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Abstract

The memory hierarchy has a high impact on the performance and power con-

sumption in the system. Moreover, current embedded systems, included in mo-

bile devices, are specifically designed to run multimedia applications, which are

memory intensive. This increases the pressure on the memory subsystem and

affects the performance and energy consumption. In this regard, the thermal

problems, performance degradation and high energy consumption, can cause

irreversible damage to the devices.

We address the optimization of the whole memory subsystem with three

approaches integrated as a single methodology. Firstly, the thermal impact

of register file is analyzed and optimized. Secondly, the cache memory is ad-

dressed by optimizing cache configuration according to running applications and

improving both performance and power consumption. Finally, we simplify the

design and evaluation process of general-purpose and customized dynamic mem-

ory manager, in the main memory. To this aim, we apply different evolutionary

algorithms in combination with memory simulators and profiling tools. This
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way, we are able to evaluate the quality of each candidate solution and take ad-

vantage of the exploration of solutions given by the optimization algorithm.We

also provide an experimental experience where our proposal is assessed using

well-known benchmark applications.

Keywords: NSGA-II, Grammatical Evolution, Hardware design optimization,

Memory subsystem design

1. Introduction

Memory hierarchy has a significant impact on performance and energy con-

sumption in the system. This impact is estimated about 50% of the total energy

consumption in the chip [1]. This places the memory subsystem as one of the

most important sources to improve both performance and energy consumption.

Concerns such as thermal issues or high energy consumption can cause a sig-

nificant performance degradation, as well as irreversible damages to the devices

therefore increasing the energy cost. Previous works have shown that saving

energy in the memory subsystem can effectively control transistors aging effect

and can significantly extend lifetime of the internal structures [2].

Technological changes combined with the development of communications

have led to the great expansion of mobile devices such as smartphones, tablets,

etc. Mobile devices have evolved rapidly to adapt to the new requirements,

giving support to multimedia applications. These devices are supplied with

embedded systems, which are mainly battery-powered and usually have less

computing resources than desktop systems.

Additionally, multimedia applications are usually memory intensive, so they

have high performance requirements which implies a high energy consumption.

These features increase the pressure on the whole memory subsystem.

Processor registers, smaller in size, work at the same speed than the proces-

sor and consume less energy compared with other levels of the memory subsys-

tem. However, the energy consumption and access time rise when the file size

increases due to a higher number of registers and ports.
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Regarding the cache memory, it has been identified as a cold area in the

chip, although the peripheral circuits and the size of the cache are the most

influencing factors to cause a temperature increase [3], facing the accesses to

the cache memory because of specific applications. However, cache memory

affects both performance and energy consumption. In fact, energy consumption

of the on chip cache memory is considered to be responsible of 20% to 30%

of the total consumption in the chip [4]. A suitable cache configuration will

improve both metrics.

In terms of performance, the main memory is the slowest component com-

pared with the cache memory and processor registers. Running programs re-

quest the allocation and deallocation of memory blocks, and the Dynamic Mem-

ory Manager (DMM) is in charge of this task. Current multimedia applications

have highly dynamic memory requirements, so optimizing the memory alloca-

tor is a crucial task. Solving a memory allocation request is a complex task

and the allocation algorithm must minimize internal and external fragmenta-

tion problems. Therefore, efficient tools must be provided to DMM designers

for evaluating the cost and the efficiency of DMMs, facilitating the design of

customized DMMs.

In this paper we present a methodology based on Evolutionary Algorithms

(EA), which is divided into three layers tackling different components of the

memory hierarchy and performing the optimization process of each layer ac-

cording to the running applications. Then, the first layer is the registers file,

the second is the cache memory and the last one is the DMM, which works on

the main memory. Figure 1 shows the three optimization layers surrounded with

different dashed lines, and the tools involved within each optimization process,

which will be deeply explained in the rest of the paper.

In a previous work [5], we presented an approach based on Grammatical

Evolution (GE) with a wide design space, where the complete set of parameters

defined is considered and a specific cache memory configuration was chosen as

a baseline. The GE approach had good results, in the absence of other results

to be compared with. The problem is clearly multi-objective and thus the GE
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approach considered a weighted objective function. Hence, the optimization

problem was later addressed through a multi-objective approach with NSGA-

II [6]. On the one hand, this approach was customized with a fixed cache

size for both the instructions and data cache. On the other hand, a different

cache memory configuration was used as the baseline. Thus, GE and NSGA-II

approaches use a different set of parameters. As a consequence, results could

not be directly compared in order to take a decision.

In this paper we provide several new contributions regarding the cache de-

sign. Firstly, we perform the experiments using the NSGA-II algorithm in the

same conditions of the GE proposal, both the design space and the baseline.

This configuration allows a direct comparison among both algorithms. Addi-

tionally, two baseline caches, included in general purpose devices, are added to

the analysis because the first one belonged to a specific purpose device. Fi-

nally, we have added a statistical test to verify the relevance of the results.

Therefore, this work completes the set of tests previously made and provide us

enough information to decide the algorithm to be applied in the cache design

optimization.

In addition to the cache design, we propose in this paper to apply evolu-

tionary techniques to the register file configuration and the DMM which, con-

sidered in conjunction with the cache, comprise the whole memory subsystem

in a computer. For both the register file and the DMM we propose the algo-

rithms, perform the experiments and analyze the results on both objectives of

our fitness function: execution time and energy consumption. Besides, we have

incorporated statistical tests to verify the relevance or our results in both the

register file and the DMM optimizations. Up to our knowledge, a complete

3-layer approach as the one we propose has not been reported previously in the

literature.

We have also focused our experiments on the ARM architecture, which is

present in many of the current embedded multimedia systems. Selected applica-

tions have been adapted in order to better fit to each one of the memory layers

that we optimize. As we will show later in this work, the cache memory policies
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and the DMMs are most sensitive to improvement.

Registers File Optimization

     Memory Hierarchy Layers

Processor 

L1 Cache memory
(2nd Layer)

Main Memory
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Figure 1: Memory subsystem layers and tools involved in this optimization methodology.

First layer is the register file structure, the second one corresponds to the cache memory and

the third layer is the dynamic memory which works on the main memory.

