2

2

2

2

l u

T T
L L L L
i i i i

T T
L L U U
i i j j

N N
T T

U U U U
j j j j

i j
T T

L U L U
i j i j

T
L U
i j

g









= =

 
  −  − 

 
 

 +   −
 
 

  =  −  −
 
  
   −  
  
  

−   
  



Px Px Px Px

Px Px Px Px

Px Px Px Px

Px Px Px Px
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.  (18) 

    Set 0
g




=


, the step size   is given by 
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(19) 

    In summary, the procedure to obtain the projection 

matrix P is presented in Algorithm 1. 

 

 

Algorithm 1: Hidden Feature Transformation 
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Input: labeled dataset L , unlabeled datasetU  

Initialize: 0t = ,  row in the orthonormal matrix ( )0
P , obtain      

the gradient J P  according to (14). 

repeat 

      1t t= + . 

       Compute the increment P  according to (15). 

       Use (17) to update step size . 

       Obtain the tht projection matrix ( ) ( )1t t


−
= − P P P by (16). 

Until  

       ( ) ( )1J t J t − −   or maxt t . 

Output: P  

 

2) Hidden Feature Formulation 

    The hidden features of the given dataset, i.e., L
Px and U

Px  

of the labeled and unlabeled samples respectively, can be 

readily obtained with equation (1) and Algorithm 1. However, 

it is necessary to determine the number of hidden features r  in 

the HFT model. Assume the samples in L  and U  are 

independent identity distribution with their labels randomly 

discarded during the sample generation process, it is sufficient 

to set r  to any number greater than the total number of classes 

of the dataset. On the other hand, since the hidden features are 

combined with the origin features to determine the unlabeled 

samples, it is necessary to restrict r  below a reasonable 

threshold even if the dimension of the original features d  is 

relatively high to refrain from the difficulty in handling 

high-dimensional data. 

    Regarding the time complexity of the HFT procedure, as the 

solution of P  is obtained using the gradient descent strategy 

and the step length is determined analytically, the 

computational complexity of P  is 2
( )O trd , where t  is the 

iteration number allowed to compute P . 

E. Formative Semi-supervised Learning  

    With the projection matrix P  and the hidden features, the 

labeled and unlabeled samples can be readily expressed in the 

new augmented feature space. A notable feature of the 

proposed feature-augmentation-based semi-supervised 

classification mechanism is that only the labeled samples, 

together with the original and the corresponding hidden 

features, are involved in the classifier training. The unlabeled 

samples are no longer needed. 

    In theory, the presented hidden space augmentation strategy 

is applicable for most semi-supervised learning models, e.g. 

classification, clustering, and regression, as it can be 

conveniently incorporated into the corresponding frameworks. 

In this study, we focus on semi-supervised SVM classification 

formulations in terms of two typical loss functions – hinge loss 

function and least square loss function – to verify the 

effectiveness of the proposed approach. 

    With the hinge loss function, the semi-supervised SVM 

formulation can be represented as 

( )

( )

2 2

1

1
min   

2

s.t.     1 , 0.

N

i

i

T
T

i i i i

C

y b



 

=

+ +

 
+ +  −  

 

w v

w P v x

 (20) 

    Using a mapping function ( ) to map all samples into the 

high dimensional Hilbert space, the dual problem of (20) is 

given by 

( ) ( )

( ) ( )1 1 1

1

1
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2

s.t.      0,  0 . 1,2,...,
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N N N

i j

i i j j iT
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 

= = =

=
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−  
 
 

=   =

 



x x

Px Px
 (21) 

    Likewise, for the least square loss function, the dual problem 

is given by 

( ) ( )
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1

1
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 



x x

Px Px
 (22) 

    The optimization problems in (21) and (22) can both be 

solved by transforming them into standard quadratic 

programming problems. 

     Besides, suppose ( )K  is the kernel function involved, the 

decision function of the above semi-supervised classification 

problems can be presented as 

( )
1

( ) ( , ) ( , )
N

i i i
i

f 
=

= +x K x x K Px Px  according to the 

Representer theorem [3]. 

IV. EXPERIMENTS 

   In this section, we conducted extensive experiments on 

benchmarking datasets to evaluate the effectiveness of the 

proposed hidden feature augmentation-based semi-supervised 

learning method. We firstly introduce the datasets used in the 

paper. 

A. Data Preparation 

The proposed approach is evaluated using 15 benchmarking 

datasets, which are available from the UCI repository 

(http://www.ics.uci.edu/~mlearn/MLRepository.html), the 

KEEL-dataset repository (http://sci2s.ugr.es/keel/datasets), and 

the Max Planck Institute for Biological Cybernetics 

(http://www.kyb.tuebingen.mpg.de/ssl-book). Table 1 

summarizes the characteristics of the datasets. 

 
TABLE 1. ATTRIBUTES OF THE BENCHMARKING DATASETS. 

