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Abstract

In many-objective optimization, the balance between convergence and diver-

sity is hard to maintain, while the dominance resistant solutions (DRSs) could

further harm the balance particularly in high-dimensional objective space. Thus,

this paper proposes a novel selection strategy—boundary elimination selection

based on binary search (called BESBS), trying to avoid the impact of DRSs

during the optimization and achieve a good balance between convergence and

diversity simultaneously. During the environmental selection, the binary search

(BS) is used to adaptively adjust the ε value in the ε-dominance relationship

and assist in detecting the well-distributed neighbors for the elite solutions.

Then the ε value obtained by BS is used for serving the boundary elimination

selection (BES) to guarantee the stability of the elite population. To improve

the convergence, BES is mainly designed to select individuals approximating to

the ideal point. By modifying the fitness of solutions and choosing solutions in

terms of the shuffled sequence of objective axis, the DRSs will be eliminated

during the selection. Thus, BESBS could achieve a good balance between con-

vergence and diversity and avoid the impact from DRSs simultaneously. From
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a series of experiments with 35 instances, the experimental results have shown

that BESBS is competitive against 8 state-of-art many-objective evolutionary

algorithms.

Keywords: Many-objective optimization problems, boundary elimination

selection, binary search

1. Introduction

In the real world, there are large numbers of multi- and many-objective

(the number of objectives more than 3) optimization problems (MOPs) which

are commonly non-linear and highly complicated, and their objectives usually

conflict with each other. As a consequence, no single optimal solution exists but5

a set of trade-off Pareto solutions can be found to the decision maker (DM) for

MOPs [1], [2].

In the past two decades, multi-objective evolutionary algorithms (MOEAs)

and other population-based meta-heuristics have been demonstrated to be useful

for solving MOPs, like NSGA-II [3], SPEA-II [4], MOEA/D [5], GrEA [6], to10

name but a few. Among various selection strategies, the Pareto dominance

based sorting approaches are widely and effectively used in dealing with MOPs

with 2 and 3 objectives [7], but their efficiency will seriously degrade with the

increasing number of objectives. One reason for the deterioration is that most

solutions tend to be non-Pareto dominant in a high-dimensional objective space15

[8]. Another reason is that the diversity maintaining mechanisms may lead to

the population crowded with dominance resistant solutions (DRSs), therefore

resulting in the deterioration of convergence and diversity [9], [10].

Thus, a number of techniques or ideas have been proposed to enhance the

ability of MOEAs to obtain well-converged and well-distributed solutions in the20

many-objective optimization, which can be roughly classified into three cate-

gories [11], [12]. The first group is to modify the traditional Pareto dominance

relationship, like enlarging the dominant areas of a solution, so as to improve the

efficiency in distinguishing the relationship between the non-Pareto dominant

2
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solutions, such as ε-dominance [13], [14], angle-dominance [15], fuzzy dominance25

[16], [17], a grid dominance [6], preference order ranking [18], [19], and other

ranking methods such as [20], [21].

The second category aims to select solutions based on indicators or metrics.

Obviously, the selected solutions are highly qualified on demand of the indica-

tors. There are three widely-used indicators based MOEAs such as IBEA [22],30

SMS-EMOA [23], and HypE [24]. IBEA predefines a goal of each solution to

measure its contribution with ε indicator [25] or hypervolume (HV) indicator

[26]. Both SMS-EMOA and HypE are based on HV estimation, where SMS-

EMOA calculates the exact contribution to hypervolume indicator while HypE

assigns a fitness based on approximations to the hypervolume indicator. The35

main advantage of the indicators based methods is not subject to the problems

that the pareto-dominance based MOEAs encounter, but their computational

cost is relatively expensive.

The third category is based on aggregation or preference information. Both

MOEA/D [5] and MSOPS [27] need a set of uniform target vectors so as to40

convert the many-objective problem into a set of single problems. In MOEA/D,

some neighbor-collaboration strategies between the sub-problems are introduced.

MSOPS tries to find the best subproblem for a solution. In NSGA-III [28], the

non-dominated solutions close to the reference points have high priority to be

selected. On the basis of µ + λ framework of MOEA, RVEA [29] applies the45

reference vector guided selection and the reference vector adaptation to keep

the balance between the convergence and diversity. There are some other pref-

erences based methods like [30], [31], [32].

There are also large numbers of many-objective optimization algorithms not

belonging to the above categories like [9], [33]. In [9], the diversity management50

operator (DMO) does not maintain the diversity until the solutions converge

into the Pareto optimal front. In [33], a shift-based density estimation strategy

is proposed to penalize poorly converged solutions by assigning them a high den-

sity value. Furthermore, some researchers attempted to address many-objective

problems by applying a reduced set of objectives [34], [35], [36].55

3
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Although the above studies have achieved great progress and provided some

inspirations to deal with many-objective problems, more efforts are needed.

Methods such as [22], [23] have to specify different parameters subject to varying

problems. Also, optimizing two important features (convergence and diversity)

separately may hard maintain the balance between diversity and convergence [3],60

[4]. In addition, how to avoid the negative influence of DRSs in the optimization

is a challenge.

To deal with the above problems, this paper proposed a new selection strat-

egy (boundary elimination selection) based on the binary search, in order to

avoid the impact of DRSs during the optimization and achieve a good balance65

between convergence and diversity simultaneously. Following the framework of

NSGA-II, some changes have taken place in the environmental selection. Firstly,

the binary search (BS) is designed to adaptively adjust the ε value (in the ε-

dominance relationship) for the selection of well-distributed elite solutions, and

the value will be used in the boundary elimination selection (BES) to keep the70

stability of the elite population during the detection stage. Then, by modifying

the fitness of solutions, the BES is designed to select the well-approximated so-

lutions according to the shuffled indexes of coordinate axis in turns. During the

selection, the DRSs will be eliminated by the adjacent selected solutions close

to different coordinate axis. Thus, the advantage of the proposed algorithm is75

to keep the balance between convergence and diversity and avoid the impact of

DRSs simultaneously.

The remainder of this paper is organized as follows. In Section II, the back-

ground is presented and discussed. Section III presents the related work and

motivations in this paper. Section IV is devoted to the description of the pro-80

posed algorithm. Section V presents the algorithm settings, test functions, and

performance metrics used for performance comparison. The experimental re-

sults and discussions are given in Section VI. Finally, Section VII provides some

concluding remarks along with further investigation.

4
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2. Background85

In this section, some basic concepts and definitions in multi-objective opti-

mization will be introduced; then ε-dominance relationship used in our algorithm

will presented in detail.

2.1. Multi-objective optimization

A multi-objective optimization problem (MOP) can be stated as follows:90

minimize F (p) = (f1(p), f2(p), · · · , fm(p))T

subject to p ∈ Ω.
(1)

where p is a solution vector in Ω (the decision or variable space), and F : Ω→

Rm consists m real-valued objective functions. Rm is the objective space.

Definition (Pareto dominance relationship): Let p1, p2 ∈ Ω, p1 ≺ p2 (p1

dominates p2), iff:

∀i ∈ (1, 2, · · · ,m), fi(p
1) ≤ fi(p2)

∃j ∈ (1, 2, · · · ,m), fj(p
1) < fj(p

2)
(2)

where the optimal solution set in Ω is denoted to be the Pareto-optimal set95

(PoS), and the corresponding solution set in Rm is referred to as Pareto-optimal

front (PoF) as shown in Fig.1.

In Fig.1, individuals p1, p2, p3 in objective space, p1 ≺ p3 and p1 ≺ p2

because f1(p1) < f1(p3) ∧ f2(p1) < f2(p3), f1(p1) < f1(p2) ∧ f2(p1) < f2(p2).

But p3 and p2 are non-dominated to each other because f1(p3) < f1(p2) but100

f2(p2) < f2(p3).

2.2. ε-dominance relationship

Definition (ε-dominance relationship)[13]: Let individual p1, p2 ∈ Rm. Then

p1 is said to ε-dominate p2 for ε > 0, denoted as p1 ≺ε p2, if:

∀i ∈ {1, 2, · · · ,m} : (1− ε)fi(p1) ≤ fi(p2) (3)

5
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Figure 1: Illustration of the relationship between the PoS and PoF, and the Pareto dominance

relationship.

Definition (ε-approximate Pareto set):Let S ⊂ Rm be a set of vectors and105

ε > 0. Then a set Sε is called an ε-approximate Pareto set of S, if any vector

p ∈ S is ε-dominated by at least one vector q ∈ Sε, i.e.

∀p ∈ S : ∃q ∈ Sε, st.q ≺ε p (4)

The set of all ε-approximate Pareto sets of S is denoted as Pε(S).

In Fig.2, p1, p2, p3 ∈ P and P ⊂ Rm. The corresponding p1
ε , p

2
ε , p

3
ε ∈ Pε and

Pε ⊂ Rm, where
−→
pjε = (1 − ε)

−→
pj , and j ∈ {1, 2, 3}. According to Pareto domi-110

nance relationship, p1 ≺ p2, p1 and p3 are non-dominated solutions. However,

according to ε-dominance relationship, p1 ≺ε p2 and p1 ≺ε p3 because p1
ε ≺ p2

and p1
ε ≺ p3.

3. Related work and motivation

3.1. Related work115

In this paper, more emphases are put on dealing with many-objective op-

timization problems. Two key issues are concerned during the optimization,

6
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Figure 2: Illustration of ε-dominance relationship.

namely, convergence and diversity. On the one hand, the convergence is high-

lighted to evaluate how much the obtained solutions are close to the Pareto

optimal front. On the other hand, the diversity is also important to provide120

more choices to the decision maker, which is to evaluate the solutions distribut-

ing to the whole Pareto optimal front.

As mentioned in Section 1, different sorts of strategies are proposed to ad-

dress these two issues, where the strategy to modify the dominance relationship

is interesting to be investigated, especially the ε-dominance relationship [13].125

There are many researches aiming at the modification of the ε-dominance re-

lationship, so as to balance diversity and convergence during the optimization.

[37] modifies the granularity of the hypergrids especially on the horizontal or

vertical regions of the Pareto front, so as to retain more solutions in the blank

areas in terms of the ε-dominance relationship. In other words, during the130

optimization, the algorithm considers different ε-dominance regions depending

on the geometrical characteristics of the Pareto-optimal front, so as to change

the density of the hypergrids in different regions. The shortage is hard to main-

tain the stability of the algorithm when the landscape of PoF is disconnected or

mixed with convex and concave regions. In GDE-MOEA [38], the IGD-selection135

7
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is used as a convergence strategy and ε-selection mechanism as diversity strat-

egy to explore the searching space. The ε value keeps decreasing until the

specified number of solutions are obtained from the elite solution set, in terms

of εj = (fmaxj − fminj )/k by increasing the integer value of k. [39] is motivated

similarly to the [37] to adaptively adjust the ε value according to the geometrical140

characteristics of the Pareto-optimal front. The shortage is to estimate the p

value of the curve family associated to the Pareto-optimal front. There are also

some other measures to adjust the ε value in the optimization like [40], [41].

Thus, the modification of the ε-dominance relationship in different researches

play different roles in the optimization. It can be used in the exploration of the145

searching space, or maintenance of the distribution or diversity of the solutions,

or enhancement of the convergence. And this paper also tries to adaptively

adjusting the ε value, but the aim of this paper is to improve the ε-dominance

relationship to sort the solutions during the environmental selection for the

preparation of the boundary elimination selection, which could enhance the150

convergence, and meanwhile maintain the diversity to some extent.

3.2. Motivation

As illustrated in [42], [43], following the basic framework of NSGA-II [3],

enhancing the diversity-promoting selection mechanisms has been identified as

highly influential and useful to the optimization especially in dealing with many-155

objective problems [6], [28], etc. On the contrary, the diversity-promoting selec-

tion mechanisms also can do harm to the optimization with two reasons. First,

obtaining a good diversity is relatively easy especially in a high-dimensional

space, but the best diversity could easily favor these solutions with poor prox-

imity. Second, back to the first selection applying the Pareto dominance to160

enhance the convergence, if the number of nondominant solutions is large, then

the balance between convergence and diversity solely relies on the second selec-

tion, namely the diversity-promoting selection mechanisms. At the moment, the

optimization process can come to standstill especially if there are some Pareto

resistant solutions in the population.165

8
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Due to the above issues, this paper proposes a novel selection strategy—

boundary elimination selection based on binary search (called BESBS), trying

to avoid the impact of DRSs during the optimization and achieve good balance

simultaneously. Following the basic framework of NSGA-II, during the envi-

ronmental selection, the binary search (BS) is firstly used to assist in detecting170

well-distributed neighbors of elite solutions by adaptively adjust the ε in the

ε-dominance relationship [13], [14], which serves for the boundary elimination

selection (BES) by providing a suitable value so as to guarantee the stability

of the size of the elite population. BES is mainly designed to select individ-

uals approximating to the ideal point. By modifying the fitness of solutions175

and choosing solutions in terms of the shuffled sequence of objective axis, the

DRSs will be eliminated in the selection. Thus, it could achieve a good balance

between convergence and diversity and avoid the impact from DRSs simultane-

ously.