All the algorithms are coded in Java using the JECO library [7]. Besides,

the experimentation has been conducted in a computer provided with an Intel

i5 660 processor running at 3.3 GHz, with 8GB of RAM and using the Ubuntu

Desktop 14.04 operating system.

The rest of the paper is organized as follows. Next section summarizes the

related work on the topic. Section 3 describes the thermal, performance and

energy models applied. Section 4 addresses the thermal impact on the processor

registers. Section 5 presents the optimization process aimed to automatically

design cache configurations in order to improve performance and reduce energy

consumption. Section 6 describes the optimization process to automatically

evaluate and design customized DMMs, which will improve performance and

reduce the memory fragmentation problem. In Section 7, we present our con-

clusions and describe the future work.
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2. Related work

Many works can be found in the literature regarding the memory optimiza-

tion. Next, we will review the closest literature to our work, separating the

papers into the three memory layers we have studied.

Concerns about thermal problems, performance degradation and high en-

ergy consumption are neither new nor insignificant in the memory subsystem.

The register file is identified as a component that consumes high energy, be-

tween 15%-36% in embedded processors [8]. Multimedia applications increase

the exchange of information between the register file and the next level of the

memory hierarchy. As mentioned in [9], the number of concurrent accesses is

increased and thereby the chip temperature and the need for power dissipa-

tion. So, a lower energy consumption reduces the temperature and the need of

power dissipation. Thus, system reliability and performance are improved. This

problem has been addressed with different hardware and software techniques.

Atienza et al. [10] are focused on DSP (Digital Signal Processing) and ASIP

(Application-Specific Instruction-Set Processor) architectures, specially led to

multimedia applications in embedded systems. The authors apply the DVS

(Dynamic Voltage Scale) technique to change to low-power state the unused

registers. The energy consumption improvement they report is over 60%. This

work focuses on the energy consumption, but not on the temperature. Zhou

et al. [11] assign to the compiler the task of distributing the registers access,

within the limits of each registers file, in a multi-bank organization. This process

is made after the traditional allocation phase and during the registers allocation

phase. The proposal, designed for a limited set of VLIW or RISC architectures,

reduces the power density and the peak temperature between 4◦C and 7◦C.

Recently, Sabry et al. [12] proposed a new mechanism to distribute uniformly

the register accesses. This approach, implemented in a commercial compiler,

reduces hot spots by 91% and the mean and peak temperature by 11%.

In contrast with previously mentioned works, we use an analytic process to

measure the thermal impact of register accesses on the processor temperature.
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After that, we apply an evolutionary optimization algorithm, which generates

a re-assignation that exchanges register accesses to the register file. Therefore,

highly accessed registers are spaced far apart, and as a consequence, temperature

is reduced.

Cache memory behavior is determined by its parameters, which form the so-

called cache configuration. Therefore, the problem is to find the optimal cache

configuration for a set of applications running on a system. This will not only

improve the performance and the energy consumption, but will also provide

long-term reliability.

Cache memory optimization has been widely addressed. New developments

in well-known techniques allow optimizing the cache memory. Wang et al. [13]

presented Futility Scaling, a new replacement-based partitioning scheme. This

scheme controls the size of the partition and it is able to maintain both large

partition and high associativity.

Adegbija and Gordon [14] designed a phase-based cache tuning algorithm

for multimedia applications to determine the best cache configuration for each

execution phase. Phase classification breaks applications execution using a fixed

tuning interval. The proposed algorithm analyses each configuration for one

interval to determine the best configuration or the next one to be explored.

Wang et al. [15] proposed dynamic cache reconfiguration for real time embedded

systems. They minimize energy consumption performing a static analysis at

runtime. Zang et al. [16] applied way-concatenation to reconfigure cache in

embedded systems by software and minimize the energy consumption.

Recently, new technologies and core-based processor technologies, such as

ARM946E-S TM [17], allow changing the cache configuration for each applica-

tion. Changes affect the main parameters: capacity, block size and associativity.

However, every application has a different memory access pattern. Hence, an

efficient algorithm is needed to determine the optimal values for each parameter

on each application.

Previously mentioned approaches optimize a few number of parameters:

cache size, block size and associativity, each one with a few possible values.
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On the other hand, dynamic reconfiguration adds complexity to the memory

subsystem design, usually being penalized with extra cost in execution time.

Besides, concurrent applications increase this penalty because of the multiple

calls to the reconfiguration.

In relation to static profiling, Feng et al. [18] applied a new cache replace-

ment policy to perform the replacement decision based on the reuse of informa-

tion of the cache lines and the requested data developing to reuse information

predictors: a profile-based static predictor and a runtime predictor. However,

these approaches only improve the replacement algorithm of the cache. Re-

cently, Gordon-Ross et al. [19] studied the interaction between code reordering

and cache configuration, obtaining excellent results. However, this technique is

applied to the instructions cache, and our systematic optimization method is

applied to the full configuration of both the instructions and data caches.

None of these approaches simultaneously optimized cache performance and

energy consumption for a target set of applications, as our methodology does.

Our proposal optimizes cache size, line size, associativity, replacement algorithm

and search algorithm for both instructions and data cache, and also write policy

for data cache.

Optimizing the dynamic memory management subsystem is considered a

crucial task to efficiently execute multimedia applications on all kind of sys-

tems, including embedded systems. In this regard, Del Rosso [20] evaluated the

performance of different DMMs on embedded real time systems. Metrics ap-

plied are the internal fragmentation and a new metric named performance speed

metric. However, energy consumption is not analyzed. Atienza et al. in [21]

proposed a method to evaluate the memory use and energy consumption by a

DMM, but it needs to be implemented and integrated in the target application.

Risco et al. [22] presented an optimization algorithm, based on Grammatical

Evolution (GE), to design customized DMMs. Each DMM was evaluated by a

DMM simulator [23]. Although this approach allows us to improve the average

performance, memory use and energy consumption of the memory subsystem,

the classification process returns a complex taxonomy of DMMs. Moreover,
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the applications profiling is made by overloading malloc() and free() functions,

which requires applications to be modified and re-compiled for each target ap-

plication, which is a time consuming and error prone task.

We present a methodology, which does not need to be integrated in the tar-

get application, to automatically evaluate and design customized DMMs. Our

methodology is based on GE and also performs a static profiling of applications.