ID Data #Instances #Features 

1 Sonar 208 60 

2 Australian 690 14 

3 Ionosphere 351 34 

4 Breast 699 10 

5 Monk2 601 6 

http://www.ics.uci.edu/~mlearn/MLRepository.html
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6 German_org 1000 24 

7 Vehicle 846 18 

8 Wine 174 13 

9 Diabetes 768 8 

10 Heart 270 13 

11 WDBC 569 14 

12 Clean1 476 166 

13 Spectfheart 267 44 

14 Bci 400 117 

15 Class1 163 9 

 

B. Experimental Setup  

     A series of experiments are conducted to compare the 

performance of the proposed approach with that of several 

off-the-shelf semi-supervised classification methods. The 8 

methods involved in the experiments are listed below. 

 

1) Baseline Methods 

(1)  Support Vector Machines (SVM) [29]. 

(2)  Least Square Support Vector Machines (LS-SVM) [20]. 

(3)  Laplacian Regularized Least Squares (LapRLS) [3]. 

(4)  Laplacian Support Vector Machines (LapSVM) [3]. 

(5)  Safe Semi-Supervised Support Vector Machines 

(S4VM) [19]. 

(6) Safety-Aware Semi-Supervised Classification Method 

Based on Class Memberships (SA-SSCCM) [18]. 

(7)  The proposed Semi-Supervised Learning Method Based 

on the Augmented Hidden Features (SSLAHF) using the hinge 

loss function (SSLAHF_h). 

(8) The proposed SSLAHF method using the square loss 

function (SSLAHF_s). 

 

2) Implementation Details 

To satisfy the requirement of the transductive learning 

method S4VM and thus ensuring the comparison is made on 

equal ground, all the methods are implemented by following 

the procedures in transductive learning, i.e., learning is 

performed on both the labeled and unlabeled data, whereas 

performance is predicted on given unlabeled data. For each 

dataset, the experiments are configured in two ways: (1) 10 

instances are randomly selected and labeled; and (2) 10% 

instances are randomly selected and serve as labeled instances. 

The remaining data are used as unlabeled instances. In order to 

evaluate the effectiveness of the proposed SSLAHF in the 

control of the influence of label error, 10% and 20% of the 

labeled data are selected and tagged with wrong labels 

purposely to generate label noise for the second configuration. 

The parameters of the methods are set as follows. Following 

the setting in [18], both linear and radial basis function (RBF) 

kernels are used for all the datasets. The width of the RBF 

kernel   is set to be the average distance between all the 

instances. The regularization parameter C1 is set by searching 

the value from the set 

 1e-5,1e-4,1e-3,1e-2,1e-1,1e0,1e1,1e2,1e3,1e4,1e5  through the 

leave-one-out strategy. The regularization parameter 2C  of 

S4VM is used to weight the loss of unlabeled instance, which is 

fixed to 0.1 [19]. The number of times of sampling in each trial 

is set to 100. For SA-SSCCM, 1  and 2  are set to 100 and 0.1 

respectively, and   is set to -310 . The parameter   is selected 

using the leave-one-out strategy from the 

set  0.05,0.1,0.15,...,0.5 . For LapSVM and LapRLS, the number 

of nearest neighbors for the Laplacian is selected 

from  5,10,15,20 . The extrinsic regularization parameter A  

and the intrinsic regularization parameter I  are set to 1e-6 and 

1e-2 respectively. The dimension of the common hidden space 

r  is selected from  2,3,4,5,6r   when the dimension of 

original features d  is less than 60; and from  8,9,10,11,12r   

otherwise. All the experiments are conducted using MATLAB 

on a computer with an Intel Core i3-3240 3.4GHz CPU and 

4GB RAM.  

C. Performance Comparison 

The average accuracy and standard deviation (SD) of the 8 

methods with experiments conducted using 10 labeled 

instances is shown in Tables 2 and 3 respectively, where linear 

kernel is adopted for Table 2 and RBF kernel for Table 3. Each 

row in the tables gives the average and SD of classification 

accuracy of the individual methods for a dataset. The values in 

boldface represent the best performance obtained. The last row 

in the tables shows the average accuracy of each individual 

method over all the 15 datasets. In the same way, the average 

performance and SD with 10% instances are labeled is shown 

in Table 4 (linear kernel) and Table 5 (RBF kernel) 

respectively. 

    From the results in the four tables above, the following 

observations can be made. 
 

TABLE 2. COMPARISON OF ACCURACY (MEAN±SD) WITH 10 LABELED INSTANCES USING LINEAR KERNEL. 

 Linear  
Dataset 

SVM LS-SVM LapRLS LapSVM S4VM SA-SSCCM SSLAHF_h SSLAHF_s 

Sonar 
0.5823±

0.0059 
0.5919±
0.0051 

0.6081±
0.0055 

0.6167±
0.0063 

0.6020±
0.0061 

0.6077±
0.0088 

0.6212±
0.0047 

0.6283±
0.0079 

Australian 
0.7248±

0.0177 
0.6994±
0.0163 

0.7375±
0.0066 

0.6500±
0.0163 

0.7475±
0.0142 

0.6896±
0.0157 

0.7224±
0.0176 

0.7042±
0.0166 

Ionosphere 
0.6372±

0.0080 
0.7032±
0.0045 

0.7114±
0.0072 

0.7196±
0.0043 

0.6950±
0.0076 

0.6902±
0.0034 

0.7264±
0.0058 

0.7305±
0.0055 

Breast 
0.8322±

0.0873 
0.8319±
0.0872 

0.7932±
0.0063 

0.8186±
0.0049 

0.8412±
0.0078 

0.8350±
0.0064 

0.9087±
0.0049 

0.9041±
0.0016 

Monk2 
0.5347±

0.0035 
0.5866±
0.0143 

0.5345±
0.0035 

0.5514±
0.0034 

0.5549±
0.0053 

0.6253±
0.0104 

0.5899±
0.0078 

0.5931±
0.0019 
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German_org 
0.6787±