Thus, the aim of this paper is to propose a new idea to deal with multi- and180

many-objective problems that consider to retain the convergence information

when promote the diversity during the second selection, thereby obtaining a

good balance between convergence and diversity.

4. Proposed algorithm

In this section, we firstly present the overall framework of the proposed185

algorithm based on boundary elimination selection (BES) and binary search

(BS). Next, we will describe the strategies of BES and BS in detail. Finally, we

will analyze the computational complexity of the proposed algorithm.

4.1. Overall framework of the proposed algorithm

Algorithm 1 presents the overall framework of BESBS. In this frame, we190

adopt µ + λ strategy in common with NSGA-II [3]. Firstly, BESBS randomly

generates the initial population P . Then the offspring population Q is obtained

from P through evolutionary operations: mating selection (like 2-tournament

9
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Algorithm 1 : Overall Framework of BESBS
Input: Population Size: n, Terminate Condition: T

Output: Population: P = {x1, x2, · · · , xn}

1: P = RandomInitiate (n)

2: Evaluation (P )

3: while ¬T do

4: Q = MatingSelection (P )

5: Q = Crossover (Q)

6: Q = Mutation (Q)

7: Evaluation (Q)

8: R = P ∪Q

9: P = EnvironmentalSelection (R,n)

10: end while

selection [44]), crossover operation (like simulate binary crossover [45]), muta-

tion operation (like polynomial mutation [1]). After that, unite populations P195

and Q like R = P ∪Q. The next step is environmental selection, selecting elite

individuals from united population R and updating the next generation popu-

lation P . Then repeat the above steps until reach the termination. Finally,

when the termination is satisfied, the output is the final obtained population.

It can be seen from the framework that the final population inherits the elite200

genes after a series of environmental selections. In other words, it updates the

new generations by choosing the elite solutions into the new-born populations.

However, in the many-objective optimization, the mutual relations between

the solutions are hard to be differentiated during the environmental selection

since most solutions are non-dominated in Pareto dominance sense. Moreover,205

the population sometimes can be optimized slowly as the dominance resistant

solutions (DRSs) appear easily and will damage the environmental selection

seriously. Thus, how to choose elite solutions properly during the selection is

the key issue in dealing with the many-objective problems, and the main efforts

of this paper are also made to improve the environmental selection.210

10
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Algorithm 2 : Environmental Selection
Input: Population: R = {x1, x2, · · · , xl}, Output Population Size: n ≤ l

Output: Population: P = {x1, x2, · · · , xn}

1: P = ∅

2: L = NondominateSort (R) = {L1, L2, · · · }

3: for each Lı ∈ L ∧ |P | < n do

4: if |P |+ |Lı| ≤ n then

5: P = P ∪ Lı
6: else

7: P = P ∪BS (Lı, n− |P |)

8: end if

9: end for

4.2. Environmental selection

As shown in Algorithm 2, firstly, the fast non-dominated sorting strategy [3]

is applied to sort all the solutions in the mixed population R into different layers

like {L1, L2, · · · }. Then, add the solutions (from the sorted layers) into the elite

population P as shown in Line 5. Notably, when (|P | + |Lı| > n)∧(|P | < n),215

then select n− |P | solutions from the critical layer Lı.

In NSGA-II [3], the fast non-dominated sorting strategy is used to sort the

well-converged solutions out, then the crowding distance is applied to maintain

the diversity of the solutions in the critical layer, so as to reach the balance

of convergence and diversity. However, on the condition that the solutions are220

non-dominant, the diversity mechanism would play a more important role in

the environmental selection. Thus, when it comes to deal with many-objective

problems since it is often only one layer after the sorting process, the method

coping with the critical layer should be better designed not only to maintain the

diversity but also to enhance the convergence meanwhile. On the other hand,225

in the many-objective optimization, the diversity maintain strategy could lead

to a dilemma that more DRSs will easily appear and do harm to convergence

and diversity in return.

11
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Therefore to the above points, this paper adopts the binary search (BS)

especially designed in the environmental selection to deal with the critical layer230

as shown in Line 7 of Algorithm 2. Instead of the crowding distance strategy, the

aim of BS is designed to maintain the size of population and prompt diversity

and convergence meanwhile. The following subsection will detail the strategy

of BS.

4.2.1. Binary search235

As shown in Algorithm 3, the environmental selection adopts the binary

search (BS) to adjust the ε value during the rehearsal stage. The stage is

mainly to search for a proper ε value for the boundary elimination selection with

two reasons. On the one hand, it is known that the diversity of the remained

solutions depends on the value of ε [13]. Besides, the properly adjusted ε value240

can keep the size of the elite population stable after the selection. From another

aspect, the BS serves for the boundary elimination selection by providing a

proper ε value.

In Algorithm 3, firstly, the upper limit and the lower limit values of ε are

obtained respectively in terms of the solutions in the critical layer, where the245

upper limit is the maximum spread of all objectives as shown in Line 2, and

the lower limit is 0. Then, in each round, the binary search adjusts the upper

limit and the lower limit values in terms of the size of output population |P |.

Specifically, if the ε value is too large, then more solutions will be dominated

and less solutions will be remained after the boundary elimination selection,250

and vise versa. From Line 4 to Line 17, if |P | < n (which denotes that the

ε value is too large that extra adjacent individuals are dominated), thus, the

upper limit will be reduced by ε↑ =
ε↑+ε↓

2 ; if |P | > n, the lower limit should be

increased like ε↓ =
ε↑+ε↓

2 ; otherwise, the ε is found and return the value. After

r1 rounds, the final ε is obtained. Finally, the obtained ε will be applied into255

the boundary elimination selection to select demanding size of elite solutions

1r is set to be 20.

12
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Input: Population: F = {x1, x2, · · · , xl}, Output Population Size: n ≤ l,

Rounds: r

Output: Population: P = {x1, x2, · · · , xn}

1: ε↓ = 0

2: ε↑ = maxı∈{1,2,··· ,m}
(
maxx↑∈F fı (x↑)−minx↓∈F fı (x↓)

)
3: P = ∅

4: while r > 0 do

5: ε =
ε↑+ε↓

2

6: F = F ∪ P

7: P = ∅

8: P = BES (F, ε)

9: if |P | < n then

10: ε↑ = ε

11: else if |P | > n then

12: ε↓ = ε

13: else

14: return

15: end if

16: r = r − 1

17: end while

18: F = F ∪ P

19: P ′ = ∅

20: while |P ′| < n do

21: P ′ = P ′ ∪BES (F, ε↑)

22: end while

23: P = {x′1, x′2, · · · , x′n} ⊂ P ′

13
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into the new population P as shown from Line 20 to Line 23.

In conclusion, the binary search consists of two main parts. The first part is

to find the most suitable ε for the boundary elimination selection. The second

part is to apply the boundary elimination selection to choose elite individuals260

from F (the critical layer) in Line 21 of Algorithm 3. The first part serves for

the second part by providing a suitable ε. It is noted that one advantage of the

binary search is to avoid the setting of ε when encountering different problems,

and it is only related to the boundary elimination selection and population size.

The contributions of the boundary elimination selection will be illustrated in265

the following section.

4.2.2. Boundary elimination selection

The procedure of the boundary elimination selection (BES) is presented in

Algorithm 4. The method is mainly designed to choose the elite solutions with

good distribution and good convergence from the critical layer, and try to avoid270

the impact of the dominance resistance solutions (DRSs 2) during the selection.

Definition (Fitness of a solution): Let individual x ∈ Ω, the fitness of x is

defined as follows:

za (x) = d1 + λ ∗ d2
(5)

where

275

d1 =

√
Σı∈{1,2,··· ,m}\{a}f ′ı (x)

2

d2 = f ′a (x)

and a ∈ {1, 2, · · · ,m} (m is the number of objectives). λ ∈ (0, 1] is a penalty

parameter. ı ∈ {1, 2, · · · ,m} \ {a} means ∀ı ∈ {1, · · · , a − 1, a + 1, · · · ,m}.

2DRS is a dominance resistance solution far away to the optimal front and cannot be Pareto

dominated by any other solutions in the population.
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Figure 3: Illustration of the fitness in 3-objective model. z is the ideal point. z − f1′
f2

′
f3

′

is the translational coordinate system, and x
′
is the translated solution of solution x. L1, L2,

L3 are the distances from x
′
to the planes respectively.

f ′ı (x) is defined as follows:

f ′ı (x) = fı (x)− min
x′∈Ω

fı (x′) ı = {1, 2, · · · ,m} (6)

From Eq. 5, the fitness of a solution x is composed of two parts (d1 and

d2). Previously, it is to normalize each individual in the population, which is280

to make sure that the individuals are located in the first quadrant according to

the Eq. 6. In other words, the original point is translated to the ideal point

in the transferred coordinate system. d1 =
√

Σı∈{1,2,··· ,m}\{a}f ′ı (x)
2 denotes

the distance from the point x to the ideal point 3 on the m − 1 dimensional

hyperplane of O − f1 · · · fm \ fa, and d2 = f ′a (x) is the distance from the point285

of x to the ideal point in the sense of the translated coordinate axis fa. For

example, in the translational coordinate system z − f1
′
f2

′
f3

′
in Fig. 3, if f1

was selected, then d1 =
√
L2

2 + L3
2 and d2 = L1; else if f2 was selected, then

d1 =
√
L1

2 + L3
2 and d2 = L2.

3ideal point: z = (minni=1f1(x
i), · · · ,minni=1fm(xi)), where m,n are the number of objec-

tives and individuals respectively.

15
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It is known that the DRSs are the non-dominated solutions with big values290

in some specific objectives, and easily appear in the corner or boundary of

the objective space. So this is the difference between them and normal elite

solutions. Therefore, during the selection process, the a in Eq. 5 will be selected

from the shuffled sequence set of {1, 2, · · · ,m} to reduce the impact from the

DRSs since they can appear in different objectives. Besides, a penalty on the295

d2 is set, which is to narrow the difference between DRSs and normal elite

solutions. So there is a possibility that the DRSs can be dominated by others,

especially by their adjacent solutions.

In the definitions (Eq. 5, 6), it can be seen that both d1 and d2 can reflect the

convergence by estimating the distances to the ideal point from different aspects300

respectively. It means that smaller values of d1 and d2 denote that the solutions

are more approximating to the ideal point but from different dimensions. On

the other hand, when d2 gets a penalty, it means that the superiority of the

solutions on the a-th objective will be decreased, and more emphasis is put

on d1. Moreover, if the objectives are selected by turns, then the dominated305

position of the selected objective will be reduced to some extent. Thus, the

impact of the DRSs will be eliminated. In return, then more trade-off solutions

will be reserved in the population. Although the diversity of the population

could be improved, in order to increase the convergence pressure, one way is

to compare the adjacent solutions in a small group. Thereby, the boundary310

elimination selection (BES) is designed to choose elite solutions from a small

region separated by a ε grid, so that the adjacent solutions with small difference

will be eliminated.