In fact, our optimization process produces customized DMMs that are better

or equal than well known general purpose DMMs, such as Kingsley (used in

Windows systems) and Lea (used in GNU/Linux systems). The first one is con-

sidered the fastest, and the second one, the more efficient with respect to the

memory usage.

As seen, we propose the optimization of the complete memory subsystem

under both the execution time and energy consumption objective functions.

After a thorough review of the literature, we have not found any similar approach

to compare with. Hence, as we will show in the experimental experience, we

have compared our results with baseline configurations coming from the state

of the art of the memory design.

3. Thermal, energy and performance model

The proposed framework is based on the simulation of performance and

energy consumption models. These models are used as the input for the opti-

mization algorithms, which find an optimized design. In order to address these

works, we have to apply thermal, energy and performance models, which are

next described.

3.1. Thermal model

Estimating the thermal impact in an Integrated Circuit (IC) needs the sim-

ulation of thermal conduction between power sources (transistors and intercon-

nects) and heat sinks to the ambient environment. This is analogous to modeling

electrical conduction and it is governed by the known Fourier’s law. Taking into
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account one dimension, the thermal problem can be addressed through differen-

tial equations [24]. According to Brooks et al.[25] the following equation governs

thermal conduction in a chip:

ρc
∂T (~r, t)

∂t
= ∇ · [K (~r)∇T (~r.t) + p (~r, t)] (1)

ρ is the material density, c represents the mass heat capacity, T (~r, t) and

K (~r) are the temperature and thermal conductivity of the material at position

~r and time t, and p (~r, t) is the power density of the heat source. Extended

information is available in the original reference.

This analysis is carried out applying the method of finite differences. Thus,

elements are discretised by dividing the IC area into single elements of equal size.

The thermal component of each element can be individually calculated depend-

ing on the time, material, power dissipation and temperature of its neighbors.

Thus, every element interacts with the rest through heat dissipation, and it has

a power dissipation, temperature, capacitance and thermal resistivity to adja-

cent elements. Thus, the thermal impact in an internal point of the chip can be

solved by using (2).

CdT (t)

dt
+AT (t) = Pu(t) (2)

where C is the thermal capacitance matrix as an NxN diagonal matrix,

A represents the thermal conductivity matrix as a sparse matrix sizing NxN .

T (t) and P are Nx1 temperature and power vectors and u(t) is the time step

function. We apply steady-state thermal analysis, that means the heat flow and

power consumption do not vary over time. Hence, terms that depend on time

disappear, and Equation (2) becomes Equation (3), where the IC temperature,

represented with a set of cells, is estimated based on the individual register

power and its thermal conductivity.

AT = P → T = A−1P (3)

10



T represents the temperature calculated as A−1, which is the inverse of A,

multiplied by the power vector P .

3.2. Energy model

In order to address the register file and cache memory optimization, we need

to estimate the energy consumption because of the number of accesses to the

register file and cache memory structures during the execution of a given set of

multimedia applications.

We have to determine the energy consumed per access to the register file

structure to estimate the energy consumption of this structure. In this con-

text, we apply the model detailed in [26], which describes how to measure cache

energy consumption and performance based on a limited number of cache ac-

cesses. Authors defined this model as simple, and suitable to measure energy

and performance improvement for reconfigure non-cache systems. Energy model

is explained according to Equation (4), where terms directly related to the cache

memory can be drop, given that this structure is not addressed in the register

file characterization.

Etotal = Eread + Ewrite +
(((((((((((((((
Eleak(std) + Ec−>m + Emp + Emisc (4)

Thus Etotal is the total energy consumption in Joules (J), Eread and Ewrite

correspond to the energy consumption by read and write register file accesses,

which are computed by equations (5) and (6). In those equations, nread is the

number of read accesses, Edyn read is the dynamic read energy, nwrite represents

the number of write accesses and Edyn write is the dynamic write energy. nread

and nwrite are computed during the profiling phase of the application.

Eread = nread ∗ Edyn read (5)

Ewrite = nwrite ∗ Edyn write (6)
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In order to address cache memory optimization, we apply the energy and

performance model described in [27]. For the sake of clarity, next section briefly

explains the performance model. Interested readers can find detailed informa-

tion in the original reference. Energy model is described by Equation (7), which

determines the energy consumption for a cache configuration.

Energy =
(((((((((
execT ime × CPUpower + Iaccess × Iaccess energy + Daccess × Daccess energy +

Imiss × Iaccess energy × Iline size + Dmiss × Daccess energy × Dline size +

Imiss × DRAMaccess power × (DRAMaccess time + Iline size × 1
DRAMbw

) +

Dmiss × DRAMaccess power × (DRAMaccess time + Dline size × 1
DRAMbw

) (7)

where DRAMaccess power is the power consumption for each DRAM access,

and Iaccess energy and Daccess energy correspond to the energy consumption for

instructions and data cache accesses, respectively. Terms Iaccess× Iaccess energy

and Daccess × Daccess energy calculate the energy consumption because of in-

structions and data cache, respectively. Imiss × Iaccess energy × Iline size and

Dmiss×Daccess energy ×Dline size is the energy cost of filling data into instruc-

tion and data caches from main memory, when a miss occurs. Last two terms

calculate the energy cost of the DRAM to respond to cache misses.

In our approach, we remove the first term of the Energy equation execT ime×

CPUpower because of three reasons: (1) the term CPUpower is constant and the

term execT ime is already being minimized in the first objective, (2) it represents

the amount of energy consumed by the CPU and we are optimizing just the

performance and energy consumed by the memory subsystem, and (3) in the

case of a multi-objective optimization, all the objectives must be as orthogonal

as possible, i.e., the term execT ime is redundant.

3.3. Performance model

Performance model allows us to obtain the execution time for the cache

memory. This model is based on the number of hits and misses in the cache

memory subsystem and the time needed to solve them. Equation (8) shows how
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the execution time is computed. Each component is described below, although

a widely and detailed explanation can be found in [27].