0.0014 
0.6330±
0.0048 

0.6146±
0.0045 

0.5978±
0.0027 

0.6193±
0.0039 

0.6469±
0.0158 

0.6889±
0.0010 

0.6429±
0.0060 

Vehicle 
0.6271±

0.0007 
0.6254±
0.0005 

0.6645±
0.0060 

0.6317±
0.0036 

0.6707±
0.0053 

0.6488±
0.0039 

0.7268±
0.0007 

0.7251±
0.0005 

Wine 
0.8816±

0.0033 
0.8823±
0.0031 

0.8816±
0.0033 

0.7804±
0.0069 

0.8829±
0.0035 

0.8404±
0.0083 

0.8968±
0.0014 

0.8856±
0.0080 

Diabetes 
0.6390±

0.0022 
0.6313±
0.0057 

0.6298±
0.0060 

0.5701±
0.0041 

0.6363±
0.0018 

0.6276±
0.0092 

0.6533±
0.0033 

0.6537±
0.0030 

Heart 
0.6127±

0.0022 
0.6146±
0.0019 

0.6154±
0.0019 

0.6269±
0.0062 

0.6146±
0.0028 

0.6073±
0.0028 

0.6127±
0.0017 

0.6619±
0.0078 

WDBC 
0.8524±

0.0088 

0.8503±
0.0084 

0.8394±
0.0065 

0.7372±
0.0151 

0.8517±
0.0054 

0.8270±
0.0058 

0.8376±
0.0094 

0.8363±
0.0090 

Clean1 
0.5794±

0.0032 
0.5803±
0.0026 

0.5796±
0.0031 

0.5803±
0.0027 

0.5839±
0.0028 

0.5088±
0.0028 

0.5794±
0.0033 

0.5755±
0.0027 

Spectfheart 
0.7709±

0.0056 
0.7700±
0.0060 

0.7190±
0.0056 

0.7206±
0.0075 

0.7291±
0.0038 

0.7947±
0.0001 

0.7709±
0.0056 

0.7714±
0.0058 

Bci 
0.5318±

0.0006 
0.5318±
0.0007 

0.5318±
0.0006 

0.5328±
0.0005 

0.5315±
0.0006 

0.5105±
0.0003 

0.5356±
0.0001 

0.5319±
0.0007 

Class1 
0.6259±

0.0074 
0.6196±
0.0060 

0.6322±
0.0057 

0.5902±
0.0014 

0.6203±
0.0062 

0.5944±
0.0021 

0.6266±
0.0055 

0.6343±
0.0013 

Average 
Accuracy 

0.6740 0.6768 0.6729 0.6483 0.6787 0.6702 0.6998 0.6986 

 

TABLE 3. COMPARISON OF ACCURACY (MEAN±SD) WITH 10 LABELED INSTANCES USING RBF KERNEL. 