From the above analysis, Algorithm 4 presents the framework of BES in de-

tail. Firstly, it randomly shuffles the objective indexes sequenceA = {1, 2, · · · ,m}315

as shown in Line 3. For example, (2, 1, 3) is the randomly shuffled sequence on

3-objective problem. Then, in Line 6, select index from the shuffled sequence

set A in turns. According to the sequence set, calculate the fitness of each

solution in the population via Eq. 5 and find the best solution x∗ according

to the fitness estimation in Line 7. Then, solution x∗ is added into the next320

16
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Algorithm 4 : Boundary Elimination Selection (BES)
Input: Population: F = {x1, x2, · · · , xl}, Parameter ε

Output: Population: P

1: P = ∅

2: A = {1, 2, · · · ,m}

3: RandomShuffle (A)

4: F ′ = ∅

5: while F 6= ∅ do

6: a = CycleNext (A)

7: x∗ = argminx∈Fza (x)

8: P = P ∪ {x∗}

9: F = F \ {x∗}

10: for each x ∈ F do

11: if x∗ ≺ε x then

12: F ′ = F ′ ∪ {x}

13: F = F \ {x}

14: end if

15: end for

16: end while

17: F = F ∪ F ′

17
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population P . From Lines 10-15, the solutions ε-dominated (definition 3) by x∗

will be eliminated. After that, the next index will be selected and repeat the

procedure until the population F is empty.

From Algorithm 4, after the sequence is determined at each round, it can be

found that the algorithm will pick up the best solution in terms of the fitness325

function to enhance the convergence, and eliminate the adjacent solutions of

the selected solution as to increase the diversity. Specifically, in terms of Eq.

5, 6, x∗ = argminx∈Fza (x) favors the adjacent solution of the DRS close to

the specified a-th coordinate axis because d2 gets a penalty and solution with

smaller d1 thereby has higher priority. Thus it can be seen that such solutions330

are always distributed in the corner of the a-th coordinate axis, which denotes

that it also favors the solutions with good spread performance to some extent.

Thereby, the DRSs will be ε-dominated by the selected solutions close to the

boundaries (coordinate axes). In other words, during the boundary elimination

selection, the shuffled sequences enhance the selection by choosing the scattered335

solutions from different corners of coordinate axis to the middle objective space.

To be noted, before the BES, ε value has been determined in the BS. During

the BES, the ε value can not only maintain the stability of the population but

also enhance the diversity.

In order to illustrate BES clearly, Fig. 4 gives an example . There are340

15 solutions in the population, and the shuffled index sequence is (2, 1). So,

the coordinate axis f2 was selected, which means that the distances from all

solutions to the coordinate axis f1 get a penalty. In other words, the solution

closer to f2 has higher priority to be selected. Thus, the first pick is the red

point a1 closest to coordinate axis f2, meanwhile a2 will be eliminated as a1 ≺ε345

a2. Similarly, the next pick is a3. At the same time, a4 and a5 are deleted

although a3 cannot Pareto dominate a5 but could ε-dominate a5. Notably, a4 is

a dominance resistance solution (DRS). However, in this selection, a3 is closer

to the ideal point than a4 so that solution a3 is picked according to Line 7 in

Algorithm 4, and a4 will be eliminated as a3 ε-dominates a4. After 7 times350

selections, there are 7 individuals selected into the next generation as shown in

18
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Figure 4: An example of BES. The red points are the reserved solutions into the next gener-

ation, and the points highlighted with a cross are eliminated. The number from 1-7 are the

pick times.

Table 1: The result of the example with boundary elimination selection

Pick times 1 2 3 4 5 6 7

Sequences f2 f1 f2 f1 f2 f1 f2

Individuals a1 a3 a6 a9 a10 a13 a14

Table 1, such as a1, a3, a6, a9, a10, a13, and a14.

From Algorithm 4 and Fig. 4, we can see that the boundary elimination

selection tries to delete the adjacent individuals to keep diversity and to apply

penalty based fitness to promote convergence. Besides, the shuffled sequence355

contributes to the BES to choose relatively scattered solutions in the corner

and the DRSs will be eliminated to maintain convergence as well. Thus, during

the selection, diversity and convergence could be maintained meanwhile.

4.3. Computational complexity analysis

The computational complexity of Algorithm 1 is mainly on mating selection360

and environmental selection.
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Table 2: The settings of the test problems

No.of objectives No.of variables
Instances

(m) (n)
Parameter

DTLZ1 3,5,6,8,10 m-1+k k=5

DTLZ2 3,5,6,8,10 m-1+k k=10

DTLZ3 3,5,6,8,10 m-1+k k=10

DTLZ4 3,5,6,8,10 m-1+k k=10

DTLZ5 3,5,6,8,10 m-1+k k=10

DTLZ6 3,5,6,8,10 m-1+k k=10

DTLZ7 3,5,6,8,10 m-1+k k=10

Here, n and m are the size of population and number of objectives respec-

tively. In Algorithm 1, the MatingSelection (in Line 4 in Algorithm 1) applies

the binary-tournament selection to produce new individuals, in which two pre-

vious individuals need to be compared with Pareto dominance relationship. The365

computational complexity of mating selection is O(n×m) [44]. As for the envi-

ronmental selection in Algorithm 2, its computational complexity focuses on the

fast non-dominated sorting and the boundary elimination selection. It is known

that the complexity of the fast non-dominated sorting is O(n2×m). About the

second part, the complexity is mainly on BES. To select one elite individual, it370

has to compare n individuals. As for the rest individuals, BES needs to identify

the solutions with ε-dominance relationship, which costs O(n × m). Thus, to

choose n elite individuals, the computational complexity is O(n2 ×m).

According to the above analysis, the sum of the computational complexity

of BESBS is O(n2 ×m), where n and m are the size of population and number375

of objectives respectively.

5. Experiment design

In this section, systematic experiments are carried out to investigate the per-

formance of BESBS and the settings about the experiments follow the default

settings in the platform [46] (https://github.com/O-T-L/OTL). We firstly380

introduce the test problems and performance metrics. Then we will briefly

20
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Table 3: The settings of the number of grids of DM

No.of objectives 3 5 6 8 10

No.of grids 10 4 3 3 3

introduce eight state-of-art MOEAs and the general settings. Finally, the ex-

periments of the sensitivity of the parameter λ in BESBS will be presented.

5.1. Test problems and performance metrics

As the basis for experimental comparisons, the suit of DTLZ [47] is consid-385

ered with two reasons: firstly, all of the problems can be scaled to any number

of objectives and decision variables. Secondly, they are able to test different

aspects of the algorithms by providing different challenges. The suit can be

divided into two groups. The first group involves DTLZ2, DTLZ4, DTLZ5 and

DTLZ7, which are designed to test algorithms’ ability to address the problems390

with different shapes and locations of Pareto optimal front (PoF). The second

group consists of DTLZ1, DTLZ3, and DTLZ6, which create more obstacles to

impede the solutions converging into the PoF [48]. The relevant settings of the

test problems are shown in Table 2.

In order to compare the performance of the algorithms, four widely-used395

performance metrics are applied in this paper, such as the generation distance

(GD) [49], the diversity metrics (DM) [50], the inverted generation distance

(IGD) [51], and the hypervolume indicator (HV) [52]. GD evaluates the con-

vergence performance by computing the minimum distances from obtained so-

lutions to the Pareto optimal front. Thus, the smaller GD value is, the better400

convergence the algorithm obtains. On the contrary, IGD evaluates the com-

prehensive performance by computing the minimum distances from the Pareto

optimal solutions to the obtained solutions. The smaller IGD value means the

better the comprehensive performance of the obtained solutions, since the pool

convergence and pool diversity will reflect on a big value of IGD. All the set-405

tings about the experiments follow the default settings in the platform [46]

(https://github.com/O-T-L/OTL). Two indicators (the HV [52] and the IGD

21
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[51]) are widely applied to comprehensively evaluate the performance of the

algorithms account for convergence and the distribution of the achieved non-

dominated solutions.410

Referring to the reference points used in the indicators, since the Pareto

front of the DTLZ suite can be obtainable, a common way of estimating the

reference set of the Pareto front is to uniformly select points in the decision

variable space under the condition of g(x) = 0; for example for the 5-objective

DTLZ2, if setting 10 uniformly-distributed values for each dimension regard-415

ing x1 to x4, then we can obtain 10000 points well-distributed in the Pareto

front. However, this method may not be very accurate for problems with many

objectives because uniformly-distributed points in the decision space are not

always located uniformly when mapped into the objective space. So for the test

problems with more than 5 objectives in our study, we randomly sample 10000420

Pareto front points (by setting g(x) = 0) and then use the K-nearest neighbor

method (introduced in SPEA2) to remove most crowded points one by one until

the point size reduces to 5000. At last, we integrate them with the boundary

points of the problem to construct the reference set of the Pareto front.

As for DM, the metric evaluates the diversity of obtained solutions by com-425

puting the ratio (between the number of obtained solutions in each grid and the

number of Pareto optimal set in the corresponding grid) by meshing method

[50]. Thus, the bigger DM values means the better diversity. The settings of

the number of grids in DM are shown in Table 3.

5.2. Comparative algorithms and general settings430

In many-objective optimization, this paper will introduce eight representa-

tive MOEAs, and they are ε-MOEA [14], NSGA-III [28], GrEA [6], MSOPS

[27], HypE [24], SMS-EMOA [23], AR+DMO [9][20], and GDE-MOEA [38].

All the experimental results in this paper were obtained on average by exe-

cuting 30 independent runs of each algorithm on each problem. The termination435

criterion is 30,000 evaluations for the first group of DTLZ (DTLZ2, DTLZ4,

DTLZ5, and DTLZ7), and 100,000 evaluations for the second group of DTLZ
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Table 4: The settings of ε on different problems

No.of objectives
Instances

3 5 6 8 10

DTLZ1 0.033 0.059 0.0554 0.0549 0.0565

DTLZ2,4 0.06 0.1927 0.234 0.29 0.308

DTLZ3 0.06 0.2 0.227 0.1567 0.85

DTLZ5 0.0052 0.0785 0.11 0.1272 0.1288

DTLZ6 0.0227 0.3552 0.75 1.15 1.45

DTLZ7 0.048 0.158 0.15 0.225 0.56

Table 5: The settings the reference point of NSGA-III and MOEA/D based on normal-

boundary intersection (NBI)[53]

No.of objectives 3 5 6 8 10

Partitions 13 5 4 3 2,2

No.of reference points 105 126 126 120 55+55=110

Population size 108 128 128 120 112

(DTLZ1, DTLZ3, and DTLZ6). The corresponding settings are shown in Table

2.

Simulated binary crossover (SBX) [45] and polynomial mutation [1] are the440

crossover operator and mutation operator respectively with the same distribu-

tion indexes 20 (i.e. ηc = 20, ηm = 20). The crossover probability pc is 1.0; the

mutation probability pm is 1/n where n is the number of decision variables of

the problem.

For general MOEAs, the population size is set to be 100. But for NSGA-445

III, since the population size is determined by the reference points, the relevant

settings of its population size are shown in Table 5, which is referred to [6]. Here,

the normal-boundary intersection [53] is selected to generate reference points in

NSGA-III. About ε-MOEA, as its population size depends on the parameter ε,

the settings of ε used in ε-MOEA are shown in Table 4, followed the practice in450

[6] in which we set the ε so that the archive of ε-MOEA is approximately of the

same size as that of the other algorithms for a fair comparison. About MSOPS,

it needs a set of reference vectors which are generated by the source code (link:

code.evanhughes.org). The execution of SMS-EMOA with a large number

23
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of objectives can take unacceptable time. Therefore, for MOPs with five or455

more objectives, we approximately estimate the HV indicator in SMS-EMOA

by the Monte Carlo sampling method where 10,000 sampling points are used.

This approximation was often used for SMS-EMOA to deal with many-objective

problems like [54]. For GrEA, the grid divisions are set to be 10 on all DTLZ

problems.460
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Figure 5: Study of different λ parameter configurations on DTLZ1, DTLZ2 problems with 3

and 6 objectives.
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Figure 6: Study of different λ parameter configurations on DTLZ5, DTLZ7 problems with 3

and 6 objectives.

5.3. Sensitivity of Parameter λ in BESBS

In BESBS, λ is used as a penalty on d2 in definition 5. In order to study

the influence of different values of λ ∈ (0, 1] on the performance of BESBS, we

repeat the experiments independently 30 times on DTLZ1, DTLZ2, DTLZ5,

DTLZ7 test problems with 3 and 6 objectives. Fig. 5 and Fig. 6 plot the mean465

IGD values with different λ values in (0, 1].