T = Icacheaccess × Icacheaccess time + Icachemiss × DRAMaccess time +

Icachemiss × Icacheline size × 1
DRAM bwidth +

Dcacheaccess × Dcacheaccess time + Dcachemiss × DRAMaccess time +

Dcachemiss × Dcacheline size × 1
DRAM bwidth (8)

Terms Icacheaccess andDcacheaccess correspond to the number of accesses to

the instructions and data cache memory, respectively. Icachemiss andDcachemiss

are the number of cache misses. Icacheaccess time and Dcacheaccess time repre-

sent the time needed to solve each access to the instructions and data cache,

respectively. DRAMaccess time is the main memory latency. Icacheline size and

Dcacheline size are the line or block size for the instructions and data cache,

and DRAM bwidth represents the bandwidth of the DRAM.

Thus, Icacheaccess× Icacheaccess time and Dcacheaccess×Dcacheaccess time

compute the total time needed to solve all accesses to the instructions and

data cache, respectively. Icachemiss × DRAMaccess time and Dcachemiss ×

DRAMaccess time are the total time solving accesses to the main memory, as

a consequence of misses in the instructions and data cache. Icachemiss × Ica-

cheline size × 1
DRAM bwidth and Dcachemiss × Dcacheline size × 1

DRAM bwidth

computes the total time needed to fill an instructions or date cache line, when

a miss happens. All equations use seconds for time, Watts for power, Joules for

energy, bytes for cache line size and bytes/sec for bandwidth.

4. Register file optimization

The first layer of our methodology is the register file optimization. We

present a methodology that takes into account the temperature increase due to

the accesses that happen while a multimedia application is running. Then it

evaluates the thermal impact of different spatial distributions of the logical reg-

isters. It applies a Multi-Objective Evolutionary Algorithm (MOEA) to obtain
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the optimized solutions, finally proposing the spatial distributions which better

reduce the thermal impact. This re-assignment of registers virtually increases

the distance 2 between registers with higher number of accesses, and it results

in a decrease of temperature.

In order to assess our proposal, we have selected a basic register file con-

figuration inspired in two VLIW and ARM architectures. We focus on the 32

general purpose registers for VLIW and, in the case of ARM, on the 16 avail-

able for all processor modes by replication. Both architectures have different

behavior patterns allowing us to analyze and optimize the thermal impact under

completely different scenarios.

We have adopted a multigrid design to simulate the physical area of the

register file, where the parameters needed by the simulator are the internal

structure size, the number of cells and the cell size according to the target

architecture. Following the design described in [28], the register file area is

divided into single cells, that will be modified in concordance with the target size.

Table 1 details the physical measures of the register file on both architectures.

Measures are expressed in microns and cells. Columns named “width” and

“height” represent the size of the register file in terms of cells, where a register

is 3 cells wide by 3 cells high. The next three columns are the size in microns

for an individual register and the width and height of the register file.

Table 1: Physical parameters of register file with a register size of 3 cells high and 90 cells

width.

Cells (width × height) Register file (µm)

Arch. Num. of Registers Width Height Size (µm2) Width Height

VLIW 32 90 96 3µm× 3µm 270 270

ARM 16 90 48 3µm× 3µm 288 144

Figure 2 shows the methodology that we have applied. Firstly, the target ap-

2Distancing means assigning logical registers highly accessed during a program execution

to registers that are physically separated in the register file.
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Figure 2: Optimization methodology. (1) Applications are simulated by Trimaran to obtain

program traces. (2) CACTI tool is used to compute energy consumption per access. (3)

Thermal simulator, designed in Matlab, processes program traces and applies the thermal

model defined. (4) Optimization process with NSGA-II as MOEA distributes accesses through

the register file and minimizes the thermal impact.

plication is simulated by Trimaran [29], a tool widely applied to obtain multiple

metrics during running applications. Similarly, energy consumption per access

is computed by CACTI [30], which is a well-known cache simulator used for

estimating energy consumption for different processor structures. These off-line

processes must be executed only once. Next, the program trace is processed by

the thermal simulator, which generates a customized XML file. This XML file

contains one row for each register, which has several associated elements: label,

position x,y (inside the design area), width, height and power density, according

to the thermal and energy model proposed (dp = Preg/Areg). The XML file is

provided as input to the optimization algorithm (MOEA in the Figure), which

simulates the internal structure in concordance with the given architecture. The

MOEA produces solutions where the geometric register configuration is deter-

mined, as well as the register position on each configuration. In this case, the

compiler will perform the register re-assignment.

Our optimization process has just two objective functions: (I) minimize the

thermal impact because of the register accesses and the influence of neighbors
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cells, described by Equation (9), where c is a given configuration, dpi and dpj

correspond to the power density of the registers i and j and dij is the Euclidean

distance between them, and (II) fit the physical viability of the design area

that controls X and Y positions inside it. Final human decision is needed to

select the best solutions, which are analyzed in the next section. Therefore, we

have selected the NSGA-II multi-objective algorithm as the required MOEA,

following the classical implementation described in [31]. Our code is publicly

available in [7]. Parameters for the NSGA-II algorithm are specified in Table 2,

and they were adjusted after some preliminary experiments.

f(c) =

Nreg∑
i=1

(dpi × dpj)
dij

(9)

Table 2: Parameters for the NSGA-II algorithm.

Parameter Value

Generations 250

Population Size 100

Chromosome Length Num. registers

Crossover 0.9 (fixed point)

Mutation 1/Num. registers

We study three possible topologies, C1, C2 and C3 for both VLIW and ARM

architectures as shown in Table 3. These topologies have been chosen based on

preliminary tests. According to the number of registers, we looked for alter-

natives to place more or fewer cells into contact with the external part of the

register file, which allows us to better study the thermal behavior. Regarding

the target applications, we have selected a subset of the multimedia benchmark

Mediabench [32] (epic, unepic, cjpeg, djpeg, mpegdec, mpegenc, gsmdecode, gs-

menconde, rawcaudio, rawdaudio), widely used in the scientific community to

increase the register file traffic.

Experimental results show that the thermal impact in the VLIW architecture

is not significant. The maximum increase in temperature for VLIW is 0.4319◦C
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in C1 and C2 configurations and 0.4318◦C in C3. In the case of ARM this

increase is 5.3044◦C in C1 and C2, and 5.3036◦C in C3. So, we focus on the

ARM architecture, where the temperature increase presents some interesting

values that we consider to be optimized. Figure 3 shows the thermal impact on

configuration C3 before the optimization with a 2 rows × 8 columns topology,

as an example. For the sake of the space, Figures display 8 rows and 2 columns.