 RBF  
Dataset 

SVM LS-SVM LapRLS LapSVM S4VM SA-SSCCM SSLAHF_h SSLAHF_s 

Sonar 
0.6071±
0.0054 

0.6072±
0.0056 

0.6146±
0.0052 

0.6167±
0.0053 

0.6000±
0.0058 

0.6116±
0.0047 

0.6136±
0.0056 

0.6197±
0.0060 

Australian 
0.7345±
0.0163 

0.7281±
0.0156 

0.7463±
0.0069 

0.7510±
0.0066 

0.7212±
0.0139 

0.7287±
0.0159 

0.7385±
0.0130 

0.7330±
0.0129 

Ionosphere 
0.6727±
0.0040 

0.7220±
0.0058 

0.7135±
0.0052 

0.7264±
0.0048 

0.7170±
0.0058 

0.6440±
0.0001 

0.7132±
0.0055 

0.7279±
0.0044 

Breast 
0.6192±
0.0030 

0.6289±
0.0031 

0.5691±
0.0042 

0.5557±
0.0054 

0.6060±
0.0102 

0.6550±
0.0000 

0.7354±
0.0134 

0.7041±
0.0110 

Monk2 
0.5570±
0.0035 

0.5562±
0.0036 

0.5570±
0.0035 

0.5455±
0.0050 

0.5805±
0.0064 

0.6570±
0.0000 

0.5555±
0.0034 

0.5514±
0.0046 

German_org 
0.6706±
0.0023 

0.6727±
0.0024 

0.6082±
0.0030 

0.6099±
0.0032 

0.6706±
0.0033 

0.6733±
0.0024 

0.6678±
0.0033 

0.6801±
0.0040 

Vehicle 
0.7011±
0.0012 

0.6769±
0.0032 

0.6778±
0.0030 

0.6602±
0.0041 

0.7408±
0.0000 

0.6890±
0.0091 

0.7010±
0.0013 

0.6849±
0.0034 

Wine 
0.8582±
0.0105 

0.8582±
0.0105 

0.8582±
0.0105 

0.8620±
0.0085 

0.7823±
0.0004 

0.7791±
0.0365 

0.8608±
0.0096 

0.8671±
0.0084 

Diabetes 
0.6376±
0.0037 

0.6472±
0.0035 

0.6161±
0.0029 

0.6061±
0.0030 

0.6088±
0.0078 

0.5681±
0.0183 

0.6372±
0.0041 

0.6442±
0.0035 

Heart 
0.5827±
0.0020 

0.5823±
0.0022 

0.5827±
0.0020 

0.5527±
0.0037 

0.5046±
0.0024 

0.5838±
0.0017 

0.5835±
0.0022 

0.5554±
0.0033 

WDBC 
0.8372±
0.0088 

0.8492±
0.0087 

0.8401±
0.0075 

0.8372±
0.0076 

0.8556±
0.0060 

0.8490±
0.0088 

0.8254±
0.0085 

0.8317±
0.0097 

Clean1 
0.5813±
0.0023 

0.5811±
0.0034 

0.5811±
0.0023 

0.5732±
0.0022 

0.5504±
0.0049 

0.5818±
0.0033 

0.5872±
0.0022 

0.5768±
0.0033 

Spectfheart 
0.7789±
0.0024 

0.7789±
0.0024 

0.7279±
0.0060 

0.7267±
0.0053 

0.7397±
0.0258 

0.7822±
0.0014 

0.7806±
0.0020 

0.7834±
0.0019 

Bci 
0.5310±
0.0006 

0.5231±
0.0009 

0.5323±
0.0005 

0.5285±
0.0010 

0.5154±
0.0001 

0.5228±
0.0009 

0.5372±
0.0008 

0.5285±
0.0008 

Class1 
0.6039±
0.0103 

0.6137±
0.0090 

0.6007±
0.0089 

0.6007±
0.0119 

0.6288±
0.0086 

0.5431±
0.0047 

0.6170±
0.0105 

0.6183±
0.0085 

Average 
Accuracy 

0.6649 0.6684 0.6550 0.6502 0.6548 0.6579 0.6769 0.6738 

 

TABLE 4. COMPARISON OF ACCURACY (MEAN±SD) WITH 10% INSTANCES LABELED USING LINEAR KERNEL. 

 Linear  
Dataset 

SVM LS-SVM LapRLS LapSVM S4VM SA-SSCCM SSLAHF_h SSLAHF_s 

Sonar 
0.6420±
0.0033 

0.6457±
0.0026 

0.6654±
0.0019 

0.6186±
0.0031 

0.6527±
0.0037 

0.6202±
0.0061 

0.6686±
0.0016 

0.6574±
0.0017 

Australian 
0.8444±
0.0001 

0.8472±
0.0002 

0.7971±
0.0010 

0.8304±
0.0003 

0.8496±
0.0001 

0.8045±
0.0026 

0.8562±
0.0001 

0.8551±
0.0001 
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Ionosphere 
0.7446±
0.0068 