Above all, with the increase of the objectives, the IGD values will be obvi-

ously increased since the searching space is enlarged and there are more difficul-
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ties for the optimization. But in dealing with the same problem with varying λ

values, the effect from the λ varies from the problems.470

From Fig. 5, the IGD values fluctuate in different ranges on varying prob-

lems. Specifically, on DTLZ1 problems with 3 and 6 objectives, the average

IGD values are stable about 0.020 and 0.073 respectively with the increase of

the λ value from 0 to 0.70 and 0.42 respectively. But when the λ values increase

from 0.70 and 0.42 respectively, the IGD values will increase to another levels475

(0.023 and 0.085) respectively. In contrast, on DTLZ2 with 3 and 6 objectives,

entirety, the IGD values tend to be more stable than that on DTLZ1, but the

values fluctuate in small ranges in detail. Thus, from these two experiments on

DTLZ1 and DTLZ2, the bigger values of λ would affect the performance more

obvious, especially on dealing with the difficult multimodal DTLZ1 problems.480

But the small λ values could relatively less impact the performance.

From Fig. 6, interestingly on the degenerated problem DTLZ5 with 3 and 6

objectives, the increase of the value of λ does not show significant effect on the

performance, which may be because the solutions will be distributed along the

degenerated PoF after the sorting. The fitness embedded with the penalty λ485

will lose its advantage to favor the corner solutions. Thus, the effect from the λ

values is not obvious during the optimization. On disconnected problem DTLZ7

with 3 and 6 objectives, the effect is more obvious. Especially on DTLZ7 with 6

objectives, the effect fluctuates from the beginning then increases sharply after

0.2, and ends with in a small degree gradual decrease. Thus, for disconnected490

problems, the effect from the λ can be serious, which may be resulted from the

pool diversity of the solutions during the optimization. Thus, the increase of

the penalty value will impact the performance especially for the disconnected

problems.

In general, when λ ∈ (0, 0.2], the effect of the λ seems to be in a low degree495

relatively. Thus λ = 0.1 is selected in the following experiments.
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Table 6: The GD values (average values, variance values) of the obtained solutions of each

algorithm on DTLZ1, DTLZ3, DTLZ6, where the best values are shown with a deep gray

background and the second one with a gray background. † is a symbol of the algorithm which

BESBS has better prominent performance than.
Problems Obj. BESBS ε-MOEA NSGA-III MSOPS HypE SMS-EMOA AR+DMO GrEA GDE-MOEA

2.270E-4 2.375E-4 5.536E-4 3.064E-4 7.201E-2† 7.177E-3 2.307E-2 4.841E-2 2.302E-04
3

9.949E-6 2.290E-5 1.703E-3 4.236E-4 2.123E-1† 3.587E-2 1.067E-1 2.072E-2 1.605E-05

2.146E-3 2.633E-3 2.806E-2 4.471E-3 4.347E-1† 8.000E-3 5.087E-2 3.601E-2 3.246E-03
5

6.877E-5 3.850E-4 8.846E-2 8.532E-3 6.237E-1† 2.289E-2 1.406E-1 3.710E-2 1.271E-04
DTLZ1

3.240E-3 3.587E-3 1.753E-1 2.582E-2 6.383E-0† 4.873E-2 1.070E-1 4.511E-2 9.853E-03
6

1.029E-4 3.987E-4 3.306E-1 7.672E-2 1.501E-0† 1.574E-1 2.756E-1 2.962E-2 6.202E-03

5.010E-3 8.623E-3 3.869E-1 1.008E-1 5.965E-0† 1.468E-1 6.037E-2 3.131E-2 6.206E-02†
8

1.135E-4 9.132E-3 4.164E-1 1.620E-1 1.711E-0† 2.578E-1 1.801E-1 8.742E-3 7.951E-02†

5.904E-3 7.969E-2 3.073E-1 1.202E-1 2.197E-0† 1.909E-1 1.323E-1 8.741E-2 1.837E-01†
10

1.914E-4 5.423E-2 5.475E-1 1.608E-1 1.486E-0† 2.677E-1 2.870E-1 4.550E-2 2.588E-01†

2.214E-4 1.485E-3 7.140E-2 5.227E-2 8.266E-2 2.779E-4 7.875E-2 1.607E-4 4.933E-05
3

1.648E-4 4.542E-4 3.569E-1 2.776E-1 3.265E-1 1.535E-4 1.941E-1 6.648E-8 4.041E-05

3.987E-4 1.209E-2 4.084E-1 1.750E-2 2.478E+1† 4.154E-2 1.063E-1 2.169E+0 2.996E+00†
5

2.605E-4 7.867E-3 6.069E-1 6.749E-2 4.845E-0† 1.051E-1 3.754E-1 1.282E+1 1.827E+00†
DTLZ3

4.170E-4 1.749E-2 2.611E-0† 1.318E-1 2.639E+1† 8.531E-1 8.533E-2 1.980E+0 4.918E+00†
6

2.093E-4 2.532E-2 2.011E-0† 3.536E-1 3.492E-0† 3.079E-0 2.651E-1 9.312E+0 7.795E-01†

4.210E-4 1.218E-0 3.988E+1† 7.875E-1 2.351E+1† 7.800E-1 2.078E-1 2.578E+0 9.681E+00†
8

2.149E-4 2.114E-0 1.369E+1† 9.384E-1 3.111E-0† 2.304E-0 4.392E-1 1.041E+1 1.465E+00†

3.921E-4 3.201E-0 2.029E+1† 1.860E-0 1.875E+1† 2.314E-1 1.957E-1 2.418E-1 1.092E+01†
10

2.522E-4 3.339E-0 1.489E+1† 1.361E-0 3.336E-0† 4.925E-1 5.824E-1 4.089E-1 2.207E+00†

1.937E-3 5.481E-3† 1.278E-2† 2.054E-1† 7.191E-3† 3.732E-3 4.216E-3 4.598E-3 1.661E-03
3

7.276E-4 5.841E-4† 9.991E-3† 3.772E-3† 5.355E-3† 8.752E-4 1.209E-3 1.675E-5 2.275E-03

1.449E-1 1.478E-1 6.132E-1† 4.943E-1† 3.558E-1† 2.669E-1† 3.012E-1† 1.021E-1 1.813E-01
5

1.396E-2 5.525E-3 1.611E-2† 1.107E-2† 2.663E-2† 1.722E-2† 1.841E-2† 5.913E-3 2.140E-01
DTLZ6

1.618E-1 2.498E-1† 8.629E-1† 5.547E-1† 3.759E-1† 2.458E-1† 3.444E-1† 3.066E-2† 2.628E-01
6

1.263E-2 2.061E-2† 1.915E-2† 1.169E-2† 3.267E-2† 1.324E-2† 5.193E-2† 1.061E-2† 1.728E-01

1.749E-1 3.835E-1† 9.142E-1† 7.717E-1† 4.654E-1† 2.229E-1 6.447E-1† 1.761E-1 2.243E-01
8

2.276E-2 2.358E-1† 1.082E-1† 1.548E-2† 2.845E-2† 1.003E-2 3.860E-2 9.313E-2 2.249E-01

1.769E-1 2.784E-1† 8.188E-1† 8.144E-1† 5.796E-1† 2.215E-1 7.539E-1† 3.264E-1 9.356E-02†
10

1.558E-2 1.658E-1† 6.751E-2† 1.793E-2† 2.214E-2† 1.043E-2 5.337E-2† 1.506E-1 1.405E-01†

6. Experiment result and analysis

In this section, we investigate the performance of BESBS in comparison with

8 EMO algorithms. The results obtained by the algorithms which independently

runs 30 times on each test problem, are listed in Tables 6-11. Both the mean500

and standard deviation of the metric values are presented in the boxes where the

best and second best values are highlighted with the deep gray background and

gray background respectively. Notably, the symbol "†" on the top right corner

of the value indicates the remarkable p value (by Tamhane’s T2 test [55]), and

the significance level α is 0.05.505

6.0.1. GD comparison for convergence

Table 6 and Table 7 give the GD values on the two groups of DTLZ problems

respectively. It is obvious from Table 6 that BESBS achieved the smallest

GD values on most DTLZ1, DTLZ3, and DTLZ6 problems, especially on the
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Table 7: The GD values (average values, variance values) of the obtained solutions of each

algorithm on DTLZ2, DTLZ4, DTLZ5, DTLZ7, where the best values are shown with a deep

gray background and the second one with a gray background. † is a symbol of the algorithm

which BESBS has better prominent performance than.
Problems Obj. BESBS ε-MOEA NSGA-III MSOPS HypE SMS-EMOA AR+DMO GrEA GDE-MOEA