Table 3: Physical description of register file.

VLIW Architecture ARM Architecture

Conf. Rows× Columns Width Hight Conf. Rows× Columns Width Hight

C1 32 × 1 90 96 C1 16 × 1 90 48

C2 16 × 2 180 48 C2 8 × 2 180 24

C3 4 × 8 720 12 C3 2 × 8 360 6

Figure 3: Thermal impact because of accesses to general purpose registers in a typical ARM

architecture before the optimization. C3 topology has 2 rows and 8 columns, although in

better shape, graphs are shown in 8 × 2 format.

Table 4 shows the improvement percentage for all applications after the

optimization. Figure 4 shows the case of C3 configuration graphically, after

the optimization process, which presents the best behavior among the studied

topologies.
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Table 4: ARM. Improvement percentage with respect to the average and maximum temper-

ature.

epic unepic cjpeg djpeg gsmdec

Avg Max Avg Max Avg Max Avg Max Avg Max

C1 3.87 2.14 5.55 3.10 1.84 1.01 1.22 0.67 4.12 2.28

C2 3.74 2.15 5.51 3.10 1.81 1.01 1.21 0.67 4.03 2.29

C3 3.78 2.15 5.54 3.11 1.83 1.01 1.22 0.67 4.13 2.29

gsmenc rawc rawd mpegdec mpegenc

Avg Max Avg Max Avg Max Avg Max Avg Max

C1 4.15 2.31 2.61 1.44 1.00 0.55 7.75 5.36 1.56 0.85

C2 4.07 2.31 2.57 1.44 1.00 0.55 7.68 5.36 1.53 0.86

C3 4.17 2.32 2.59 1.44 1.01 0.55 7.73 5.36 1.55 0.86

As seen in both Figures, hot spots have been moved in the majority of the

cases. However, in some of the benchmarks like cjpeg and djpeg, the influence

of the most accessed register in their neighborhood is so high that the adjacent

registers are highly affected by its temperature increase. However, the average

temperature values shows that, despite the decrease in terms of temperature is

not relevant, the proposed method is able to reduce the thermal impact of the

register file on the processor temperature in all the architectures, configurations

and multimedia applications addressed. As shown in Figure 4, registers highly

accessed are placed in the outside borders of the register file, in order to facilitate

power dissipation.

With the aim to verify the statistical relevance of the data obtained, we have

performed the statistical t-Student test. We have used the statistical software

R [33] to perform this test and compute the p-value. The p-value is a statistical

measure that allows determining if our results are significant. T represents the

statistical value used to make the test. Regarding the freedom degree, which
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Figure 4: Thermal map for the C3 topology in ARM architecture, after the multi-objective

optimization process. Registers with lower thermal impact are placed next to others with

higher thermal impact, so the temperature in the whole structure decreases for all applications,

as Table 4 shows.

is the number of freely chosen values in a sample which allow reaching a value,

we consider the number of registers. Hence, for the problem at hand we verify

statistically that the decrease of temperature obtained after the optimization

process is not relevant in both the ARM and VLIW architectures.

Table 5 shows the statistical results for the ARM architecture in the proposed

topologies and all multimedia applications. For each topology and optimized

solution, the temperature increase of its registers is compared to the average of

the maximum temperature in the non-optimized configuration. The p-value is

higher than 0.05 in all cases, thus we conclude that the decrease of temperature

obtained is not relevant. The same conclusion is applicable to the VLIW archi-

tecture, where we have obtained p-value values over 0.05 in all cases, too. We

have omitted the VLIW table for the sake of space.

5. Cache memory optimization

The second layer of our methodology is the cache memory, as previously

shown in Figure 1. We propose an optimization approach which is able to
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Table 5: t-Student test for each application and configuration with respect to the average of

the maximum non-optimized temperature in the ARM architecture.

Application C1 C2 C3

T p-value T p-value T p-value

epic 0.2161 0.5841 -0.3366 0.3705 0.3335 0.6283

unepic 0.231 0.5898 -0.0638 0.475 0.2802 0.6084

cjpeg 0.001 0.5004 -0.0554 0.4783 0.031 0.5122

djpeg 0.0148 0.5058 -0.0337 0.4868 0.0261 0.5102

gsmdec 0.2933 0.6133 -0.1101 0.4569 0.3326 0.628

gsmenc 0.2969 0.6147 -0.1122 0.4561 0.3358 0.6292

rawcaudio 0.0354 0.5139 -0.1318 0.4484 0.0526 0.5206

rawdaudio 0.0325 0.5127 -0.0098 0.4262 0.0158 0.5062

mpegdec 0.1721 0.5672 -0.1808 0.4295 0.2144 0.5835

mpegenc -0.1289 0.4496 -0.0411 0.4839 0.0009 0.5003

determine cache configurations for multimedia embedded systems and require

less execution time and energy consumption.

As seen in Figure 5, this layer is divided into two off-line phases (labeled

as 1 and 2) and a third phase devoted to optimization (labeled as 3). Firstly,

the off-line phases are executed just once before the optimization. Next, the

optimization process uses as input the results of the previous two phases. The

cache characterization phase is performed by CACTI, which computes access

times and energy consumed by the addressed structures. These values are nec-

essary to calculate the objective functions while the evolutionary algorithm is

running. The application profiling phase is carried out using Trimaran, which

compiles all cache memory accesses into program traces. In the third phase,

the NSGA-II optimization algorithm evaluates each candidate solution with the
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Figure 5: Optimization process: (1) cache characterization, (2) application profiling and (3)

cache optimization.

help of Dinero IV [34]. In this case, we have modified our implementation of

NSGA-II in order to be able to evaluate solutions using an external program

like Dinero IV. Dinero IV is a cache simulator, which given a program trace as

input, computes the number of hits and misses of memory accesses. These met-

rics multiplied by either the access delays and the energy per access previously

given by CACTI, provide the optimization algorithm a quality measure for each

individual under evaluation. Table 6 shows the parameter values used to config-

ure the NSGA-II algorithm. These values were selected after some preliminary

experiments.

Table 6: Parameters for the NSGA-II algorithm.