0.7965±
0.0020 

0.7797±
0.0016 

0.6921±
0.0031 

0.7842±
0.0026 

0.7383±
0.0093 

0.7978±
0.0017 

0.7997±
0.0015 

Breast 
0.9554±
0.0004 

0.9483±
0.0002 

0.9278±
0.0076 

0.9141±
0.0013 

0.9440±
0.0005 

0.9433±
0.0044 

0.9597±
0.0006 

0.9494±
0.0002 

Monk2 
0.5447±
0.0011 

0.6148±
0.0085 

0.5560±
0.0010 

0.5528±
0.0024 

0.5569±
0.0032 

0.6260±
0.0104 

0.6129±
0.0050 

0.6219±
0.0047 

German_org 
0.6919±
0.0005 

0.7131±
0.0002 

0.6449±
0.0010 

0.7132±
0.0003 

0.7063±
0.0004 

0.6949±
0.0006 

0.6921±
0.0006 

0.7290±
0.0002 

Vehicle 
0.7486±
0.0000 

0.7491±
0.0005 

0.7223±
0.0023 

0.7663±
0.0002 

0.7459±
0.0007 

0.7484±
0.0000 

0.7486±
0.0000 

0.7631±
0.0002 

Wine 
0.9130±
0.0002 

0.9168±
0.0004 

0.9112±
0.0001 

0.8453±
0.0051 

0.9019±
0.0006 

0.8268±
0.0090 

0.9112±
0.0001 

0.9335±
0.0009 

Diabetes 
0.7200±
0.0008 

0.7467±
0.0002 

0.6601±
0.0017 

0.6540±
0.0012 

0.7460±
0.0003 

0.6291±
0.0031 

0.7314±
0.0004 

0.7457±
0.0002 

Heart 
0.7683±
0.0039 

0.7621±
0.0022 

0.7449±
0.0039 

0.7765±
0.0021 

0.7658±
0.0020 

0.7033±
0.0043 

0.7605±
0.0020 

0.7683±
0.0022 

WDBC 
0.9383±
0.0006 

0.9396±
0.0002 

0.9162±
0.0006 

0.9250±
0.0003 

0.9230±
0.0003 

0.9191±
0.0004 

0.9227±
0.0003 

0.9287±
0.0002 

Clean1 
0.6492±
0.0011 

0.6528±
0.0009 

0.6506±
0.0011 

0.6470±
0.0020 

0.6528±
0.0012 

0.6388±
0.0032 

0.6434±
0.0013 

0.6474±
0.0015 

Spectfheart 
0.7983±
0.0002 

0.7959±
0.0001 

0.7415±
0.0018 

0.6921±
0.0039 

0.7448±
0.0015 

0.7959±
0.0001 

0.7985±
0.0002 

0.7959±
0.0001 

Bci 
0.5956±
0.0049 

0.5953±
0.0050 

0.5956±
0.0049 

0.5992±
0.0045 

0.5969±
0.0051 

0.5942±
0.0052 

0.6048±
0.0039 

0.5958±
0.0044 

Class1 
0.6606±
0.0021 

0.6496±
0.0019 

0.6401±
0.0043 

0.6343±
0.0015 

0.6438±
0.0061 

0.6248±
0.0099 

0.6708±
0.0022 

0.6321±
0.0009 

Average 
Accuracy 

0.7477 0.7582 0.7302 0.7241 0.7476 0.7272 0.7586 0.7609 

 

TABLE 5. COMPARISON OF ACCURACY (MEAN±SD) WITH 10% INSTANCES LABELED USING RBF KERNEL. 

 RBF  
Dataset 

SVM LS-SVM LapRLS LapSVM S4VM SA-SSCCM SSLAHF_h SSLAHF_s 

Sonar 
0.6701± 
0.0015 

0.6679±
0.0020 

0.6684±
0.0016 

0.6674±
0.0029 

0.6529±
0.0029 

0.6733±
0.0018 

0.6829±
0.0018 

0.6797±
0.0022 

Australian 
0.8533±
0.0001 

0.8195±
0.0097 

0.7770±
0.0008 

0.7225±
0.0041 

0.8417±
0.0001 

0.8541±
0.0001 

0.8557±
0.0001 

0.8576±
0.0000 

Ionosphere 
0.8278±
0.0033 

0.8434±
0.0021 

0.8263±
0.0016 

0.7892±
0.0016 

0.8101±
0.0071 

0.8436±
0.0064 

0.8437±
0.0025 

0.8440±
0.0026 

Breast 
0.6477±
0.0007 

0.6566±
0.0000 

0.6267±
0.0019 

0.6234±
0.0018 

0.6485±
0.0000 

0.6566±
0.0000 

0.7017±
0.0083 

0.6566±
0.0000 

Monk2 
0.6294±
0.0021 

0.6468±
0.0009 

0.6451±
0.0007 

0.6231±
0.0009 

0.6418±
0.0007 

0.6580±
0.0004 

0.6344±
0.0010 

0.6348±
0.0006 

German_org 
0.6754±
0.0012 

0.6951±
0.0006 

0.6652±
0.0014 

0.6807±
0.0020 

0.6787±
0.0006 

0.7013±
0.0000 

0.6783±
0.0009 

0.7037±
0.0003 

Vehicle 
0.7094±
0.0043 

0.7461±
0.0003 

0.7377±
0.0003 

0.7404±
0.0012 

0.7415±
0.0000 

0.7450±
0.0008 

0.7301±
0.0006 

0.7516±
0.0004 

Wine 
0.8969±
0.0013 

0.8988±
0.0012 

0.8969±
0.0013 

0.8876±
0.0008 

0.7056±
0.0011 

0.7422±
0.0110 

0.8950±
0.0017 

0.9186±
0.0004 

Diabetes 
0.7107±
0.0006 

0.7163±
0.0003 

0.6495±
0.0008 

0.6500±
0.0005 

0.6457±
0.0000 

0.6375±
0.0017 

0.7161±
0.0003 

0.7233±
0.0003 

Heart 
0.6414±
0.0059 

0.6243±
0.0058 

0.6193±
0.0049 

0.6432±
0.0047 

0.5243±
0.0021 

0.6226±
0.0054 

0.6160±
0.0053 

0.6416±
0.0059 

WDBC 
0.9342±
0.0002 

0.9396±
0.0003 

0.9211±
0.0004 

0.8824±
0.0007 

0.9301±
0.0003 

0.9402±
0.0003 

0.9303±
0.0002 

0.9348±
0.0003 

Clean1 
0.7324±
0.0012 

0.7284±
0.0008 

0.7235±
0.0007 

0.7091±
0.0009 

0.5065±
0.0007 

0.7289±
0.0008 

0.7310±
0.0013 

0.7263±
0.0011 

Spectfheart 
0.7959±
0.0013 

0.7959±
0.0001 

0.7452±
0.0013 

0.7266±
0.0016 

0.7905±
0.0001 

0.7905±
0.0001 

0.7959±
0.0001 

0.7959±
0.0001 

Bci 
0.5867±
0.0030 

0.5764±
0.0023 

0.5986±
0.0037 

0.6011±
0.0038 

0.5106±
0.0012 

0.5753±
0.0023 

0.6083±
0.0029 

0.5953±
0.0029 

Class1 
0.6429±
0.0037 

0.6299±
0.0051 

0.6510±
0.0063 

0.6490±
0.0056 

0.6578±
0.0084 

0.5510±
0.0068 

0.6531±
0.0056 

0.6605±
0.0059 

Average 
Accuracy 

0.7303 0.7323 0.7168 0.7037 0.6858 0.7147 0.7382 0.7416 
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   (1) It can be seen from the results obtained using different 