3.166E-4 7.292E-4† 1.346E-4 1.234E-4 3.412E-4 3.373E-4 5.236E-4† 3.894E-5† 1.971E-04
3

7.263E-5 5.354E-5† 9.478E-5 1.163E-4 1.463E-4 7.496E-5 1.671E-4† 1.171E-9† 1.912E-04

4.170E-4 4.311E-3† 9.743E-4† 3.649E-4 6.616E-4 1.247E-3† 4.042E-3† 4.523E-4 1.301E-04†
5

1.063E-4 7.816E-4† 2.079E-4† 1.639E-4 2.288E-4 1.686E-4† 1.266E-3† 5.636E-8 8.951E-05†
DTLZ2

3.866E-4 5.232E-3† 1.889E-3† 5.450E-4 8.829E-4 1.743E-3† 8.398E-3† 6.273E-4 7.42E-05†
6

1.109E-4 4.122E-4† 4.591E-4† 2.009E-4 2.014E-4 2.704E-4† 2.479E-3† 2.966E-8 7.453E-05†

4.029E-4 6.789E-3† 6.571E-3† 1.028E-3 1.008E-3 2.428E-3† 1.902E-2† 2.111E-3† 7.613E-05†
8

1.284E-4 7.161E-4† 2.038E-3† 2.639E-4 2.246E-4 3.417E-4† 3.081E-3† 6.712E-7† 6.882E-05†

4.297E-4 5.409E-3† 3.781E-3† 1.747E-3 8.568E-4 3.158E-3† 2.918E-2† 1.808E-3† 5.771E-05†
10

1.347E-4 5.329E-4† 3.604E-3† 3.248E-4 1.883E-4 7.073E-4† 3.367E-3† 1.890E-7† 1.032E-04†

2.074E-4 8.453E-4 2.088E-4 6.591E-5 1.346E-3† 2.185E-4 3.412E-4 1.655E-4 2.033E-04
3

1.116E-4 3.225E-4 1.673E-4 6.817E-5 2.973E-3† 1.102E-4 3.292E-4 1.650E-7 1.284E-04

4.147E-4 5.414E-3† 1.923E-3† 3.422E-4 1.768E-3† 9.168E-4 3.062E-3† 5.474E-4 3.482E-04
5

1.331E-4 1.795E-3† 1.085E-3† 1.367E-4 3.046E-3† 4.601E-4 2.071E-3† 1.699E-7 1.394E-04
DTLZ4

4.122E-4 9.714E-3† 3.065E-3† 6.339E-4 9.147E-4† 1.442E-3 4.492E-3† 7.785E-4 6.331E-04
6

1.155E-4 7.773E-3† 1.364E-3† 2.804E-4 1.234E-3 5.226E-4 2.517E-3† 8.530E-8 9.201E-05

4.044E-4 1.182E-2† 3.199E-3 1.529E-3 7.737E-4 2.301E-3 1.493E-2† 2.191E-3 8.131E-04
8

1.236E-4 1.003E-2† 4.046E-3 6.809E-4 1.841E-4 3.740E-4 2.968E-3† 8.280E-7 1.554E-04

3.754E-4 1.461E-2† 1.717E-2† 2.478E-3 5.430E-4 2.755E-3 2.860E-2† 1.718E-3 4.292E-03
10

1.661E-4 1.218E-2† 7.845E-3† 9.414E-4 1.438E-4 5.072E-4 5.072E-3† 1.493E-7 1.971E-03

3.555E-5 6.218E-5 2.170E-4 1.082E-1† 1.373E-3† 1.101E-4 4.377E-4 4.864E-5 8.761E-05
3

1.895E-5 6.319E-6 8.139E-5 3.236E-3† 1.897E-3† 2.810E-5 6.331E-4 1.139E-9 5.652E-05

4.908E-2 5.266E-2 6.833E-2† 1.897E-1† 1.371E-1† 1.013E-1† 2.593E-2 1.578E-2 1.031E-04†
5

4.580E-3 2.731E-3 1.766E-2† 2.482E-3† 7.209E-3† 6.227E-3† 8.035E-3 2.641E-4 1.094E-04†
DTLZ5

5.199E-2 5.861E-2 8.931E-2† 2.042E-1† 1.502E-1† 1.115E-1† 4.344E-2 5.943E-2 1.122E-02
6

5.413E-3 3.131E-3 2.221E-2† 2.836E-3† 5.309E-3† 4.397E-3† 1.576E-2 3.123E-5 1.533E-02

5.691E-2 5.497E-2 1.160E-1† 2.293E-1† 1.630E-1† 1.185E-1† 1.459E-1† 1.027E-1† 2.381E-05†
8

5.936E-3 4.951E-3 1.862E-2† 2.005E-3† 5.233E-3† 3.956E-3† 3.103E-2† 4.456E-5† 4.801E-05†

6.693E-2 6.011E-2 1.504E-1† 2.345E-1† 1.808E-1† 1.181E-1† 1.804E-1† 1.095E-1† 1.812E-06†
10

6.501E-3 6.555E-3 1.851E-2† 2.293E-3† 4.201E-3† 4.521E-3† 2.603E-2† 4.446E-5† 7.471E-07†

6.388E-4 7.003E-4 1.668E-3† 4.219E-3† 1.604E-3† 7.172E-4 2.559E-3† 1.003E-3† 1.482E-03
3

8.472E-5 4.524E-5 8.416E-4† 3.601E-4† 1.659E-3† 6.068E-6 1.111E-3† 3.095E-7† 1.012E-03

1.186E-2 4.076E-3 1.664E-2 1.067E-2 1.089E-2 1.040E-2 7.147E-2† 1.095E-2 1.181E-02
5

5.554E-4 1.303E-3 5.186E-3 1.787E-3 2.982E-3 7.750E-4 2.303E-2† 2.704E-7 3.432E-03
DTLZ7

1.587E-2 4.909E-3 7.182E-2† 2.249E-2 2.054E-2 1.591E-2 1.849E-1† 1.213E-2 3.301E-02
6

9.711E-4 1.983E-3 4.186E-2† 1.202E-2 1.251E-2 3.096E-4 4.294E-2† 2.028E-7 9.283E-03

2.201E-2 2.121E-2 1.003E-0† 2.035E-1† 4.026E-2 3.353E-2 3.412E-1† 2.655E-2 2.321E-01
8

4.087E-3 1.496E-2 2.440E-1† 1.064E-1† 7.311E-3 1.011E-3 9.097E-2† 1.791E-6 1.733E-01

4.869E-2 5.105E-2 2.924E-0† 6.755E-1† 6.625E-2 5.362E-2 6.411E-1† 5.016E-2 6.883E-01
10

4.349E-3 4.123E-2 5.748E-1† 2.949E-1† 1.651E-2 3.329E-3 1.309E-1† 6.546E-6 3.751E-01
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problems with 8- and 10-objective. From Table 6, BESBS ranks the first with510

10 best and 4 second best out of 15 problems. ε-MOEA ranks the second with

6 second best problems. GrEA outperforms other algorithms on DTLZ3 with

3 objectives, and DTLZ6 with 5- and 6-objective. AR+DMO and SMS-EMOA

have similar performance. GDE-MOEA has better performance on 3-objective

DTLZ1, DTLZ3 and DTLZ6, as well as 10-objective DTLZ6, because the GDE-515

MOEA puts more emphasis on the convergence. The convergence of BESBS

tends to be stable and not subject to the increase of the number of objectives,

especially on DTLZ1 and DTLZ3 problems which are multi-modal problems

containing a large number of local Pareto optimal fronts.

From Table 7, on most problems, the GD values of both GDE-MOEA and520

BESBS are smaller than that of other algorithms. Both of them outperform

10 out of 20 problems, which means that the solutions of them are relatively

well-approximating to the Pareto optimal front on such problems. Among the

20 problems, BESBS outperforms on most DTLZ4 and DTLZ7 problems, but

GDE-MOEA does on DTLZ2 and DTLZ5 problems. ε-MOEA did well especially525

on DTLZ7 with 5, 6, 8 objectives; MSOPS did well on DTLZ2 and DTLZ4 with

5 objectives; AR+DMO has better convergence on DTLZ5 with 6 objectives;

GrEA outperforms on DTLZ2 and DTLZ5 with 3 and 5 objectives respectively.

Specially, the performance of BESBS on the problems with different shapes

and locations of PoF seems to be not better than ε-MOEA, which shows that530

experience-based ε-MOEA is well suited for dealing with MaOPs whose PoF is

a degenerated curve or multi-model. This could be partly alleviated in BESBS

by using a smaller λ as shown in Fig. 5 and Fig. 6, because more attention will

be paid on the well-approximating solutions on d1 rather than d2 in Eq. 5.

In terms of Table 6 and Table 7, the records of best values in the two charts535

obtained by BESBS are 10 and 6 respectively on the two groups of DTLZ, and

second better records are 4 on the two sets. Overall, BESBS did well on 24

out of 35 problems. It can be concluded that the BESBS better others on the

convergence.
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Table 8: The DM values (average values, variance values) of the obtained solutions of each

algorithm on DTLZ1, DTLZ3, DTLZ6, where the best values are shown with a deep gray

background and the second one with a gray background. † is a symbol of the algorithm which

BESBS has better prominent performance than.
Problems Obj. BESBS ε-MOEA NSGA-III MSOPS HypE SMS-EMOA AR+DMO GrEA GDE-MOEA

9.226E-1 1.001E-0 9.856E-1 7.257E-1† 6.451E-1† 8.070E-1† 4.577E-1† 5.561E-1 2.699E-01
3

3.491E-1 1.196E-2 3.389E-2 7.566E-3† 1.176E-1† 3.348E-2† 1.309E-1† 4.491E-2 5.355E-02

8.781E-1 7.906E-1† 9.463E-1 8.463E-1 3.150E-1† 7.976E-1† 2.656E-1† 7.551E-1 3.901E-01
5

3.800E-2 1.065E-1† 9.616E-2 1.716E-2 1.631E-1† 4.410E-2† 7.816E-2† 4.560E-2 4.951E-02
DTLZ1

9.196E-1 7.803E-1† 7.725E-1† 9.848E-1 0† 9.265E-1 2.911E-1† 9.410E-1 2.286E-01
6

7.406E-2 4.194E-2† 3.835E-1† 2.289E-2 0† 8.412E-2 9.139E-2† 3.711E-2 5.578E-02

5.429E-1 3.179E-0 4.019E-2 6.807E-1 0 4.589E-1 2.251E-1 7.851E-1 1.079E-01
8

4.484E-2 9.738E-0 6.773E-2 3.221E-2 0 6.922E-2 6.665E-2 2.701E-2 7.092E-02

4.419E-1 1.840E-0 2.284E-2 4.488E-1 4.815E-2 3.121E-1 1.667E-1 9.182E-1 9.199E-02
10

5.680E-2 7.519E-0 3.079E-2 2.633E-2 9.004E-2 5.618E-2 4.422E-2 1.449E-1 7.215E-02

8.242E-1 8.727E-1 9.044E-1 5.965E-1† 4.053E-1† 7.679E-1 2.413E-1† 6.261E-1 2.599E-01
3

3.347E-2 2.607E-2 1.217E-1 1.318E-2† 9.807E-2† 3.071E-2 1.367E-1† 1.281E-2 2.750E-02

8.831E-1 7.316E-1† 1.858E-1† 6.514E-1† 0† 6.182E-1† 2.018E-1† 4.089E-1† 0†
5

3.253E-2 2.741E-1† 2.664E-1† 1.985E-2† 0† 3.769E-2† 9.536E-2† 1.021E-1† 0†
DTLZ3

8.552E-1 8.403E-1 0† 6.736E-1† 0† 4.836E-1† 1.645E-1† 3.589E-1 0†
6

3.989E-2 3.794E-1 0† 4.593E-2† 0† 2.036E-1† 6.779E-2† 1.071E-1 0†

8.846E-1 4.643E-1† 0† 4.773E-1† 0† 3.515E-1† 1.308E-1† 2.621E-1† 0†
8

2.713E-2 1.240E-0† 0† 1.954E-1† 0† 1.679E-1† 5.492E-2† 9.250E-2† 0†

8.749E-1 2.737E-3† 0† 2.072E-1† 0† 3.986E-1† 1.161E-1† 6.289E-1† 0†
10

2.661E-2 4.639E-3† 0† 2.185E-2† 0† 1.315E-1† 6.923E-2† 9.350E-2† 0†

1.289E-0 1.401E-0 1.439E-1 1.754E-0 1.314E-0 1.512E-0 1.638E-0† 1.411E+0 6.642E-02†
3

1.243E-1 9.472E-2 1.041E-1 8.322E-2 9.014E-2 8.517E-2 2.512E-1† 6.610E-3 5.084E-03†

1.587E-0 0† 0† 1.272E-0† 2.555E-1† 1.454E-0† 0† 1.410E+0† 1.986E-01†
5

1.903E-1 0† 0† 1.485E-1† 2.215E-1† 1.401E-1† 0† 6.610E-3† 1.671E-01†
DTLZ6

2.622E-0 0† 0† 8.803E-1† 2.447E-1† 1.962E-0† 0† 2.461E-1† 7.688E-01†
6

3.117E-1 0† 0† 4.618E-1† 3.348E-1† 2.389E-1† 0† 5.371E-3† 4.553E-01†

1.761E-0 9.177E-2† 0† 0† 0† 1.717E-0† 0† 2.112E-1† 3.079E-01†
8

3.903E-1 1.005E-1† 0† 0† 0† 2.751E-1† 0† 1.430E-2† 3.367E-01†

1.427E-0 3.815E-2† 0† 0† 0† 1.794E-0 0† 1.401E-1† 4.366E-01†
10

4.094E-1 7.763E-2† 0† 0† 0† 2.520E-1 0† 1.661E-2† 2.205E-01†
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Table 9: The DM values (average values, variance values) of the obtained solutions of each

algorithm on DTLZ2, DTLZ4, DTLZ5, DTLZ7, where the best values are shown with a deep

gray background and the second one with a gray background. † is a symbol of the algorithm

which BESBS has better prominent performance than.
Problems Obj. BESBS ε-MOEA NSGA-III MSOPS HypE SMS-EMOA AR+DMO GrEA GDE-MOEA