Parameter Value

Generations 250

Population Size 100

Chromosome Length 11

Crossover 0.9 (fixed point)

Mutation 1/11
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Given the different values that each one of the cache configuration parame-

ters may take, a very high number of combinations can be generated. Figure 6

shows the design space defined by the set of cache parameters (cache size, block

size, associativity, replacement algorithm and prefetch algorithm for both the

instruction and data caches, and also write policy for data cache) and their

possible values.

I-Cache D-Cache 

Block Size

8   16   32   64Prefetch
Algorithm

MISS  ON-DEMAND  ALWAYS

Associativity

4  8  16 32  64

Replacement
Algorithm

LRU  FIFO RANDOM

Size

512 1K 2K 4K 8K 16K 32K 64K

Cache Memory

COPY-BACK   WRITE-TRGH.

Write Policy

Figure 6: Taxonomy for a cache configuration design space. Both instructions and data caches,

labeled as I-Cache and D-Cache, must be customized with their corresponding values.

The NSGA-II optimization algorithm deals again with the objectives corre-

sponding to execution time and energy consumption, applying the previously

defined equations (8) and (7).

As we will describe in the next section, the resulting cache configurations are

compared with three baseline cache configurations. However, our methodology

might use any other cache configuration as a reference baseline.

Experimental results are based on the ARM architecture, particularly ARM-

920T [35]. Again, we have selected a set of applications from Mediabench [32].

In this case, we have also considered pegwitdec and pegwitenc in addition to

those benchmarks previously mentioned, all of them with their standard inputs.

It is well-known that multimedia applications from Mediabench increase the

pressure on the cache memory due to the intrinsic nature of data they manage.

Every application has been run for 7.5× 107 instructions to reach a balance
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between the total execution time, the size of the generated program traces and

a proper number of instructions.

The optimization process driven by NSGA-II is able to find cache config-

urations that presents an average improvement of execution time and energy

consumption of 33.9% and 71.8% respectively, taking a baseline as a reference.

Table 7 shows the three baseline configurations used in order to test our method-

ology. The first baseline is similar to the L1 cache of the first core in the GP2X

video games console. The second and third one are implemented in Cortex-A9

and Cortex-A15 processor.

Table 7: Baseline cache configurations. Cache size (Size), block size (BS), associativity (A),

replacement algorithm (RA), prefetch algorithm (PA) and write policy (WP) are shown for

the three configurations.

Instructions Cache Data Cache

Size BS A RA PA Size LS A RA PA WP

16 KB 32 B 4 LRU On-Dem. 16 KB 32 B 4 LRU On-Dem. Copy-Back

32 KB 64 B 4 Random Always 32 KB 64 B 4 Random Always Copy-Back

32 KB 64 B 2 LRU Always 32 KB 64 B 2 LRU Always Copy-Back

The results we obtained are shown in Table 8, where the comparison with

the three baselines is made. It is important to highlight that the Pareto set3

of some applications regarding the Baseline 1 includes solutions with negative

improvement percentage for one of the objectives. These values not only reduce

the average improvement in an application but also the total average improve-

ment. We have not removed or penalized these solutions because, on one hand,

they are not unfeasible solutions but they are solutions with performance worse

than the baseline reference and, on the other hand, they can illustrate the de-

cision maker how far a configuration can perform if one of the objectives is

relaxed. As a consequence, the average percentages corresponding to Baseline 1

would be increased to 34.98% and 79.34% in terms of execution time and energy

3Set of solutions returned by a MOEA, which must take an uniform distribution on the

objective space and be as close as possible to the Pareto Optimal Front (POF). The POF

represents the set of the best possible solutions for a given problem.
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consumption, respectively. These percentages would be higher, if we define a

quality standard for the solutions, as part of the human decision-making phase.

In relation to the other two baselines, corresponding to the SoC Apple AX

series included in different Apple devices like Cortex-A9 (iPad 2, iPod-touch o

iApple-TV) and Cortex-A15 (iPhone 5, iPhone 5S), the results are even better

than in the other baseline. The optimization process finds cache configurations

that improve on average 49.37%, 93.24% and 44.84%, 93.82% with respect to

baselines 2 and 3 in terms of execution time and energy consumption, respec-

tively, as shown in Table 8.

Table 8: Average improvement percentage of solutions belonging to Pareto set vs. the three

baselines under study.
Baseline 1 Baseline 2 Baseline 3

App. Ex. T. (%) Energy (%) Ex. T. (%) Energy (%) Ex. T. (%) Energy (%)

epic 44.9 76.3 55.77 91.94 51.35 92.63

unepic 33.4 26.7 42.58 93.82 37.05 94.39

gsmdec 31.4 84.3 36.25 94.24 30.39 94.74

gsmenc 19.0 83.6 33.76 94.07 31.15 94.36

cjpeg 27.2 71.1 52.63 91.04 47.82 91.78

djpeg 16.5 72.4 44.86 91.06 40.02 92.01

pegwitdec 27.1 83.9 51.31 95.15 46.77 95.44

pegwitenc 35.8 84.8 53.76 95.96 49.51 96.20

rawcaudio 48.8 84.8 59.45 94.39 55.18 94.83

rawdaudio 48.1 78.4 60.02 91.94 55.81 92.58

mpegdec 37.9 71.2 52.40 90.68 48.48 91.77

mpegenc 37.9 43.9 49.65 94.60 44.55 95.06

Average 33.9 71.8 49.37 93.24 44.84 93.82

Figures 7 and 8 display the cache configurations in the form of Pareto fronts

where the axis correspond to the execution time and energy consumption ob-

jective functions. As seen in the plots, in all applications the solutions are

uniformly distributed in the objective space. Some applications such as epic,

unepic, gsmdec and gsmenc present a greater uniformity than the rest, but all

of them provide a high number of solutions.

Given that the cache configurations provided by the optimization algorithm

present different performances, they all should be provided to the cache designer.

The expert will decide the best solution to fit the requirements of the target

system. In this context, our method simplifies this selection process and provides

a set of good solutions to the system designers.
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Figure 7: Pareto front representation for NSGA-II for epic, cjpeg, mpegdec, gsmdec, pegwitdec

and rawcaudio applications. Results show that solutions are uniformly distributed in the

design space and cover a wide region.

With the aim to measure the relevance of results presented, we have com-

puted the statistical t-Student test as in the previous section. The obtained

results are shown in Table 9, where FD is the freedom degree.