benchmarking datasets that not all assumptions can be precisely 

met for the unlabeled samples, which adversely affect the 

training process and lead to unsatisfactory classification 

performance. Obviously, the classification performance of 

SSLAHF_h and SSLAHF_s, as shown in Tables 2 to 5, are 

better than that of the other six algorithms, demonstrating the 

potential of the proposed feature augmentation method. Instead 

of making assumptions, the SSLAHF successfully leverages 

the hidden features in handling the benchmarking datasets to 

establish correspondence between the labeled and unlabeled 

samples, thereby obtaining improved classification 

performance. 

(2) The overall performance of semi-supervised SVM and 

LS-SVM are comparable, regardless of whether 10 samples or 

10% samples are labeled. In most cases, the performance of 

SSLAHF is better than SVM and LS-SVM which rely on 

cluster assumptions or manifold assumptions. Overall, the 

performance of all the algorithms on 10% labeled samples are 

better than that on 10 labeled samples due to the increasing 

number of real labeled samples. However, for those based on 

assumptions lose their advantages when the assumptions 

cannot capture the real attributions of the data. This is exactly 

the reason why a secure semi-supervised learning method is 

needed, and developed here using the actual relationship of 

hidden features between the labeled and unlabeled samples 

rather than relying on assumption. 

(3) Refer to the classification accuracy obtained using 10 

labeled samples in Table 2 and Table 3, SSLAHF significantly 

outperforms all the other methods in 10 of the 15 datasets for 

linear kernel, and 8 of the 15 for RBF kernel. More importantly, 

unlike the assumption-based algorithms, out of the 15 datasets, 

performance degradation is only observed in 2 and 4 datasets 

respectively for SSLAHF_h and SSLAHF_s when linear kernel 

is adopted, whereas performance degradation occurs in 6 

datasets for S4VM and LapRLS for 6 of the 15 datasets, 9 for 

SA-SSCCM, and 8 for LapSVM. Similar situation is also 

observed when RBF kernel is used. On the other hand, the 

classification performance evaluated using 10% labeled 

samples (Tables 4 and 5) is similar to that evaluated using 10 

labeled samples given in (Tables 2 and 3). This is apparently 

because the assumptions made fail in the same way for both 

cases. 

    (4) Although some of the assumption-based semi-supervised 

learning methods significantly outperform the traditional 

classification SVM methods for most datasets, when the 

average classification accuracy over all the 15 datasets is 

concerned, their performance is indeed worse than that of the 

traditional methods. This is because when the assumptions 

made do not agree with the real data distribution, the 

performance on the unlabeled samples will degrade markedly. 

For the proposed SSLAHF, while the performance does not 

outperform SVM for some datasets, the average accuracy is 

better than the other methods as it is more secure to leverage the 

hidden features which effectively avoid the propagation of 

erroneous information created by the inappropriate 

assumptions. 

   Besides, the average running time, i.e. the total training and 

testing time, of the 8 methods on the 15 datasets using 10 

labeled samples is shown in Fig. 3, with Fig. 3(a) showing the 

timing performance when linear kernel is adopted and Fig. 3(b) 

for RBF kernel. Obviously, the traditional semi-supervised 

learning methods have the shortest running time. The running 

time of the proposed SSLAHF is a little longer than that of 

traditional methods and the algorithms based on manifold 

assumptions, but much shorter than that of S4VM and 

SA-SSCCM. 

D. Effect of Wrongly Tagged Data 

    Most existing semi-supervised classification methods are 

implemented by including unlabeled samples into the training 

sets through an automated labeling process, based on manifold 

or cluster preserving. If some of the originally unlabeled 

samples are incorrectly labeled, errors would prorogated by the 

automated labeling process and could seriously affect model 

training. The proposed SSLAHF can effectively alleviate the 
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Fig. 3. The total running time (in seconds) of eight algorithms on fifteen datasets with linear kernel and RBF. 

 

negative effect of labeling error because it only makes use of 

the feature information of the labeled and unlabeled samples. 

To demonstrate the advantage, experiment is conducted with 

10% labeled samples, together with 10% and 20% wrongly 

tagged data respectively. RBF kernel is used in the experiment. 

The results are shown in Table 6 and Table 7, where 10% and 

20% of the samples are wrongly tagged respectively. The 

classification accuracy and SD for each dataset using the 8 

methods are given in each row. The values in boldface 

represent the best results for a given dataset. The last row in 

Table 6 and Table 7 show the average accuracy of each 

individual method over all the 15 datasets. 

    Several interesting observations can be obtained from the 

results in Table 6 and Table 7. 

     (1)  The performance of both SSLAHF_h and SSLAHF_s 

only degrades slightly in 1 of the 15 datasets when 10% of the 

samples are wrongly tagged, whereas the performance of 

SSLAHF_h degrades slightly in 1 dataset when the proportion 

of wrongly tagged data increased to 20%. Besides, SSLAHF_s 

always outperforms to the inductive SVM methods. The 

promising result of SSLAHF is attributed to the use of the 

hidden features between the labeled and unlabeled samples, 

without the need of making assumptions that may be 

inappropriate. 