8.340E-1 8.808E-1 9.565E-1 5.938E-1† 4.614E-1† 7.646E-1† 3.069E-1† 6.882E-1 2.312E-01
3

2.666E-2 2.163E-2 1.072E-2 1.197E-2† 3.137E-2† 2.995E-2† 1.145E-1† 3.780E-4 5.010E-02

9.022E-1 9.242E-1 8.694E-1 6.493E-1† 3.179E-1† 6.439E-1† 3.378E-1† 9.581E-1 1.202E-01
5

2.131E-2 7.157E-2 8.663E-3 1.635E-2† 3.114E-2† 3.163E-2† 9.373E-2† 6.901E-4 3.973E-02
DTLZ2

8.485E-1 8.432E-1 7.978E-1† 6.815E-1† 3.536E-1† 6.545E-1† 3.126E-1† 9.446E-1 1.105E-01
6

3.006E-2 3.329E-2 1.328E-1† 3.019E-2† 3.280E-2† 4.770E-2† 5.551E-2† 1.044E-3 4.805E-02

8.951E-1 1.019E-0 7.371E-1† 6.397E-1† 1.941E-1† 4.897E-1† 2.911E-1† 9.170E-1 5.141E-02†
8

2.323E-2 1.237E-1 2.263E-1† 2.274E-2† 2.672E-2† 3.957E-2† 6.141E-2† 4.909E-4 1.648E-02†

8.934E-1 1.082E-0 1.638E-1† 6.622E-1† 8.719E-2† 4.191E-1† 2.822E-1† 9.783E-1 2.750E-02†
10

2.025E-2 2.495E-1 2.385E-1† 2.407E-2† 8.549E-2† 4.703E-2† 6.136E-2† 2.326E-4 1.568E-02†

6.705E-1 5.634E-1 6.187E-1 5.785E-1 4.210E-1† 5.501E-1 2.469E-1† 5.728E-1 2.901E-01
3

3.046E-1 3.928E-1 4.251E-1 6.319E-3 1.432E-1† 3.092E-1 1.836E-1† 5.176E-2 1.497E-01

8.348E-1 5.444E-1† 6.513E-1† 6.232E-1† 3.164E-1† 5.420E-1† 3.402E-1† 8.701E-1 2.304E-01
5

1.518E-1 3.261E-1† 2.666E-1† 2.163E-2† 3.042E-2† 2.019E-1† 1.947E-1† 2.220E-2 9.512E-02
DTLZ4

8.191E-1 5.249E-1† 4.099E-1† 6.995E-1 3.703E-1† 5.333E-1† 3.070E-1† 9.281E-1 1.757E-01
6

7.509E-2 2.763E-1† 3.257E-1† 2.762E-2 3.177E-2† 1.519E-1† 2.041E-1† 1.375E-3 5.303E-02

8.729E-1 7.899E-1 5.570E-2† 6.248E-1† 2.418E-1† 6.093E-1† 3.545E-1† 9.221E-1 8.384E-02†
8

2.675E-2 2.906E-1 1.550E-1† 3.401E-2† 3.440E-2† 3.829E-2† 9.916E-2† 3.754E-4 2.809E-02†

8.884E-1 8.999E-1 4.915E-2† 6.819E-1† 1.419E-1† 6.074E-1† 2.901E-1† 9.717E-1 9.414E-02†
10

1.667E-2 2.919E-1 1.564E-1† 2.861E-2† 4.783E-2† 4.014E-2† 7.359E-2† 8.113E-5 5.067E-02†

9.668E-1 9.387E-1 8.663E-1† 1.366E-0 8.708E-1† 9.368E-1 9.917E-1 9.219E-1 5.323E-01†
3

3.558E-2 5.507E-3 1.078E-1† 3.498E-2 6.963E-2† 4.205E-2 8.799E-2 9.533E-4 4.952E-02†

1.747E-0 1.639E-0 8.365E-1† 1.309E-0† 9.785E-1† 1.504E-0† 1.322E-0† 1.150E+0 2.118E-01†
5

1.896E-1 1.009E-1 5.531E-1† 1.521E-1† 1.633E-1† 1.306E-1† 3.819E-1† 6.431E-2 6.294E-02†
DTLZ5

3.066E-0 2.807E-0 1.399E-0† 1.579E-0† 1.117E-0† 2.031E-0† 1.303E-0† 2.657E+0 4.057E-01†
6

2.557E-1 3.956E-1 9.602E-1† 2.540E-1† 1.416E-1† 1.971E-1† 5.974E-1† 6.683E-2 1.236E-01†

2.791E-0 2.404E-0† 3.863E-1† 7.316E-1† 9.791E-1† 1.819E-0† 4.163E-2† 2.088E+0 3.009E-01†
8

4.200E-1 2.910E-1† 4.733E-1† 1.698E-1† 1.784E-1† 1.463E-1† 7.028E-2† 5.923E-1 9.307E-02†

2.224E-0 2.305E-0 1.463E-1† 4.259E-1† 1.611E-1† 1.903E-0† 0† 2.753E+0 2.177E-01†
10

2.508E-1 2.869E-1 2.558E-1† 8.533E-2† 4.365E-2† 1.728E-1† 0† 5.435E-1 5.781E-02†

9.511E-1 1.061E-0 3.065E-1† 7.300E-1† 7.479E-1† 8.618E-1 3.705E-1† 7.078E-1 4.278E-01
3

9.108E-2 1.152E-1 1.444E-1† 2.563E-2† 3.615E-2† 1.914E-1 2.235E-1† 2.109E-3 1.964E-01

9.599E-1 1.125E-0 8.799E-2† 4.530E-1† 6.833E-1† 8.373E-1 4.214E-1† 8.381E-1 3.252E-01
5

5.342E-2 5.807E-1 2.937E-2† 1.963E-2† 4.441E-2† 1.782E-1 1.209E-1† 1.171E-3 1.345E-01
DTLZ7

3.817E-1 6.927E-1 4.623E-2† 2.995E-1 4.522E-1 3.267E-1 3.469E-1 5.409E-1 3.630E-01
6

1.046E-1 3.941E-1 2.874E-2† 3.245E-2 1.170E-2 1.063E-1 1.413E-1 2.200E-3 1.276E-01

7.185E-1 1.355E-0 0† 1.470E-1† 8.043E-1 6.239E-1 6.669E-2† 8.668E-1 1.253E-01
8

9.740E-2 9.513E-1 0† 4.142E-2† 4.950E-2 1.952E-1 8.116E-2† 2.168E-3 1.149E-01

7.718E-1 1.917E-0 0† 1.640E-2† 9.478E-1 7.902E-1 9.725E-3† 9.755E-1 2.420E-01
10

7.162E-2 1.622E-0 0† 8.730E-3† 8.215E-2 2.997E-1 2.554E-2† 2.281E-3 1.914E-01
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6.0.2. DM comparison for diversity540

Table 8 and Table 9 present the mean and standard deviation of DM values

of the eight algorithms on the two groups of DTLZ problems after 30 indepen-

dent runs respectively. Similarly, the best values are shown with a deep gray

background and the second best with a gray background.

In Table 8, both BESBS and ε-MOEA did well on 9 and 6 out of 15 prob-545

lems respectively, following by NSGA-III, GrEA, MSOPS and SMS-EMOA.

Specifically, NSGA-III and ε-MOEA achieved good performance on DTLZ1 and

DTLZ3 with 3 and 5 objectives. BESBS outperformed others on DTLZ3 and

DTLZ6 problems with more than 3 objectives. ε-MOEA and GrEA obtained

relatively good performance on DTLZ1 problems with more than 5 objectives.550

The results reveal that BESBS is promising to deal with MOPs with more ob-

stacles to converge, and the performance of ε-MOEA is also encouraging.

From Table 9, GrEA, ε-MOEA, and BESBS did well comparatively on the

second group of DTLZ problems with varying shapes and locations of PoF.

GrEA achieved the best DM values on DTLZ2 and DTLZ4 problems, which555

indicates that the improved grid-based approach is promising for the hyper-

sphere MOPs. ε-MOEA gained the best DM values than others on DTLZ7

problems and a slight better than BESBS and GrEA. BESBS outperformed on

most DTLZ4 and DTLZ5 problems with more than 3 objectives.

Among the 35 instances in Table 8 and Table 9, ε-MOEA and BESBS win560

the best on 11 and 10 instances in terms of DM values respectively, following by

GrEA with 7, NSGA-III with 3, and MSOPS with 3. Considering both the best

and second best, ε-MOEA ranks the first with 20 wins, following by BESBS

with 19 and GrEA with 16. Thus, the results can illustrate that ε-MOEA,

BESBS and GrEA can gain good diversity relatively in comparison with other565

algorithms.

6.0.3. IGD comparison for comprehensive performance

Table 10 and Table 11 list the mean and standard deviation of IGD values

of eight algorithms after 30 independent runs on the DTLZ problems, where the
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Table 10: The IGD values (average values, variance values) of the obtained solutions of each

algorithm on DTLZ1, DTLZ3, DTLZ6, where the best values are shown with a deep gray

background and the second one with a gray background. † is a symbol of the algorithm which

BESBS has better prominent performance than.
Problems Obj. BESBS ε-MOEA NSGA-III MSOPS HypE SMS-EMOA AR+DMO GrEA GDE-MOEA

1.969E-2 1.926E-2 2.041E-2 2.824E-2† 3.176E-2† 2.418E-2 5.678E-2† 5.698E-2 1.090E-01†
3

4.567E-4 1.597E-4 2.904E-4 3.256E-4† 8.712E-3† 1.703E-3 1.902E-2† 3.437E-3 1.563E-02†

6.239E-2 6.582E-2 6.781E-2 8.023E-2 2.613E-1† 7.697E-2 2.119E-1† 8.824E-2 1.570E-01
5

1.071E-3 6.898E-3 4.785E-3 7.678E-4 3.046E-1† 2.845E-3 2.997E-2† 4.641E-3 1.186E-02
DTLZ1

7.882E-2 8.404E-2 2.372E-1 1.001E-1 1.018E+1† 1.019E-1 2.588E-1 9.475E-2 1.611E-01
6

1.267E-3 6.234E-3 2.109E-1 1.242E-3 2.729E-0† 5.198E-3 3.122E-2 3.342E-3 1.306E-02

1.038E-1 1.959E-1 1.319E-0 1.272E-1 9.126E-0† 1.479E-1 2.819E-1 1.126E-1 5.719E-01†
8

1.543E-3 2.396E-1 1.117E-0 1.298E-3 4.283E-0† 7.733E-3 2.392E-2 5.448E-4 7.619E-01†

1.198E-1 5.565E-1 7.563E-1 1.459E-1 2.597E-0† 1.806E-1 3.067E-1 2.416E-1 7.486E-01†
10

2.679E-3 6.372E-1 3.212E-1 1.265E-3 2.085E-0† 1.379E-2 1.867E-2 1.695E-2 1.093E+00†

6.679E-2 6.779E-2 5.631E-2 7.233E-2 1.267E-1† 7.074E-2 2.450E-1† 6.391E-1 3.599E-01†
3

3.329E-3 3.261E-3 7.981E-3 1.006E-3 5.267E-2† 3.146E-3 7.684E-2† 3.212E-2 2.373E-02†

1.766E-1 2.478E-1 1.131E-0 1.832E-1 4.707E+1† 2.044E-1 2.964E-1 4.368E-1 9.422E+00†
5

4.528E-3 5.396E-2 8.538E-1 3.400E-3 8.189E-0† 6.374E-3 4.579E-2 5.920E-2 3.046E+00†
DTLZ3

3.184E-1 3.936E-1 4.538E-0 3.106E-1 6.614E+1† 1.019E-0 7.419E-1 6.216E-1 1.874E+01†
6

7.006E-3 1.325E-1 2.820E-0 1.335E-2 1.533E+1† 2.233E+0 1.958E-1 8.453E-2 6.016E+00†

4.410E-1 8.210E-0 1.096E+2† 5.690E-1 6.685E+1† 1.094E-0 8.642E-1 7.378E-1 2.697E+01†
8

9.356E-3 1.357E+1 5.978E+1† 3.799E-1 1.916E+1† 1.636E-0 6.566E-2 4.665E-2 6.802E+00†

5.242E-1 2.213E+1† 5.327E+1† 1.226E-0 4.524E+1† 7.678E-1 1.011E+0 6.391E-1 3.321E+01†
10

1.386E-2 2.378E+1† 4.416E+1† 8.658E-1 1.293E+1† 2.952E-1 2.223E-1 3.212E-2 5.682E+00†

2.513E-2 5.118E-2† 6.839E-2† 5.607E-2† 5.990E-2† 4.340E-2† 7.759E-2† 4.179E-2† 6.856E-01†
3

7.007E-3 6.221E-3† 1.233E-2† 1.261E-2† 1.101E-2† 9.508E-3† 5.183E-2† 9.951E-5† 9.710E-02†

1.296E-1 1.688E-0† 5.081E-0† 4.179E-1† 7.077E-1† 1.537E-1 2.503E-0† 2.490E-1† 1.008E+00†
5

1.110E-2 1.729E-1† 2.842E-1† 4.919E-2† 9.928E-2† 1.465E-2 1.685E-1† 4.709E-2† 5.754E-01†
DTLZ6

1.746E-1 2.807E-0† 7.425E-0† 9.642E-1† 6.861E-1† 1.759E-1 2.851E-0† 4.720E-1† 4.894E-01
6

1.619E-2 2.583E-1† 4.289E-1† 1.274E-1† 1.028E-1† 1.813E-2 4.458E-1† 3.040E-2† 1.051E-01

2.252E-1 2.191E-0† 9.143E-0† 3.192E-0† 1.425E-0† 2.226E-1 5.522E-0† 9.382E-1† 6.791E-01
8

1.945E-2 1.335E-0† 1.175E-0† 4.423E-1† 1.171E-1† 2.089E-2 3.640E-1† 1.270E+0† 2.903E-01

2.812E-1 3.932E-0† 7.902E-0† 3.003E-0† 2.105E-0† 2.387E-1 6.296E-0† 1.389E+0† 5.741E-01
10

3.289E-2 1.888E-0† 8.012E-1† 4.287E-1† 1.576E-1† 2.337E-2 4.517E-1† 1.944E+0† 1.281E-01

best values and second best values are highlighted with a deep gray background a570

gray background. The IGD values are to reflect the comprehensive performance

of the comparable algorithms involving the convergence and diversity.