In this case, the freedom degree corresponds to the number of solutions of

the Pareto set in all applications. We observe in the table that the p-value is

far lower than 0.05 for all applications with respect to the performance and the

energy consumption. As a result of the statistical test, we can say the results

obtained with the proposed optimization methodology are relevant.

6. Dynamic memory management optimization

The third layer of our methodology consists on an optimization framework

based on GE and static profiling of applications to improve the dynamic memory

manager (DMM) for multimedia applications, which have high dependence of

dynamic memory. This is a non-intrusive method that allows to automatically

evaluate complex implementations of DMMs.
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Figure 8: Pareto front representation for NSGA-II for unepic, djpeg, mpegenc, gsmenc, peg-

witenc and rawdaudio applications. Results show that solutions are uniformly distributed in

the design space and cover a wide region.

In order to evaluate our proposal, we have selected six memory intensive

applications: hmmer, dealII, soplex, calculix, gcc and perl. In addition, we have

taken the Lea DMM (implemented in GNU/Linux systems) and the Kings-

ley DMM (implemented in Windows systems) as references to normalize the

performance of the results. In fact, we analyzed the execution time, memory

footprint and temperature of the memory, according to the thermal model pro-

posed in [25], and the energy consumption following the energy model developed

in [26] in a set of preliminary experiments. As a result, we found that the Lea

DMM has a high impact on the performance and in the memory footprint, circa

43.25% and 22.9%, respectively. On the other hand its influence is not signifi-

cant with respect to the temperature and energy consumption, which is 0.0006%

and 0.48% on average. The Kingsley DMM presented a similar behavior, so we

decided to use the first two metrics of performance and footprint.

Similarly to the other layers, in this case our methodology is divided into
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Table 9: t-Student test for the Pareto set of the applications with respect to a baseline cache.

Time Energy

Aplication FD T p-value T p-value

cjpeg 24 -5.47 6.42E-006 -15.87 1.59E-014

djpeg 19 -3.58 1.01E-003 -14.48 5.10E-009

epic 12 -50.71 1.13E-012 -11.61 3.48E-005

unepic 26 -23.79 2.20E-016 -1.23 1.15E-001

unepic 23 -22.09 2.20E-016 -5.52 6.41E-003

gsmdec 16 -17.66 3.23E-012 -32.69 2.20E-016

gsmenc 14 -7.59 1.27E-003 -28.48 4.28E-011

mpegdec 16 -25.96 8.30E-012 -11.38 2.20E-006

mpegenc 15 -24.21 9.77E-011 -1.60 6.50E-002

mpegenc 13 -22.93 3.36E-009 -17.61 9.38E-008

pegwitdec 11 -4.53 4.31E-004 -22.55 7.35E-008

pegwitenc 12 -13.09 9.15E-006 -25.81 3.49E-009

rawcaudio 12 -63.21 2.20E-016 -21.43 3.11E-008

rawdaudio 12 -54.49 4.81E-013 -13.65 5.70E-006

three phases, as shown in Figure 9, a detailed view of 3rd layer in Figure 1. The

first phase obtains application traces with the Pin instrumentation tool [36].

The second phase analyzes the target application trace and creates the grammar

that best fits with the application patterns. Finally, the optimization algorithm

based on GE is run, coupled to a DMM simulator [23], which will collect the

metrics needed to obtain the quality for each DMM evaluated. These metrics

are the number of memory accesses, memory usage, de/allocations, splittings

and coalescings. The execution time devoted to the DMM is calculated as the

computational complexity given that the system uses simulation time instead
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Figure 9: DMM optimization: (1) obtains applications traces, through Pin as the instrumen-

tation tool; (2) designs the customized grammar according to the application trace with and

(3) runs optimization algorithm with GE, which generates a customized DMM and the DMM

simulator is called to obtain the necessary metrics to evaluate it.

of real time.

It is important to explain that the grammar of the GE algorithm will be used

to compose the custom DMMs. Therefore, we decided to produce a different

grammar for each one of the target applications in order to reduce the search

space and, therefore, improve the optimization process. For the sake of space

we do not describe here the grammar, but the interested reader may obtain

detailed information about these kind of grammars in [22]. The parameters of

the GE algorithm are detailed in Table 10, and they were adjusted after some

preliminary experiments.

Besides, in our preliminary experiments, we have also verified that the be-

havior of the applications is similar among different executions. Thus, each

target application must be executed just once to obtain the profiling report,

which can be used to evaluate different DMMs.

Although GE performs well and does not require high amounts of memory, it

tends to fall into a local optimum if it is not correctly set up [37]. To address this

challenge, we have been successfully using premature convergence prevention
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Table 10: Parameters for the GE algorithm.

Parameter Value

Generations 250

Population Size 100

Chromosome Length 200

Selection mechanism Tournament (size=2)

Crossover 0.8 (fixed point)

Mutation 0.02

Maximumwraps 3

techniques [38], that are next explained.

Premature convergence of a Genetic Algorithm arises when the chromosomes

of some high rated individuals quickly dominate the population, reducing di-

versity, and constraining it to converge to a local optimum. Premature conver-

gence is one of the major shortcomings when trying to model low variability

magnitudes by using GE techniques. To overcome the lack of variety in the

population, work by Melikhov et al. [39] proposes the usage of Social Disaster

Techniques (SDT). This technique is based on monitoring the population to find

local optima, and apply an operator:

1. Packing : all individuals having the same fitness value except one are fully

randomized.

2. Judgment day : only the fittest individual survives while the remaining are

fully randomized.

Work by Rocha et al. [40] proposes the usage of Random Offspring Gener-

ation (ROG) to prevent the crossover of two individuals with equal genotype,

as this would result in the offspring being equal to the parents. Individuals are

tested before crossover and, if equal, then one offspring (1-RO) or both of them

(2-RO) are randomly generated.

Both previous solutions have shown important benefits in classical Genetic
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Algorithms problems. In our work, we use these techniques to improve the

convergence time of our solutions, with excellent results. Otherwise, without

these enhancements, the standard implementation of GE does not perform well

and is not able to find good solutions in a reasonable amount of time, as we

have already tested.