      (2)  The average classification accuracy of SSLAHF is 

better than that of the other semi-supervised learning methods, 

whether the proportion of wrongly labeled samples is 10% or 

20%. The result demonstrates that SSLAHF is able to establish, 

to some extent, connections among samples belonging to the 

same classes in the labeled and unlabeled datasets. It also 

exposes the major limitation of assumption-based algorithms 

that erroneous information is prorogated and amplified when  
 

TABLE 6. CLASSIFICATION ACCURACY (MEAN±SD) AT 10% INSTANCES WRONGLY LABELED. 

 10%  
Dataset 

SVM LS-SVM LapRLS LapSVM S4VM SA-SSCCM SSLAHF_h SSLAHF_s 

Sonar 
0.6364±
0.0014 

0.6406±
0.0013 

0.6492±
0.0031 

0.6080±
0.0057 

0.6021±
0.0030 

0.6503±
0.0026 

0.6481±
0.0021 

0.6556±
0.0016 

Australian 
0.8238±
0.0024 

0.8074±
0.0085 

0.7481±
0.0050 

0.7153±
0.0013 

0.8386±
0.0002 

0.8385±
0.0002 

0.8457±
0.0001 

0.8332±
0.0004 

Ionosphere 
0.8016±
0.0037 

0.7918±
0.0021 

0.6693±
0.0032 

0.5883±
0.0052 

0.6592±
0.0139 

0.6463±
0.0085 

0.8149±
0.0022 

0.7959±
0.0026 

Breast 
0.6445±
0.0013 

0.6566±
0.0001 

0.6067±
0.0084 

0.5089±
0.0014 

0.6467±
0.0001 

0.6434±
0.0001 

0.6952±
0.0014 

0.6566±
0.0001 

Monk2 
0.5440±
0.0028 

0.5434±
0.0028 

0.5524±
0.0012 

0.5503±
0.0030 

0.5574±
0.0032 

0.6588±
0.0014 

0.5550±
0.0030 

0.5584±
0.0019 

German_org 
0.6643±
0.0017 

0.6860±
0.0006 

0.5863±
0.0073 

0.6756±
0.0014 

0.6726±
0.0003 

0.6846±
0.0006 

0.6708±
0.0012 

0.7004±
0.0004 

Vehicle 
0.7005±
0.0010 

0.7188±
0.0006 

0.7100±
0.0048 

0.7365±
0.0007 

0.7287±
0.0003 

0.7320±
0.0004 

0.7205±
0.0005 

0.7344±
0.0008 

Wine 
0.8112±
0.0031 

0.8174±
0.0031 

0.7752±
0.0055 

0.7354±
0.0077 

0.6739±
0.0013 

0.6901±
0.0044 

0.8534±
0.0028 

0.8596±
0.0023 

Diabetes 
0.7046±
0.0012 

0.7082±
0.0010 

0.5974±
0.0091 

0.6444±
0.0017 

0.6395±
0.0016 

0.6719±
0.0078 

0.6997±
0.0010 

0.7097±
0.0010 

Heart 
0.5901±
0.0087 

0.5897±
0.0075 

0.6171±
0.0078 

0.6407±
0.0027 

0.5321±
0.0029 

0.6148±
0.0036 

0.5979±
0.0046 

0.6206±
0.0041 

WDBC 
0.7938±
0.0023 

0.8115±
0.0017 

0.7879±
0.0032 

0.8578±
0.0009 

0.8473±
0.0010 

0.8645±
0.0009 

0.8670±
0.0006 

0.8619±
0.0010 

Clean1 
0.6473±
0.0017 

0.6534±
0.0038 

0.6464±
0.0023 

0.6275±
0.0025 

0.5406±
0.0019 

0.6534±
0.0040 

0.6974±
0.0005 

0.7023±
0.0008 
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Spectfheart 
0.7660±
0.0016 

0.7705±
0.0014 

0.6266±
0.0047 

0.5647±
0.0050 

0.7892±
0.0001 

0.7739±
0.0008 

0.7954±
0.0001 

0.7954±
0.0001 

Bci 
0.5661±
0.0023 

0.5594±
0.0024 

0.5731±
0.0052 

0.5633±
0.0033 

0.5100±
0.0003 

0.5592±
0.0024 

0.5750±
0.0032 

0.5750±
0.0035 

Class1 
0.6143±
0.0036 

0.6204±
0.0066 

0.5844±
0.0047 

0.6156±
0.0022 

0.6361±
0.0101 

0.5282±
0.0031 

0.6463±
0.0074 

0.6503±
0.0072 

Average 
Accuracy 

0.6872 0.6917 0.6487 0.6422 0.6583 0.6807 0.7122 0.7140 

 

TABLE 7. CLASSIFICATION ACCURACY (MEAN±SD) AT 20% INSTANCES WRONGLY LABELED. 