From Table 10, BESBS did the best on DTLZ1, DTLZ3, and DTLZ6 prob-

lems with 10 best and 5 second best out of 15 problems. SMS-EMOA performs

best on 8- and 10-objective DTLZ6. ε-MOEA and MSOPS respectively per-575

formed well on DTLZ1, DTLZ3 problems with the number of objectives less

than 8. This group of DTLZ problems are hard to converge, thereby it is

mainly to challenge the convergence ability of algorithms. When comparing the

Table 6, Table 8 and Table 10, a similar conclusion can be made that BESBS

has better comprehensive performance on most problems since it has good con-580

vergence and diversity on most problems. Thus, BESBS is competitive on the

first group of DTLZ problems.

In Table 11, varying strategies have different advantages on the second group
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Table 11: The IGD values (average values, variance values) of the obtained solutions of each

algorithm on DTLZ2, DTLZ4, DTLZ5, DTLZ7, where the best values are shown with a deep

gray background and the second one with a gray background. † is a symbol of the algorithm

which BESBS has better prominent performance than.
Problems Obj. BESBS ε-MOEA NSGA-III MSOPS HypE SMS-EMOA AR+DMO GrEA GDE-MOEA

6.549E-2 6.306E-2 5.320E-2 7.263E-2 1.066E-1† 7.099E-2 1.957E-1† 7.753E-2 2.65E-01†
3

1.916E-3 9.763E-4 1.241E-4 9.108E-4 5.389E-3† 2.581E-3 3.775E-2† 2.176E-6 6.83E-02†

1.781E-1 1.905E-1† 1.745E-1 1.938E-1† 2.553E-1† 2.034E-1† 2.494E-1† 1.750E-1 6.41E-01
5

5.719E-3 9.616E-3† 1.759E-3 4.559E-3† 8.487E-3† 5.720E-3† 1.821E-2† 1.034E-5 2.09E-01
DTLZ2

3.132E-1 3.005E-1 3.209E-1 3.037E-1 4.833E-1† 3.660E-1† 5.599E-1† 2.955E-1 6.42E-01
6

6.929E-3 9.980E-3 6.663E-2 2.441E-3 1.219E-2† 1.119E-2† 5.376E-2† 4.728E-4 1.19E-01

4.333E-1 4.064E-1 4.989E-1† 4.189E-1 6.493E-1† 5.046E-1† 7.694E-1† 3.963E-1 8.12E-01†
8

6.721E-3 8.945E-3 9.633E-2† 2.193E-3 1.525E-2† 9.935E-3† 5.217E-2† 2.666E-5 1.16E-01†

5.128E-1 4.589E-1 9.317E-1† 4.976E-1 7.806E-1† 6.043E-1† 8.975E-1† 4.827E-1 9.87E-01†
10

9.953E-3 1.121E-2 1.319E-1† 3.602E-3 9.119E-3† 1.090E-2† 3.275E-2† 2.205E-5 1.53E-01†

2.042E-1 2.984E-1 3.195E-1 7.349E-2 1.845E-1 2.675E-1 4.823E-1† 1.737E-1 3.11E-01
3

2.749E-1 3.157E-1 3.627E-1 2.118E-4 1.913E-1 2.791E-1 3.735E-1† 6.333E-2 4.10E-01

2.250E-1 4.198E-1† 3.137E-1 1.896E-1 2.830E-1 4.578E-1† 5.555E-1† 2.396E-1 4.14E-01
5

1.312E-1 2.556E-1† 2.420E-1 4.225E-3 5.346E-2 3.092E-1† 3.321E-1† 2.520E-2 1.15E-01
DTLZ4

3.443E-1 4.721E-1† 5.874E-1† 3.075E-1 4.777E-1† 4.717E-1† 6.345E-1† 3.020E-1 7.01E-01†
6

5.209E-2 1.582E-1† 2.474E-1† 1.475E-3 2.440E-2† 1.153E-1† 2.287E-1† 1.372E-5 9.33E-02†

4.474E-1 5.274E-1† 1.089E-0† 4.314E-1 6.167E-1† 5.086E-1† 7.219E-1† 4.011E-1 8.94E-01†
8

1.879E-2 1.146E-1† 1.449E-1† 2.014E-3 1.387E-2† 3.598E-2† 4.997E-2† 1.567E-5 4.51E-02†

5.288E-1 6.119E-1† 1.209E-0† 5.159E-1 7.493E-1† 6.003E-1† 9.005E-1† 4.907E-1 9.84E-01†
10

1.563E-2 8.546E-2† 1.446E-1† 2.767E-3 2.842E-2† 2.715E-2† 4.501E-2† 1.102E-5 1.07E-01†

7.406E-3 6.974E-3 1.805E-2† 2.002E-2† 1.172E-2† 6.935E-3 6.123E-3 1.286E-2 1.33E-01†
3

6.488E-4 3.226E-4 1.415E-2† 1.689E-4† 1.351E-3† 4.711E-4 3.395E-3 1.911E-7 3.53E-02†

6.112E-2 9.398E-2 5.111E-1† 5.664E-2 7.865E-2 2.237E-2 6.403E-2 3.788E-2 4.10E-01†
5

1.134E-2 1.193E-2 3.121E-1† 5.619E-3 1.750E-2 1.983E-3 6.736E-2 2.099E-4 1.55E-01†
DTLZ5

8.005E-2 1.219E-1 6.066E-1† 8.579E-2 7.299E-2 2.619E-2 1.387E-1 9.472E-2 5.31E-01†
6

1.059E-2 1.429E-2 2.101E-1† 4.849E-3 1.202E-2 1.803E-3 1.785E-1 2.045E-4 1.01E-01†

1.061E-1 1.609E-1 1.308E-0† 1.961E-1 1.345E-1 3.213E-2 1.062E-0† 2.354E-1 4.84E-01†
8

1.801E-2 1.663E-2 2.286E-1† 7.138E-3 3.019E-2 3.103E-3 3.523E-1† 2.593E-3 1.43E-01†

1.123E-1 1.585E-1 1.239E-0† 2.946E-1† 5.499E-1† 3.323E-2 1.449E-0† 3.236E-1 4.34E-01†
10

1.621E-2 2.175E-2 2.057E-1† 2.500E-2† 3.675E-2† 3.242E-3 3.229E-1† 3.031E-3 1.72E-01

7.555E-2 6.431E-2 4.016E-1† 1.580E-1 1.154E-1 1.393E-1 6.511E-1† 1.012E-1† 4.58E-01†
3

5.283E-2 5.767E-2 1.565E-1† 1.164E-2 7.857E-3 1.196E-1 2.470E-1† 3.551E-5† 3.33E-01†

3.664E-1 6.331E-1† 1.395E-0† 5.154E-1† 3.648E-1 4.669E-1 1.042E-0† 3.142E-1 7.60E-01†
5

5.379E-2 2.003E-1† 2.861E-1† 2.233E-2† 5.784E-3 1.591E-1 2.515E-1† 9.010E-5 4.93E-01†
DTLZ7

5.773E-1 5.796E-1 3.028E-0† 7.995E-1 5.156E-1 5.731E-1 1.973E-0† 4.571E-1 9.59E-01†
6

1.537E-1 2.937E-1 7.163E-1† 3.546E-2 7.610E-3 8.633E-2 6.338E-1† 1.554E-4 1.64E-01†

6.806E-1 9.004E-1 1.348E+1† 1.299E-0 7.472E-1 8.029E-1 6.213E-0† 7.054E-1 3.54E+00†
8

3.060E-2 1.938E-1 2.383E-0† 1.873E-1 4.018E-2 1.249E-1 1.008E-0† 3.102E-4 2.08E+00†

1.030E-0 1.239E-0 3.274E+1† 3.187E+0 1.185E+0 1.218E+0 1.066E+1† 9.635E-1† 5.50E+00†
10

3.977E-2 2.361E-1 5.358E-0† 2.927E-1 1.255E-1 2.755E-1 1.243E-0† 8.580E-4† 4.64E+00†
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of DTLZ. Specifically, BESBS did well on DTLZ5 and DTLZ7 problems with

8 and 10 objectives. The improved dominance relationship based ε-MOEA585

did well on DTLZ2 problems; the aggregation based approaches (NSGA-III,

MSOPS) respectively outperformed on DTLZ2 and DTLZ4 problems with 3

and 5 objectives; the indicator based SMS-EMOA did well on DTLZ5 problems.

However, GrEA achieved the smallest IGD values on most problems. It can be

seen that GrEA gained good diversity performance from Table 9 but pool on590

convergence according to Table 7. Thus, for such problems with different shape

and locations of PoF mainly challenging the diversity ability of the algorithms,

GrEA is more promising. Thus, BESBS needs to prompt its diversity in the

boundary elimination selection, although it has promising convergence ability

for such problems according to the Table 7.595

From Table 10 and Table 11, it can be seen that BESBS relatively outper-

forms on the problems which are challenging to converge. And GrEA also has

better performance on such problems with different shape and locations of PoF.

6.0.4. HV comparison for comprehensive performance

Table 12 and Table 13 list the mean and standard deviation of HV values of600

eight algorithms after 30 independent runs on the DTLZ problems, where the

best values and second best values are highlighted with a deep gray background

a gray background. The HV values are to reflect the comprehensive performance

of the comparable algorithms involving the convergence and distribution of the

obtained solutions.605

In Table 12, BESBS outperforms other algorithms on most problems with

9 best and 3 second best records. The following is MSOPS, which has better

performance on DTLZ1 with more than 6 objectives. Especially, NSGA-III did

good on low-dimensional problems especially on DTLZ1 with 3 and 5 objectives

and DTLZ3 with 3 objectives. GrEA also has good performance on DTLZ6610

with more than 5 objectives.

In Table 13, BESBS and SMS-EMOA relatively have better performance

than others. Specifically, BESBS has 4 best and 6 second best records, and
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SMS-EMOA has 5 best and 4 second best. The following one is HypE with

5 best and 1 second best record. To be mentioned, GrEA has 2 best and 5615

second best respectively. From the table, the HV based HypE and SMS-EMOA

outperform others on most DTLZ5 and DTLZ7 problems. About the ε based

algorithms, BESBS did better than ε-MOEA and GDE-MOEA.

From Fig. 7-8, the performance of the algorithms can be seen visually. Fig.

7 shows the performance of eight algorithms on 10-objective DTLZ1. In the620

chart, each line stands for a solution4. Only the solutions obtained by BESBS

and AR+DMO have converged into the Pareto front. Apart from Table 10, Fig.

7 also demonstrated that BESBS achieved a good balance between convergence

and diversity.

Fig. 8 demonstrates the performances of the obtained solutions by eight625

algorithms on DTLZ6 with 10 objectives. Notably, 10-objective DTLZ6 is one

of the MOPs relatively difficult to converge. It still can be seen from the figure

that BESBS and SMS-EMOA relatively achieved the best with better conver-

gence and the obtained solutions have similar trend of distribution as the PF of

DTLZ6 with better diversity. The convergence of GDE-MOEA ranks first, but630

the distribution of the solutions obtained by GDE-MOEA is pool. The others

achieved bad convergence since some objective values are more than 5.

From the above experiments in terms of the convergence, diversity, and

comprehensive performance, it can be concluded that BESBS presented the

most competitive performance on the set of DTLZ problems in comparison with635

the other eight compared algorithms. Also, its convergence on most problems

is encouraging and not subject to the varying objectives on most problems.