The GE optimization algorithm is implemented as an improvement of a Ge-

netic Algorithm with integer chromosomes where the grammar decodification is

included in the evolutionary process. As in the previous cases, we have published

the code of this algorithm in our JECO library [7]. Regarding the quality of the

solutions, the algorithm uses the objective function described in Equation 10

to select the best possible DMM among the candidate solutions. The execution

time (T ) and the memory use (M) have equal weight and they are normalized

to the corresponding Kingsley and Lea DMMs, which are considered the fastest

and more efficient (in terms of memory footprint) DMMs, respectively. Thus,

T and M are the execution time and the memory use for the DMM that is cur-

rently being evaluated; TKng and MLea are the execution time and the memory

use for Kingsley and Lea DMMs, respectively.

F = 0.5× T

TKng
+ 0.5× M

MLea
(10)

This methodology has been tested with six memory-intensive applications

from the SPEC bechmarks [41] using standard inputs: hmmer, dealII, soplex,

calculix, gcc and perl. We have compared the DMMs obtained by the GE al-

gorithm (GEA) with five different general purpose DMMs: Kingsley (KNG),

Doug Lea (LEA), a buddy system based on the Fibonacci algorithm (FIB), a

list of 10 segregated free-lists (S10) and an exact segregated free list (EXA).

Table 11 shows the average improvement percentage of GEA versus the

general purpose DMMs we compare with. As seen in the table, this method

reduces the objective function of weighted execution time and memory use by

59.27% on average. Besides, all the comparisons are positive for the GEA,

therefore obtaining better results than the general purpose DMMs.
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Table 11: Average improvement percentage. GEA vs. KNG, LEA, FIB, S10 y EXA.

KNG LEA FIB S10 EXA Average

Obj. value = 100 × F∗−FGEA
F∗

9.13% 62.52% 51.81% 86.88% 86% 59.27%

Performance = 100 × T∗−TGEA
T∗

1.17% 72.44% 62.62% 85.74% 90.78% 62.55%

Memory = 100 × M∗−MGEA
M∗

16.03% 23.14% 15.08% 38.88% 59.96% 30.62%

Table 12: Wilcoxon test on the optimization DMM in relation to GEA vs Kingsley (time) and

LEA (memory).

DMMs p-value

GEA vs Kingsley (time) 0.3951

GEA vs LEA (memory) 0.1415

Hence, our methodology is able to automatically design customized DMMs

according to a given application in a non-intrusive way, improving the perfor-

mance of standard DMMs.

We have tested the relevance of the results obtained performing a statistical

analysis with the Wilcoxon’s matched pair test. For the GEA DMM, the exe-

cution time was compared to Kingsley and the memory use was compared to

LEA, which are the faster and more efficient respectively using all the applica-

tions under study. The results of these tests are shown in Table 12.

The tests performed confirm the conclusions previously mentioned. The

test between GEA and Kingsley in performance gives a p-value of 0.395, which

indicates that we cannot ensure the samples are different. In fact, the results

obtained by GEA in terms of performance are close to Kingsley. Moreover, the

Wilcoxon’s test with respect to the memory use provides us a p-value of 0.142,

which indicates that results obtained are very similar. Again, this is obtained

because the use of memory of GEA is not very different from the memory

consumption of LEA.

Additionally, the DMM obtained with our GEA methodology was compared
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Table 13: Wilcoxon test on the optimization DMM in relation to GEA vs Kingsley (memory)

and LEA (time).

DMMs p-value

GEA vs Kingsley (memory) 0.001753

GEA vs LEA (time) 0.001988

to Kingsley and LEA in memory use and execution time, respectively, in order

to evaluate the relevance of our results regarding the measure that is not best

for the reference DMMs. Table 13 shows results obtained. According to these

tests, the memory use of GEA is better than Kingsley, and the Wilcoxon’s test

demonstrates the relevance of the results obtained with a p-value lower than

0.0018. The comparison between LEA and GEA in terms of execution time also

confirms that the results obtained by GEA are significant, with a p-value lower

than 0.002), and it improves the performance with respect to LEA.

7. Conclusions and future work

We have presented a method to optimize the memory subsystem of a com-

puter addressing three different levels: register file, cache memory and dynamic

memory management in the main memory. In all these levels we propose an

evolutionary algorithm as the optimization engine, which is helped by other

applications, either in a closed loop, either in off-line phases.

The optimization of the register file is based on a first step where a static

profiling of the target applications is performed. Then, a multi-objective evolu-

tionary algorithm is run, returning a set of solutions corresponding to register

re-assignments. As a result, highly accessed registers are spaced far apart. In

spite of thermal impact is not significant, we found some values worth to be

studied and apply the optimization process. Our results obtain a reduction

in the maximum temperature of 7.75% and 10.79% for some applications in
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ARM and VLIW architectures, respectively. This approach, as a consequence

of reducing temperature, facilitates heat dissipation.

In the optimization of the single level cache memory we consider both the

instructions and data caches, trying to reduce the execution time and the en-

ergy consumption due to cache memory operations. In this case, we propose

a framework divided into three phases: two off-line phases responsible of cache

characterization and the applications profiling, and a third phase which is driven

by the evolutionary algorithm. The experiments return a set of cache config-

urations which, in terms of average execution time and average energy con-

sumption, improve more than 34% and 79% respectively, compared with three

baseline configurations.

Regarding the dynamic memory management, our approach is divided into

three phases: applications profiling, grammar generation and the optimization

process based on Grammatical Evolution (GE). On average, we have obtained

custom DMMs that improve the weighted function of execution time and mem-

ory use in a 59.27%, normalized with respect to the best general purpose DMMs.

The execution time of the experiments in the three memory layers was very

diverse because it depends on the size of the target application, the configuration

of the algorithm and the time devoted to evaluation of the different simulators

that we call. Hence, our current optimization times are slow, and they are

situated in the range of several hours for each experiment. Therefore, we will

try to improve the execution time by incorporating parallel execution, as well

as to fine-tune the configuration of the algorithms.

The proposed methodologies provide a useful framework to system designers

facing the task of optimizing the memory subsystem of a device according to

running applications. As future work we propose the integration of the three

frameworks into a complete tool able to automatically optimize the three levels

of the memory hierarchy without human interaction. In addition, we will study

the use of artificial data in order to better understand the behavior of our

algorithms, which could provide us clues to improve the tuning of our methods.
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