 20%  
Dataset 

SVM LS-SVM LapRLS LapSVM S4VM SA-SSCCM SSLAHF_h SSLAHF_s 

Sonar 
0.6316±
00030 

0.6332±
0.0028 

0.6374±
0.0050 

0.5947±
0.0023 

0.5679±
0.0023 

0.6289±
0.0035 

0.6385±
0.0035 

0.6422±
0.0042 

Australian 
0.8110±
0.0053 

0.7596±
0.0143 

0.7060±
0.0092 

0.7659±
0.0021 

0.8211±
0.0008 

0.8225±
0.0006 

0.8425±
0.0003 

0.8247±
0.0006 

Ionosphere 
0.7538±
0.0029 

0.7633±
0.0019 

0.6247±
0.0033 

0.5532±
0.0016 

0.6013±
0.0176 

0.6389±
0.0029 

0.7649±
0.0029 

0.7647±
0.0022 

Breast 
0.6197±
0.0059 

0.6248±
0.0059 

0.4994±
0.0217 

0.5003±
0.0005 

0.5890±
0.0126 

0.5434±
0.0046 

0.6677±
0.0167 

0.6566±
0.0115 

Monk2 
0.5414±
0.0045 

0.5419±
0.0044 

0.5505±
0.0046 

0.5243±
0.0035 

0.5507±
0.0041 

0.6588±
0.0014 

0.5429±
0.0034 

0.5414±
0.0030 

German_org 
0.6584±
0.0012 

0.6798±
0.0006 

0.5624±
0.0073 

0.6599±
0.0011 

0.6539±
0.0004 

0.6781±
0.0006 

0.6590±
0.0021 

0.6941±
0.0004 

Vehicle 
0.6825±
0.0053 

0.6752±
0.0007 

0.5913±
0.0205 

0.7110±
0.0009 

0.6904±
0.0011 

0.7316±
0.0004 

0.6869±
0.0041 

0.7029±
0.0017 

Wine 
0.7981±
0.0021 

0.7938±
0.0035 

0.7447±
0.0085 

0.7012±
0.0115 

0.6547±
0.0017 

0.6720±
0.0355 

0.8099±
0.0048 

0.8261±
0.0033 

Diabetes 
0.6793±
0.0012 

0.6945±
0.0015 

0.5509±
0.0117 

0.6350±
0.0024 

0.6295±
0.0004 

0.6551±
0.0000 

0.6647±
0.0021 

0.6958±
0.0014 

Heart 
0.5593±
0.0063 

0.5613±
0.0050 

0.6113±
0.0032 

0.6360±
0.0045 

0.5214±
0.0024 

0.5942±
0.0044 

0.5914±
0.0034 

0.6033±
0.0061 

WDBC 
0.7242±
0.0014 

0.7404±
0.0020 

0.7422±
0.0033 

0.7852±
0.0024 

0.7916±
0.0023 

0.8086±
0.0024 

0.8117±
0.0013 

0.8010±
0.0022 

Clean1 
0.6238±
0.0032 

0.6490±
0.0046 

0.6096±
0.0025 

0.5888±
0.0024 

0.5378±
0.0016 

0.6487±
0.0050 

0.6683±
0.0012 

0.6767±
0.0014 

Spectfheart 
0.7564±
0.0022 

0.7672±
0.0014 

0.5963±
0.0040 

0.5510±
0.0025 

0.7851±
0.0002 

0.7676±
0.0012 

0.7903±
0.0001 

0.7903±
0.0001 

Bci 
0.5428±
0.0017 

0.5439±
0.0013 

0.5536±
0.0026 

0.5564±
0.0023 

0.4942±
0.0008 

0.5406±
0.0012 

0.5622±
0.0025 

0.5503±
0.0014 

Class1 
0.5966±
00128 

0.6088±
0.0078 

0.5527±
0.0043 

0.5715±
0.0061 

0.5762±
0.0053 

0.5154±
0.0081 

0.6020±
0.0132 

0.6102±
0.0099 

Average 
Accuracy 

0.6653 0.6691 0.6088 0.6223 0.6310 0.6603 0.6869 0.6920 

 

the labeling errors due to invalid assumptions exists. 

V. CONCLUSIONS 

Existing semi-supervised learning methods requires making 

assumptions on the intrinsic pattern of the samples. 

Inappropriate assumptions can lead to wrongly labeled data and 

the ensuing propagation of the erroneous information, which 

eventual degrades the model performance. In this regard, a 

novel semi-supervised learning method, SSLAHF, exploiting 

hidden features is proposed in this paper. Without the need of 

assumption making, the method effectively reduces the risk of 

wrongly labeled samples. Extensive experiments have been 

conducted with benchmarking datasets to demonstrate the 

effectiveness of SSLAHF in classification problems. 

Experiments are also conducted to demonstrate that the 

performance of SSLAHF is not affected by the presence of 

wrongly tagged samples. 

Although the proposed SSLAHF shows encouraging 

classification performance in semi-supervised learning 

problems, there are still issues that deserve further 

investigation. For example, in SSLAHF, it is necessary to 

identify the new feature representation underlying the labeled 

and unlabeled samples before the projection matrix can be 

obtained. The accuracy of the projection matrix is affected by 

the relevance of the feature identified. Besides, the computation 

time of SSLAHF is relatively long. Research will be conducted 

to reduce the computation complexity. 
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