7. Conclusion

In this paper, we proposed a novel selection strategy denoted by BESBS. In

other words, the environmental selection mechanism is based on the boundary640

4About each solution, the horizontal coordinate consists of items of the objectives, and

the vertical coordinate records the solutions’ objective values.
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algorithm on DTLZ1, DTLZ3, DTLZ6, where the best values are shown with a deep gray

background and the second one with a gray background. † is a symbol of the algorithm which

BESBS has better prominent performance than.
Problems Obj. BESBS ε-MOEA NSGA-III MSOPS HypE SMS-EMOA AR+DMO GrEA GDE-MOEA

0.968948402 0.9532891197† 0.97479 0.97161 0.970152071 0.971829817 0.958876545 0.9470000718† 0.9123794557†
3

0.001050008 0.0041285452† 0.000775242 0.002789046 0.002688616 0.001455138 0.012556287 0.0221038481† 0.0419884591†

0.997436644 0.951848333 0.998199859 0.99772 0.7531727176† 0.825432603 0.955023713 0.986180766 0.820863267
5

0.000320784 0.017185335 0.000691353 0.000220101 0.4260677743† 0.383426218 0.029116729 0.01396665 0.07704043

DTLZ1 0.998854347 0.920353709 0.93436652 0.99897 0† 0.467822796 0.966239231 0.964391309 0.899793302
6

0.000235752 0.03444032 0.111940859 0.000182878 0† 0.499420256 0.005388691 0.064698241 0.037555518

0.999666943 0.919439813 0.6193963276† 0.99988 0† 0† 0.956303172 0.997131905 0.6466659145†
8

0.00016893 0.061069853 0.4383510919† 0.000168655 0† 0† 0.024342735 0.001164038 0.3731045245†

0.999847514 0.749912737 0.3125915048† 0.99994 0.3273318454† 0.997950979 0.953562118 0.982115147 0†
10

0.000207956 0.254330876 0.3566563018† 0.000126491 0.4396049654† 0.000843972 0.01801512 0.024537008 0†

7.398988307 7.377408708 7.41408 7.37776 7.388532448 7.400482595 7.122118514 6.908780147 5.17960065660†
3

0.005619046 0.012727219 0.004773259 0.006529795 0.028448434 0.011643099 0.123243431 0.853789475 0.54011064070†

31.63582371 31.19177362 8.570713594 31.5392 0† 7.21552933310† 27.62003206 29.3876405320† 0†
5

0.014818797 0.225270543 11.35887458 0.007390083 0† 13.10714863110† 1.63185327 24.89572570190† 0†

DTLZ3 63.68717354 62.98805832 6.087674 63.6032 0† 6.61761471140† 56.60241151 62.03790882 0†
6

0.030687776 0.273011118 9.250915494 0.031207976 0† 19.79081658340† 3.832670542 2.52855044 0†

255.6824557 100.95562570231† 0† 255.5648 0† 0† 218.8997714 239.171845 0†
8

0.074215643 29.052077988† 0† 0.154073345 0† 0† 13.65681062 25.62487049 0†

1023.504159 240.1698807463† 0† 748.34858103930† 0† 0† 885.0110042 1011.694176 0†
10

0.178061246 7.5693639908† 0† 82.02105386110† 0† 0† 50.08510327 16.71372973 0†

6.055447428 5.988325871 5.934921736 5.95096 5.95359158610† 5.984369877 5.75900048820† 5.962065940† 3.16945997660†
3

0.033465412 0.034517161 0.027126393 0.054525411 0.05907307480† 0.033009152 0.25367427040† 0.02141700490† 0.11347754410†

22.44253141 2.68680979470† 0† 18.054080† 14.31713780720† 14.07531319760† 0† 20.31384398 6.48250040220†
5

0.077511703 1.11999712640† 0† 0.70457584530† 1.76806491180† 1.18897884980† 0† 4.105545193 5.26874056790†

DTLZ6 43.61424721 0.00444450010† 0† 16.46805453450† 28.59032611660† 34.73846106690† 0† 28.701560495110† 18.00544726730†
6

0.342050754 0.01122423110† 0† 3.7378008070† 2.82075322360† 1.18811818380† 0† 0.40331853410† 1.15849775580†

164.1680343 34.195916530520† 0† 0.01299675750† 31.600983371510† 80.88806518470† 0† 89.122530705760† 48.96457616830†
8

2.303015436 6.27757431680† 0† 0.02855480660† 9.29377531850† 11.79390158770† 0† 1.58852782220† 19.77518574020†

605.3229748 57.601176777690† 0† 0† 0† 0.04780591860† 0† 297.178322348720† 252.843013399820†
10

19.83300386 3.83006944740† 0† 0† 0† 0.13616797970† 0† 49.37646649680† 20.43118897680†

Table 13: The HV values (average values, variance values) of the obtained solutions of each

algorithm on DTLZ2, DTLZ4, DTLZ5, DTLZ7, where the best values are shown with a deep

gray background and the second one with a gray background. † is a symbol of the algorithm

which BESBS has better prominent performance than.
Problems Obj. BESBS ε-MOEA NSGA-III MSOPS HypE SMS-EMOA AR+DMO GrEA GDE-MOEA

7.438792559 7.380171563 7.412799221 7.38688 7.401472661 7.400092281 7.2904491056† 7.387952885 4.9079835898†
3

0.015315049 0.015197873 0.025547548 0.002901647 0.015110765 0.018078096 0.0372458217† 0.011774386 0.3830770165†

31.60371126 31.42794846 31.63930606 31.56384 31.56739775 31.57528017 30.68557076 31.60551543 21.072714076†
5

0.02030101 0.040625758 0.010774033 0.012625477 0.025796303 0.03792735 0.206893336 0.065018288 3.8562576904†

DTLZ2 63.65772925 63.30259647 63.6945535 63.61856 63.63053892 63.62589253 61.38894183 63.69227149 40.02605323†
6

0.055317775 0.164162808 0.018192388 0.089863739 0.051093192 0.02780218 0.668372438 0.030121736 9.751591834†

255.5929104 253.9873326 255.5695509 255.6953599 255.3982949 255.7080235 241.1849178364† 255.2791413 147.75624121143†
8

0.138083404 0.435437096 0.075264016 0.098374395 0.097483762 0.09870561 2.6922827274† 0.138464046 9.0003604238†

1023.424385 981.8241148 883.95209233051† 1023.54944 1023.235932 1023.223771 964.0195588702† 1022.635216 546.01101132348†
10

0.212851112 11.4919839 12.4147754971† 0.120195845 0.15098585 0.2952268 10.6330510212† 0.585764029 2.8503030725†

6.766884807 7.097885364 7.017709712 7.41152 6.991803027 6.548196755 5.62840514 7.261191868 6.510868945
3

1.082174332 0.479858692 0.53080755 0.024207106 0.888614876 1.01122667 1.446660546 0.321840817 1.412341168

30.96177898 30.05425704 31.35638556 31.5584 31.4424226 30.68113757 29.68095445 31.68743325 29.15306327
5

0.736974439 2.012078287 0.387205912 0.032212627 0.335206728 1.56803601 2.143036244 0.024678464 0.980483932

DTLZ4 63.53124649 62.64276704 59.6957566255† 63.6448 63.65311619 63.07304266 58.98456686 63.69710479 58.1802410112†
6

0.362459934 2.236574617 5.2106303214† 0.051752574 0.055854911 0.63866408 8.347332687 0.037351458 2.1232665637†

255.778289 254.5964259 194.77244515755† 255.63648 255.6006335 255.8025061 246.369355 255.7304491 219.7721333991†
8

0.061208358 0.626505046 0.1525878488† 0.035799342 0.151306304 0.061566542 3.461006554 0.058500901 2.5383061975†

1023.88698 1019.862146 570.130203770918† 1023.68256 1023.214913 1022.917897 965.4888877 1023.777626 816.408339925815†
10

0.101723354 3.743924589 2.5771334384† 0.075557354 0.358144702 1.024497533 22.21011859 0.111899599 7.8966265894†

6.088799247 6.066741979 6.050743044 6.076639999 6.062244841 6.107240694 6.084705607 6.091594506 4.4362474386†
3

0.004509215 0.016924233 0.071541227 0.01316048 0.02707819 0.023536244 0.037966797 0.020010828 0.3570627504†

23.57012725 22.3471429611† 21.003799519† 22.91039988 23.01512473 23.47995639 21.0137520217† 23.19811096 10.8727601999†
5

0.116018286 0.1378484114† 1.6834987397† 0.143594624 0.344354962 0.112577842 1.7754349714† 0.157490387 0.578873186†

DTLZ5 46.20574343 43.72028042 37.6846393829† 44.07167999 45.7451265 46.98460342 43.1194728182† 45.4353755 21.0609571118†
6

0.386867029 1.252493994 4.1853856637† 0.354233565 0.314443997 0.188540207 4.2334116187† 0.420505521 1.8536718636†

180.3811692 166.7166296 106.3012338033† 155.62161 173.8037243 186.0530386 74.36960538135† 159.787835 73.1790565794†
8

13.71304413 4.752182972 16.4448050264† 3.208383874 3.100643606 0.76130198 5.1197870778† 5.645024405 4.0655018265†

706.5569865 663.182954 130.4526726635† 559.6897199625† 614.3562582771† 674.2628318 64.72711152041† 615.4813544 336.32136585351†
10

10.60942408 7.536353622 79.8765690631† 46.2910789297† 23.5531898767† 19.99222467 26.2189488063† 36.54667809 49.0193809815†

13.09985813 12.87489874 13.14414538 13.27892523 13.45109857 12.80734869 7.7588373212† 13.0077546721† 9.7854891868†
3

0.963011931 0.994669515 0.058707963 0.052927373 0.081006559 1.310195406 1.3007448733† 0.1553615055† 2.6231083413†

82.91708391 59.1696735033† 54.2063736534† 77.40284772 86.5755695 74.64066917 48.8831083427† 79.58096868 58.0588675011†
5

0.758361856 8.8574801753† 4.1990031087† 1.411923484 0.70377041 13.46846404 5.5048557654† 1.176672948 6.8432151894†

DTLZ7 184.4018277 139.30479109442† 55.7836202118† 156.6369750276† 198.2482407 184.4320405 83.34711870792† 172.7598402 114.6559063861†
6

19.34296803 0.6695204353† 19.8674736409† 7.6800019796† 0.834906169 27.21005047 1.5428955643† 1.951197925 9.3008231578†

690.0375538 546.5398096663† 0† 454.7983691161† 955.318468573† 940.6206427 103.0609555217† 727.1814429 281.54366708921†
8

30.05166319 95.8013991085† 0† 68.5997539748† 47.9402835519† 46.00388041 60.2415619016† 12.04822884 28.2353958272†

2982.992004 1879.2386557792† 0† 782.5486418823† 3831.1116525369† 2522.180739462† 72.0677481308† 2722.264003 395.6039062618†
10

441.4748645 388.6265479033† 0† 268.5594002259† 115.3952355744† 364.8413550541† 134.6043181585† 119.7407248 380.1349827149†
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Figure 7: The performances of the obtained solutions by eight algorithms on DTLZ1 with 10

objectives.
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Figure 8: The performances of the obtained solutions by eight algorithms on DTLZ6 with 10

objectives.
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elimination selection and the binary search. The binary search previously ad-

justs the ε value to keep the stability of the population and then transfers the

ε value to the boundary elimination selection. Boundary elimination selection

picks the elite solutions near the transferred coordinate according to their fitness

by turns. Because of the assist from the penalty of fitness and shuffled coordi-645

nate indexes, solutions with good convergence will be selected, meanwhile, the

DRSs will be eliminated by means of the adjusted ε-dominance relationship.

Thereby the impact from the DRSs will be avoided and the solutions with good

balance between the convergence and diversity will be chosen as much as pos-

sible. Overall, the main contribution of this paper is to propose a new idea to650

deal with multi- and many-objective problems that consider to retain the con-

vergence information when promote the diversity during the second selection.

Systematic experiments were carried out to compare BESBS with other eight

state-of-the-art EMO algorithms. Widely used test problems are chosen for chal-

lenging different abilities of the algorithms. The experimental results demon-655

strated that BESBS is very competitive on most testing instances in terms of

finding well-approximating and well-distributed solutions in many-objective op-

timization. Although most algorithms are designed to reach the balance of

convergence and diversity, the experiments also reveal that none of algorithms

can beat all algorithms on any of the instances. In other words, when address-660

ing a many-objective problem, more emphasis on the perspective of the decision

maker put on the advantages of the algorithms is still needed.

However, BESBS has some disadvantages to address. From the experimental

analysis, the penalty parameter λ has an impact on the selection to some extent.

We still need to investigate the performance of BESBS with a flexible penalty.665

Besides, the diversity on the problems with varying shapes and locations is not

competitive with GrEA. Thus, we need to conduct further experiments on the

search behavior of BESBS so as to improve its performance.
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Highlights: 

l This paper proposed a novel selection strategy -- the boundary elimination 

selection based on the binary search. 

l This paper uses the binary search during the environmental selection to adjust the

e  value to keep the stability of the population size.  

l The binary search also transfers the e  value to the boundary elimination 

selection to increase the diversity of the population.  

l The boundary elimination selection could enhance the convergence of the 

population and avoid the impact from the dominance resistant solutions. 

l This paper could avoid the impact of DRSs during the optimization and achieve 

good balance between the convergence and diversity simultaneously. 
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